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Abstract 
 
We consider a two-stage model where a leader, according to its   risk-averse proneness, solves a MinSup 
problem with constraints   corresponding to the reaction sets of a follower and defined by the   solutions of a 
quasi-variational inequality (i.e. a variational   inequality having constraint sets depending on its own solutions)   
which appear in concrete economic models such as social and economic   networks, financial derivative models, 
transportation network   congestion and traffic equilibrium. In general the infimal value of a MinSup (or the 
maximal value of a   MaxInf) problem with quasi-variational inequality constraints is not   stable under 
perturbations in the sense that the sequence of optimal   values for the perturbed problems may not converge to 
the optimal   value of the original problem even in presence of nice data. Thus, we   introduce different types of 
approximate values for this problem, we   investigate their asymptotical behavior under perturbations and we   
emphasized the results concerning MinSup problems with variational   inequality constraints as well results 
holding under stronger   assumptions that can be more easily employed in applications.  
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1 Introduction

Variational problems with contraints defined by solutions to other variational problems modelize
numerous economic and engineering problems [35], [14], [8], [12]... Usually, in these models two
levels can be distinguished: a lower level in which a variational problem is solved by a follower in
reaction to every decision imposed by a leader which solves an optimization problem at an upper
level. In this paper the leader is assumed to be a minimizer. When the set of solutions to the
lower level (called best responses of the follower) is not a singleton, to choose a best decision for
the leader can become problematic if he cannot predict the follower choice simply on the basis of
his own rational behavior. According to the risk proneness of the leader, two possible extremes
situations are:
(i) the optimistic case, when the leader assumes that the follower, in reaction to any decision of
the leader, chooses, amongst its best responses, one which minimizes the objective of the leader;
(ii) the pessimistic case, when the leader assumes that the follower can choose, amongst its best
responses, one which maximizes the objective of the leader.
So, according to its risk proneness, if Q(x) is the set of best responses to the leader decision of
the follower and f is the objective function of the leader, then the leader minimizes the function

inf
u∈Q(x)

f(x, u) in the optimistic case and the function sup
u∈Q(x)

f(x, u) in the pessimistic one. There-

fore, the leader modelizes the upper level as a MinInf (risk-prone) problem in the first case and as
a MinSup (risk-averse) problem in the second one.
When the lower level corresponds to an optimization problem, these two formulations configure,
respectively, a strong (optimistic) and a weak (pessimistic) Stackelberg problem (also called bilevel
optimization problem) (see, for example, [7], [10], [28]....)
When the lower level is defined more generally by the solutions set of a variational or a quasi-
variational problem, the optimistic case has been extensively investigated from various point of
view [40], [35], [21], [23], [10], [14].... More recently, in [26], the asymptotic behavior of the infimal
values of optimistic bilevel programs with variational inequalities constraints under perturba-
tions has been investigated.
On the contrary, in this paper, we consider a pessimistic two-stage model with quasi-variational
inequality constraints. More precisely, we assume that (X, τ) is a Hausdorff topological space,
H ⊆ X is a nonempty closed set, K ⊆ Rh is a nonempty convex and closed set, A is a function
from H ×K to Rh and S is a set-valued map from H ×K to K with nonempty values. Then, for
every x ∈ H, we consider the following parametric quasi-variational inequality

(QV I)(x) find u ∈ S(x, u) such that 〈A(x, u), u− w〉 ≤ 0 ∀ w ∈ S(x, u).

The solution map Q : x ∈ H → Q(x) associates to every x ∈ H the set Q(x) of solutions to
(QV I)(x).
It is worth noting that Q(x) may be not a singleton even under very restrictive conditions on the
function A ([4]).
Then, given the objective function of the leader f : H ×K → R∪ {−∞}, the MinSup (pessimistic
bilevel) problem with quasi-variational inequality constraints, (MS) for short, consists in finding
x̂ ∈ H such that

sup
u∈Q(x̂)

f(x̂, u) = min
x∈H

sup
u∈Q(x)

f(x, u)

and the corresponding infimal value, called the security value is

ω = inf
x∈H

sup
u∈Q(x)

f(x, u).
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Differently from what concerns optimistic two-stage models, there are quite a few papers devoted
to MinSup problems with quasi-variational problem constraints ([37], [38]). This is probably due to
the intrinsic theoretical difficulties of the problems presented in both levels [20], [14], [11]... Indeed,
referring to classical weak Stackelberg problems, it is known that they may fail to have a solution
also in presence of regular data [7], even if some restricted classes of functions ensuring existence
results have been determined in [34], [36] and [32]. Moreover, at the lower level, a quasi-variational
inequality has to be solved, that is a problem in which a fixed-point problem is combined with a
variational inequality over a set depending on the solution itself, and that amounts, therefore, to
an implicit variational problem [4], [22]... Finally, note that their ”bilevel” nature does not allow
to get general convergence results for solutions and security values under perturbations of the data
(see, for example, [32]). An attempt to overcome these difficulties consisted in defining appropriate
regularized problems admitting solutions whose security values approach the initial security value
under reasonable conditions. Investigations of regularizations for weak Stackelberg problems, para-
metric or not, have been presented in a sequential setting, [31] and [32], as well in a topological one
[20], together with approximation methods (like Tykhonov, least-norm regularization, Molodtsov
and interior penalty methods) [30], [29] and [28].
Aim of this paper is now to investigate the asymptotical behavior of the security values of the
pessimistic model with quasi-variational inequality constraints under perturbations on the data,
having in mind to obtain conditions of minimal character which guarantee the convergence of the
security values of suitable regularized perturbed problems to the security value of the unperturbed
problem. So, some useful tools of Variational and Set-valued Analysis ([3],[25],[39]...), necessary to
reach results of minimal character involving possibly discontinuous data, will be recalled in Section
2.
More precisely, let (An)n be a sequence of functions from H × K to Rh, (Sn)n be a sequence of
set-valued maps from H × K to K and (fn)n be a sequence of functions defined on H × K and
valued in R ∪ {−∞}. For each positive integer n, we denote by Qn the map that associates to
x ∈ H the solutions set of the problem

(QV I)n(x) find u ∈ K : u ∈ Sn(x, u) and 〈An(x, u), u− w〉 ≤ 0 ∀ w ∈ Sn(x, u).

For each n ∈ N, we denote by ωn the security value for the corresponding problem (MS)n

ωn = inf
x∈H

sup
u∈Qn(x)

fn(x, u),

We show in Section 3 that the sequence of the exact security values ωn may not converge to the exact
security value ω even under ”nice” assumptions on the data. So, we define approximate security
values for MinSup problems with quasi-variational inequality constraints (without perturbations)
by the security values of suitable regularized MinSup problems with quasi-variational inequality
constraints.
More precisely, we assume that ε = (ε1, ε2), ε1 > 0 and ε2 > 0 and we consider the following
approximate solutions map

Qε : x ∈ H → Qε(x) = {u ∈ K : d(u, S(x, u)) ≤ ε2 and 〈A(x, u), u− w〉 ≤ ε1 ∀w ∈ S(x, u)} .
(1)

Then, we formulate the following regularized MinSup problem

find x̂ ∈ H such that sup
u∈Qε(x̂)

f(x̂, u) = min
x∈H

sup
u∈Qε(x)

f(x, u),
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whose corresponding approximate security value is

ωε = inf
x∈H

sup
u∈Qε(x)

f(x, u),

and we investigate the convergence of ωε to the exact security value ω as ε is converging to 0.
Finally, in Section 4, we assume the presence of perturbations as defined above and we investigate
the asymptotic behavior of the approximate security values ωn

ε = inf
x∈H

sup
u∈Qn

ε (x)

fn(x, u). The

case where H and S are described by inequalities is analyzed and, in both sections 3 and 4, results
concerning MinSup problems with variational inequality constraints are enlightened. We emphasize
that such results can open a way for motivate the use of numerical approximations as discretizations
and penalizations since they allow to define a general scheme for approaching the security value ω
by the sequence ωn

ε of security values of regularized perturbed problems.

2 Preliminaries

The following notions ([3], [21]) will be used in the paper. Let (Kn)n be a sequence of nonempty
subsets of Rh.

The Painlevé-Kuratowski upper and lower limits of the sequence (Kn)n are defined respectively
by
• z ∈ lim sup

n
Kn if there exists a sequence (zk)k converging to z such that zk ∈ Knk

for a subse-

quence (Knk
)k of (Kn)n and for each k ∈ N

• z ∈ lim inf
n

Kn if there exists a sequence (zn)n converging to z such that zn ∈ Kn for n sufficiently

large.
We recall that both these sets are closed and may be empty.

A function h : H → R ∪ {−∞} is coercive on H if for every t ∈ R there exists a sequentially
compact set Ct ⊆ X such that

Levt h = {x ∈ H : h(x) ≤ t} ⊆ Ct.

A function g : H × K → R ∪ {−∞} is coercive with respect to u on K uniformly with respect
to x ∈ H (coercive in u on K for short) if for every t ∈ R there exists a compact set Yt ⊆ Rh such
that

(Levt g) (x) = {u ∈ K : g(x, u) ≤ t} ⊆ Yt for every x ∈ H.

A set-valued map F fromX toK is sequentially lower semicontinuous overX, lowersemicontinuous
for short, if for every x ∈ X and every sequence (xn)n converging to x in X

F (x) ⊆ lim inf
n

F (xn).

A set-valued map F from X to K is sequentially closed over X, closed for short, if for every x ∈ X
and every sequence (xn)n converging to x in X

lim sup
n

F (xn) ⊆ F (x).

A set-valued map F from X to K is sequentially subcontinuous over X, subcontinuous for short,
if for every x ∈ X and every sequence (xn)n converging to x in X, every sequence (un)n such that

3



un ∈ F (xn), for every n ∈ N, has a convergent subsequence;

A sequence (Fn)n of set-valued maps from X to K lower converges to F in X if for every x
and every sequence (xn)n converging to x in X

F (x) ⊆ lim inf
n

Fn(xn).

A sequence (Fn)n of set-valued maps from X to K upper converges to F in X if for every x ∈ X
and every sequence (xn)n converging to x in X

lim sup
n

Fn(xn) ⊆ F (x).

A sequence (Tn)n of functions from K to Rh:

− is G−−converging to T in K if for every u ∈ K there exists a sequence (u′n)n converging to
u in K such that lim

n
Tn(u′n) = T (u), that is

graphT ⊆ lim inf
n

graphTn.

− is equi-coercive on K if there exist a point vo ∈ K and, for every t ∈ R, a compact set Zt ⊆ Rh

such that
{u ∈ K : 〈Tn(u), u− vo〉 ≤ t} ⊆ Zt for all n ∈ N.

A sequence of functions (gn)n, gn : H ×K → R ∪ {−∞}:

− sequentially continuously converges to a function g in H × K, c−converges to g for short, if
for every (x, u) ∈ H × K and every sequence (xn, un)n converging to (x, u), in H × K, one has
lim
n
gn(xn, un) = g(x, u);

− is equi-coercive on H×K if for every t ∈ R there exists a sequentially compact set Wt ⊆ X×Rh

such that
Levt gn = {(x, u) ∈ H ×K : gn(x, u) ≤ t} ⊆ Wt for all n ∈ N.

For examples that illustrate and compare the above concepts see [21].
The next lemma is a basic result for the next sections and can be proved as in [26].

Lemma 2.1 Let (Fn)n be a sequence of set-valued maps from H ×K to K.
If (Fn)n lower converges to F in H × K, then, for every x ∈ H, every u ∈ K, every sequence
(xn, un)n converging towards (x, u), in H ×K, one has

lim sup
n

d(un, Fn(xn, un)) ≤ d(u, F (x, u)).

If (Fn)n upper converges to F in H ×K and the following holds:
� given a convergent sequence (xn, un)n, (xn, un) ∈ H × K, every sequence (wn)n, such that
wn ∈ Fn(xn, un) for all n ∈ N, has a convergent subsequence,
then, for every x ∈ H, every u ∈ K, every sequence (xn, un)n converging towards (x, u), in H×K,
one has

d(u, F (x, u)) ≤ lim inf
n

d(un, Fn(xn, un)).
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3 Approximating security values

Assuming that An, Sn, fn are perturbations of A, S and f respectively, for each positive integer
n, as in the introduction, we denote by Qn the map that associates to x ∈ H the solutions set of
the problem

(QV I)n(x) find u ∈ K : u ∈ Sn(x, u) and 〈An(x, u), u− w〉 ≤ 0 ∀ w ∈ Sn(x, u).

Throughout the paper, the sets of solutions to the lower level problems are assumed to be nonempty.
Conditions ensuring the existence of solutions to quasi-variational inequalities, or to variational
inequalities, in finite dimensional spaces can be found, for example, in [15] and in [13].
For each n ∈ N, we denote by ωn the security value for the corresponding perturbed problem
(MS)n

ωn = inf
x∈H

sup
u∈Qn(x)

fn(x, u),

First, we show that the sequence of the perturbed exact security values ωn may not converge to
the exact value ω even under “nice” assumptions on the data.

Example 3.1 Assume that a ∈ R, X = H = [0, a], h = 1, K = [0,+∞[, Sn(x, u) = S(x, u) =
K, An(x, u) = 1/n and fn(x, u) = u + x + 1/n. The sequences (An)n and (fn)n uniformly
converge, and therefore also continuously converge, to the functions A and f defined, respectively,
by: A(x, u) = 0 and f(x, u) = u + x. One easily checks that Qn(x) = {0}, Q(x) = [0,+∞[, so
that ωn = inf

x∈[0,a]
(x+ 1/n) = 1/n, ω = +∞ and the sequence (ωn)n does not converge to ω.

Therefore, we assume that ε = (ε1, ε2), ε1 > 0 and ε2 > 0 and in line with previous papers (see,
for example, [29], [19], [37], [16], [25], [26]...) we consider the following approximate solutions map

Qε : x ∈ H → Qε(x) = {u ∈ K : d(u, S(x, u)) ≤ ε2 and 〈A(x, u), u− w〉 ≤ ε1 ∀w ∈ S(x, u)} (2)

Then, we formulate the following regularized MinSup problem

find x̂ ∈ H such that sup
u∈Qε(x̂)

f(x̂, u) = min
x∈H

sup
u∈Qε(x)

f(x, u)

whose corresponding approximate value is

ωε = inf
x∈H

sup
u∈Qε(x)

f(x, u).

We show that ωε can be used to determine the security value ω under suitable conditions.

Proposition 3.1 Assume that the following hold:
L1) the set-valued map S is subcontinuous, lower semicontinuous and closed on H ×K;
L2) the function A is continuous on H ×K;
U1) the function −f is coercive in u on K;
U2) for every x ∈ H there exists a sequence (xn)n converging to x in H such that for every u ∈ K
and every sequence (un)n converging to u in K one has

lim sup
n

f(xn, un) ≤ f(x, u).

Then,
ω = lim

ε→0
ωε.
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Proof
Since lim

ε→0
ωε = inf

ε>0
ωε and ω ≤ ωε, it is sufficient to prove that

inf
ε>0

ωε ≤ ω.

Assume that this inequality is not true and let a be a real number such that

ω < a < inf
ε>0

ωε.

There exists a point x̄ ∈ H such that

sup
u∈Q(x̄)

f(x̄, u) < a. (3)

So, f(x̄, u) < a for every u ∈ Q(x̄). Let (x̄n)n be a sequence converging to x̄ and satisfying condition
U2), and let (εn)n = (ε1,n, ε2,n)n be a sequence of pairs of positive real numbers decreasing to 0
such that a + ε1,n < ωεn ≤ sup

u∈Qεn (x̄n)

f(x̄n, u) for every n ∈ N. There exists a sequence (ūn)n

such that
ūn ∈ Qεn(x̄n) and a + ε1,n < f(x̄n, ūn) (4)

for every n ∈ N. Assumption U1) implies that a subsequence (ūn′)n′ of (ūn)n converges to a point
ū ∈ K that must belong to S(x̄, ū) since d(x̄, S(x̄, ū)) ≤ lim inf

n′
d(x̄n′ , S(x̄n′ , ūn′)) ≤ lim

n′
ε2,n′ = 0

by Lemma 2.1.
Now, let w ∈ S(x̄, ū) and let (wn′)n′ be a sequence converging to w ∈ K such that wn′ ∈ S(x̄n′ , ūn′)
for n′ sufficiently large. Since the function A is continuous one has

〈A(x̄, ū), ū− w〉 = lim
n′
〈A(x̄n′ , ūn′), ūn′ − wn′〉 ≤ lim

n′
ε1,n′ = 0.

Therefore, ū ∈ Q(x̄) and f(x̄, ū) < a by (3). However, conditions U2) and (3) imply that a ≤
lim sup

n
f(x̄n, ūn) ≤ f(x̄, ū) and one has a contradiction. 2

Remark 3.1 Assumption U2) is satisfied if the function f(x, ·) is upper semicontinuous (usc for
short) on K for every x ∈ H, but the following example shows that these two conditions are not
equivalent in general.

Example 3.2 Assume that X = H = [0,+∞[, h = 1, K = [0,+∞[, f(x, u) = u−x when x > 0,
f(0, u) = 1 if u ∈ [0, 1] and f(0, u) = 2 if u > 1. The function f(0, ·) is not usc at u = 1 since
f(0, 1) = 1 < lim sup

n
f(0, un) = 2 for every sequence (un)n, un > 1, converging to 1. However,

condition U2) is satisfied for x = 0 because there exists the sequence (xn)n = (1/n)n such that for
every u ∈ K and every sequence (un)n converging to u one has: lim

n
f(1/n, un) ≤ 1 ≤ f(0, u). In

fact, lim
n
fn(1/n, un) = lim

n
(un)−1/n is equal to 1 when u is positive and is equal to 0 when u = 0.

Having in mind to approach the security value ω also in the presence of perturbations of the data,
it is useful to introduce the strict approximate solutions map ([29], [19], [37])

Sε : x ∈ H → Sε(x) = {u ∈ K : d(u, S(x, u)) < ε2 and 〈A(x, u), u− w〉 < ε1 ∀w ∈ S(x, u)} (5)
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and the corresponding MinSup problem

find x̂ ∈ H such that sup
u∈Sε(x̂)

f(x̂, u) = min
x∈H

sup
u∈Sε(x)

f(x, u)

whose security value is
σε = inf

x∈H
sup

u∈Sε(x)

f(x, u).

Since, for every x ∈ H, Q(x) ⊆ Sε(x) ⊆ Qε(x) one has

ω ≤ σε ≤ ωε (6)

and these inequalities imply that assumptions of Proposition 3.1 also guarantee that

lim
ε→0

σε = ω.

The following corollary is a simplified version of Proposition 3.1, easier to use in the applications.

Corollary 3.1 Assume that the sets H and K are compact. If conditions L1), L2) and
U ′2) for every x ∈ H, the function f(x, ·) is usc on K,
hold, then

ω = lim
ε→0

ωε = lim
ε→0

σε.

Variational inequality constraints case

If the map S does not depend on u, i.e. variational inequality constraints are considered at the
lower level, the above approximation scheme leads to consider the approximate values

νε = inf
x∈H

sup
u∈Vε(x)

f(x, u) τε = inf
x∈H

sup
u∈Sε(x)

f(x, u)

where

Vε : x ∈ H → Vε(x) = {u ∈ K : d(u, S(x)) ≤ ε2 and 〈A(x, u), u− w〉 ≤ ε1 ∀w ∈ S(x)}

Sε : x ∈ H → Sε(x) = {u ∈ K : d(u, S(x)) < ε2 and 〈A(x, u), u− w〉 < ε1 ∀w ∈ S(x)}

and one has the following result:

Proposition 3.2 Assume that the following hold:
L1) the set-valued map S is subcontinuous, lower semicontinuous and closed on H;
L2) the function A is continuous on H ×K;
U2) for every x ∈ H there exists a sequence (xn)n converging to x in H such that for every u ∈ K
and every sequence (un)n converging to u in K one has

lim sup
n

f(xn, un) ≤ f(x, u).

Then,
ν = lim

ε→0
νε = lim

ε→0
τε.
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Proof
As in Proposition 3.1, assume that there exists a ∈ R such that ν < a < inf

ε>0
νε. Then, there exists

x̄ ∈ H such that f(x̄, u) < a for every u ∈ V(x̄), and a sequence (x̄n)n converging to x̄ satisfying
condition U2). If (εn)n = (ε1,n, ε2,n)n is a sequence of pairs of positive real numbers decreasing to
0 such that a + ε1,n < νεn for every n ∈ N, there exists a sequence (ūn)n such that

ūn ∈ Vεn(x̄n) and a + ε1,n < f(x̄n, ūn) (7)

for every n ∈ N. The map S being subcontinuous, the set S(xn) is compact for every n. So, from
d(ūn, S(x̄n)) ≤ ε2,n one infers that there exists zn ∈ S(x̄n) such that

||ūn − zn|| = min
z∈S(x̄n)

||un − z|| ≤ ε2,n.

A subsequence of (zn)n must converge to a point ū ∈ S(x̄) since S is closed and subcontinuous.
Therefore, a subsequence of (ūn)n converges to the same point ū that can be proved to solve the
variational inequality (V I)(x̄), so that ū ∈ V(x̄) and f(x̄, ū) < a. Then, conditions U2) and (7)
lead to a contradiction since a ≤ lim sup

n
f(x̄n, ūn) ≤ f(x̄, ū) < a. 2

Note that, in order to approximate the security value ν, assumption U1) can be eliminated, so a
“compactness” condition (that is: S is subcontinuous) is present only on the lower level problem.

Corollary 3.2 Assume that the set K is compact. If conditions L1), L2), U ′2) hold, then

ν = lim
ε→0

νε = lim
ε→0

τε.

4 Asymptotically approximating security values

Assuming that An, Sn, fn are perturbations of A, S and f respectively, we define the following
approximate solutions maps

Qn
ε : x ∈ H → Qn

ε (x) = {u ∈ K : d(u, Sn(x, u)) ≤ ε2 and 〈An(x, u), u− w〉 ≤ ε1 ∀ w ∈ Sn(x, u)}

Sn
ε : x ∈ H → Sn

ε (x) = {u ∈ K : d(un, Sn(x, u)) < ε2 and 〈An(x, u), u− w〉 < ε1 ∀ w ∈ Sn(x, u)}
and we consider the regularized perturbed MinSup problems with constraints described by the
maps Qn

ε and Sn
ε , whose security values are

ωn
ε = inf

x∈H
sup

u∈Qn
ε (x)

fn(x, u) σn
ε = inf

x∈H
sup

u∈Sn
ε (x)

fn(x, u)

In this section, as in the unperturbed case considered in Section 3, we wish to approximate the
security value ω with the approximate security values ωn

ε and/or σn
ε and we start by showing that

the data of Example 3.1 guarantee that the sequences (ωn
ε )n and (σn

ε )n approach asymptotically
the security value ω even if the exact security values sequence (ωn)n does not converge to ω.

Example 4.1 Assume that a ∈ R, X = H = [0, a], h = 1, K = [0,+∞[, Sn(x, u) = S(x, u) = K,
An(x, u) = 1/n, fn(x, u) = u + x + 1/n, A(x, u) = 0 and f(x, u) = u + x. One easily checks that
Qn

ε (x) = [0, nε], Sn
ε (x) = [0, nε[, so that ωn

ε = σn
ε = inf

x∈[0,a]
(x+ 1/n+ nε) = 1/n+ nε. Then, we

have:
lim
ε→0

lim
n
ωn
ε = lim

ε→0
lim
n
σn
ε = ω = +∞.
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Remark 4.1 In Example 4.1 one also has:

lim
n

lim
ε→0

ωn
ε = 0

so, it is clear that to define a satisfactory approximation scheme one has to study the behavior of
(ωn

ε )n and (σn
ε )n first for n going to +∞ and second for ε going to 0 and not the contrary.

Moreover, in line with classical methods in Variational Analysis ([1], [9], [39]), we approximate ω
by the sequences (ωn

ε )n and (σn
ε )n separately from above and from below because this allows to

individuate assumptions of minimal character on the upper level data (see [18],[17]).

We start by approximating ω from above.

Proposition 4.1 Assume that the following hold:
L3) the sequence (Sn)n upper and lower converges to S on H ×K;
L4) for every (x, u) ∈ H × K and every sequence (xn, un)n converging to (x, u) in H × K, any
sequence (wn)n, such that wn ∈ Sn(xn, un), has a convergent subsequence;
L5) for every x ∈ H and every sequence (xn)n converging to x in H, the sequence (An(xn, ·))n
G−−converges to A(x, ·) in K;
U3) the sequence (fn)n is equicoercive on H ×K;
U4) for every (x, u) ∈ H ×K and every sequence (xn, un)n converging to (x, u) in H ×K one has

f(x, u) ≤ lim inf
n

fn(xn, un).

Then, we have
σε ≤ lim inf

n
σn
ε ∀ ε > 0 (8)

and consequently
ω ≤ lim inf

ε→0
lim inf

n
σn
ε .

Proof
Assume that (8) fails to be true. There exist ε > 0 and a real number a such that

lim inf
n

σn
ε < a < σε.

Then, there exist an increasing sequence of positive integers (nk)k and a sequence (xk)k, xk ∈ H,
such that

sup
u∈Snk

ε (xk)

fnk
(xk, u) < a < σε ∀ k ∈ N. (9)

By assumption U3) we can assume that a subsequence of (xk)k, still denoted by (xk)k, converges
to a point x̄ ∈ H.
Consider ū ∈ Sε(x̄) and a sequence (uk)k, whose existence is guaranteed by L5), converging to ū
in K and such that

lim
k
Ank

(xk, uk) = A(x̄, ū). (10)

Since d(ū, S(x̄, ū)) < ε2, Lemma 2.1 ensures that there exists ko ∈ N such that d(uk, Sk(xk, uk)) <
ε2 for k ≥ ko and we claim that 〈Ank

(xk, uk), uk−w〉 < ε1 for every w ∈ Sk(xk, uk) and for k suffi-
ciently large. Indeed, if it is not true, there exists an infinite set of positive integers N′ and sequence
(wk′)k′ such that wk′ ∈ Sk′(xk′ , uk′) and 〈Ank′ (xk′ , uk′), uk′ − wk′〉 ≥ ε1 for every k′ ∈ N′. By
assumptions L3) and L4), a subsequence of (wk′)k′ must converge towards a point w ∈ S(x̄, ū) and,
by (10), 〈A(x̄, ū), ū−w〉 ≥ ε1 which is in contradiction with ū ∈ Sε(x̄). Therefore, uk ∈ Snk

ε (xk) for

9



k sufficiently large, so, conditions U4) and (9) imply that f(x̄, ū) ≤ lim inf
k

fnk
(xk, uk) ≤ a < σε.

As ū is an arbitrary point in Sε(x̄), we also have

sup
u∈Sε(x̄)

f(x̄, u) ≤ a < σε

and we get a contradiction. 2

The next result gives an approximation of ω from below.

Proposition 4.2 Assume that the following hold:
L3) the sequence (Sn)n upper and lower converges to S on H ×K;
L4) for every (x, u) ∈ H × K and every sequence (xn, un)n converging to (x, u) in H × K, any
sequence (wn)n, such that wn ∈ Sn(xn, un), has a convergent subsequence;
L6) the sequence (An)n c−converges to A on H ×K;
L7) the sequence (An)n is equicoercive on H ×K;
U5) for every x ∈ H there exists a sequence (xn)n converging to x such that for every u ∈ K and
every sequence (un)n converging to u in K one has

lim sup
n

fn(xn, un) ≤ f(x, u).

Then,
lim sup

n
ωn
ε ≤ ωε ∀ ε > 0 (11)

and consequently
lim sup

ε→0
lim sup

n
ωn
ε ≤ ω.

Proof
Assume that (11) fails to be true. Let a be a real number such that ωε < a < lim sup

n
ωn
ε , let

x̄ ∈ H be such that sup
u∈Qε(x̄)

f(x̄, u) < a and let (xn)n be a sequence converging to x̄ in H satisfying

assumption U5).
Being a < lim sup

n
ωn
ε ≤ lim sup

n
sup

u∈Qn
ε (xn)

fn(xn, u), there exist an increasing sequence (nk)k of

positive integers and a sequence (unk
)k such that unk

∈ Qnk
ε (xnk

) and fnk
(xnk

, unk
) > a for every

k.
Then, d (unk

, Snk
(xnk

, unk
)) ≤ ε2 and 〈Ank

(xnk
, unk

), unk
− w〉 ≤ ε1 for every w ∈ Snk

(xnk
, unk

)
and every k. The sequence (An)n is equicoercive on H × K, so, a subsequence of (unk

)k, still
denoted by (unk

)k, must converge to a point uo ∈ K. Assumptions L3) and L4) guarantee that
Lemma 2.1 applies and one has d(uo, S(x̄, uo)) ≤ lim inf

n
d (unk

, Snk
(xnk

, unk
)) ≤ ε2.

Given a point w ∈ S(x̄, uo), by the lower convergence of (Sn)n to S, there exists a sequence (wk)k
converging to w such that wk ∈ Snk

(xnk
, unk

) for k sufficiently large. Since

〈Ank
(xnk

, unk
), unk

− wk〉 ≤ ε1

and (An)n c−converges to A, one has 〈A(x̄, uo), uo − w〉 ≤ ε1, which implies that uo ∈ Qε(x̄).
Therefore, by U5) we infer that a ≤ lim sup

k
fnk

(xnk
, unk

) ≤ f(x̄, uo) < a which gives a contradic-

tion. 2
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Remark 4.2 Condition U5), that amounts to a sort of convergence of the sequence (fn)n towards
f , has been introduced by Attouch and Wets in [2] to get the upper limit of the sets of MinSup
points for the functions (fn)n contained in the set of the Minsup points for the function f . It has
been further employed by Loridan and Morgan ([32], [33]) in order to get convergence of solutions
to weak Stackelberg problems in a sequential setting and by the authors for stability of constrained
MinSup points [17] and of approximate solutions to weak Stackelberg problems [20]. As observed
in [17], this convergence cannot be set in the framework of epiconvergence ([9], [1]) differently from
the convergence considered in condition U4) of Proposition 4.1. Also note that U5) amounts to U2)
when fn = f for every n ∈ N.

Remark 4.3 If we strengthen the assumptions on the set-valued maps Sn we can weaken the
assumptions on the functions An. Namely, the following result, alternative to Proposition 4.2,
holds.

Proposition 4.3 Assume that the following hold:
L0) the set-valued map Sn is convex-valued on H ×K for every n;
L3) the sequence (Sn)n upper and lower converges to S on H ×K;
L4) for every x ∈ H and every sequence (xn, un)n converging to (x, u) in H × K, any sequence
(wn)n, such that wn ∈ Sn(xn, un), has a convergent subsequence;
L6) the sequence (An)n c-converges to A on H ×K;
U5) for every x ∈ H there exists a sequence (xn)n converging to x such that for every u ∈ K and
every sequence (un)n converging to u in K one has

lim sup
n

fn(xn, un) ≤ f(x, u).

Then,

lim sup
n

ωn
ε ≤ ωε ∀ ε > 0 (12)

and consequently
lim sup

ε→0
lim sup

n
ωn
ε ≤ ω.

Proof
Assume that (12) fails to be true. Let a be a real number such that ωε < a < lim sup

n
ωn
ε ,

let x̄ ∈ H be such that sup
u∈Qε(x̄)

f(x̄, u) < a and let (xn)n be a sequence converging to x̄ in H

satisfying assumption U5). Being a < lim sup
n

ωn
ε ≤ lim sup

n
sup

u∈Qn
ε (xn)

fn(xn, u), there exist an in-

creasing sequence (nk)k of positive integers and a sequence (unk
)k such that unk

∈ Qnk
ε (xnk

) and
fnk

(xnk
, unk

) > a for every k. Then, d(unk
, Snk

(xnk
, unk

)) ≤ ε2 and 〈Ank
(xnk

, unk
), unk

−w〉 ≤ ε1

for every w ∈ Snk
(xnk

, unk
) and every k. There exists a sequence (zk)k such that zk ∈ Snk

(xnk
, unk

)
and ||zk−unk

|| ≤ ε2 for every k, so that, by condition L4), a subsequence of (unk
)k, still denoted by

(unk
)k, must converge to a point uo ∈ K and, by Lemma 2.1, d(uo, S(x̄, uo)) ≤ ε2. Given a point

w ∈ S(x̄, uo), by the lower convergence of (Sn)n to S, there exists a sequence (wk)k converging to
w such that wk ∈ Snk

(xnk
, unk

) for k sufficiently large. Since

〈Ank
(xnk

, unk
), unk

− wk〉 ≤ ε1
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and (An)n c−converges to A, 〈A(x̄, uo), uo − w〉 ≤ ε1 and we have uo ∈ Qε(x̄). Therefore, by U5)
we infer that a ≤ lim sup

k
fnk

(xnk
, unk

) ≤ f(x̄, uo) < a which gives a contradiction. 2

Now, from propositions 3.1, 4.1 and 4.2 (resp. propositions 3.1, 4.1 and 4.3) we infer that the exact
value ω can be globally approximated by both sequences (ωn

ε )n and (σn
ε )n.

Proposition 4.4 Assume that assumptions L1)−L4), L6)−L7), U1)−U5) (resp. L0)−L4), L6),
U1)− U5)) hold.
Then

ω = lim
ε→0

lim
n
ωn
ε = lim

ε→0
lim
n
σn
ε . (13)

Proof
Inequalities in (6) imply that

σn
ε ≤ ωn

ε

for every n ∈ N. Therefore, by propositions 4.1 and 4.2 (resp. 4.1 and 4.3) one gets

σε ≤ lim inf
n

σn
ε ≤ lim sup

n
σn
ε ≤ lim sup

n
ωn
ε ≤ ωε

as well as
σε ≤ lim inf

n
σn
ε ≤ lim inf

n
ωn
ε ≤ lim sup

n
ωn
ε ≤ ωε.

So, applying Proposition 3.1 one infers that (13) is true. 2

Corollary 4.1 Assume that the sets H and K are compact. If conditions L1) − L3), L6), U ′2),
and the following hold
U6) the sequence (fn)n c-converges to f ,
then

ω = lim
ε→0

lim
n
ωn
ε = lim

ε→0
lim
n
σn
ε .

The following example shows a set of data that satisfy all assumptions of Proposition 4.4 and that
does not satisfy all assumptions of Corollary 4.1.

Example 4.2 Let X = H = [0, 1], h = 1, K = [0, 1], Sn(x, u) = S(x, u) = [0, u], An(x, u) = 1/n,
fn(x, u) = (x − 1/n)2 − (u − x)2 − 1 for x ∈ [0, 2/n] and fn(x, u) = −(u − x)2 for x ∈ ]2/n, 1],
f(0, u) = −(u2 + 1) and f(x, u) = −(u− x)2 for x ∈ ]0, 1]. One easily checks that all assumptions
of Proposition 4.4 are satisfied. However the sequence (fn)n does not continuously converge to f
since, for every u, the sequence (2/

√
n, u)n converges to (0, u) but the sequence (fn(2/

√
n, u))n =

(−(u− 2/
√
n)2)n does not converge to f(0, u) = −u2 − 1.

Finally, we assume that the constraint set H and the constraint maps S and Sn are described by
inequalities

H = {x ∈ X : hi(x) ≤ 0, i = 1, ..,m}

S(x, u) = {v ∈ K : sj(x, u, v) ≤ 0, j = 1, .., p} =

p⋂
j=1

{v ∈ K : sj(x, u, v) ≤ 0}

12



Sn(x, u) = {v ∈ K : sj,n(x, u, v) ≤ 0, j = 1, .., p} =

p⋂
j=1

{v ∈ K : sj,n(x, u, v) ≤ 0} ,

where hi, sj and sj,n are real-valued functions defined, respectively, in X and in H ×K ×K and
we are interested in determining sufficient conditions on the data for assumptions L1), L3) and
L4). It is obvious that the set H is closed whenever the functions hi are lower semicontinuous
and that H is compact if the functions hi are coercive. However, getting continuity properties
for the map S, as well convergence results for the sequence (Sn)n, needs more specific arguments.
This is essentially due to the lower semicontinuity and lower convergence properties, that are not
preserved by intersections ([18], [17]). First results on continuity properties of univariate set-valued
maps described by inequalities can be found in [6]. Extensions to wider classes of functions, as well
convergence properties, are in ([18], [17]) and in [26]. Convergence results for sequences of bivari-
ate set-valued maps can be proven by easy adaptations of Lemma 2.1 in [26] and Lemma 2.2 in [26].

Variational inequality constraints case

Here, we consider the approximate solutions maps

Vn
ε : x ∈ H → Vn

ε (x) = {u ∈ K : d(u, Sn(x)) ≤ ε2 and 〈An(x, u), u− w〉 ≤ ε1 ∀ w ∈ Sn(x)}

Snε : x ∈ H → Snε (x) = {u ∈ K : d(un, Sn(x)) < ε2 and 〈An(x, u), u− w〉 < ε1 ∀ w ∈ Sn(x)}

and the approximate security values

νnε = inf
x∈H

sup
u∈Vn

ε (x)

fn(x, u) τnε = inf
x∈H

sup
u∈Sn

ε (x)

fn(x, u).

The next results can be deduced from Propositions 3.2, 4.1 and 4.3 similarly to Proposition 4.4
and Corollary 4.1.

Proposition 4.5 Assume that assumptions L0)− L4), L6), U2)− U5) hold.
Then

ν = lim
ε→0

lim
n
νnε = lim

ε→0
lim
n
τnε . (14)

Corollary 4.2 Assume that the set H is compact. If conditions L0)−L3), L6), U ′2), U6) hold, then

ν = lim
ε→0

lim
n
νnε = lim

ε→0
lim
n
τnε .

5 Concluding remarks

We have presented a way to get lower and upper approximations of the security value of a MinSup
problem with (quasi)variational inequality constraints through the security values of perturbed
MinSup problems. Namely, in order to globally approach the security values ω and ν (see (13)
and (14)), one has to perturb the problem, to regularize such perturbations and to pass to the
limit: first with respect to the perturbation parameter, then with respect to the approximation
parameter. We emphasize that Example 4.1 shows that these two final steps cannot be exchanged,
nor a unique limit can be considered taking a sequence (εn)n converging to 0, since for εn = 1/n
lim
n
ωn
εn = 1 while ω = +∞. Although assumptions of propositions 4.4 and 4.5 are rather strong,
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propositions 4.1, 4.2 and 4.3 give approximations from below and from above of the security values
ω and ν that can be used whenever one of the assumptions of propositions 4.4 and 4.5 is not
satisfied.
The extension to infinite dimensional spaces would require a suitable ”equilibrium” between com-
pactness and continuity properties, [20, p. 6], and will be further investigated in a forthcoming
paper.
Finally, in our approximation scheme we do not need that the set-valued maps S and Sn are convex-
valued except in Proposition 4.3 where the convexity of Sn(x, u) allows to weaken the assumptions
on the sequence (An)n.
In our opinion, this theoretical approach can get an insight into the inherent difficulties of the
considered problem and can explain the lack of non-heuristic numerical methods in the continuous
case.
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