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1 Introduction

This paper studies core and optimality properties of equilibria in models of economies with
quite general commodity spaces represented by ordered topological vector spaces which
need not be vector lattices. Our analysis has consequences in the case of finite as well as
infinite dimensional commodity spaces. The competitive equilibrium notion refers to the
one introduced by [9] in their theory of value under non-linear prices. Non-linear pricing
systems are of interest for economic analysis in the presence of discrimination among
agents, imperfect competition, progressive income tax tariffs, for general adverse selection
problems or land markets (see, for example, the discussion in [13]). A broad range of other
applications has been provided by [9], where the alternate theory of value arises naturally
from a series of previous contributions in infinite dimensional equilibrium analysis.

It is due to Aliprantis and Brown [2] the new approach to the study of infinite dimen-
sional equilibrium theory that saw its emergence at the beginning of the 1980’s. In their
paper they proposed Riesz dual pairs as a natural setting to represent commodity-price
dualities. They addressed the main questions of existence and optimality of equilibria
emphasizing the rich lattice theoretic structure that is shared by the prevalent models in
economics. The relevance of the lattice structure in infinite dimensional equilibrium analy-
sis was confirmed in the famous existence result given by Mas-Colell in [25]. However, this
relevance was in some sense surprising as it was apparently in contrast with Debreu’s
remarks according to which the main questions of existence and optimality of equilibria
could be answered, in the finite dimensional theory, using cones that are not necessarily
lattice cones (see [14]). These remarks, that concern the “coordinate free theory”, have to
be understood in infinite dimensional spaces in terms of a “vector lattice free analysis”.
Hence the contrast above implicitly motivates a series of relevant subsequent papers in
which lattice requirements have been weakened (see [26], [30], [31], [17] among the others).
The common idea is to assume a topology on the vector lattice commodity space that is
not necessarily locally solid but only locally convex. The dual space, interpreted as price
space, is still required to be a vector sublattice of the order dual. As pointed out by [9],
one shortcoming of this large literature is that the existence of equilibrium allocations
and welfare theorems are proved at the cost of assumptions on the agents consumption
sets that preclude models where location matters and differential information economies
in which the consumption sets may be very small. Moreover, the vector lattice structure
on the commodity space precludes a rich class of models that arise naturally when there
are constraints on disposal technologies (examples include waste discharge restrictions and
pollution disposal, see [27]).

In the contribution given by [9], main reference for the present paper, the limitations of
the lattice approach are addressed definitively: not only the topology of the vector lattice
commodity space need not be locally solid, but also the lattice structure itself can be given
up. This approach affords decentralization by means of generalized pricing systems. More
precisely,

• the commodity space is simply an ordered vector space which needs not be a vector
lattice;

• the existence and optimality of equilibria are proved supporting the relevant alloca-
tions by means of non-linear prices induced by personalized pricing systems.

The vector lattice free analysis gives back the standard Walrasian model of general
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equilibrium whenever, for instance, the commodity space is a vector lattice and consump-
tion sets coincide with the positive cone and has applications in finite as well as infinite
dimensional commodity spaces. In [9], [6] non-linear decentralization is motivated as aris-
ing, respectively, from a discriminatory price auction and from models of portfolio trading.
In [7], non-linear prices are reconsidered as elements of a lattice cone called the super order
dual1, hence the theory with ordered vector spaces may be considered as basically not so
different from the one with vector lattice commodity-price duality. Finally, in [3], [4] nec-
essary and sufficient conditions are given on the order structure of the commodity space
for supporting prices to be linear.

The aim of this paper is to establish some new cooperative characterizations of per-
sonalized equilibria, that is competitive equilibria supported by non-linear prices. Such
characterizations arise naturally as motivated by the notion itself and are helpful for a
deeper understanding of the non-linear approach to the competitive theory. In particular,
we provide characterizations formulated in terms of the veto power of just one coalition,
namely the grand coalition. This is done:

• in a family of economies associated to the original one, in which the initial endowment
of agents is modified in a precise direction;

• in the original economy, provided that agents are allowed to participate in the grand
coalition using only a share of their initial endowments.

This kind of characterizations is inspired by a regularity condition, characteristic of
personalized equilibria when compared with classical Walrasian equilibria, called arbitrage
free condition, imposed in relation to the arbitrage opportunity that is due non-linearity.
The arbitrage free condition is interpreted in the paper as a coalition-based arbitrage free
condition using coalitions in which agents may participate with an arbitrary share of their
initial resources (Aubin coalitions). According to it, in a personalized equilibrium, agents
in a coalition have no incentive to sell their total initial endowment to get a revenue that
is greater than the revenue from each member’s assigned bundle.

First we prove that personalized equilibria coincide, under standard assumptions, with
Aubin core allocations, i.e. they are exactly those allocations that are stable with respect
to Aubin coalitions improvements. Then, we concentrate on the veto power of the grand
coalition adopting the veto mechanism introduced by [20]. The blocking power is exercised
by the grand coalition in a family of new economies associated to the original one, once
the relevant allocation x has been fixed. In each of them the total initial endowment is
a path from the initial endowment e of the original economy to x. We prove that under
properness and irreducibility assumptions, personalized equilibria are exactly robustly ef-
ficient allocations, that means allocations that cannot be blocked by the grand coalition
in any of these economies.

A central ingredient of our analysis is represented by rational allocations. Rational
allocations have been introduced by [9] as a “convexification”of the notions of individual
rationality and Pareto optimality. As a further contribution of the paper, we point out
that, interestingly, this convexification made directly on a set of allocations, makes us
able to dispense with the use of the Lyapunov convexity theorem (clearly not valid in our
infinite dimensional set up)2.

1It is a larger, with respect to the dual cone, lattice ordered cone containing non-linear prices.
2The Lyapunov convexity theorem, through an application of the Vind’s theorem on the measure of

blocking coalitions (see [33]), is a central tool in [20] for finite dimensional economies.
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In a second step, we assume that the veto power of the grand coalition is exercised
in the original economy. Of course we cannot expect that personalized equilibria coincide
with Pareto optimal allocations. Hence we assume that the grand coalition is defined with
reference to a larger set of individual shares of participation: we say that a Aubin coalition
has full support if each trader takes part in the coalition with a non-zero share of his initial
endowment (a share that is not necessarily equal to one). Of course the Aubin core is a
subset of the core defined considering only coalitions with full support and, consequently,
also personalized equilibria are stable with respect to this class of coalitions. Moreover,
assuming properness and irreducibility, we show that personalized equilibria are exactly
those allocations that cannot be blocked by coalitions with full support. Here, again, we
use rational allocations as a central element of our analysis, in order to dispense with the
use of Lyapunov convexity theorem.

In conclusion, the veto power of the grand coalition is enough to obtain personalized
equilibria. Applications of our results are discussed in the last part of the paper. In par-
ticular, following [21], we provide a strategic interpretation of personalized equilibria, as
Nash equilibria of a game with only two players (subsection 5.1). Moreover, in subsec-
tion 5.2 we apply results to economies with asymmetric information furnishing a suitable
interpretation of the weak fine core.

The paper is organized as follows. Section 2 includes some preliminary and general facts
about ordered topological vector spaces. The model and the main equilibrium notions
are introduced throughout Section 3. This Section includes the notions of blocking in
connection with the grand coalition. The characterizations of personalized equilibria in
terms of the veto exercised by the whole set of agents are proved in Section 4 (Theorem
4.1, Theorems 4.13 and 4.14). Section 5 is devoted to applications and the final section 6
prospects the case of non convex preferences.

2 General facts

L is assumed to be an ordered topological vector space 3 under a Hausdorff locally convex
topology τ . Moreover, it will be assumed that order bounded intervals of L are (topologi-
cally) bounded sets and that the positive cone is generating i. e. L = L+ − L+.4

We use standard notation for the topological, order and algebraic duals of L. They
are, respectively, L′, L∼ and L∗ and each a subset of the subsequent. Also, the values f(c)
of real valued functions f over L are denoted by f · c.

For any index t ∈ T , let Xt ⊆ L+ be a nonempty closed convex cone. Then 0 ∈ Xt.
Moreover, for a finite T (in this case we use T also to denote the cardinality of T ) we have
that Πt∈T Xt is a closed convex cone of the suitable power of L.

Given a point c ∈ L+, the symbols x, y, z, ... are reserved for maps on T with xt ∈ Xt

(i.e. points of Πt∈T Xt) and such that
∑

t∈T xt ≤ c. Such maps form a set denoted by
Ac. Naturally the set Ac is convex and therefore also closed in the weak topology (in the
power LT ). Observe that

Ac + Ad ⊆ Ac+d and Aεc ⊆ εAc for all c, d ∈ L+, ε ≥ 0.
3Remind that the positive orthant L+ of an ordered vector space is a proper cone i.e. a convex cone

with vertex 0 and such that L+ ∩ (−L+) = {0}. If a topological vector space is also an ordered vector
space, then we say that it is an ordered topological vector space if its positive cone is closed.

4Of course the generating property is automatic in a vector lattice as well as the boundedness of order
intervals in case L is a topological vector lattice.
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Set C to be the convex cone generated by all sets Xt. One has that C =
∑

t∈T Xt.
Naturally, points of C are non-negative. Denote by M the linear subspace of L generated
by C, i.e. M = C − C.

A family p = (pt)t∈T of elements of L∗ (i.e. of linear functionals over L) gives rise to a
value function ψp : C → [0,∞] defined by means of

ψp · c := ψp(c) := sup
y∈Ac

∑
t∈T

pt · yt.

Note that ψp(0) = 0 and that, if a family p is made of order bounded functionals, then
the associated value function is real valued.

Proposition 2.1. [9, Lemma 3.3] If the family p is made of order bounded functionals,
then the associated value function ψp has the following properties.

1. monotonicity, namely on C one has c ≤ d⇒ ψp · c ≤ ψp · d
2. superadditivity, namely on C one has ψp(c+ d) ≥ ψp(c) + ψp(d)

3. positive homogeneity on C, i.e. ψp(εc) = εψp(c) for ε ≥ 0

4. ψp · c = q · c if the family p is a constant, i. e. q = pt for all t ∈ T

5. pt · c ≤ ψp · c for all c ∈ Xt

A property that it is worthy of being highlighted is the following. We say that decompos-
ability property is satisfied if we have that

Ac + Ad = Ac+d

whenever c and d are in the cone C (see property (A4) later).

Remark 2.2. When all sets Xt coincide with the positive cone L+, then the above de-
composition property is equivalent to the Riesz decomposition property of the space L
(see [9, Lemma 3.4]).

It is also of interest to observe then, having all Xt = L+ and the Riesz decomposition
property for L, that L∼ is a Riesz space and the supremum of {pt, t ∈ T ; 0}, i.e. (∨t∈T pt)+,
exists in L∼. Call q ∈ L∼ such a supremum. By the Riesz-Kantorovich formula it can be
seen that even in this case ψp · c = q · c for c ∈ L+.

The following is a remarkable fact.

Theorem 2.3. [9, Theorem 3.5] Let F be a linear subspace of the order dual L∼. Then
the following are equivalent

1. the function ψp is additive on C whenever p belongs to F T

2. Ac+d ⊆ clσ(LT ,F T ) (Ac + Ad) whenever c and d are in the cone C.

Remark 2.4. Whenever the map ψp is additive on C, then it can be uniquely extended to
the linear space M generated by C as a linear functional. Therefore, if the decomposability
property holds, then automatically the weak closure condition of Theorem 2.3 also holds
(for any F ) and, for any family p that belongs to F T , ψp coincides with a linear map over
M .
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Finally, we recall that a vector e ∈ L+ is an order unit if for each c ∈ L there exists
some λ > 0 such that c ≤ λe. If e is an order unit for L+, then so are αe and e+ c, for all
α > 0 and c ∈ L+. An element e ∈ L+ is an order unit if and only if it is an internal point
of L+, that is for each c ∈ L there exists λo ∈ (0, 1) such that λe + (1 − λ)c ∈ L+, for
all λ ∈ (λo, 1) (see [8, Lemma 1.7]). Moreover, an order unit e of L+ is a strictly positive
vector, i.e. for every non-zero linear functional q ∈ L

′
+ we have q · e > 0. This follows from

[8, Lemma 2.54] and [8, Lemma 2.65].

3 The Model

We shall deal with exchange economies. The commodity space L is assumed to be an
ordered topological vector space under a topology τ that is locally convex. Moreover, it
will be assumed that order bounded intervals are (topologically) bounded sets and that
the positive cone is generating i. e. L = L+ − L+

5.
Let us denote by T a finite set of consumers. For any consumer t ∈ T , the initial

endowment is et > 0. It belongs to the consumption set Xt ⊆ L+ which is a closed convex
cone. The total initial endowment is e and it belongs to C, the cone generated by all
consumption sets.

Preferences of the individual t are given by means of a correspondence Pt of the con-
sumption set in itself. The set Pt(x) represents the collection of elements in Xt that are
preferred to the bundle x ∈ Xt (the “preferred to” set). Here are possible assumptions on
preferences.

1. irreflexivity, namely any Pt(x) does not contain x;

2. convexity of values;

3. strict monotonicity, i.e. x+ y ∈ Pt(x) whenever x, y ∈ Xt and y 	= 0

4. any set Pt(x) is open in Xt

5. any “worse than” set P−1
t (x) := {z ∈ Xt : x ∈ Pt(z)} is open in Xt with respect to

the weak topology.

6. x ∈ Pt(y) implies that y /∈ Pt(x) for each t ∈ T and x, y ∈ Xt.

Naturally, when strict monotonicity holds, any set Pt(x) is non-empty as it contains
x+ εet for positive numbers ε. Consequently, also x ∈ Pt(x) always holds true.

The set of above properties of the preference correspondence is denoted by (A1).
Concerning hypothesis denoted in bold characters like (A1), (A2) etc, throughout

the sequel, an explicit appeal to them will be made whenever they are used in obtaining
results. Assumption (A1, 6.) will be explicitly used only in subsection 5.1, assumption
(A1, 5.) only in connection with the existence of equilibria.

An assignment is, by definition, a map x on T with xt ∈ Xt (i. e. a point in Πt∈T Xt).
An assignment x is said to be an allocation if

∑
t∈T xt ≤ e (i.e. if feasibility is satisfied).

Allocations form a set denoted by A or by Ae to emphasize the role of vector e in the
feasibility. The following compactness condition is introduced to guarantee the existence
of relevant allocations:

5If L is a vector lattice, then it would be enough to assume that the positive cone of L is τ -closed and
that L

′
is a vector sublattice of L∼.
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(A2): the set A is assumed to be weakly compact.
Of course (A2) is satisfied under the hypothesis of weak compactness of the interval

[0, e], since A ⊆ [0, e]T .
Let us introduce a properness condition on preferences as in [9].
(A3): There is an allocation v, with vt > 0 for any t ∈ T , and a family of correspon-

dences6 (P̂t)t∈T , each defined on Xt and with values in L, such that

t ∈ T, x ∈ Xt ⇒ P̂t(x) ∩Xt = Pt(x) and x+ vt ∈ int(P̂t(x)).

As it is usual, the properness-like assumption on preferences compensates for the pos-
sible lack of interior points in the positive cone of the commodity space, since it ensures
that infinite dimensional separation theorems can be applied. Precisely, it gives a condi-
tion sufficient for the preferred set to be supported by a continuous linear functional. The
condition contained in (A3) and adopted in [9], is due to [31]. If the commodity space
L is a vector lattice and preferences are complete preorderings on Xt = L+, then it can
be proved that Mas-Colell’s ([25]) uniform properness condition is strictly stronger than
(A3) (see also the extreme desirability condition in [32]). Related conditions are given in
[10] and [30].

3.1 Properties of feasible allocations

We now introduce some well-known properties that a (feasible) allocation may satisfy. The
following notions are price free, in the sense that they should be understood as intrinsic
in the commodity space. The term coalition will be reserved to non empty subsets of the
set T .

Definition 3.1. An allocation x is

1. individually rational, when et /∈ Pt(xt) for any agent t (write x ∈ IR).

2. weakly Pareto optimal (write x ∈wPO), if yt ∈ Pt(xt) for all t, entails that (yt)t∈T

is not feasible. Equivalently: Ae ∩ Πt∈T Pt(xt) = ∅.
3. in the core (write x ∈ C) , if it cannot be blocked by any coalition of agents, namely

there does not exist a coalition S and a map y on S with yt ∈ Pt(xt), for all t, and
such that

∑
t∈S yt ≤ ∑

t∈S et.

4. an Edgeworth equilibrium (write x ∈ CE), whenever it is in the core of any replica
economy.

5. in the Aubin core 7 (write x ∈ CA) , if it cannot be f-blocked by any coalition of
agents, namely a coalition S does not exist such that a map (αt, yt)t∈S can be found
with

(αt, yt) ∈]0, 1] × Pt(xt) and
∑
t∈S

αtyt ≤
∑
t∈S

αtet.

6. a strong Edgeworth equilibrium (write x ∈ s CE) if

(co
⋃
t∈T

[Pt(xt) − et]) ∩ (−L+) = ∅.

6convex-valued is required if we are under the assumption (A1, 2.) of convexity of preferences
7Same as f-core or fuzzy core.
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7. in the strong Aubin core (write x ∈ s CA) , if it cannot be strongly f-blocked, namely
it is impossible to find a set (necessarily finite here) of coalitions S1, . . . , SR such
that maps (αr

t , y
r
t )t∈Sr , r = 1, . . . , R, can be found with

(αr
t , y

r
t ) ∈]0, 1] × Pt(xt) and

R∑
r=1

∑
t∈Sr

αr
t y

r
t ≤

R∑
r=1

∑
t∈Sr

αr
tet.

The optimality properties provided by Definitions 3.1 will be reinterpreted in terms of
suitable coalitions in subsection 3.3. For the moment, we register that the following obvious
inclusions hold true:

CE ⊆ C ⊆ wPO ∩ IR.
Moreover,

Proposition 3.2. [9, Lemma 7.2] We have s CE ⊆ CE. The reverse inclusion CE ⊆ s CE

also holds under the assumption that preferences are convex-valued, i.e. (A1, 2.), and
continuous, i.e. (A1, 4.).

Proposition 3.3. We have s CA ⊆ CA. The reverse inclusion CA ⊆ s CA also holds under
the assumption that preferences are convex-valued, i.e. (A1, 2.).

proof: The first inclusion simply follows by definition. Assume now that x /∈ s CA. Then
there exist finitely many coalitions S1, . . . , SR such that maps (αr

t , y
r
t )t∈Sr , r = 1, . . . , R,

can be found with

(αr
t , y

r
t ) ∈]0, 1] × Pt(xt) and

R∑
r=1

∑
t∈Sr

αr
t y

r
t ≤

R∑
r=1

∑
t∈Sr

αr
t et.

Then, defining for each r = 1, . . . , R and for t /∈ Sr, αr
t equal to zero and yr

t arbitrary, we
have also ∑

t∈T

R∑
r=1

αr
t y

r
t ≤

∑
t∈T

R∑
r=1

αr
tet.

Let us define for each t ∈ T , αt =
R∑

r=1

αr
t , S = {t ∈ T : αt 	= 0} and for each t ∈ S,

yt =
1
αt

R∑
r=1

αr
t y

r
t . Then, by convexity, yt ∈ Pt(xt) and a contradiction follows from

∑
t∈S

αtyt =
∑
t∈T

R∑
r=1

αr
t y

r
t ≤

∑
t∈T

R∑
r=1

αr
t et =

∑
t∈S

αtet.

�

Proposition 3.4. We have s CA ⊆ s CE.

proof:
Let x ∈ s CA and assume that x /∈ s CE so that we find a point in −L+ which is a

convex combination of points in
⋃

t∈T [Pt(xt) − et]. Set To ⊆ T by t ∈ To if and only if
Rt > 0 points of Pt(xt) − et are involved in the above mentioned convex combination.
Then we can write for t ∈ To, r = 1, . . . Rt,
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(αr
t , y

r
t ) ∈]0, 1] × Pt(xt) and

∑
t∈To

Rt∑
r=1

αr
t y

r
t ≤

∑
t∈To

Rt∑
r=1

αr
t et.

Let R = maxt∈ToRt and define for r = 1 . . . R

Sr = {t ∈ To : αr
t 	= 0}.

Then we have that each Sr is non empty and writing previous inequality as

∑
t∈Sr

R∑
r=1

αr
ty

r
t ≤

∑
t∈Sr

R∑
r=1

αr
t et

we contradict x ∈ s CA.
�

Proposition 3.5. We have s CE ⊆ CA. The reverse inclusion CA ⊆ s CE also holds under
the assumption that preferences are convex-valued, i.e. (A1, 2.).

proof: Let us start with x /∈ CA. Then a coalition S exists such that a map (αt, yt)t∈S

can be found with

(αt, yt) ∈]0, 1] × Pt(xt) and
∑
t∈S

αtyt ≤
∑
t∈S

αtet.

Up to an obvious normalization, it is clear that the set (co
⋃

t∈T [Pt(xt) − et]) ∩ (−L+) is
nonempty. Viceversa, take x /∈ s CE, then a point z ∈ (co

⋃
t∈T [Pt(xt) − et]) ∩ (−L+). We

can write, by convexity, 0 ≥ z =
∑

t∈T λt(zt−et) with zt ∈ Pt(xt) for all t and
∑

t∈T λt = 1.
Naturally we rewrite

∑
t∈T λtzt ≤

∑
t∈T λtet to understand that x /∈ CA. �

3.2 Competitive equilibria and generalized prices

We start introducing standard notions of valuation and competitive equilibria. Since at
this stage prices are required to be linear, existence and optimality of equilibria are in
general not guaranteed for infinite as well as finite dimensional commodity spaces, given
the possibility that the ordering of the commodity space is not a lattice order8. Here are
the Walrasian notions.

Definition 3.6. An allocation x is a Walrasian

1. valuation equilibrium, when q ·Pt(xt) ≥ q ·xt for a certain q ∈ L′ such that q ·e 	= 0;

2. quasi equilibrium, when q · Pt(xt) ≥ q · et for a certain q ∈ L′ such that q · e 	= 0
and q · xt = q · et, ∀t ∈ T ;

3. equilibrium, when q · Pt(xt) > q · et for a certain q ∈ L′ such that q · e 	= 0 and
q · xt = q · et, ∀t ∈ T .

8In [27] an example is provided of an economy with three commodities in which there is no Walrasian
equilibrium and the second welfare theorem fails for linear prices.
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The alternate theory of value arises from a personalized pricing system defined as
follows. We just refer to a family p = (pt)t∈T of elements of L∗ (i.e. of linear functionals
over L assigned to each trader) as a list of personalized price. A list of personalized price,
as we have seen, gives rise to a value function ψp : C → [0,∞] that will be defined
as the generalized price associated to the list. If a list of personalized prices is made of
order bounded functionals (we say that it is order bounded), then the value function is
real valued. In this case, the name generalized price for the value function is naturally
motivated by property 4 in Proposition 2.1 or, when all consumption sets coincide with
the positive cone L+ and the Riesz decomposition property holds for L, by Remark 2.2.
Then, following the interpretation given by [9], in a first step a discriminating Walrasian
auctioneer assigns to each (price-taking) consumer t a personal linear price pt. Given this
list of prices, the value of the generalized price ψp over a commodity bundle c, ψp · c, is
the highest possible value that it is attainable by decomposing the vector c ∈ C into a
consumable family (yt)t∈T of vectors and assuming that each agents t pays its own personal
price pt. According to this, it is natural to say that an allocation x of the economy, given
the personalized price p, is a maximizing allocation if the value ψp · e is exactly achieved
in x, namely

ψp · e := sup
y∈Ae

∑
t∈T

pt · yt =
∑
t∈T

pt · xt.

We use the symbol A(max, p) to denote the set of maximizing allocations.

Remark 3.7. Notice that under the assumption of weak compactness of the set of al-
locations of the economy, assumption (A2), a maximizing allocation always exists when
the personalized price is made of continuous functionals (we speak then of a continuous

personalized price) due to weak continuity of the function
∑
t∈T

ptyt defined on LT . In other

words:
p ∈ (L′)T ⇒ A(max, p) 	= ∅.

Also observe that
x ∈ A(max, p) ⇒ ψp · xt = pt · xt, ∀t ∈ T

since otherwise, by Proposition 2.1 (properties 5., 2. and 1.), one has
∑

t∈T pt · xt <∑
t∈T ψp · xt ≤ ψp · e =

∑
t∈T pt · xt, i.e. a contradiction.

We say that the economy satisfies the consumption decomposability property,
(A4), if it is true that Ac + Ad = Ac+d whenever c and d are in the cone C.

Property (A4) relies on the consumption sets of the economy. Indeed if u ∈ Ac+d, and
therefore for the map u = (ut)t∈T , one has

∑
t∈T ut ≤ c+ d =

∑
t∈T (ct + dt), there is no

guarantee that any ut is ut = u′t +u′′t with u′t ∈ [0, ct] and u′′t ∈ [0, dt]. Moreover even if the
Riesz decomposition property would ensure the right decomposition, without the solidity
of consumption sets (A4) could fail.

The consumption decomposability property is related to the possibility of a generalized
price to be a linear map. The base for such a statement is in Theorem 2.3 and Remark
2.4.

Remark 3.8. If (A4) holds, then for any order bounded personalized price, ψp coincides
with a linear map over M . As we have seen in Remark 2.2, when the commodity space
L enjoys the Riesz decomposition property and all consumption sets coincide with the
positive cone L+, then we have (A4) and the generalized price associated to an order
bounded personalized price can be identified with an element of L∼, the order dual of L.
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About continuity of possible linear extensions of generalized prices we have what fol-
lows.

Theorem 3.9. Suppose all consumption sets are L+ and p is an order bounded personal-
ized price. If ψp is the restriction to L+ of an element q of L′, then in L∼ the supremum
of {pt, t ∈ T ; 0}, i.e. (∨t∈T pt)+, exists and it is continuous, moreover it coincides with q.

We define now equilibria supported by non-linear prices, that is competitive equilibria
naturally arising in our setting whose introduction is due to [9]. They turn out to be of
interest for infinite as well as finite dimensional commodity spaces, leading to a broad
range of economic applications.

Definition 3.10. For an allocation x ∈ A, we say that it is a:

1. personalized valuation equilibrium if it exists an order bounded personalized price p
such that

(i) ψp · e > 0
(ii) t ∈ T, y ∈ Pt(xt) ⇒ ψp · y ≥ ψp · xt

(iii) ψp · e =
∑
t∈T

ψp · xt.

2. personalized quasi-equilibrium if it exists an order bounded personalized price p such
that (i), (ii) above hold and (iii) is replaced by

(iii)b ψp ·
∑
t∈T

αtet ≤
∑
t∈T

αtψp · xt, ∀α ∈ IRT
+.

3. personalized equilibrium if it exists an order bounded personalized price p such that
(i), (iii)b above hold and (ii) is replaced by

(ii)b t ∈ T, y ∈ Pt(xt) ⇒ ψp · y > ψp · xt.

Condition (iii) is an arbitrage-free condition motivated by nonlinearity of prices. What
is relevant in it is the ≤ sign since the reverse inequality holds due to: feasibility of x,
monotonicity and superadditivity of the generalized price 9. Clearly in the above definition
3. ⇒ 2. ⇒ 1. Moreover, if we denote by pVEp the set of allocations that are personalized
valuation equilibria with respect to a list p, then it is trivially true that:

x ∈ pVEp and ψp · xt = pt · xt, ∀t ∈ T ⇒ x ∈ A(max, p).

Let us denote now by pQEp and by pEp the sets of allocations that are, respectively,
personalized quasi-equilibria and personalized equilibria with respect to the personalized
price p. Sets of all allocations that are, respectively, personalized valuation equilibria, quasi-
equilibria and equilibria with respect to some personalized price p are pVE , pQE and pE .
The irreducibility condition needed in this setting to convert quasi equilibria in equilibria
supported by nonlinear prices (i.e. to show that 2. ⇒ 3.), looks as an assumption on
decomposability of all initial endowments. We say that a vector 0 < c ∈ L+ is decomposable
if an always nonzero element of Ac can be found. Let us introduce assumption
(A5): All initial endowments are decomposable.

9ψp · e ≥ ψp · (∑t∈T xt) ≥∑t∈T ψp · xt. So when (iii) holds, then necessarily the inequalities become
equalities. We shall discuss the condition in details in subsection 3.3.

Note also that from (iii)b it follows that ψp · et ≤ ψp · xt for any agent t.
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Remark 3.11. Notice that if the consumption sets are equal each other, then et
T 1 ∈ Aet,

so assumption (A5) is fulfilled. A similar conclusion is achieved for different consumption
sets if one can find a number k > 0 such that e ≤ ket for all t ∈ T . Indeed e

k ∈ Aet for
all t ∈ T .

Lemma 3.12. Assume strict monotonicity and continuity of preferences (i.e. (A1, 3. and
4.)). Assume further the decomposability condition (A5).
If x ∈ pQEp ∩ A(max, p) and, for all agent, one has (∗) pt · xt ≤ pt · Pt(xt), then x ∈ pEp.

proof: It is only necessary to prove the above condition (ii)b.
We first claim that: for any t necessarily ψt · xt > 0.
Since x is maximizing, by condition (i) we have: 0 < ψp ·e =

∑
t∈T pt ·xt and necessarily

an s exists with 0 < ps · xs = ψs · xs.
Now by continuity take for any y ∈ Ps(xs) a number k ∈]0, 1[ such that ky ∈ Ps(xs)

and apply assumption (∗):
0 < ps · xs ≤ ps · ky = kps · y

obtaining that ps · y is non zero and therefore ps · y > kps · y and also ps · y > ps · xs In
other words we have obtained: (∗∗)ps · xs < ps · Ps(xs). Using (A5) to decompose et, we
can find z ∈ Xs with 0 < z ≤ et and by (∗∗) applied to y = x + zs (∈ Ps(xs) because
of monotonicity) we have ps · z > 0. Now: ψp · xt ≥ ψp · et ≥ ψp · z ≥ ps · z, the three
inequalities coming from, respectively, condition (iii)b, 1. and 5. of Proposition 2.1.

The claim is therefore proved and to obtain (ii)b again take for any y ∈ Pt(xt) a number
k ∈]0, 1[ such that ky ∈ Pt(xt) and apply assumption (ii): kψp · y = ψp · ky ≥ ψp · xt

discovering that ψp · y > 0 and therefore ψp · y > kψp · y ≥ ψp · xt, as desired. �

Theorem 3.13. ([9, Theorem 4.3]) A Walrasian equilibrium x with respect to the positive
equilibrium price q necessarily is a personalized equilibrium with respect to the continuous
personalized price pt = q (∀t) that gives rise to the generalized price ψq additive on C.
Reciprocally, a personalized equilibrium x, with respect to an order bounded personalized
price p such that ψp is additive and continuous on C, is a Walrasian equilibrium.

proof: It is just by assumption that q ∈ L+, q · e 	= 0, q · xt = q · et, q · Pt(xt) > q · et
for all t ∈ T . Applying Proposition 2.1 to the family constantly equal to q, one has that
ψp · c = q · c on C. Then (i), (ii)b and (iii)b of Definition 3.10 obviously hold.

Assume now that x is a personalized equilibrium under p. We have seen already in
footnote that ψp · et ≤ ψp · xt for any agent t. If ψp is additive on C then we have by
feasibility that ∑

t∈T

ψp · xt = ψp ·
∑
t∈T

xt ≤ ψp · e =
∑
t∈T

ψp · et

and therefore ψp · et = ψp · xt for al t. Since ψp is uniquely extendible as a linear and
continuous functional over M , by the Hahn-Banach theorem let q ∈ L′ be an extension of
it. Then x is a Walrasian equilibrium under q. �

Remark 3.14. In view of Theorem 3.13, we are in the Arrow-Debreu-McKenzie model
whenever the generalized price is additive and continuous. This is for example the case
when the personalized price is continuous and the consumption decomposability property
holds true or the consumption sets coincide with the positive cone of a vector lattice L in
which L

′
is a vector sublattice of L∼.
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We can see now conditions under which the set pVE of allocations that are person-
alized valuation equilibria can be compared with the set wPO of weakly Pareto optimal
allocations. For the proof of the next two theorems we refer to [9, Theorem 5.1].

Theorem 3.15. Assume preferences are convex-valued. Assume further that (A3) holds
(the properness condition) and x ∈ wPO.

1. A continuous personalized price p can be found such that

pt · xt ≤ pt · Pt(xt), ∀t ∈ T .

2. Assume further that preferences are strictly monotone, then the same p supports x as
a personalized valuation equilibrium (i.e. wPO ⊆ pVE) and, moreover, x ∈ A(max, p)

or, what is the same here, ψp · xt = pt · xt, ∀t ∈ T .

Of course, one can also summarize the thesis (analogous to that of the second wel-
fare theorem) of the above Theorem as: wPO ⊆ ⋃

p∈(L′)T pVEp. Under continuity of
preferences the inclusion of Theorem 3.15 can be reversed.

Theorem 3.16. Assume that any set Pt(xt) is open in Xt, then

pVE ⊆ wPO.

We conclude this subsection by proving the following inclusion.

Proposition 3.17. We have p E ⊆ s CA.

proof:
Let x ∈ pE be supported by a generalized price ψp and assume that x /∈ s CA so that we

find coalitions S1, . . . , SR and maps (αr
t , y

r
t )t∈Sr , r = 1, . . . , R, with (αr

t , y
r
t ) ∈]0, 1]×Pt(xt)

and

(+)
R∑

r=1

∑
t∈Sr

αr
ty

r
t ≤

R∑
r=1

∑
t∈Sr

αr
tet.

By condition (ii)b of Definition 3.10 we have for r = 1, . . . , R and t ∈ Sr

ψp · yr
t > ψp · xt

and then

(++)
R∑

r=1

∑
t∈Sr

αr
tψp · yr

t >

R∑
r=1

∑
t∈Sr

αr
tψp · xt.

Observe now that by superadditivity, positive homogeneity and monotonicity of the
functional ψp, due to (+), one has

R∑
r=1

∑
t∈Sr

αr
tψp · yr

t ≤ ψp ·
(

R∑
r=1

∑
t∈Sr

αr
t y

r
t

)
≤ ψp ·

(
R∑

r=1

∑
t∈Sr

αr
t et

)
.

If the latter quantity is written as
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ψp ·
(∑R

r=1

∑
t∈Sr

αr
t et

)
= ψp ·

(∑R
r=1

∑
t∈T βr

t et

)
= ψp ·

(∑
t∈T

(∑R
r=1 β

r
t

)
et

)
, where

βr
t is null on T \ Sr and coincide with αr

t on Sr, condition (iii)b of Definition 3.10 can be
used in order to get

ψp ·
(∑

t∈T

(
R∑

r=1

βr
t

)
et

)
≤
∑
t∈T

(
R∑

r=1

βr
t

)
ψp · xt =

R∑
r=1

∑
t∈Sr

αr
tψp · xt.

that contradicts (++).
�

3.3 Notions of blocking

Reconsider the additional condition in the notion of personalized equilibrium denoted by
(iii)b and called arbitrage free condition:

ψp ·
∑
t∈T

αtet ≤
∑
t∈T

αtψp · xt, ∀α ∈ IRT
+

and observe that, due to the positive homogeneity of ψp, it can be rewritten in the form

ψp ·
∑
t∈T

αtet ≤
∑
t∈T

αtψp · xt, ∀α ∈ [0, 1]T .

This remark allows us to interpret (iii)b as a coalition based arbitrage free condition.
Indeed, define the set

Σ = {α : T → [0, 1] : {t ∈ T : αt > 0} 	= ∅}
and call: any element α in the set Σ an Aubin (or fuzzy) coalition, the set Sα = {t ∈ T :
αt > 0} the support of α.

The function (α) ∈ [0, 1]T is interpreted as a coalition in which agent t takes part
employing only a share αt of is initial resources et. Of course ordinary coalitions form a
subset of Σ, since they can be identified with their characteristic functions.

Looking now at condition (iii)b above, it is clear that
∑

t∈T αtet is the initial endow-
ment of the Aubin coalition and the arbitrage free condition can be interpreted by saying
that: under a personalized equilibrium allocation, Aubin coalitions have no nominal incen-
tive to sell their total initial endowment to get a revenue that is greater than the revenue
from each member’s assigned bundle. Hence the personalized equilibrium notion implicitly
contains a requirement of stability with respect to deviations of Aubin coalitions, in the
sense that agents in a Aubin coalition have no incentive to deviate from their optimal
choice in the generalized budget set10. Is the allocation also stable with respect to devia-
tions when agents in the coalition are free to redistribute their initial endowments among
theirself?

To answer to this question, we shall give or reinterpret in the following the blocking
mechanisms and the corresponding cooperative notions of equilibria in terms of Aubin
coalitions.

10the interpretation of condition (iii)b proposed in [9] relies on coalitions of a continuum economy
canonically associated to the finite one.
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Definition 3.18. The coalition α ∈ Σ of support Sα blocks an allocation x, if there exists,
over Sα, an assignment y s.t.

i)
∑
t∈Sα

αtyt ≤
∑
t∈Sα

αtet;

ii) yt ∈ Pt(xt), for all t ∈ Sα.

Once this is fixed, it is clear that the notion of Aubin core introduced in Definition
3.1 can be reconsidered from the perspective of Aubin coalitions: x ∈ CA is the same as
saying that x cannot be blocked by an Aubin coalition. Since each agent t may participate
to a coalition α employing only a share αt of his initial resources, the intuition behind is
that a feasible allocation belongs to the Aubin core if it is not possible for agents to join
such a coalition and to redistribute their initial endowment among themselves according
to these shares letting each member obtain a strictly preferred bundle. The feasibility over
the coalition has to account of these shares as it is expressed by the weighted sum in
condition ii)11.

Similarly, if we take a finite set A = {α1, . . . , αR} of Aubin coalitions, we say that x is
blocked by A if we can find assignments y1 . . . , yR enjoying the following properties:

t ∈ Sαr ⇒ yr
t ∈ Pt(xt) and

R∑
r=1

∑
t∈T

αr
t y

r
t ≤

R∑
r=1

∑
t∈T

αr
t et.

Let us call A a generalized Aubin coalition for supporting the intuition that an agent
t may join simultaneously several coalitions α1, . . . , αR by participating in each with a
portion αr

t of his resources.
Once this is fixed, we can clearly say that x ∈ s CA is the same as saying that x cannot

be blocked by any generalized coalition.
The main results in the paper aim to characterize personalized equilibria as the only

allocations that are stable with respect to the veto power of the grand coalition (in the
usual or Aubin sense). Personalized equilibria are strong Edgeworth equilibria (see [9,
Lemma 7.4], proved here as a combination of Propositions 3.4 and 3.17). Consequently,
they are in the Aubin core and weakly Pareto optimal, that means stable with respect
to improvements of the grand coalition, assuming that agents may employ a share or the
whole initial endowment joining it. In general these inclusions do not end up in equiva-
lences. So the veto power of the grand coalition is not enough to characterize competitive
equilibria unless the veto mechanisms is modified in a suitable direction.

To show this, we shall deal with the blocking mechanism due to [20], in which the veto
is exercised by the grand coalition in a family of economies associated to the original one.
The next definitions are formulated following their approach.

Definition 3.19. Let x be a given assignment. We say that it is non-dominated when the
grand coalition can’t block it, i.e. Ae ∩ Πt∈T Pt(xt) = ∅ (write x ∈ NDe).

It is clear that wPO = NDe ∩ Ae.
We introduce now a notation. Fix maps y ∈ Πt∈TXt and α ∈ [0, 1]T then define the

new assignment e(α, y) by means of e(α, y)t = αtet + (1 − αt)yt.
11the notion of Aubin core is due to [11] for finite economies and has been extended in [29] to arbitrary

measure spaces of agents, in [12], [16], [18] it has been studied for economies with infinitely many goods
and allowing for production.
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The economy coincident with the original one except for the replacement of the initial
endowment e by e(α, y) is just referred to as e(α, y) for simplicity. Obviously e(1, y) = e
and e(0, y) is the economy that has y as initial endowment. The economies e(α, y) describe
a path connecting these two.

Call robustly efficient (write x ∈ RoEf) a feasible allocation x that is non dominated
in each economy e(α, x), i.e. an allocation for which Ae(α,x) ∩ Πt∈T Pt(xt) = ∅ for all α ∈
[0, 1]T . In other terms, set

ND(x) :=
⋂

α∈[0,1]T

NDe(α,x),

the definition of robust efficiency is

RoEf = {x ∈ Ae : x ∈ ND(x)}.

4 Further properties and characterizations of personalized
equilibria

We are going to show in this section that personalized equilibria can be characterized
in terms of the veto power of the grand coalition. This will be done under two different
approaches. In subsection 4.1 we will see that personalized equilibria coincide with robustly
efficient allocations, that is they are robust with respect to the veto power exercised in each
of the auxiliary economy in which the initial endowment is modified in a precise direction.
Then, in subsection 4.2, it will be proved that personalized equilibria are exactly those
allocations that cannot be f-blocked by the grand coalition. In both cases, the central
element of our analysis will be represented by the class of rational allocations.

4.1 Personalized equilibria and robust efficiency

The main aim in this section is to show that personalized equilibria coincide with robustly
efficient allocations. This characterization has been introduced for competitive equilibria
of finite dimensional economies by [20]. There the proof relies on the use of Vind’s theorem
about the measure of blocking coalitions in suitable atomless economies, that in its turn
applies the Lyapunov convexity theorem. To extend the result to infinite dimensional
economies we proceed first proving that Aubin core allocations are robustly efficient. Then
we show that robustly efficient allocations belong to the class of rational allocations.
Rational allocations have been introduce by [9] as a “convexification”of the notions of
individual rationality and Pareto optimality. They turn out to have a central role even
in our analysis. Then we use the equivalence between personalized equilibria and rational
allocations to prove our result. Notice that by means of rational allocations and properness
assumption, we can dispense with the use of Lyapunov convexity theorem and Vind’s
result.

Theorem 4.1. Assume preferences are irreflexive, convex-valued, strictly monotone and
continuous, i.e. (A1,1., 2., 3. and 4.). Assume further that (A3) (the properness condi-
tion) and (A5) hold. Take x to be an allocation, i.e. x ∈ Ae. Then x is a personalized
equilibrium if and only if it is robustly efficient i.e.

pE = RoEf.
The proof will be given in several steps
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Theorem 4.2. Assume convexity (A1, 2.), strict monotonicity (A1, 3.) and continuity
(A1, 4.) of preferences. Take x to be an allocation, i.e. x ∈ Ae. If x is in the Aubin core,
then x is robustly efficient, i.e.

CA ⊆ RoEf.
proof:

Take a point y ∈ Ae(α,x) ∩ Πt∈T Pt(xt) and set S to be the support of α. Clearly∑
t∈T

et(α, x) =
∑
t∈S

αtet +
∑
t∈T

xt −
∑
t∈S

αtxt ≤
∑
t∈S

αtet +
∑
t∈T

et −
∑
t∈S

αtxt

and therefore ∑
t/∈S

yt +
∑
t∈S

yt +
∑
t∈S

αtxt ≤
∑
t∈S

αtet +
∑
t∈T

et

that can be rewritten as

(�)
∑
t/∈S

yt +
∑
t∈S

(yt + αtxt) ≤
∑
t∈S

(1 + αt)et +
∑
t/∈S

et.

Up to a normalization factor, the function β equals to 1 outside S and to 1 + α over S is
a fuzzy coalition and we see now that it blocks the allocation x so that we have proved

x ∈ CA ⇒ x ∈
⋂

α∈[0,1]T

NDe(α,x).

Fix ε ∈]0, 1[ such that 1−αt < ε and also (by (A1, 4.)) εyt ∈ Pt(xt), ∀t ∈ S. Observe the
following

yt + αtxt = εyt + αtxt + (1 − ε)yt = εyt + αtzt

once we set xt + 1−ε
αt
yt =: zt ∈ Pt(xt) because of assumption (A1, 3.). Also note that

yt + αtxt = εyt + αtzt = (1 + αt)
(

1
1 + αt

εyt +
αt

1 + αt
zt

)

and that
(

1
1+αt

εyt + αt
1+αt

zt

)
=: wt ∈ Pt(xt) by assumption (A1, 2.). It is now clear by

(�) that the fuzzy coalition β blocks via the assignment w that outside S coincide with y.
�

As consequence of Theorem 4.2, since personalized equilibria are in the Aubin core,
we obtain the first inclusion.

Proposition 4.3. Assume convexity (A1, 2.), strict monotonicity (A1, 3.) and continu-
ity (A1, 4.) of preferences. Take x to be a personalized equilibrium. Then x is robustly
efficient, i.e.

pE ⊆ RoEf.
To fully characterize personalized equilibria as robustly efficient allocations, we intro-

duce the notion of rational allocations, a class of allocations isolated by [9]. Some notation
helpful to define them now follows. By L we mean the class of functions x : T → L
such that all values sum no more than e, the total initial endowment. Clearly such set
is nonempty, closed and convex and contains A. By θt we denote the indicator function
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of the singleton {t}, therefore θsx := x + θs(es − xs) coincides, given the map x, with x
everywhere on T but s, where the value is es, the initial endowment of agent s.

Now, given an allocation x, set

Z(x) = co (L ∪ {θtx : t ∈ T})
⋂

Πt∈TXt.

The above set is trivially convex and closed, naturally contains A. A map y ∈ Z(x) means
both that yt ∈ Xt for all t and that y ∈ co (L ∪ {θtx : t ∈ T}).
Definition 4.4. An allocation x is said to be rational if Z(x) ∩ Πt∈TPt(xt) = ∅.
Naturally, the defining equality can be written as: co (L∪{θtx : t ∈ T})∩ Πt∈TPt(xt) = ∅.
We may refer to rational allocations also as rational equilibria and denote the class of all
of them by RA.

Remark 4.5. Notice that: RA ⊆ wPO. Indeed Z(x) includes A and A∩ Πt∈TPt(xt) =
∅ is the weak optimality of an allocation x.

We present below the main properties of rational allocations.

Proposition 4.6. ([9, Lemma 6.2]) If we assume strict monotonicity (A1, 3.) and con-
tinuity (A1, 4.) of preferences and (A5), then: RA ⊆ IR.

Remark 4.5 joint with Theorem 3.15 says that

RA ⊆ wPO ⊆
⋃

p∈(L′)T

(pVEp ∩ A(max, p))

of course under convexity, monotonicity of preferences and under properness (A3). The
further properties enjoyed by rational allocations with respect to weakly Pareto optimal,
namely that disjoint from Πt∈T Pt(xt) is not just A but the bigger set Z(x), are mirrored
in what follows.

Theorem 4.7. Assume preferences are convex-valued. Assume further that (A3) holds
(the properness condition) and x ∈ RA.

1. A continuous personalized price p can be found such that

pt · xt ≤ pt · Pt(xt), ∀t ∈ T .

2. Assume further that preferences are strictly monotone, then the same p supports x
as a personalized quasi equilibrium (i.e. RA ⊆ pQE). Moreover, x ∈ A(max, p).

proof: Let x be a rational allocation. As in the proof of Theorem 3.15, a separating
p = (pt)t∈T , i.e. a family p ∈ (L′)T such that

p · Z(x) ≤ p · (Πt∈T P̂t(xt))

is found. Since p separates a fortiori A from (Πt∈T P̂t(xt)) it remains only to prove condition
(iii)b because all the rest was already proved in Theorem 3.15. For its proof we refer to
[9, Lemma 6.3]. �
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Corollary 4.8. Assume preferences are convex-valued, strictly monotone and continuous,
i.e. (A1, 2., 3. and 4.). Assume further that (A3) (the properness condition) and (A5)
hold. Then:

RA ⊆
⋃

p∈(L′)T

(pEp ∩ A(max, p)).

proof: Let x be a rational allocation. By Theorem 4.7 x ∈ (pQEp ∩ A(max, p)) and by an
appeal to Lemma 3.12 it is possible to conclude.

�

Remark 4.9. In [9, Emaple 7.7] an economy is presented in which all assumptions (Ai)
but (A5) hold. For this economy a personalized quasi equilibrium can be exhibited (and
therefore also a rational equilibrium) which is not individually rational (and therefore it is
not a core allocation and a fortiori not a personalized equilibrium). It is worth noticing that
the commodity space is 2-dimensional, and there are two agents with different consumption
sets both non coinciding with the positive orthant.

Theorem 4.10. Assume preferences are irreflexive, convex-valued, strictly monotone and
continuous, i.e. (A1, 1., 2., 3. and 4.). Then a feasible allocation x is rational if it is
robustly efficient, i.e.

RoEf ⊆ RA.
proof: Assume that x is robustly efficient. If it is not rational, then take z ∈ Z(x) ∩
Πt∈TPt(xt). Since z is the convex combination of a point u ∈ L and of the vectors θt

x,
t ∈ T , we can write

z = αu+
∑
t∈T

βtθ
t
x

where α+
∑

t∈T βt = 1 and α, βt ≥ 0, for all t ∈ T . According to a standard argument for
rational allocations (see for example the proof of [9, Lemma 7.3]), we derive:∑

t∈T

zt +
∑
s∈J

βsxs ≤
∑
t∈T

et +
∑
s∈J

βses

once denoted by J the set of s ∈ T for which βs is different from zero. This follows from
the inequalities

∑
t∈T

(zt−et) = α
∑
t∈T

(ut−et)+
∑
s∈T

∑
t∈T

βs((θs
x)t−et) ≤

∑
s∈T

∑
t∈T

βs((θs
x)t−et) ≤ −

∑
s∈T

βs(xs−es).

By continuity assumption on preferences, there exists λ ∈ (0, 1) such that λzt ∈ Pt(xt) for
all t ∈ T . Then, by obvious calculation, observing that

∑
t/∈J

1
γ + T

(1 − λ)zt ≥ 0,

we get

∑
t∈T

1
γ + T

λzt +
∑
s∈J

βs

γ + T

(
xs +

1 − λ

βs
zs

)
≤
∑
t∈T

1
γ + T

et +
∑
s∈J

βs

γ + T
es
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where

γ =
∑
t∈J

βt ≥ 0,
∑
t∈T

1
γ + T

+
∑
t∈J

βt

γ + T
=
T + γ

γ + T
= 1 and λzt ∈ Pt(xt).

Observe now that xs + 1−λ
βs
zs ∈ Ps(xs) by monotonicity assumption, when zs 	= 0. Other-

wise, from zs = 0 ∈ Ps(xs) it follows xs 	= 0 and, by continuity, there would exist δs ∈]0, 1[
such that δsxs ∈ Ps(xs). So we can replace xs with such δsxs still keeping the inequality.
Formally,

∑
t∈T

1
γ + T

λzt +
∑
s∈J

βs

γ + T
ws ≤

∑
t∈T

1
γ + T

et +
∑
s∈J

βs

γ + T
es

where ws is equal to xs + 1−λ
βs
zs, when zs 	= 0, it is equal to δsxs otherwise.

Hence we can write

∑
t∈T


at

∈Pt(xt)︷︸︸︷
(st) +bt

∈Pt(xt)︷︸︸︷
(wt)


 ≤

∑
t∈T

(at + bt)et

where even though all at 	= 0 but not all bt (for t /∈ J), surely all at + bt =: ρt 	= 0.
Therefore

∑
t∈T

ρt

:=yt∈Pt(xt)︷ ︸︸ ︷[
at

ρt
st +

bt
ρt
wt

]
≤
∑
t∈T

ρtet

and in
∑

t∈T ρtyt ≤
∑

t∈T ρtet we can assume all ρt ∈]0, 1]. Choose now by continuity ε > 0
such that all εyt ∈ Pt(xt). From∑

t∈T

ρtyt +
∑
t∈T

(1 − ρt)xt ≤
∑
t∈T

ρtet +
∑
t∈T

(1 − ρt)xt

we derive ∑
t∈T

ρtεyt +
∑
t∈T

(1 − ρt)xt +
∑
t∈T

ρt(1 − ε)yt ≤
∑
t∈T

[ρtet + (1 − ρt)xt] ,

and also∑
t∈T

ρtεyt +
∑
t∈S

(1 − ρt)
[
xt +

ρt(1 − ε)
(1 − ρt)

yt

]
+
∑
t/∈S

(1 − ε)yt ≤
∑
t∈T

[ρtet + (1 − ρt)xt]

where S denotes the set of traders t for which ρt is not equal to one.

Define now ut = xt +
ρt(1 − ε)
(1 − ρt)

yt for those t ∈ S such that yt is not zero and ut =

δtxt ∈ P (xt), when t ∈ S and yt = 0. Then we can write∑
t/∈S

εyt +
∑
t∈S

[ρtεyt + (1 − ρt)ut] ≤
∑
t∈T

ρtet + (1 − ρt)xt

that implies, by convexity assumption, that x /∈ RoEf . �
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Remark 4.11. With reference to the assumptions on preferences, we saw that:
under convexity, the sets CA, s CA, s CE do coincide and, by adding continuity, they also
coincide with CE (Propositions 3.2, 3.3 and 3.5).
As we have just seen in Theorem 4.2, then, we can even write that the previous set is
contained in RoEf if we assume further strict monotonicity.
Theorem 4.10 gives, with no extra conditions than irreflexivity, the inclusion of RoEf in
RA.
We derive therefore the two conclusions that follows.
1 - With continuous, convex, strictly monotone irreflexive preferences and assuming proper-
ness, by means of an appeal to Theorem 4.7 and to [9, Lemma 6.4], we get:

CA = s CA = s CE = CE ⊆ RoEf ⊆ RA = pQE

2 - With continuous, convex, strictly monotone irreflexive preferences, assuming properness
and (A5), by means of Corollary 4.8, since personalized equilibria are in the Aubin core,
we get :

CA = s CA = s CE = CE = RoEf = RA = pE = pQE .
Note that the proof of Theorem 4.1 is now achieved.

4.2 Personalized equilibria and coalitions with full support

In this section we concentrate on the veto power of the grand coalition. It will be exercised
allowing all agents to take part in the coalition with a (non-zero) share of their endowment.
This means that we shall concentrate on the set Σf of coalitions with full support (i.e. the
support is all of T ) defining a core, namely the set of allocations that cannot be f-blocked
by the grand coalition, denoted by CA

f .
Naturally, CA ⊆ CA

f . Our aim is to find mild conditions under which the equality holds
true. Then, we will derive a characterization of personalized equilibria in terms of the
blocking power of the grand coalition.

Lemma 4.12. Let us assume (A1, 4) and that the initial endowments et, for all agents
t, are o-units (or internal points). Then, given an allocation x /∈ CA, a map α : T → [0, 1]
and an assignment y exist with:
Sα 	= ∅, ∑t∈T αt(et − yt) is an o-unit and, for all t ∈ Sα, yt is an o-unit belonging to
Pt(xt).

proof: First let us show that α and y exist such that S := Sα(= support of α) 	=
∅, ∑t∈T αtyt ≤ ∑

t∈T αtet, and, for all t ∈ S, yt is an o-unit with yt ∈ Pt(xt). Note that,
for this, we must only prove that the assignment y can be chosen with the property that
yt is an o-unit ∀t ∈ S, the rest being simply the definition of the Aubin core.

Consider that εyt + (1− ε)et tends to yt as ε tends to 1, so, by continuity assumption,
we can find ε ∈]0, 1[ with εyt + (1 − ε)et ∈ Pt(xt) for all t ∈ S. Naturally, the inequality∑

t∈T αtyt ≤ ∑
t∈T αtet can be written as

∑
t∈S

αt
ε (εyt) ≤ ∑

t∈S
αt
ε (εet) and, conse-

quently, as
∑

t∈S
αt
ε [εyt + (1 − ε)et] ≤ ∑

t∈S
αt
ε et. Clearly εyt + (1 − ε)et is an o-unit

and we are done.
Now, to obtain that

∑
t∈T αt(et − yt) is an o-unit, assume

∑
t∈T αtyt ≤ ∑

t∈T αtet,
and, for all t ∈ S, yt ∈ Pt(xt), yt o-unit. It is then enough to take a positive ε with εyt ∈
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Pt(xt) for all t ∈ S to have that
∑

t∈S αtyt−
∑

t∈S αt(εyt) =
∑

t∈S αtyt(1−ε) is an o-unit
and therefore that even∑

t∈S

αtyt −
∑
t∈S

αt(εyt) +
∑
t∈T

αt(et − yt) =
∑
t∈T

αt(et − εyt)

is an o-unit.
�

Observe that in the above lemma, under the weaker assumption that all initial en-
dowments are strictly positive vectors, then in the conclusion we can replace o-units by
strictly positive vectors.

Theorem 4.13. Let us assume (A1, 3. and 4.) and that the initial endowments et, for all
agents t, are o-units (or internal points). Then, an allocation x /∈ CA, can be f-blocked by
the grand coalition or, in other words, can be blocked by a fuzzy coalition with full support.
Consequently,

CA = CA
f .

proof: An appeal to above Lemma 4.12 gives a blocking fuzzy coalition α with a support
S. Let the vector v be an o-unit and such that v =

∑
t∈S αtet −

∑
t∈S αtyt. Assuming

that the support S is not full, for any t ∈ T \ S, monotonicity says that xt + et ∈ Pt(xt)
and choose, according to the definition of internal point, λ > 0 with v − λ

∑
t/∈S xt ∈ L+.

Now modify α and y replacing, for t /∈ S, αt by λ and yt by xt + et. The modified fuzzy
coalition α has full support and blocks x:∑

t∈S

αtyt +
∑
t/∈S

λ(xt + et) = −v +
∑
t∈S

αtet +
∑
t/∈S

λ(xt + et) =

∑
t∈S

αtet − v + (λ
∑
t/∈S

xt) +
∑
t/∈S

λet ≤
∑
t∈S

αtet +
∑
t/∈S

λet.

�

Order units of the commodity space L are precisely the internal points of L+. When
L is also completely metrizable, then order units are precisely the interior points of L+

([9, Theorem 2.8]), and then for the validity of Theorem 4.13 we need to assume that
L+ has a non-empty interior. That non fuzzy core allocations can be f-blocked by the
grand coalition even when the initial endowments are not necessarily internal points, is an
achievement of next theorem. In this case, properness assumption is required and the role
of the grand coalition is clarified also in connection with personalized equilibria.

Theorem 4.14. Assume preferences are irreflexive, convex-valued, strictly monotone and
continuous, i.e. (A1, 1., 2., 3. and 4.). Assume further that (A3) (the properness condi-
tion) and (A5) hold. Then, an allocation that cannot be f-blocked by the grand coalition
or, in other words, cannot be blocked by a fuzzy coalition with full support, is a personalized
equilibrium. Consequently,

CA
f = pE .

proof: Assume that x cannot be f-blocked by the grand coalition and that it is not
rational. Following line by line the same proof of Theorem 4.10 we find that
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∑
t∈T

ρtyt ≤
∑
t∈T

ρtet

where we can assume all ρt ∈]0, 1] and yt ∈ Pt(xt), that means a contradiction. Since x is
therefore rational, the conclusion now follows from Corollary 4.8. �

5 Applications

In this section we provide some applications of our results on the veto power of the grand
coalition. Subsection 5.1 provides a game theoretic approach to equilibria supported by
non-linear prices, showing a characterization of personalized equilibria as Nash equilibria
of a game with only two players. Subsection 5.2 applies our main results to differential
information economies, offering an interpretation of the weak fine core.

5.1 Personalized equilibria and two-player games

Our aim in this section is to show that personalized equilibria of the economy coincide
with Nash equilibria of a two-player game G. This result represents a first attempt to
provide a strategic interpretation of competitive equilibia supported by non-linear prices.
The characterization will follow from Theorem 4.14 and requires the introduction of a suit-
able game G. In presenting the game, we adapt to our general framework the main ideas
in [21]. Contrary to usual strategic interpretation of competitive equilibria, the approach
proposed by [21] does not consider money and prices. The game associated to the market
economy is played by two players regardless of the number of agents. It will be referred as
a society game because, according to the interpretation of [21], the society plays the game
in two different roles. The results of this section extend the main theorems in [21] to the
case of infinite dimensional commodity spaces, allowing for non-linear prices supporting
competitive allocations. Notice that when the personalized price become linear, for ex-
ample if the commodity space is a vector lattice and the consumption sets coincide with
the positive cone, the characterization result in [21] is extended to classical competitive
equilibria.

There are two players: the strategy set for player 1 coincides with the set of allocations
that are non zero in each coordinate, i.e.

S1 = {x ∈ A : xt 	= 0 for all t ∈ T}

while the strategy set of player 2 is defined as

S2 =

{
(α, y) ∈ Σf × Πt∈TXt :

∑
t∈T

αtyt ≤
∑
t∈T

αtyt

}
,

that is player 2 chooses a strategy in the set of allocations that are feasible in the Aubin
sense, considering a strictly positive participation of each member of the society. Observe
that S1 and S2 are non empty since they contain, respectively, the initial endowment
allocation e and the pair (1, e), where 1 denotes the characteristic function of the whole
set T of traders. The set of strategy profiles is S = S1 × S2, hence a strategy profile is
s ≡ (x, α, y) ∈ S, where x ∈ S1 is the strategy of player 1, (α, y) ∈ S2 is the strategy of
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player 2. Let us denote by Π1 : S → IR and Π2 : S → IR the payoff functions for players 1
and 2, respectively.

We say that the game (G,Π1,Π2) is a society game if it satisfies the following properties:
for s ≡ (x, α, y) ∈ S

G.1 if x = y, then Π1(s) = Π2(s) = 0;

G.2 xt ∈ Pt(yt), for all t ∈ T iff Π1(s) > 0;

G.3 yt ∈ Pt(xt), for all t ∈ T iff Π2(s) > 0;

G.4 if s
′ ≡ (z, α, y) ∈ S and zt ∈ Pt(xt) for all t ∈ T , then Π1(s

′
) > Π1(s).

From the definition of a society game, some immediate consequences follow.

Proposition 5.1. Assume that the economy satisfies (A1, 1., 3., 6.) and let (G,Π1,Π2)
be the associated society game. Then the following properties hold true:

1. for each s ∈ S, if Π1(s) > 0 then Π2(s) < 0 and conversely;

2. if s∗ ≡ (x∗, α∗, y∗) is a Nash equilibrium for G, then x∗ ∈ wPO;

3. if s ≡ (x, α, x) ∈ S and x ∈ wPO, then agent 1 cannot improve his payoff;

4. if x ∈ S1, then x /∈ CA
f iff Π2(x, α, y) > 0, for a strategy (α, y) ∈ S2.

proof: The first item is a consequence of assumption (A1, 6.) and of the properties G.2
and G.3 of the society game.

To prove the second statement, observe that if in a Nash equilibrium s∗ ≡ (x∗, α∗, y∗)
the allocation x∗ /∈ wPO, then there would exists z ∈ A such that zt ∈ Pt(x∗t ) for all
t ∈ T . Assumptions (A1, 1.) and (A1, 6.) ensure that, if for a t ∈ T zt = 0, then
x∗t 	= 0 and x∗t /∈ Pt(0) contrary to (A1, 3.). Hence z ∈ S1. Now from G.4, we have
Π1(z, α∗, y∗) > Π1(s∗) and a contradiction.

Let s ≡ (x, α, x) ∈ S and x ∈ wPO, by G.1 the payoff of player 1 in s is equal to
zero. Assume then that Π(z, α, x) > 0 for an allocation z ∈ S1. Then by G.2 we have a
contradiction.

The last statement simply follows by definition of S2 and property G.3. �

Hence a society game can be interpreted as a game in which the society plays in
two different roles. As player 1, it chooses feasible allocations and tries to make Pareto
improvements. As player 2, the society comes up with an alternative allocation trying to
dominate the allocation proposed by 1. Theorem 5.1 tells us that player 1 has incentive
to deviate whenever the selected strategy is not efficient. Player 2 has incentive to deviate
whenever the strategy of player 1 can be dominated by the grand coalition. What we will
see next is that in a Nash equilibrium the first player chooses a strategy that is efficient,
while the second player forces the strategy of 1 to be competitive.

First we state the existence Theorem of a Nash equilibrium for a society game.

Theorem 5.2. Assume that the economy satisfies (A1, 1., 2., 4., 5., 6.), (A2), (A3)
and (A5). Let (G,Π1,Π2) be the associated society game. Then the set of Nash equilibria
in pure strategies is non-empty.
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proof: By [9, Theorem 8.3] and Remark 4.11, there exists a personalized equilibrium
allocation x∗. Clearly s∗ ≡ (x∗, 1, x∗) belongs to S12. Since x∗ is in wPO, from Proposition
5.1, it follows that player 1 cannot improve his payoff. On the other hand, by Theorem
4.14 , x∗ ∈ CA

f and then from 4. of Proposition 5.1 the conclusion follows. �

Our last result characterizes personalized equilibria as Nash equilibria of a society
game.

Theorem 5.3. Assume that the economy satisfies (A1,1., 2., 3., 4. and 6.). Assume
further that (A3) and (A5) hold. Let (G,Π1,Π2) be the associated society game.

1. If s∗ ≡ (x∗, α∗, y∗) ∈ S is a Nash equilibrium with Π1(s∗) = Π2(s∗) = 0, then
x∗ ∈ pE;

2. if x∗ ∈ pE, then any s∗ ≡ (x∗, α∗, y∗) ∈ S with Π1(s∗) = Π2(s∗) = 0 is a Nash
equilibrium.

In particular, x∗ ∈ pE iff (x∗,1, x∗) is a Nash equilibrium for (G,Π1,Π2).

proof: To prove the first implication, assume that x∗ /∈ pE . Then by Theorem 4.14, x∗ /∈
CA

f and, by 4. of Proposition 5.1, Π2(x∗, α, y) > 0 = Π2(x∗, α∗, y∗), for some (α, y) ∈ S2,
that is a contradiction.

Conversely, assume that x∗ ∈ pE , and that for s∗ ≡ (x∗, α∗, y∗) ∈ S with Π1(s∗) =
Π2(s∗) = 0, s∗ is not a Nash equilibrium. Then it may be the case that for some x ∈ S1,
Π1(x, α∗, y∗) > 0 = Π1(s∗). But then by G.2, x∗ /∈ wPO and a contradiction. Or it may
be the case that Π2(x∗, α, y) > 0 = Π2(s∗) for some (α, y) ∈ S2. Then by G.3 x∗ /∈ CA

f and
a contradiction follows from Theorem 4.14. �

Example 5.4. An example of a society game associated to the economy will be now
provided. Since the strategy sets of both players have been already fixed, we have only to
define the payoff functions.
Assume that for each trader t ∈ T Xt = L+ and that for x ∈ L+

Pt(x) = {y ∈ L+ : ut(yt) > ut(xt)}
for some continuous concave and strictly monotone utility function ut. Define the payoffs
of players 1 and 2 as follows

Π1(x, α, y) = mint∈T [ut(xt) − ut(yt)]

Π2(x, α, y) = mint∈T αt [ut(yt) − ut(xt)]

for each (x, α, y) ∈ S. Then it is easy to show that the payoff functions define a society
game (G,Π1,Π2) for which Proposition 5.1 holds true. Under properness assumption (A3),
the existence of a Nash equilibrium for the game G is guaranteed by Theorem 5.2 (notice
that assumption (A5) in this case is obviously true). Finally, following verbatim the proof
of [21, Proposition 4.1], one can show that in each Nash equilibrium s∗ of the game G it is
true that Π1(s∗) = Π2(s∗) = 0. Hence Theorem 5.3 guarantees a one to one correspondence
between Nash equilibria of the game G and personalized equilibria.

12Notice that x∗
t = 0 for a t ∈ T would imply, by monotonicity, that x∗ can be blocked by t and this

contradicts the fact that x∗ belongs to CA
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5.2 Economies with differential information

We introduce for a Differential Information Economy (DIE, for short) the notion of Aubin
weak fine core in line with the notion of weak fine core introduced by [24]. Our aim is to
show that the Aubin weak fine core coincides with the Aubin private core (see [19] and
[22]) of a suitable economy with symmetric information and therefore with the personalized
equilibria of that economy. With respect to the analogous result proved by [15], we consider
a more general ordered topological vector space of contingent commodities. Moreover,
we emphasize here the use of the previous full support results in order to overcome the
unavailability of Lyapunov’s Theorem.

For simplicity we consider a DIE in which the exogenous uncertainty is represented
by a probability space (Ω,F , IP ), the finite set Ω collecting all possible states of nature
and IP representing a strictly positive common prior. The private information of a trader
t ∈ T is represented by a sub-algebra Ft of F and it is assumed that F = ∨t∈TFt. We
assume that the space of physical commodities is an ordered topological vector space B
as described in Section 3 and that B+ has a non empty interior. We shall denote by L
the product space L = BΩ. Utility that a trader t ∈ T derives from physical consumption
is given by the real function ut(ω, v), with ω ∈ Ω and v ∈ B+. Standard assumptions on
ut are that ut(ω, ·) are continuous, concave and (strictly) increasing. The same properties
are then inherited by the (ex-ante) expected utility of the random consumption utility
ut(ω, x(ω)). Such expected utility is denoted by Ut(x), for each random bundle x ∈ L+.

For each trader t ∈ T , we shall denote by Xt the set of random bundles that are
measurable with respect to the private information of trader t, i.e.

Xt = {x ∈ L+ : x is measurable wrt Ft},

a closed convex cone in L+. We complete the description of our DIE by defining the initial
endowment as a profile (et)t∈T such that et ∈ Xt.

Notice that by introducing the correspondence x ∈ Xt �→ Pt(x) = {y ∈ L+ : Ut(y) >
Ut(x)} ∩Xt, DIE is a special case of an economy as given in Section 3. Consequently, we
see that Aubin core as given in Definition 3.1 is identical to the Aubin private core as
defined in [19] and [22]. “Private” since in the blocking mechanism agents in a blocking
coalition don not share their private information.

It is natural to say that a list (pt)t∈T ∈ (L′)T of continuous personalized prices is
individually measurable if each pt is Ft-measurable. The next notion is due to [9].

Definition 5.5. An allocation x of DIE is said to be an individually measurable per-
sonalized equilibrium if there exists an individually measurable list of continuous prices
(pt)t∈T ∈ (L′

+)T supporting x as a personalized equilibrium (see Definition 3.10).

According to [9], in an individually measurable personalized equilibrium the auctioneer
assigns to agents personalized prices in such a way that none of them may infer additional
information from his individual price. The generalized price is the same for every trader
and, since agents maximize their ex-ante utility functions subject to informational con-
straints, agents that are better informed will be in general better off.
Following [9] and results of subsection 4.2 we derive.

Proposition 5.6. Assume that the total initial endowment e =
∑

t∈T et is strictly positive
and that a number k > 0 exists such that e ≤ ket for all t ∈ T . Then, the Aubin private
core of DIE coincides with the set of individually measurable personalized equilibria.
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proof: Since e ≤ ket each et is decomposable (see Remark 3.11). Moreover each et
belongs to the interior of L+ and then the economy is proper with respect to the initial
endowment allocation et.

We know that pE = CA (see Remark 4.11, 2.) and, clearly, individually measurable
personalized equilibria are in the Aubin core. We want to show the converse. So take
x ∈ pE = CA and the list of prices pt ∈ L′ that support x as a personalized equilibrium. By
definition, the conditional expectation E[pt|Ft] =: qt13 is Ft-measurable and pt ·xt = qt ·xt.
More generally pt ·Xt = qt ·Xt. What above is enough to prove that ψp is the same as ψq

namely that x is an individually measurable personalized equilibrium with the generalized
price ψq. �

A notion of core in which agents in a blocking coalition share private information will
be introduced below. It will be in the spirit of the so called weak fine core and therefore
called Aubin weak fine core. For the rest of the present section we denote by (Fi)i∈I the
finitely many distinct information partitions of Ω and we shall identify a partition with
the information algebra it generates. The set T of agents can be naturally partitioned into
finitely many subsets Ti = {t ∈ T : Ft = Fi}. Set, for any group S of agents, I(S) to
denote the subset of I made of those indices i for which Ti ∩ S 	= ∅.
Definition 5.7. An x ∈ LT

+ is called an Aubin weak fine core allocation, we write then
x ∈ CAwf , if any xt is measurable with respect to F and

1.
∑

t∈T xt(ω) ≤∑t∈T et(ω), for all state ω

2. a fuzzy coalition γ and (yt) ∈ L+ for any t ∈ Sγ such that

(a) for any t ∈ Sγ , yt is (∨i∈I(Sγ)Fi)-measurable

(b)
∑

t∈Sγ
γtyt(ω) ≤∑t∈Sγ

γtet(ω), for all state ω

(c) Ut(yt) > Ut(xt), for all t ∈ Sγ.

do no exist.

Notice, in the above definition, the request of measurability of yt with respect to the
joint information of members of the coalition. If x ∈ CA, the Aubin (private) core, then
xt is Ft-measurable and therefore also F-measurable as required in the definition above.
However, a direct comparison between CA and CAwf is not possible since from the existence
of a blocking y in the weak fine core sense, it does not follow that y blocks x in the private
sense.

While private core is the appropriate core notion when agents have no access to any
communication systems, the weak fine core is the appropriate notion of core when agents do
have access to a communication system allowing them to fully share their information in a
blocking coalition. We want to show now that the Aubin weak fine core of the DIE coincides
with the Aubin (private) core of a suitable economy with symmetric information. The latter
coincides with DIE except for the replacement of any Ft with F . As a consequence, the
weak fine core of DIE coincides with the set of personalized equilibria in the new economy.
This result has been proved for large differential information economies with finitely many
commodities by [15] with a proof that relies on the application of Vind’s theorem (and
therefore Lyapunov’s).

13qt(ω) is defined by E[pt|Ft](ω) = 1
�At(ω)

∑
ω
′∈At(ω) p(ω

′
), where At(ω) is the unique element of Ft

containing ω
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Theorem 5.8. Assume that et is an interior point of L+, for each t ∈ T . Then the Aubin
weak fine core of DIE is the same as the Aubin private core of the economy in all equals
to the DIE except for the assumption that all agents have the same information Ft := F .

proof: By writing F = {E1, ..., Ek}, random bundles in the set X = {x ∈ BΩ
+ : x is F −

measurable} are identifiable with element of Bk
+. The ex-ante utilities Ut with utilities

defined over Bk
+ as

Ut(x1, . . . , xk) =
k∑

s=1

(∑
ω∈Es

ut(ω, xs)IP (ω)

)
.

Denote by � − CA the Aubin core of the symmetric economy in all equals to DIE except
for the assumption that all agents have the same information F .

The inclusion �−CA ⊆ CAwf is obvious, so let us show the converse. For that purpose,
consider the complete information economy where, for each trader t ∈ T , the commodity
space is Bk

+, the utility is the Ut given above and the initial endowments et are reconsidered
through representatives in Bk

+.
Let x ∈ CAwf and suppose x /∈ � − CA. The latter circumstance entails that there are

γ and for any t ∈ Sγ a yt ∈ X such that
∑

t∈Sγ
γtyt(ω) ≤ ∑

t∈Sγ
γtet(ω), for all ω, and

Ut(yt) > Ut(xt), for all t ∈ Sγ .
Modulo the identifications described above, we have, in Bk

+:
∑

t∈Sγ
γtyt ≤

∑
t∈Sγ

γtet
and Ut(yt) > Ut(xt), for all t ∈ Sγ .

As a consequence of Theorem 4.13, the non fuzzy core allocation x can be blocked
by a fuzzy coalition with full support, i. e. we can find for any trader t ∈ T a pair
(αt, zt) ∈]0, 1] × Lk

+ with
∑

t∈T αtzt ≤
∑

t∈T αtet and Ut(zt) > Ut(xt), for all t ∈ T .
Going back to DIE, to see that our assumption x ∈ CAwf is violated by the fuzzy

coalition α and assignment (zt)t∈T is enough to observe that trivially I(Sα) = I. �

Our final result guarantees that the weak fine core coincide with personalized equilibria.
Hence, while the Aubin private core coincides with the set of personalized equilibria, and
then it rewards the information advantage of a trader, in a weak fine core allocation, the
information advantage is worthless.

Theorem 5.9. Assume that the total initial endowment e =
∑

t∈T et is interior to the
positive cone and that a number k > 0 exists such that e ≤ ket for all t ∈ T . Then, the
Aubin weak fine core of DIE coincides with individually measurable personalized equilibria
of the economy in all equals to DIE except for the assumption that all agents have the
same information Ft := F .

proof: Let x ∈ CAwf and suppose x is not an individually measurable personalized equi-
librium. By Theorem 4.14 and Proposition 5.6, x /∈ �−CA. Then as in the proof of Theorem
5.8 we get a contradiction. �

6 Final remarks

Our final remarks deal with the possible extension of core equivalences presented in this
paper to the case of non-convex economies. Again the central element is represented by
rational allocations, even if slightly modified. This class will be related to strong Aubin

27



core allocations. The use of the strong Aubin core to characterize competitive allocations
in the presence of non-convex preferences is due to [23] and to [18] in Banach lattice
commodity spaces.

A possible approach to cover the case in which assumption (A1, 2.) is not fulfilled
follows.
Remind, from subsections 3.1 and 3.2 , that the inclusions pE ⊆ s CA ⊆ s CE are valid in
general. Now, the following holds true.

Proposition 6.1. Under the assumptions (A1, 3. and 4.), any allocation x ∈ s CE satis-
fies the condition

(�) Z(x) ∩ Πt∈T coPt(xt) = ∅.
proof: Assume not. The same proof of [9, Lemma 7.3] in which Pt(xt) is replaced by
coPt(xt), guarantees that co (

⋃
t∈T [(coPt(xt)) − et]) ∩ (−L+) 	= ∅. This clearly implies

that (co
⋃

t∈T [(Pt(xt)) − et]) ∩ (−L+) 	= ∅ and a contradiction. �

Naturally, an allocation x for which the condition (�) is true is a rational allocation and
the above condition (�) can be considered as defining rational allocations of an economy
equals to the original one except for the replacement of the sets Pt(xt) by coPt(xt).

To characterize personalized equilibria as strong Aubin core allocations, we consider
the following stronger version of properness assumption:

(A3)
′
: There is an allocation v, with vt > 0 for any t ∈ T , and a family of convex

correspondences (Q̂t)t∈T , each defined on Xt and with values in L, such that

t ∈ T, x ∈ Xt ⇒ Q̂t(x) ∩Xt = coPt(x) and x+ vt ∈ int(Q̂t(x)).

Theorem 6.2. Assume that the economy E (A1, 3. and 4.). Assume further that (A3)
′

and (A5) hold. Then pE = s CA = s CE.

proof: It is enough to show that an allocation x for which (�) is true belongs to pE . Let x
be such an allocation. Due to the above observation we just apply Corollary 4.8 replacing
the sets Pt(xt) by coPt(xt). To conclude, just note that personalized quasi-equilibria and
equilibria do not change when we modify the original economy replacing preferences by
their convex hull. Indeed,

ψp · Pt(xt) ≥ ψp · xt ⇔ ψp · coPt(xt) ≥ ψp · xt

and
ψp · Pt(xt) > ψp · xt ⇔ ψp · coPt(xt) > ψp · xt

as it can be seen by using properties of ψp. �

A natural question arises whether a suitable properness condition required directly on
the preferences Pt(x) implies a condition like (A3)

′
. For example, if this is the case in

the properness assumption formulated in [18] for non-convex preferences (the commodity
space is a Banach lattice and prices are linear) or in the uniform monotonicity assumption
for non-convex preferences required in [13] (the commodity space is an ordered topological
vector space and prices are superadditive). Finally, for a study of non-linear prices in
non-convex economies with the tools of variational analysis, we refer to [28].
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