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1 Introduction

In the seminal paper by Mookerjee (1984), the principal-agent model of moral hazard is
extended to a multiple agent setting: Production depends on the entire profile of efforts
exerted by the team of agents. The principal cannot observe the effort chosen by each member
of the team and designs wage schedules contingent on outputs. Therefore, optimal contracts
are chosen under a system of incentive compatibility constraints which take naturally the
form of Nash equilibrium conditions of the underlying game between the agents.

Given that each agent must share the marginal benefit of his effort, but he alone bears its
costs, teams are affected by free riding problems which, in turn, might produce a (negative)
psychological externality on agents. Therefore, teams seem to be a natural environment in
which reciprocity plays an important role. Indeed, if a team member is sufficiently sensitive
to reciprocity then he will reasonably have incentives to free ride if he believes that other
players’ intentions are bad, in the sense that they plan to exert a level of effort which is
lower than the one they expect from him, and, conversely, he will have incentives to work
harder if he believes that his partners’ intentions are good. In this paper we address this
issue and, building on the reciprocity motives previously described, we study how contracts
are affected by intention-based reciprocity preferences when a self-interested principal hires
reciprocal players.

More precisely, we include reciprocal agents in the Mookerjee’s model so that the IC
conditions appear as a psychological game1. Under the assumption that the principal chooses
incentive schemes to implement agents actions as a psychological Nash equilibrium, necessary
and sufficient conditions are derived for the attainability of the first best. Our results describe
the psychological attitudes of the team members required to sustain a given strategy profile
in equilibrium and, therefore, give useful insights for hiring and team design. However, the
agents’s psychological characteristics used to prove the previous results are not sufficient to
attain the first best if some partners can collude. We show that additional psychological
assumptions allow for the the collusion-proof implementation of the first best. Moreover,
we ask whether hiring reciprocal agents would increase or decrease the net benefit of the
principal. It turns out that a principal will always prefer reciprocal agents to implement
a first or a second-best contract if the strategy profile is symmetric and show, by way of
examples, that whenever the first or the second-best profiles are asymmetric the principal
might prefer self-interested to intention-based reciprocity agents. Finally, since our previous
results have underlined the important role played by symmetry for reciprocity to be in the
principal’s interest, we conclude the paper by clarifying when symmetric profiles are most
likely to arise.

Several papers have studied the welfare properties of the optimal incentive schemes in a
principal-many agents problem (Holmstrom 1982, Demski and Sappington 1984, Mookherjee
1984, Malcomson 1986), and have attempted to solve the problems arising from the fact
that those incentive schemes might not implement the principal’s chosen vector of actions
as a unique equilibrium (Demski and Sappington 1984, Mookherjee 1982 and 1984, Ma
1988). However, the role of reciprocity was not addressed in this early literature. More
recently, experimental evidence in Fehr, Gächter, and Kirchsteiger (1997) has suggested that

1See Geanakoplos, Pearce and Stacchetti (1989) for psychological games and equilibria.
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reciprocal motives contribute to the enforcement of contracts. In this vein, Dufwenberg and
Kirchsteiger (2000), Englmaier and Leider (2008) and Netzer and Schmutzler (2010) all show
that efficiency is generally increased when a materialistic principal interacts with a reciprocal
agent2. Our contribution extends the study of the role played by reciprocity to the multiple
agent case.

The present paper is also related to a growing literature that studies the impact of
inequity aversion to multiple agent models (Itoh 2004, Demougin and Fluet 2006, Rey Biel
2008). These articles find that when there are multiple agents who care about the final
monetary distributions among each other, the principal can exploit their nature by designing
interdependent contracts. However, “reciprocity and inequity aversion are distinct motives,
and often intention matters more, in particular in the domain of punishing behaviour, as
suggested by recent evidence” (Itoh 2004). Accordingly, in our model contracts are affected
in a different way with respect to inequity aversion models since a team member may react
badly to other agents’ free-riding regardless of everyone’s rewards. Moreover, we show that
– if intentions are the driving motive – the principal is more likely to exploit it if first or
second best strategy profiles are symmetric.

Finally, in De Marco and Immordino (2010) we study the impact of intention-based
reciprocity preferences on the free-riding problem arising in non-stochastic partnerships.
We suggest a tendency of efficient partnerships to consist of members whose sensitivity to
reciprocity is – individually or jointly – sufficiently high and construct associated reciprocity
based sharing rules. The analysis in this paper is motivated by this result and it extends the
theoretical framework developed in our companion paper to encompass the more complex
setting where a principal can write optimal contracts to incentivize the agents.

The paper is organized as follows. In Section 2.1, Mookherjee’s many agent model is
summarized. We introduce the psychological features of our model in Section 2.2. In
Section 3 we provide sufficient and necessary conditions for the implementation of the efficient
strategy profile. Section 4 shows that reciprocal agents always increase the net benefit of the
principal when the material second best is symmetric but not when the material second best
is asymmetric. Section 5 deals with the collusion-proof implementation of the first best In
Section 6 we provide the sufficient conditions for a symmetric first-best strategy profile to
arise. Section 7 concludes. All proofs are relegated to the Appendix.

2 The model

2.1 The moral hazard problem

We first introduce the moral hazard problem and to ease the comparison we borrow most
assumptions and notation from Mookherjee (1984).

Agents’ Material Payoffs.The model consists of a set of agents N = {1, ..., n} with n ≥ 2,
a set of effort levels Ak for each agent and a disutility function Gk : Ak → R for each agent.
A =

∏
k∈N Ak. Moreover, we assume that Ai = {1, ..., m} for any i. We donote with Q the

2Even if, as shown by Netzer and Schmutzler (2010), firms may not want to employ a reciprocal worker.
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finite set of outcomes and |Q| = ν. The probability distribution on Q induced by an effort
(strategy) profile a = (a1, . . . , an) is denoted by π(a) where πq(a) is the probability of the
output q given a.3 Denote also with J(a) the support of the probability distribution on π(a),
that is

J(a) = {q ∈ Q |πq(a) > 0} .

Each agent k has a von-Neumann-Morgenstern utility function uk which is additively
separable in the action chosen by agent k and in the payment received

uk(ak, I
k) = Vk(I

k)−Gk(ak),

where the principal’s payment Ik ranges in an interval [I, I]. The agent k has a reservation
utility uk and we impose the following

Assumption 1. Each function Vk is continuous, strictly increasing and concave over [I, I]
with Vk(I)−minak∈Ak

Gk(ak) < uk. Moreover, for every ak ∈ Ak there exists I ∈ [I, I] such
that Vk(I)−Gk(ak) = uk. Finally, we impose the normalization Vk(I) = 0.

The principal’s benefit from an output profile q is denoted by B̃(q) and the principal’s
expected benefit is defined by

B(a) =
∑
q∈Q

πq(a)B̃(q).

First-Best. In the first best the principal can observe the action chosen by the agents
and, in light of Assumption 1 she can write contracts forcing any agent to choose any feasible
action that guarantees the agent his reservation utility. If agent k was required to choose ak,
the principal would pay him a sum of

Ck
FB(ak) = V −1

k (uk + Gk(ak)) = h(uk + Gk(ak)) where h = V −1
k

if he chooses ak and I otherwise. The first best cost to the principal from the effort profile a
is then

CFB(a) =
∑

k∈N

Ck
FB(ak)

and the first-best effort profile a∗ = (a∗1, a
∗
2, . . . , a

∗
n) is the one which maximize in A the net

benefit of the principal, that is, the function P : A → R defined by

P (a) = B(a)− CFB(a) ∀a ∈ A.

Second-Best. In a second best world the principal cannot observe the actions chosen
by agents, hence payments may only be based on the outcomes Q. An incentive scheme for
player i is therefore an ν-dimensional vector Ik = (Ik

q )q∈Q ∈ [I, I]ν where the element Ik
q is the

3This is different from Mookherjee (1984) and Ma (1988), where there exists for each player k a finite
set of possible outputs Qk = {qk

1 , . . . , qk
νk
} and Q =

∏
k∈N Qk. Our approach is more general and simplifies

notation. The reason we can adopt it is due to the fact that we do not need any assumption on the probability
distribution over output pairs.

4



payment given to player k if the output vector q has occurred. Given the vector of incentive
schemes I = (I1, I2, . . . , In) and the effort profile a the principal incurs an expected cost

C(a, I) =
∑
q∈Q

πq(a)

[∑

k∈N

Ik
q

]
.

Given an incentive scheme Ik and the effort profile a = (a1, a2, . . . , an), the expected
utility of agent k is

Ek(a, Ik) =
∑
q∈Q

πq(a)uk(ak, I
k
q ) =

∑
q∈Q

πq(a)Vk(I
k
q )−Gk(ak).

Then, given the vector of incentive schemes I = (I1, I2, . . . , In), we define the game
played by the agents with

Γ(I) = {N ; A1, . . . , An; E1(·, I1), . . . , En(·, In)}.

We now introduce the useful definitions of second-best contract and attainable first-best
profile.

Definition 1. A second-best contract consists in a pair (a, I) which maximizes the net benefit

B(a)− C(a, I)

subject to the constraints that

IC) a is a Nash equilibrium of Γ(I),

IR) Ek(a, Ik) ≥ uk for every k ∈ N .

Definition 2. The first-best effort profile a∗ is said to be attainable if there exist incentive
schemes I such that (a∗, I) satisfies (IR) and (IC) and C(a∗, I) = CFB(a∗).

We end this section by introducing the following useful notation. First, the set of incentive
schemes such that (a, I) is a feasible contract is denoted with

L(a) = {I | (a, I) satisfies IR and IC }.

Then, the second-best cost is defined by

CSB(a) = min
I∈L(a)

C(a, I) ∀a ∈ A

and the correspondence of optimal incentive schemes is4

M(a) = {I ∈ L(a) |C(a, I) = CSB(a)}.
4It can be easily checked that the second best contracts can be equivalently obtained as the pair (a, I)

such that i) I ∈ M(a) and ii) a that maximizes B(·)− CSB(·) in A = {a ∈ A |L(a) 6= ∅}.
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2.2 Reciprocity

To complete the presentation of our set-up, we now introduce the psychological features and
the equilibrium concept. Following our companion work (De Marco and Immordino, 2010)
we innovate with respect to the previous literature in two main respects. First, to measure
kindness we deviate from the previous literature that uses the concept of player’s equitable
payoff (see for instance Rabin, 1993) and we use instead the agents’ level of effort as a more
direct measure of each agent contribution to the output of the partnership. In the traditional
model of reciprocity (Rabin 1993, Dufwenberg and Kirchsteiger 2004), the strategy sets may
represent choices of different nature so that the natural way to measure kindness is to look
at the players’ payoffs. However, when the action sets represent comparable choices (efforts),
we can adopt the simpler approach to use the level of efforts as a more direct – and easier
to test – measure of kindness. In this case, the reciprocity term in the psychological utility
function does not depend on the material payoffs, capturing the idea that an agent may react
badly to other agents free-riding regardless of everyone’s rewards. Our definition of kindness,
besides being better suited to many applications (partnerships, principal with many agents),
has also the advantage to be completely unrelated to Pareto efficiency.

Second, to specify the psychological utility function for each player, we introduce for
every pair of players a function that assigns to each combination of kindness and belief about
reciprocated kindness the disutility caused to one player by the mismatch between his and the
other agent’s intentions. Our single-peaked preferences depend only on the distance between
the kindness of k to t, and partner k′s belief about how kind t is to him and differently
from the functional forms in previous reciprocity models our formulation does not have their
characteristic “explosive” feature.

All this should become readily clear by looking at the rest of the section.

Denote by bkt ∈ At partner k′s beliefs about partner t′s strategy, and by cktk ∈ Ak partner
k′s beliefs about partner t′s beliefs about partner k′s strategy. We denote by χkt(ak, bkt) the
kindness of k to t and by λktk(bkt, cktk) partner k′s belief about how kind t is to him. The
kindness terms are defined to be

χkt(ak, bkt) = ak − bkt

and
λktk(bkt, cktk) = bkt − cktk,

so that positive kindness from k to t arises if partner k contributes to the output with an
effort level larger than the one he expects from partner t. Moreover, partner k will believe
that t is kind to him if the effort he expects from partner t is larger than the one he believes
partner t expects from him.

For every pair of players (k, t) the reciprocity term of k with respect to t assigns to each
combination of kindness χkt and belief about reciprocated kindness λktk the disutility caused
to player k by the mismatch between these two intentions. Let

hkt(χkt, λktk) = −(ωkχkt − λktk)
2,

be the functional form of such reciprocity terms. Those single-peaked preferences depend
uniquely on the distance between the kindness of k to t, and partner k′s belief about how
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kind t is to him. A remarkable characteristic of the present formulation is that it is free from
the explosive feature that characterize the functional forms of previous reciprocity models
such as Dufwenberg and Kirchsteiger (2004) where hkt(χkt, λktk) = χktλktk or Rabin (1993)
where hkt(χkt, λktk) = λktk(1 + χkt, ). Indeed, in all functional forms in which hkt diverges
positively (negatively) with χkt and accordingly with the sign of λktk then there is no limit
to how kind (unkind) k wants to be to t.

Then, the overall (psychological) utility function of player k is defined by

Uk(ak, a−k, (bkt)t 6=k, (cktk)t 6=k; Ik) = Ek(a, Ik) + ρk

[∑

t6=k

hkt(χkt(ak, bkt), λktk(bkt, cktk))

]
, (1)

and is made up by the sum of the material payoff Ek(a, Ik) and the reciprocity term

ρk

[∑
t 6=k hkt(χkt(ak, bkt), λktk(bkt, cktk)

]
.

Parameters ρk and ωt summarize the psychological characteristics of each player k: ρk > 0
measures the relative importance (the weight) of the psychological term with respect to
the material payoff; instead, the parameter ωk relates the relative importance of player k’s
intentions – towards the others – to his beliefs about other players’ intentions. Each ωk is
assumed to be positive, meaning that, for a given λktk, the optimal kindness of player k
(taking into account only hkt) is χkt = λktk/ωk, which reciprocates kind behavior (λktk > 0)
with kind behavior (χkt > 0) and unkind behavior (λktk < 0) with unkind behavior (χkt < 0).5

Moreover, the magnitude of ωk affects the optimal kindness which increases in absolute value
as ωk decreases to zero and, when ωk = 1, perfectly reciprocates the believed kindness, i.e.
χkt = λktk.

Finally, key for our results is how those parameters affect the psychological disutilities
caused by deviating from the optimal kindness for each pair of players (k, t). These disutilities
are related to the products ρkω

2
k as follows: fix a pair of players (k, t) and the size ε of a

deviation from the optimal kindness χkt = λktk/ωk, then the player k’s disutility with respect
to t is given by

−ρk(ωk(λktk/ωk + ε)− λktk)
2 = −ρkω

2
kε

2

and it decreases to zero as ρkω
2
k decreases to zero. Therefore, ρkω

2
k – from now on denoted

with θk – measures the ‘sensitivity’ of partner k’s reciprocity. In other words, the greater is
θk the more sensible to the psychological reciprocity is partner k.

We are now ready to define the psychological game (derived from the game Γ(I))
corresponding to the psychological utility functions defined in (1)

Γρ,ω(I) = {N ; A1, . . . , An; U1(·, I1), . . . , Uk(·, In)}.
We conclude this section by recalling the equilibrium concept that will be used.6

Definition 3 (Geanakoplos, Pearce and Stacchetti 1989). A strategy profile (a1, . . . , an) ∈ A
is a psychological Nash equilibrium of Γρ,ω(I) if for all k ∈ N
i) ak ∈ arg maxak∈Ak

Uk(ak, a−k, (bkt)t 6=k, (cktk)k 6=t; Ik),
ii) bkt = at and cktk = ak for all t 6= k.

5ωk = 0 is excluded, since regardless of k′s kindness, k′s overall utility would be always decreasing in k′s
belief of t′s (positive) kindness.

6In the rest of the paper a will usually denote an equilibrium and a∗ a symmetric equilibrium.
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3 Implementation of the First Best

We start this section by redefining second-best contracts and attainable first-best profiles
under the assumption that agents have intention-based reciprocity preferences.

Definition 4. A second-best contract under reciprocity vectors (ρ, ω) consists in a pair (a, I)
which maximizes the net benefit

B(a)− C(a, I)

subject to the constraints that

(Pρ,ω-IC) a is a psychological Nash equilibrium of Γρ,ω(I),

(Pρ,ω-IR) Uk(ak, a−k, (bkt)t6=k, (cktk)k 6=t; Ik) ≥ uk, bkt = at and cktk = ak for all t 6= k and for
every k ∈ N .

Definition 5. The first-best effort profile a∗ is said to be attainable under reciprocity vectors
(ρ, ω) if there exist incentive schemes I such that (a∗, I) satisfies (Pρ,ω-IR) and (Pρ,ω-IC)
and C(a∗, I) = CFB(a∗).

Denote with
νk(a

∗) = max
ak∈Ak

[Gk(a
∗
k)−Gk(ak)] ,

an upper bound to the cost saving from an unilateral deviation for agent k.
We are now ready to state our sufficient condition for the implementation of a symmetric

first-best profile.

Proposition 1. Let a∗ be a symmetric first-best profile. If θk ≥ νk(a
∗)/(n − 1) for every

player k then a∗ is attainable under reciprocity vectors (ρ, ω).

The proof of the previous proposition shows that a∗ is attainable since, when agents
sensitivity to reciprocity is sufficiently high, there exist an incentive scheme Î that satisfy
(Pρ,ω-IR) and (Pρ,ω-IC) and C(a∗, I) = CFB(a∗). Specifically, for every k ∈ N , Îk is the
incentive scheme of player k defined by

Îk
q =

{
Ck

FB(a∗k) if q ∈ J(a∗)
I if q ∈ Q \ J(a∗).

(2)

Below, we always denote with Î the incentive schemes defined by (2) for every k ∈ N and
q ∈ Q.
Some more notation is needed to state our necessary conditions for the implementation of a
symmetric first-best profile. Define

Mk(a
∗
k) =

∑
ak∈Ak

(ak − a∗k)
2

and
Gk(a

∗
k) =

∑
ak∈Ak

(Gk(a
∗
k)−Gk(ak))

8



where Mk(a
∗
k) measures the variance of the efforts with respect to a∗k, whereas Gk(a

∗
k)

measures the mean incremental cost from unilateral deviations from a∗k for agent k. Finally,

ψk(a
∗
k) =

∑
ak∈Ak


 ∑

q∈J(a∗)

[
πq(ak, a

∗
−k)− πq(a

∗)
]

 ,

measures the mean probability of reaching some outcome q outside the support J(a∗), by
unilaterally deviating from a∗k for agent k.

Then, the next proposition gives a necessary condition for a symmetric strategy profile
to be implemented by a psychological equilibrium.

Proposition 2. Assume that each function Vk is strictly concave and a∗ is the symmetric
first best profile. If a∗ is attainable under reciprocity vectors (ρ, ω), then, for every k ∈ N , it
follows that

i) Ik
q = Ck

FB(a∗k) for all q ∈ J(a∗)

ii)

θk ≥ ψk(a
∗
k)Vk(C

k
FB(a∗k)) + Gk(a

∗
k)

(n− 1)Mk(a∗k)
. (3)

The next example illustrates how reciprocity sustains efficiency and puts Propositions 1
and 2 to work.

Example 1: Consider a game with two agents with strategy sets A1 = A2 = {1, 2},
the random output has the following support Q = {q1, q2, q3, q4}. Agents’ costs of effort
are defined by G1(1) = 5, G1(2) = 10, G2(1) = 4 and G2(2) = 10 while agents’
reservation utilities are u1 = u2 = 10. Moreover, the utility functions Vk are given
by the identity mappings for each k = 1, 2. The probability distributions π(a) =
(πq1(a), πq2(a), πq3(a), πq4(a)) on Q induced by the strategy profiles a ∈ A1×A2 are given by
π(2, 2) = (1/8, 1/4, 5/8, 0), π(1, 2) = (1/8, 3/8, 3/8, 1/8), π(2, 1) = (1/4, 1/2, 1/8, 1/8) and
π(1, 1) = (1/8, 1/8, 0, 3/4). It can be easily calculated that C1

FB(1) = 15, C1
FB(2) = 20,

C2
FB(1) = 14 and C2

FB(2) = 20. If the principal’s benefits from output are given by

B̃(q1) = B̃(q2) = B̃(q4) = 0 and B̃(q3) = 80, then her net benefits are P (2, 2) =
(5/8)80−20−20 = 10, P (2, 1) = (3/8)80−20−14 = −4, P (1, 2) = (1/8)80−20−15 = −25
and P (1, 1) = −15− 14 = −29. Hence, the first best would be obtained implementing (2, 2)
at the cost CFB(2, 2) = 40. However, the first best would be attainable only if (2, 2) is a
Nash equilibrium of the game defined by incentive schemes that give the first best cost on
the support of (2, 2), as it is the case for Îk

q1
= Îk

q2
= Îk

q3
= 20 and (without loss of generality)

Îk
q4

= I = 0, for k = 1, 2. It is immediate to see that (2, 2) is not a Nash equilibrium for the
resulting game

a2 = 2 a2 = 1
a1 = 2 10 , 10 7.5 , 13.5
a1 = 1 12.5 , 7.5 0 , 1

9



Suppose now that the agents are reciprocal with reciprocity parameters θ1 = 2.5 and
θ2 = 3.5. Denote with a∗ = (a∗1, a

∗
2) = (2, 2). Let b∗kt = a∗t and c∗ktk = a∗k for t 6= k be the first

and second order beliefs consistent with (a∗1, a
∗
2). Being a∗1 = a∗2 then λktk = 0 for k = 1, 2

and t 6= k.
Uk(a

∗
k, a

∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t 6=k; Îk) = Ek(a

∗, Îk)

and

Uk(ak, a
∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t6=k; Îk) = Ek(ak, a

∗
−k, Îk)− ρk

∑

t 6=k

ω2
k(ak − b∗kt)

2 if ak 6= a∗k.

Hence

i) U1(a
∗
1, a

∗
2, b

∗
12, c

∗
121; Î1) = E1(a

∗
1, a

∗
2; Î1) = 10;

ii) U1(a1 = 1, a∗2, b
∗
12, c

∗
121; Î1) = E1(a1 = 1, a∗2; Î1)− ρ1ω

2
1 = 12.5− θ1

while

iii) U2(a
∗
1, a

∗
2, b

∗
21, c

∗
212; Î2) = E2(a

∗
1, a

∗
2; Î2) = 10;

iv) U2(a
∗
1, a2 = 1, b∗21, c

∗
212; Î2) = E2(a

∗
1, a2 = 1; Î2)− ρ2ω

2
2 = 13.5− θ2.

Therefore if θ1 ≥ 2.5 and θ2 ≥ 3.5 it follows that

1) U1(a
∗
1, a

∗
2, b

∗
12, c

∗
121; Î1) ≥ U1(a1 = 1, a∗2, b

∗
12, c

∗
121; Î1)

2) U2(a
∗
1, a

∗
2, b

∗
21, c

∗
212; Î2) ≥ U2(a

∗
1, a2 = 1, b∗21, c

∗
212; Î2).

Hence, a∗ is a psychological Nash equilibrium of Γρ,ω(Î) (therefore a∗ is attainable under
reciprocity parameters ρ, ω) if and only if θ1 ≥ 2.5 and θ2 ≥ 3.5. It can be checked that in
this game ν1(a

∗) = 5 and ν2(a
∗) = 6 hence the sufficient conditions in Proposition 1 give

θ1 ≥ 5 and θ2 ≥ 6. However, it can be checked that ψk(a
∗
k) = −1/8, Vk(C

k
FB(a∗k)) = 20

and Mk(a
∗
k) = 1 for k = 1, 2. Moreover, G1(a

∗
1) = 5 and G2(a

∗
2) = 6. Hence, the necessary

conditions (3) give back θ1 ≥ 2.5 and θ2 ≥ 3.5.

The next example shows that reciprocity has instead a negative effect on asymmetric
profiles and in particular it renders unattainable first best contracts which were attainable
in the material game.

Example 2: Consider the game presented in the previous example except that now
the probability distributions over Q are given by π(2, 2) = (1/2, 1/2, 0, 0), π(1, 2) =
(1/4, 1/4, 1/4, 1/4), π(2, 1) = (1/2, 1/2, 0, 0) and π(1, 1) = (1/4, 1/4, 1/4, 1/4). Again
C1

FB(1) = 15, C1
FB(2) = 20, C2

FB(1) = 14 and C2
FB(2) = 20. If the principal’s benefits

are given by B̃(q2) = B̃(q3) = B̃(q4) = 0 and B̃(q1) = 70 then her net benefits are
P (2, 2) = 35 − 40 = −5, P (2, 1) = 35 − 34 = 1, P (1, 2) = 17.5 − 35 = −17.5 and
P (1, 1) = 17.5 − 29 = −11.5. Hence, the first best is obtained by implementing (2, 1) at
the cost CFB(2, 1) = 34. Therefore, the first best is attainable only if (2, 1) is a Nash

equilibrium of the game corresponding to incentive schemes Î such that Î1
q1

= Î1
q2

= 20, and

Î2
q1

= Î2
q2

= 14 and Î1
q3

= Î1
q4

= Î2
q3

= Î2
q4

= I = 0. The resulting game is

10



a2 = 2 a2 = 1
a1 = 2 10 , 4 10 , 10
a1 = 1 5 , -3 5 , 3

It can be checked that the asymmetric strategy profile (2, 1) is a Nash equilibrium and
the IC conditions are satisfied.

Now we show that, with a reciprocal player 1, the equilibrium (2, 1) is destroyed and
therefore the Pρ,ω-IC conditions are not satisfied. Denote with a∗ = (a∗1, a

∗
2) = (2, 1). Let

b∗kt = a∗t and c∗ktk = a∗k for t 6= k be the first and second order beliefs consistent with (a∗1, a
∗
2).

Recalling that

U1(a1, a
∗
2, b

∗
12, c

∗
121; Î1) = E1(a1, a

∗
2, Î1)− ρ1(ω1(a1 − b∗12)− (b∗12 − c∗121))

2

then

i) U1(a1 = 2, a∗2, b
∗
12, c

∗
121; Î1) = E1(2, 1, Î1)− ρ1(ω1(2− b∗12)− (b∗12 − c∗121))

2 =

10− ρ1(ω1(2− 1)− (1− 2))2 = 10− ρ1(ω1 + 1)2

ii) U1(a1 = 1, a∗2, b
∗
12, c

∗
121; Î1) = E1(1, 1, Î1)− ρ1(ω1(1− b∗12)− (b∗12 − c∗121))

2 =

5− ρ1(ω1(1− 1)− (1− 2))2 = 5− ρ1.

Consider, for example, %1 ≥ 1 and ω1 ≥ 2 then

U1(a1 = 1, a∗2, b
∗
12, c

∗
121; Î1) > U1(a1 = 2, a∗2, b

∗
12, c

∗
121; Î1)

which implies that (2, 1) is not a psychological Nash equilibrium of Γ%,ω(Î). This shows that
a material asymmetric and efficient equilibrium might be destroyed by reciprocal agents.

4 Principal’s utility in the Second Best

In this section we show that reciprocal agents always increase the net benefit of the principal
when the material second best is symmetric (Proposition 3 and Example 3). However, this
result does not extend to the case where the material second best is asymmetric (Example
4). The next proposition states our first result.

Proposition 3. Let (a∗, I) be a (material) second-best contract such that a∗ is a symmetric
strategy profile and at least one of the IR constraints is not binding. Then, for every pair of
reciprocity vectors (ρ, ω) there exist incentive schemes I such that (a∗, I) satisfies (Pρ,ω-IR),
(Pρ,ω-IC) and

B(a∗)− C(a∗, I) < B(a∗)− C(a∗, I).

In words, reciprocity reduces the costs of implementing the second best, whenever the
second best profile is symmetric. The next example illustrates Proposition 3.

Example 3: Consider a game with two agents with strategy sets A1 = A2 = {1, 2},
the random output has the following support Q = {q1, q2, q3}. Agents’ costs of effort are
defined by G1(2) = G2(2) = 1, G1(1) = G2(1) = 0, while agents’ reservation utilities are
u1 = u2 = 0. The probability distributions over Q are given by π(2, 2) = (1/2, 1/2, 0),

11



π(1, 2) = (1/3, 1/3, 1/3) and π(2, 1) = π(1, 1) = (0, 0, 1). It can be easily calculated that
C1

FB(1) = C2
FB(1) = 0, C1

FB(2) = C2
FB(2) = 1. Given the incentive schemes I where Ik

qi

denotes the payment to player k if outcome qi has occurred, then the material game is

a2 = 2 a2 = 1
a1 = 2 (I1

q1
/2) + (I1

q2
/2)− 1, (I2

q1
/2) + (I2

q2
/2)− 1 I1

q3
− 1, I2

q3

a1 = 1 (I1
q1

/3) + (I1
q2

/3) + (I1
q3

/3), (I2
q1

/3) + (I2
q2

/3) + (I2
q3

/3)− 1 I1
q3

, I2
q3

Note that (2, 2) is a Nash equilibrium (and therefore satisfies the IC conditions) if and
only if

i) (I1
q1

/2) + (I1
q2

/2)− 1 ≥ (I1
q1

/3) + (I1
q2

/3) + (I1
q3

/3)

ii) (I2
q1

/2) + (I2
q2

/2)− 1 ≥ I2
q3

.

It can be easily checked that CSB(2, 2) = 8 and

M(2, 2) = {(I1
qi
)3
i=1, (I

2
qi
)3
i=1 | I1

q1
+ I1

q2
= 6, I2

q1
+ I2

q2
= 2, I1

q3
= I2

q3
= 0}.

On the other hand (1, 2) is a Nash equilibrium if and only if

i) (I1
q1

/3) + (I1
q2

/3) + (I1
q3

/3) ≥ (I1
q1

/2) + (I1
q2

/2)− 1

ii) (I2
q1

/3) + (I2
q2

/3) + (I2
q3

/3)− 1 ≥ I2
q3

.

Therefore CSB(1, 2) = 3 and

M(1, 2) = {(I1
qi
)3
i=1, (I

2
qi
)3
i=1 | I2

q1
+ I2

q2
= 3, I1

q1
= I1

q2
= I1

q3
= I2

q3
= 0}.

Analogous calculations show that (2, 1) is never a Nash equilibrium, while CSB(1, 1) = 0.

Now if the principal’s benefits from output are B̃(q1) = B̃(q3) = 0 and B̃(q2) = 36. It
can be checked that the first best is to implement (2, 2) at the cost C1

FB(2) + C2
FB(2) = 2.

While the second best is to implement (2, 2) at the second best cost CSB(2, 2) = 8. In fact
B(2, 2)−CSB(2, 2) = 18−8 = 10, B(1, 2)−CSB(1, 2) = 12−3 = 9 and B(1, 1)−CSB(1, 1) = 0.
Suppose now that agents are reciprocal with reciprocity vectors (ρ, ω). Following the same
steps as in the previous examples for the calculation of psychological payoffs, we get the
following psychological equilibrium conditions for the strategy profile (2, 2)

i) (I1
q1

/2) + (I1
q2

/2)− 1 ≥ (I1
q1

/3) + (I1
q2

/3) + (I1
q3

/3)− θ1

ii) (I2
q1

/2) + (I2
q2

/2)− 1 ≥ I2
q3
− θ2.

Such conditions tell that the strategy profile (2, 2) can be implemented as a psychological
Nash equilibrium under the following incentive schemes

{(I1
qi
)3
i=1, (I

2
qi
)3
i=1 | I1

q1
+ I1

q2
= max{6(1− θ1), 0}, I2

q1
+ I2

q2
= max{2(1− θ2), 0}, I1

q3
= I2

q3
= 0}.

and therefore the second best costs under reciprocity vectors (ρ, ω) are

CP
SB(2, 2) = max{6(1− θ1), 0}+ max{2(1− θ2), 0} < CSB(2, 2),

implying that reciprocity reduces the costs of implementation of the second best, whenever
the second best profile is symmetric.
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We now show by way of an example that reciprocity does not always benefit the principal
if the material second best is asymmetric.

Example 4: Consider a game similar to the one in Example 3. Two agents have strategy
sets A1 = A2 = {1, 2}. Again, the random output has support Q = {q1, q2, q3}, agents’
costs of effort are G1(2) = G2(2) = 1, G1(1) = G2(1) = 0, while reservation utilities are
u1 = u2 = 0. The probability distributions over Q are now given by π(2, 2) = (1/2, 1/2, 0),
π(1, 2) = (0, 1/2, 1/2) and π(2, 1) = π(1, 1) = (0, 0, 1). It can be easily calculated that
C1

FB(1) = C2
FB(1) = 0, C1

FB(2) = C2
FB(2) = 1. Given the incentive schemes I then the

material game is

a2 = 2 a2 = 1
a1 = 2 (I1

q1
/2) + (I1

q2
/2)− 1, (I2

q1
/2) + (I2

q2
/2)− 1 I1

q3
− 1, I2

q3

a1 = 1 (I1
q2

/2) + (I1
q3

/2), (I2
q2

/2) + (I2
q3

/2)− 1 I1
q3

, I2
q3

Note that (2, 2) is a Nash equilibrium (and therefore satisfies the IC conditions) if and
only if

i) (I1
q1

/2) + (I1
q2

/2)− 1 ≥ (I1
q2

/2) + (I1
q3

/2)

ii) (I2
q1

/2) + (I2
q2

/2)− 1 ≥ I2
q3

.

It can be easily checked that CSB(2, 2) = 4 and

M(2, 2) = {(I1
qi
)3
i=1, (I

2
qi
)3
i=1 | I1

q1
= 2, I2

q1
+ I2

q2
= 2, I1

q2
= I1

q3
= I2

q3
= 0}.

On the other hand (1, 2) is a Nash equilibrium if and only if

i) (I1
q2

/2) + (I1
q3

/2) ≥ (I1
q1

/2) + (I1
q2

/2)− 1

ii) (I2
q2

/2) + (I2
q3

/2)− 1 ≥ I2
q3

.

Therefore CSB(1, 2) = 2 and

M(1, 2) = {(I1
qi
)3
i=1, (I

2
qi
)3
i=1 | I2

q2
= 2, I2

q1
= I1

q1
= I1

q2
= I1

q3
= I2

q3
= 0}.

Analogous calculations show that (2, 1) is never a Nash equilibrium, while CSB(1, 1) = 0.

If the principal’s benefits from output are now B̃(q1) = 0, B̃(q2) = 10 and B̃(q3) = 2.
It can be checked that the first best is to implement (1, 2) at the cost CFB(1, 2) = 1.
While the second best is to implement (1, 2) at the second best cost CSB(1, 2) = 2. In fact
B(2, 2)−CSB(2, 2) = 5−4 = 1 , B(1, 2)−CSB(1, 2) = 6−2 = 4 and B(1, 1)−CSB(1, 1) = 2.

Suppose now that agents are reciprocal with reciprocity vectors (ρ, ω). Following the
same steps as in the previous examples for the calculation of psychological payoffs, we get
the following psychological equilibrium conditions for the strategy profile (2, 2)

i) (I1
q1

/2) + (I1
q2

/2)− 1 ≥ (I1
q2

/2) + (I1
q3

/2)− θ1

ii) (I2
q1

/2) + (I2
q2

/2)− 1 ≥ I2
q3
− θ2.
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For (1, 2), we have the following equilibrium conditions

i) (I1
q2

/2) + (I1
q3

/2)− ρ1(ω1 + 1)2 ≥ (I1
q1

/2) + (I1
q2

/2)− 1− ρ1

ii) (I2
q2

/2) + (I2
q3

/2)− 1− ρ2(ω2 + 1)2 ≥ I2
q3
− ρ2

Fix for example ρ1 = ρ2 = 1/2 and ω1 = ω2 = 1. Then the equilibrium conditions tell
that the strategy profile (2, 2) can be implemented as a psychological Nash equilibrium under
the following incentive schemes

{(I1
qi
)3
i=1, (I

2
qi
)3
i=1 | I1

q1
= 1, I2

q1
+ I2

q2
= 1, I1

q2
= I1

q3
= I2

q3
= 0}.

Therefore the second best costs is CP
SB(2, 2) = 2. The strategy profile (1, 2) can be

implemented as a psychological Nash equilibrium under the following incentive schemes

{(I1
qi
)3
i=1, (I

2
qi
)3
i=1 | I1

q1
= 5/2, I2

q2
= 5, I2

q1
= I1

q1
= I1

q2
= I1

q3
= I2

q3
= 0}.

and the second best cost is now CP
SB(1, 2) = 15/2.

Therefore the second best under reciprocity vectors (ρ, ω) is obtained, in this case, by the
strategy profile (2, 2) which yields a net benefit to the principal equal to B(2, 2)−CP

SB(2, 2) =
5 − 2 = 3 > B(1, 2) − CP

SB(1, 2) = 6 − 15/2 = −3/2. Since B(1, 2) − CSB(1, 2) = 4 >
B(2, 2) − CP

SB(2, 2), we deduce that reciprocal agents may reduce the net benefit of the
principal when the material second best is asymmetric.

5 Collusion-proof Implementation

In the presence of many players, collusion-proof implementation of the efficient strategy
profile is often an issue. In particular, in the (material) principal-multiple agents framework,
Mookherjee (1982) investigates the effects of a principal who seeks to implement action pairs
as a strong Nash equilibrium (Aumann (1959)) in the two-agent case. An equilibrium is said
to be a strong Nash equilibrium if no subset of players, taking the actions of the others as
fixed, can jointly deviate in a way that benefits all of them. This concept has been introduced
for environments in which players can agree privately upon a joint deviation. In that case,
any meaningful agreement by the whole set of players must be stable against deviations by
all possible coalitions of players. More precisely,

Definition 6 (Aumann 1959). A strategy profile (a1, . . . , an) is a strong Nash equilibrium of
the material game Γ if for all subset of players T ⊆ N and for all aT ∈ AT =

∏
t∈T At there

exists a player k ∈ T such that uk(aT , a−T ) ≥ uk(aT , a−T ), with a−T = (at)t/∈T .

Building upon the work of Aumann, in our companion paper we introduced the
definition of psychological strong Nash equilibrium which extends the Aumann’s concept
to psychological games. The definition is based on the idea that – since players commit
ex-ante to a deviation – the deviants’ beliefs should be consistent with the deviation itself.7

More precisely

7Note that when we consider only deviations by singletons, this definition boils down to the definition of
psychological Nash equilibrium. Moreover, it generalizes the Aumann’s definition of strong Nash equilibrium
which can be easily obtained removing the psychological term from the payoffs. In the next two sections we
will introduce our results on implementation and unique implementation, respectively.
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Definition 7. A strategy profile (a1, . . . , an) is a psychological strong Nash equilibrium of
Γρ,ω(I) if it is stable with respect to joint deviations of each coalition T ⊆ N : for every
aT ∈ AT there exists a player k ∈ T such that
i) Uk(ak, a−k, (bkt)t 6=k, (cktk)t6=k; Ik) ≥ Uk(aT , a−T , (bkt)t 6=k), (cktk)t6=k; Ik), with a−T = (at)t/∈T

ii) bkt = at and cktk = ak for all t 6= k,
iii) bkt = at and cktk = ak for all t ∈ N \ T ,
iv) bkt = at and cktk = ak for all t ∈ T \ {k}.

In De Marco and Immordino (2010), we found out that this concept allows for the unique
and collusion proof implementation of the efficient (symmetric) strategy profile in a classical
partnership model. Now we address the question whether the psychological strong Nash
equilibrium allows for an analogous result for symmetric first best profiles in the principal-
multiple agents model. Indeed, the condition used to prove Proposition 1 is not sufficient
to sustain the first best if agents can collude. In the next proposition we show that there
exists a set of parameters θk such that the symmetric first best is attainable even if proper
coalitions can collude. Whether the symmetric first best is stable also with respect to joint
deviations of the grand coalition (and therefore a psychological strong Nash equilibrium), it
depends only on the material game, meaning that only the (first best) incentives schemes
prevent from the joint deviations of the grand coalition. Indeed, as it can be easily deduced
from the definition of psychological strong Nash equilibrium, in the agents’ psychological
utilities – corresponding to a deviation of the grand coalition from a symmetric strategy
profile towards another symmetric strategy profile – the psychological terms disappear and
therefore psychological utilities coincide with the material ones.

Proposition 4. Let a∗ be the symmetric first best profile. If θk ≥ νk(a
∗) for every player k

then a∗ is attainable and stable with respect to joint deviations of each proper coalition T ⊂ N
in the psychological game Γρ,ω(Î).

Finally, whenever the symmetric first best profile is sustained as a psychological strong
Nash equilibrium then additional assumptions on the psychological parameters of the agents
are needed to guarantee that it is unique8.

6 A remark on symmetric first best profiles

The previous results underline the important role played by symmetry for reciprocity to be
in the principal’s interest. It is then natural to ask when a symmetric first-best strategy
profile is likely to arise.

Given a strategy profile a = (a1, . . . , an), denote with
⌊∑n

i=1 ai

n

⌋
the integer part of

∑n
i=1 ai

n

and let µ(a) = (m(a), . . . , m(a)) be the symmetric profile in A defined by

m(a) =





∑n
i=1 ai

n
if

∑n
i=1 ai

n
=

⌊∑n
i=1 ai

n

⌋
⌊∑n

i=1 ai

n

⌋
+ 1 otherwise.

8Even if the first best profile is not the unique psychological strong Nash equilibrium of the game, it
is possible to show that if a∗ is the symmetric first best profile and if ρk

[
(ωk + 1)2 − (n− 1)(m− 1)2

]
>

ν(a∗) ∀k ∈ N then every asymmetric strategy profile is not a strong psychological equilibrium of Γρ,ω (̂I).
The proof is in the appendix.
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Then, the following proposition immediately follows

Proposition 5. Assume that,

i) the function B is increasing in the sum of agents’ efforts, i.e.,

n∑
i=1

ai >

n∑
i=1

a′i =⇒ B(a) > B(a′)

ii) CFB(µ(a)) ≤ CFB(a) for every a ∈ A.

Then there exists at least a symmetric first best profile.

The proof is obvious since B(µ(a∗))−CFB(µ(a∗)) ≥ B(a∗)−CFB(a∗) which implies that
if a∗ is a first best profile then also µ(a∗) is a first best profile9.

In the next lemma we provide sufficient conditions to obtain condition (ii) in Proposition
5 in the case agents are symmetric. For the sake of simplicity denote in this case
A1 = · · · = An = {1, . . . , m} = S. Moreover, for every x ∈ [1, m] denote with
N(x) = {s ∈ S | such that ‖x− s‖ ≤ 1} the discrete neighborood of x. Then

Lemma 1. Assume that C1
FB(s) = C2

FB(s) = · · · = Cn
FB(s) = c(s) for every s in S where

c(s) is a discretely strict convex function in S, that is, given s′, s′′ ∈ S and α ∈ [0, 1] it
follows that

max
s∈N(αs′+(1−α)s′′)

c(s) ≤ αc(s′) + (1− α)c(s′′). (4)

Then CFB(µ(a)) ≤ CFB(a) for every a ∈ A.10

This section has shown that symmetric first-best profiles arise naturally when the
principal’s benefit increases in the total amount of effort provided by the agents and the
first-best cost features a convexity-like property. Note that the discretely strict convexity of
Ck

FB follows from the analogous property for agent k disutility function Gk. Finally, notice
that those assumptions are only sufficient and it is simple to find examples where the first-best
profile is symmetric despite the previous assumptions are not satisfied.

7 Conclusion

In this paper, we examine the impact of intention-based reciprocity preferences on the
multiple agent model. Our main result is that a principal will always prefer to hire reciprocal
agents to implement a contract when the strategy profile is symmetric, while if profiles are

9If the strategy sets were closed convex subsets of finite dimensional spaces then condition (ii) in
Proposition 5 could be replaced by CFB convex and by the following property:

∑n
i=1 ai =

∑n
i=1 a′i =⇒

CFB(a) = CFB(a′).
10Note that the discretely strict convexity assumption used in the lemma is stronger than the discretely

convexity assumption introduced in Miller (1991) where the max in (4) is replaced with min. Moreover, it
can be easily checked that – in the continuous (strategy set) case – if we replace condition (ii) in Proposition
5 with the assumpion that agents are symmetric with a convex cost function c then we obtain again the
existence of a symmetric first best profile.
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asymmetric she might prefer self-interested to intention-based reciprocity agents. Moreover,
we describe the agents’ psychological characteristics required to sustain a given strategy
profile. Finally, since our main results underline the important role played by symmetry for
reciprocity to be in the principal’s best interest, we show when symmetric strategy profiles
are most likely to arise.

The current paper together with the companion one (De Marco and Immordino, 2010)
on partnerships study natural environments for reciprocity to play a central role and are
intended to be a step toward the economic analysis of teamwork and optimal team design in
the presence of reciprocal agents. An important by-product of our analysis is to demonstrate
that, despite their apparent complexity, intention-based reciprocity models can be useful to
study economically relevant settings in a novel and simple way.

8 Appendix

Proof of Proposition 1. From the assumptions it follows that, for every player k,

ρk

∑

t 6=k

ω2
k(ak − b∗kt)

2 ≥ (n− 1)ρkω
2
k ≥ νk(a

∗) ≥ Gk(a
∗
k)−Gk(ak) ∀ak ∈ Ak. (5)

Moreover, let Îk the incentive scheme of player k defined by

Îk
q =

{
Ck

FB(a∗k) if q ∈ J(a∗)
I if q ∈ Q \ J(a∗)

(6)

In this case, we get

Ek(a
∗, Îk) =

∑
q∈Q

πq(a
∗)Vk(C

k
FB(a∗k))−Gk(a

∗
k) = Vk(C

k
FB(a∗k))−Gk(a

∗
k)

while
Ek(ak, a

∗
−k, Îk) =

∑
q∈Q

πq(ak, a
∗
−k)Vk(Î

k
q )−Gk(ak) =

Vk(C
k
FB(a∗k))


 ∑

q∈J(a∗)

πq(ak, a
∗
−k)


 + Vk(I)


 ∑

q /∈J(a∗)

πq(ak, a
∗
−k)


−Gk(ak).

Note that Vk(I) ≤ Vk(C
k
FB(a∗k)) which implies that

Vk(C
k
FB(a∗k)) =

∑
q∈Q

πq(a
∗)Vk(C

k
FB(a∗k)) ≥

Vk(C
k
FB(a∗k))


 ∑

q∈J(a∗)

πq(ak, a
∗
−k)


 + Vk(I)


 ∑

q /∈J(a∗)

πq(ak, a
∗
−k)


 .

Hence from the previous inequality and from (5) it follows that

Vk(C
k
FB(a∗k)) +

∑

t 6=k

ω2
k(ak − b∗kt)

2 ≥
∑
q∈Q

πq(ak, a
∗
−k)Vk(Î

k
q ) + Gk(a

∗
k)−Gk(ak) ∀ak ∈ Ak.
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which implies that

Ek(a
∗, Îk) ≥ Ek(ak, a

∗
−k, Îk)− ρk

∑

t 6=k

ω2
k(ak − b∗kt)

2 ∀ak ∈ Ak \ {a∗k}. (7)

If b∗kt = a∗t and c∗ktk = a∗k for all t 6= k, then

Uk(a
∗
k, a

∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t 6=k; Îk) = Ek(a

∗, Îk)

and

Uk(ak, a
∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t 6=k; Îk) = Ek(ak, a

∗
−k, Îk)− ρk

∑

t 6=k

ω2
k(ak − b∗kt)

2 ∀ak ∈ Ak \ {a∗k}.

Since the previous arguments apply for every player k, then (7) implies that a∗ is a

psychological Nash equilibrium of Γρ,ω(Î), where each Îk is defined as in (6). Therefore

(a∗, Î) satisfies the condition Pρ,ω-IC.
Finally, since for every player k it follows that

Uk(a
∗
k, a

∗
−k, (b

∗
kt)t6=k, (c

∗
ktk)t 6=k; Îk) = Ek(a

∗, Îk) = Vk(C
k
FB(a∗k))−Gk(a

∗
k) = uk

then (a∗, Î) satisfies the condition Pρ,ω-IR. And the assertion follows.
Proof of Proposition 2. The first best a∗ is attainable, then it satisfies the Pρ,ω-IR

conditions. Notice that since a∗ is a symmetric strategy profile and Pρ,ω-IR involves correct
beliefs then the Pρ,ω-IR condition is equivalent to the IR condition for material payoffs.
Hence, following the same steps in Proposition 5 in Mookherjee (1984) we get that, given
the strict concavity of V the principal can attain the first best only if each agent is paid a
constant sum with probability one under a∗. Given that the contract is optimal, agent k will
be paid Ck

FB(a∗k) whenever the outcome belongs to J(a∗).
Now, without loss of generality, we assume that the principal always gives the minimum

payment I for q /∈ J(a∗). Let b∗kt = a∗t and c∗ktk = a∗k for all t 6= k. From the assumptions

it follows that a∗ satisfies the Pρ,ω-IC conditions under incentive schemes Î, then it is a

psychological Nash equilibrium of Γρ,ω(Î). Hence, for every player k, it follows that

Uk(a
∗
k, a

∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t 6=k; Îk) ≥ Uk(ak, a

∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t 6=k; Îk) ∀ak ∈ Ak \ {a∗k}, (8)

where
Uk(a

∗
k, a

∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t 6=k; Îk) = Ek(a

∗, Îk)

and

Uk(ak, a
∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t 6=k; Îk) = Ek(ak, a

∗
−k, Îk)− ρk

∑

t 6=k

ω2
k(ak − b∗kt)

2 ∀ak ∈ Ak \ {a∗k}.

Condition (8) implies that

ρk

∑

t 6=k

ω2
k(ak − b∗kt)

2 ≥ Ek(ak, a
∗
−k, Îk)− Ek(a

∗, Îk) =
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Vk(C
k
FB(a∗k))


 ∑

q∈J(a∗)

[
πq(ak, a

∗
−k)− πq(a

∗)
]

 + Vk(I)


 ∑

q /∈J(a∗)

πq(ak, a
∗
−k)


 + Gk(a

∗
k)−Gk(ak).

Being Vk(I) = 0 and taking the sum over ak ∈ Ak we get

θk(n− 1)Mk(a
∗
k) = ρkω

2
k

∑
ak∈Ak

∑

t 6=k

(ak − b∗kt)
2 ≥

∑
ak∈Ak


Vk(C

k
FB(a∗k))


 ∑

q∈J(a∗)

[
πq(ak, a

∗
−k)− πq(a

∗)
]




 +

∑
ak∈Ak

(Gk(a
∗
k)−Gk(ak)) =

ψk(a
∗
k)Vk(C

k
FB(a∗k)) + Gk(a

∗
k)

Hence condition (3) holds and the assertion follows.
Proof of Proposition 3. Assume that (a∗, I) is a (material) second best contract with

a∗ symmetric strategy profile. Fix reciprocity vectors (ρ, ω). Given the incentive schemes I
and εk ≥ 0 for all k ∈ N , denote with Iε = (I1

ε1
, . . . , In

εn
) the incentive schemes defined by

Ik
εk,q = max{I, Ik

q − εk} ∀k ∈ N, ∀q ∈ Q.

Denote with gk(εk) = Ek(a
∗, Ik

εk
). It easily follows that each function gk is continuous and

gk(0) ≥ uk for every k. Denote with NIR = {k ∈ N | gk(0) > uk} which is not empty by
assumption. Then for every k ∈ NIR there exists κk such that gk(εk) > uk for all εk < κk.
Hence the Pρ,ω-IR conditions are satisfied for every k ∈ NIR and εk < κk.

For every k ∈ NIR and every ak ∈ Ak \ {a∗k}, let

hk(εk, ak) =
∑
q∈Q

[
πq(ak, a

∗
−k)− πq(a

∗)
] [

Vk(I
k
εk,q)− Vk(I

k
q )

]
.

For every ak ∈ Ak \ {a∗k}, hk(0, ak) = 0 and hk(·, ak) is continuous. Hence there exists κk(ak)
such that

∑

t 6=k

θk(ak − a∗k)
2 ≥

∑
q∈Q

[
πq(ak, a

∗
−k)− πq(a

∗)
] [

Vk(I
k
εk,q)− Vk(I

k
q )

] ∀εk ≤ κk(ak).

Therefore, if κk = minak∈Ak\{a∗k} κk(ak) and εk ≤ κk, it follows that

∑

t 6=k

θk(ak − a∗k)
2 ≥

∑
q∈Q

[
πq(ak, a

∗
−k)− πq(a

∗)
] [

Vk(I
k
εk,q)− Vk(I

k
q )

] ∀ak ∈ Ak \ {a∗k}.

Since (a∗, I) is a (material) second best contract then from the IC condition it follows that

−
∑
q∈Q

Vk(I
k
q )

[
πq(ak, a

∗
−k)− πq(a

∗)
] ≥ Gk(a

∗
k)−Gk(ak) ∀ak ∈ Ak \ {a∗k}.

Hence for εk ≤ κk, it follows that

−
∑
q∈Q

[
πq(ak, a

∗
−k)− πq(a

∗)
]
Vk(I

k
εk,q) +

∑

t 6=k

θk(ak − a∗k)
2 ≥ Gk(a

∗
k)−Gk(ak) ∀ak ∈ Ak \ {a∗k}
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which implies that
∑
q∈Q

πq(a
∗)Vk(I

k
εk,q)−Gk(a

∗
k) ≥

∑
q∈Q

πq(ak, a
∗
−k)Vk(I

k
εk,q)−Gk(ak)−

∑

t 6=k

θk(ak−a∗k)
2 ∀ak ∈ Ak\{a∗k}.

(9)
If b∗kt = a∗t and c∗ktk = a∗k for all t 6= k, then

Uk(a
∗
k, a

∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t 6=k; Ik

ε ) =
∑
q∈Q

πq(a
∗)Vk(I

k
εk,q)−Gk(a

∗
k)

and
Uk(ak, a

∗
−k, (b

∗
kt)t6=k, (c

∗
ktk)t 6=k; Ik

ε ) =
∑
q∈Q

πq(ak, a
∗
−k)Vk(I

k
εk,q)−Gk(ak)−

∑

t6=k

θk(ak − bk,h)
2 ∀ak ∈ Ak \ {a∗k}.

Therefore, for every player k in NIR and every εk ≤ κk,

Uk(a
∗
k, a

∗
−k, (b

∗
kt)t6=k, (c

∗
ktk)t 6=k; Ik

ε ) ≥ Uk(ak, a
∗
−k, (b

∗
kt)t6=k, (c

∗
ktk)t 6=k; Ik

ε ) ∀ak ∈ Ak \ {a∗k}, (10)

which finally implies that the Pρ,ω-IC conditions are satisfied for every player k in NIR and
every εk ≤ κk.

Consider a vector ε = (ε1, ε2, . . . , εn)
{

εk = 0 ifk /∈ NIR

0 < εk < min{κk, κk} ifk ∈ NIR.

Denote with I = Iε. Previous arguments imply that for every k ∈ NIR, the contract (a∗, I)
satisfies Pρ,ω-IR and Pρ,ω-IC.
Now we consider players k /∈ NIR. Note that if εk = 0 one obviously gets that Ik

εk
= Ik.

Being (a∗, I) a (material) second best contract, then the contract (a∗, I) clearly satisfies the
Pρ,ω-IR conditions also for every k /∈ NIR since a∗ is symmetric and the psychological term
in the Pρ,ω-IR conditions disappears when beliefs are correct. Finally, if k /∈ NIR, it follows
that

Uk(a
∗
k, a

∗
−k, (b

∗
kt)t6=k, (c

∗
ktk)t 6=k; Ik

ε ) = Ek(a
∗
k, a

∗
−k, Îk

ε ) ≥ Ek(ak, a
∗
−k, Îk

ε ) ≥
Ek(ak, a

∗
−k, Îk

ε )− ρk

∑

t 6=k

ω2
k(ak − b∗kt)

2 = Uk(ak, a
∗
−k, (b

∗
kt)t 6=k, (c

∗
ktk)t 6=k; Ik

ε ) ∀ak ∈ Ak

which implies that the Pρ,ω-IR conditions hold also for every k /∈ NIR in the contract (a∗, I).

Finally, by construction it follows that I
k

q = Ik
εk,q ≤ Ik

q for every k ∈ N and q ∈ Q.. Let

k ∈ NIR, then there exists q̃ ∈ J(a∗) such that Ik
q̃ > I. It follows that I

k

q̃ = Ik
εk,q̃ < Ik

q̃ , which
implies

C(a∗, I) > C(a∗, I) (11)

and the assertion follows.
Proof of Proposition 4. From the assumptions it follows that, for every coalition T

there exists a player k ∈ T such that
∑

t/∈T

θk(ak − a∗k)
2 ≥ (n− |T |))θk ≥ νk(a

∗) ≥ Gk(a
∗
k)−Gk(ak) ∀ak ∈ Ak. (12)
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Following similar steps of the proof of Proposition 1 we get

Ek(a
∗, Îk) =

∑
q∈Q

πq(a
∗)Vk(C

k
FB(a∗k))−Gk(a

∗
k) = Vk(C

k
FB(a∗k))−Gk(a

∗
k)

whereas

Ek(aT , a∗−T , Îk) = Vk(C
k
FB(a∗k))


 ∑

q∈J(a∗)

πq(aT , a∗−T )


 + Vk(I)


 ∑

q /∈J(a∗)

πq(aT , a∗−T )


−Gk(ak).

Since Vk(I) ≤ Vk(C
k
FB(a∗k)) and (12) holds we finally get

Vk(C
k
FB(a∗k)) +

∑

t/∈T

θk(ak − a∗k)
2 ≥

∑
q∈Q

πq(aT , a∗−T )Vk(Î
k
q ) + Gk(a

∗
k)−Gk(ak) ∀aT ∈ AT .

which implies that

Ek(a
∗, Îk) ≥ Ek(aT , a∗−T , Îk)− θk

∑

t/∈T

(ak − a∗k)
2 ∀aT ∈ AT \ {a∗T}. (13)

If b∗kt = a∗t and c∗ktk = a∗k for all t 6= k, then the psychological payoff of player k consistent
with a∗ is

Uk(a
∗
T , a∗−T , (b∗kt)t 6=k, (c

∗
ktk)t 6=k; Îk) = Ek(a

∗, Îk).

Fixed a deviation aT of coalition T from a∗, the beliefs of player k consistent with this
deviation are
1) bkt = a∗t and cktk = a∗k for all t ∈ N \ T . In this case, χkt = ak − a∗t = ak − a∗k and
λktk = a∗t − a∗k = 0.
2) bkt = at and cktk = ak for all t ∈ T \ {k}. In this case, χkt = ak − at and λktk = at − ak

therefore the psychological payoff of player k consistent with a deviation aT is

Uk(aT , a∗−T , (bkt)t 6=k, (cktk)t6=k; Îk)) = Ek(aT , a∗−T , Îk)− θk

∑

t/∈T

(ak − a∗k)
2−

ρk

∑

t∈T\{k}
(ωk + 1)2(ak − at)

2 ≤ Ek(aT , a∗−T , Îk)− θk

∑

t/∈T

(ak − a∗k)
2 ∀aT ∈ AT \ {a∗T}.

Hence,

Uk(a
∗
T , a∗−T , (b∗kt)t6=k, (c

∗
ktk)t6=k; Îk) ≥ Uk(aT , a∗−T , (bkt)t6=k, (cktk)t 6=k; Îk)) ∀aT ∈ AT \ {a∗T}.

Since the previous arguments apply for every coalition T ⊆ N then the assertion follows.

Proposition 6. Let a∗ be the symmetric first best profile. If

ρk

[
(ωk + 1)2 − (n− 1)(m− 1)2

]
> νk(a

∗) ∀k ∈ N (14)

then every asymmetric strategy profile is not a strong psychological equilibrium of Γρ,ω (̂I).
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Proof of Proposition 6. Consider an asymmetric strategy profile a, let T = {k ∈
N | ak 6= a∗k}. Consider the joint deviation of coalition T towards their first best strategies
a∗T . Obviously we get a∗ = (a∗T , a−T ). Recall that, for every player k, Vk(C

k
FB) ≥ 0 = Vk(I),

moreover
∑

q∈J(a∗) πq(a
∗) = 1, which obviously implies that

∑
q∈J(a∗) [πq(a)− πq(a

∗)] ≤ 0 and∑
q /∈J(a∗) [πq(a)− πq(a

∗)] =
∑

q /∈J(a∗) [πq(a)]. Then

Vk(C
k
FB)


 ∑

q∈J(a∗)

[πq(a)− πq(a
∗)]


 + Vk(I)


 ∑

q /∈J(a∗)

[πq(a)− πq(a
∗)]


 ≤ 0.

Hence, from (14), it follows that for every player k

ρk

[
(ωk + 1)2 − (n− 1)(m− 1)2

]
>

Vk(C
k
FB)


 ∑

q∈J(a∗)

[πq(a)− πq(a
∗)]


 + Vk(I)


 ∑

q /∈J(a∗)

[πq(a)− πq(a
∗)]


 +

Gk(a
∗
k)−Gk(ak).

This condition implies that

Ek(a
∗, Îk)− ρk(n− 1)(m− 1)2 > Ek(a, Îk)− ρk(ωk + 1)2 (15)

Now, let k ∈ T and consider the psychological payoff of player k consistent with the strategy
profile a:

Uk(a, (bkt)t 6=k, (cktk)t 6=k; Îk) = Ek(a, Îk)−
∑

t 6=k

ρk(ωk(ak − bkt)− (bkt − cktk))
2

with bkt = at and cktk = ak for all t 6= k, therefore

Uk(a, (bkt)t 6=k, (cktk)t 6=k; Îk) = Ek(a, Îk)−
∑

t 6=k

ρk(ωk(ak − at)− (at − ak))
2 =

= Ek(a, Îk)−
∑

t 6=k

ρk((ωk + 1)(ak − at))
2 ≤ Ek(a, Îk)− ρk(ωk + 1)2. (16)

Consider the psychological payoff of player k consistent with the deviation a∗T of coalition T :

Uk(a
∗, (b∗kt)t 6=k, (c

∗
ktk)t 6=k; Îk) = Ek(a

∗, Îk)−
∑

t 6=k

ρk(ωk(a
∗
k − b∗kt)− (b∗kt − c∗ktk))

2

where b∗kt = a∗t (= a∗k) and c∗ktk = a∗k if t ∈ T and b∗kt = at (= a∗k) and c∗ktk = ak 6= a∗k if t /∈ T .
Therefore

∑

t6=k

(ωk(a
∗
k−b∗kt)−(b∗kt−c∗ktk))

2 =
∑

t∈T\{k}
(ωk(a

∗
k−b∗kt)−(b∗kt−c∗ktk))

2+
∑

t/∈T

(ωk(a
∗
k−b∗kt)−(b∗kt−c∗ktk))

2 =
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∑

t/∈T

(ωk(a
∗
k − b∗kt)− (b∗kt − c∗ktk))

2 =
∑

t/∈T

(−(at − ak))
2 ≤

∑

t/∈T

(m− 1)2 ≤ (n− 1)(m− 1)2

Hence
Uk(a

∗, (b∗kt)t 6=k, (c
∗
ktk)t6=k; Îk) ≥ Ek(a

∗, Îk)− ρk(n− 1)(m− 1)2 (17)

Hence from (15,16,17) it follows that

Uk(a
∗, (b∗kt)t 6=k, (c

∗
ktk)t6=k; Îk) > Uk(a, (bkt)t6=k, (cktk)t 6=k; Îk) ∀k ∈ T

and therefore a is not a psychological strong Nash equilibrium.
Proof of Lemma 1. Let a = (a1, . . . , an) then CFB(a) = c(a1) + c(a2) + · · · + c(an).

Hence
CFB(a)

n
=

c(a1) + c(a2) + · · ·+ c(an)

n
≥ max

s∈N

( ∑n
i=1

ai
n

) c(s) ≥ c(m(a)).

Hence
CFB(a) ≥ nc(m(a)) = CFB(µ(a))

and the assertion follows.
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