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In this paper, we look at the (Kajii and Ui) mixed equilibrium notion, which has been recognized by previous 
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1 Introduction

Many results have been obtained in the literature showing that limits of equilibria of perturbed
games are equilibria of the unperturbed game as perturbed games converge to the unperturbed
one in the appropriate sense (see for instance [8] for the standard problem, [7], [12],[13],[18],[14],
[15],[20],[21], [24] for recent results under relaxed or different assumptions). This limit property
has interesting implications because it provides a useful theoretical tool for the comparative
statics analysis on Nash equilibria and underlies the classical theory on Nash equilibrium re-
finements based on stability with respect to trembles (see [23] for a survey and a complete list
of references).

Aim of this paper is to study the limit property for an equilibrium notion, called mixed
equilibrium, defined by Kajii and Ui in [10] and therein recognized as one of the most natural
solution concepts for a class of incomplete information games under ambiguity. In their work,
Kajii and Ui partially follow the Harsanyi’s approach as they assume that the source of uncer-
tainty can be expressed by an underlying state space (i.e. payoff relevant states); but, at the
same time, they deviate from the classical model of uncertainty, in which agents are endowed
with a single common prior (probability distribution) over the state space, since they allow
for multiple priors that are not necessarily common across agents1. In particular, the mixed
equilibrium concept is an interim equilibrium concept in which each player chooses the best
action for any realization of a private signal in equilibrium. As emphasized in [10], an ex ante
equilibrium notion could also be defined in their framework in a natural way, but it turns out
that a player with multiple priors tends to exhibit dynamic inconsistent behavior, meaning that
a strategy that is optimal ex ante may specify actions that will be deemed inferior once private
information is received2. However, the interim approach is more interesting in the applications
while the ex ante one has only theoretical implications.

In this paper we look at the problem of stability of mixed equilibria with respect to pertur-
bations on the sets of priors. The question is whether the limit of a sequence of mixed equilibria,
corresponding to a family of sequences of perturbed sets of priors3, is a mixed equilibrium of
the game in which each set of priors is obtained as the limit of the corresponding sequence of
sets of priors. A particular case is the one in which the sequences of sets of priors all converge
to the same (common) single prior. The question in this case is whether the limit of the se-
quence of mixed equilibria is a Bayesian Nash equilibrium of the incomplete information game
corresponding to the limit common prior.

The problem we address in this paper is also motivated by an interesting counterexample
presented in [10] in which it is shown that limits of mixed equilibria of perturbed games are not
necessarily equilibria in the unperturbed game, even when the perturbed sets of priors converge
in the sense of Painlevé-Kuratowski to the sets of priors of the unperturbed game. In this work,
we show that the limit property for mixed equilibria holds depending on how players update
probabilities (evaluate posteriors) after the observation of the signal. More precisely, our limit
theorem states that the (Painlevé-Kuratowski) convergence of posteriors ensures that the limit

1That is, each player is endowed with a set of priors (probability distributions) over the state space; these
sets might different.

2In the Harsanyi’s framework, the ex ante maximization of utility coincides with the interim notion because
the expected utility model with Bayesian updating is dynamically consistent.

3That is, a sequence for each player.
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property holds; whereas, a final counterexample4 shows that the convergence of priors is not
enough for the limit property since it does not always implies convergence of posteriors when
we consider updating rules (for multiple priors) based on the classical Bayesian approach.

Related literature on ambiguous games

The recent literature on ambiguous games has investigated possible generalizations of the Nash
equilibrium concept in presence of ambiguous beliefs, that is, beliefs which cannot be expressed
as a single probability distribution over contingencies (see for instance [5], [16], [11], [6],[17], [10],
[2] and [4] and references therein). In some of these papers, ambiguous beliefs concern the set of
payoff relevant states (this is the classical ambiguity problem in the single agent case), in others,
ambiguity arises specifically from the strategic interaction since it involves players’ beliefs about
their opponents’ behavior. In [4], we propose a model in which ambiguity is summarized by
beliefs correspondences which represent the exogenous ability of each player to put restrictions
on beliefs over outcomes consistently with the strategy profile and introduce the corresponding
equilibrium notion (called equilibrium under ambiguous beliefs correspondences). In particular,
that model embodies the class of incomplete information games without private information
and with multiple priors on the set of payoff relevant states, but it also includes some models
in which ambiguity concerns beliefs over opponents’ strategy choices.

The question whether the limit property extends to the equilibrium concepts in ambiguous
games has not been completely clarified yet in the literature. On the one hand, the nature of
the definition of equilibrium makes it reasonable to expect that the extension to ambiguous
games holds. On the other hand, [10] shows that the extension fails in simple examples. [3]
shows that the limit property holds for equilibria under ambiguous beliefs correspondences;
key for this result result is the sequential convergence assumption imposed on the sequence of
beliefs correspondences. The sensitivity of equilibrium to ambiguity is also discussed by [22]
in a different context. In fact, an equilibrium notion for ambiguous games which relies on the
Beweley unanimity rule is therein defined. This concept is then used to construct approximations
of standard Bayesian equilibria.

2 The model

We consider a finite set of players I = {1, . . . n}. For every player i, Ψi = {ψ1
i , . . . , ψ

k(i)
i } is the

(finite) pure action set of player i, Ψ =
∏

i∈I Ψi and Ψ−i =
∏

j 6=i Ψj. Denote with Xi the set of

mixed actions of player i, that is, each action xi ∈ Xi is a vector xi = (xi(ψi))ψi∈Ψi
∈ Rk(i)

+ such
that

∑
ψi∈Ψi

xi(ψi) = 1. Denote also with X =
∏n

j=1 Xj and with X−i =
∏

j 6=i Xj.
Let Θ be a finite set of payoff relevant states and denote with ∆(Θ) the set all the probability

distribution over Θ. Then, player i has a payoff function fi : Ψ × Θ → R and a set of priors
Pi ⊆ ∆(Θ) over Θ.

We follow the Kajii and Ui’s setup in [10]. The incompleteness of information is summarized
by a random signal τ = (τi)i∈I . When states θ ∈ Θ occurs, player i privately observes a signal
τi(θ) and then chooses a pure strategy ψi ∈ Ψi. Denote with Ti the range of τi, i.e. τi : Θ → Ti for
every player i. A strategy of player i is a function σi : Ti → Xi; therefore, for every ti ∈ Ti, σi(ti)

4In this paper, we revise the Kajii and Ui counterexample emphasizing the role played by the assumptions
of our limit theorem.
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is a vector in Xi where each component σi(ψi|ti) denotes the probability of player i choosing
action ψi when he observes ti. The set of all the strategies σi of player i is denoted by Si;
moreover, S−i =

∏
j 6=i Sj and S =

∏n
i=1 Si. Finally denote with σ(ψ|τ(θ)) =

∏n
i=1 σi(ψi|τi(θ)))

and σ−i(ψ−i|τ−i(θ)) =
∏

j 6=i σj(ψj|τj(θ)).
Given P ∈ Pi and ti ∈ Ti, denote with P (·|ti) ∈ ∆(Θ) the conditional probabilities over Θ,

that is

P (E|ti) =
P (τ−1

i (ti) ∩ E)

P (τ−1
i (ti))

∀E ⊆ Θ.

Let
Pi(ti) = {P (·|ti) ∈ ∆(Θ) |P ∈ Pi}

be the set of conditional probability distributions once ti has been observed5. An updating rule
Φi : Ti → 2∆(Θ) gives, for every ti ∈ Ti, a subset of conditional probabilities Φi(ti) ⊆ Pi(ti). If
Φi(ti) = Pi(ti) for every ti ∈ Ti then Φi is called Full Bayesian Updating Rule.

After ti is observed, player i uses posteriors in Φi(ti) to evaluate his actions. The interim
payoff to a randomized action xi ∈ Xi, given σ−i ∈ S−i and Qi ∈ Φi(ti) is

Ui(xi, σ−i|Qi) =
∑

θ∈Θ

∑

ψi∈Ψi

∑

ψ−i∈Ψ−i

xi(ψi)σ−i(ψ−i|τ−i(θ))Qi(θ)fi(ψi, ψ−i|θ). (1)

In line with the work of [17], ambiguity is solved by considering two different kind of (ex-
treme) attitudes towards ambiguity: pessimism and optimism. In a multiple priors setting, the
pessimistic attitude towards ambiguity is modelled by preferences which evaluate an ambiguous
belief by the worst expected utility possible given the set of probability distributions ([9]). Sim-
ilarly, an ambiguity-loving or optimistic agent evaluates beliefs by the most optimistic expected
utility possible with the given set of probability distributions.

More precisely, a pessimistic player i has the (interim) pessimistic payoff defined by

V P
i (xi, σ−i|ti) = max

Qi∈Φi(ti)
Ui(xi, σ−i|Qi),

while, an optimistic player i has the (interim) optimistic payoff defined by

V O
i (xi, σ−i|ti) = min

Qi∈Φi(ti)
Ui(xi, σ−i|Qi), .

Assuming that players are partitioned in optimistic and pessimistic ones, that is, I = O ∪ P
with O ∩ P = ∅; then

G O,P = {I; Θ; (Pi)i∈I ; (Φi)i∈I ; (Si)i∈I ; (V
O
i )i∈O, (V P

i )i∈P}.

is the corresponding game6. Then

5Degenerate probabilities are implicitly ruled out from Pi(ti) in this formulation. That is, if P ∈ Pi is such
that P (τ−1

i (ti)) = 0, then P (·|ti) /∈ ∆(Θ) which implies that P (·|ti) /∈ Pi(ti).
6When a game G O,P is considered, then it is implicitly assumed that its utility functions V O

i and V P
i are

well posed, (i.e. maxQi∈Φi(ti) Ui(xi, σ−i|Qi) and minQi∈Φi(ti) Ui(xi, σ−i|Qi) exist for every x ∈ X, ti ∈ Ti and
σ ∈ S); obviously, this latter condition is guaranteed, for instance, when posteriors Φi(ti) are closed and not
empty sets for every ti ∈ Ti.
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Definition 2.1: A strategy profile σ∗ ∈ S is a Kajii and Ui mixed equilibrium for the game
G O,P if for every θ ∈ Θ it follows that

V O
i (σ∗i (τi(θ)), σ

∗
−i|τi(θ)) = max

xi∈Xi

V O
i (xi, σ

∗
−i|τi(θ)) ∀i ∈ O; (2)

V P
i (σ∗i (τi(θ)), σ

∗
−i|τi(θ)) = max

xi∈Xi

V P
i (xi, σ

∗
−i|τi(θ)) ∀i ∈ P. (3)

3 The limit theorem

Given, for every player i, a sequence {Pi,ν}ν∈N of sets of priors over Θ and a sequence {Φi,ν}ν∈N
of updating rules, i.e. Φi,ν : Ti → 2∆(Θ) and Φi,ν(τi(θ)) ⊆ Pi,ν(τi(θ)) for all θ ∈ Θ; consider
the corresponding sequences of payoffs {V O

i,ν}ν∈N for all i ∈ O and {V P
i,ν}ν∈N for all i ∈ P and

therefore the corresponding sequence of games7 {GO,P
ν }ν∈N where

G O,P
ν = {I; Θ; (Pi,ν)i∈I ; (Φi,ν)i∈I ; (Si)i∈I ; (V

O
i,ν)i∈O, (V P

i,ν)i∈P}. (4)

Recall that (see for instance [1] or [19]):

Definition 3.1: Given a sequence of sets {Bν}ν∈N with Bν ⊂ Rs for all ν ∈ N, then

Lim inf
ν→∞

Bν = {x ∈ Rs | ∀ε > 0 ∃ν s.t. forν ≥ ν S(x, ε) ∩Bν 6= ∅} ,

Lim sup
ν→∞

Bν = {x ∈ Rs | ∀ε > 0 ∀ν ∈ N ∃ν ≥ ν s.t. S(x, ε) ∩Bν 6= ∅} .

where S(x, ε) is the ball in Rs with center x and radius ε

Now we can state the limit theorem:

Theorem 3.2: Given the game G O,P corresponding to the sets of priors Pi and the updating
rules Φi with i = 1, . . . , n. Assume that {G O,P

ν }ν∈N is a sequence of games defined by (4) such
that, for every player i and every θ ∈ Θ

Lim inf
ν→∞

Φi,ν(τi(θ)) = Lim sup
ν→∞

Φi,ν(τi(θ)) = Φi(τi(θ)). (5)

Let {σ∗ν}ν∈N be a sequence of strategy profiles such that each σ∗ν is a mixed equilibrium of G O,P
ν .

If {σ∗ν}ν∈N converges to σ∗, (i.e. σ∗i,ν(ψi|τi(θ)) → σ∗i,ν(ψi|τi(θ)) as ν → ∞, for every i, ψi, θ),
then, σ∗ is a mixed equilibrium of G O,P .

Proof. Let {(x1,ν , . . . , xn,ν)}ν∈N ⊂ X be a sequence of mixed actions profiles converging to
(x1, . . . , xn) ∈ X and {(σ1,ν , . . . , σn,ν)}ν∈N ⊂ S be a sequence of strategy profiles converging to
(σ1, . . . , σn) ∈ S. Fixed θ ∈ Θ, by definition, we recall that

V O
i,ν(xi, σ−i,ν |τi(θ)) = max

Qi∈Φi,ν(τi(θ))
Ui(xi, σ−i,ν |Qi) (6)

V P
i,ν(xi, σ−i,ν |τi(θ)) = min

Qi∈Φi,ν(τi(θ))
Ui(xi, σ−i,ν |Qi), (7)

V O
i (xi, σ−i|τi(θ)) = max

Qi∈Φi(τi(θ))
Ui(xi, σ−i|Qi), (8)

V P
i (xi, σ−i|τi(θ)) = min

Qi∈Φi(τi(θ))
Ui(xi, σ−i|Qi), (9)

7Again, it is implicitly assumed that the utility functions V O
i,ν and V P

i,ν are well posed along the sequence, (i.e.
maxQi∈Φi,ν(ti) Ui(xi, σ−i|Qi) and minQi∈Φi,ν(ti) Ui(xi, σ−i|Qi) exist for every x ∈ X, σ ∈ S, ti ∈ Ti and ν ∈ N).
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First, we prove that the following conditions hold

lim
ν→∞

V O
i,ν(xi,ν , σ−i,ν |τi(θ)) = V O

i (xi, σ−i|τi(θ)) (10)

lim
ν→∞

V P
i,ν(xi,ν , σ−i,ν |τi(θ)) = V P

i (xi, σ−i|τi(θ)) (11)

In fact, for every ν, V O
i,ν and V P

i,ν are well posed by definition so there exist Q′
θ,ν

and Q′′
θ,ν

in

Φi,ν(τi(θ)) such that

V O
i,ν(xi,ν , σ−i,ν |τi(θ)) = Ui(xi,ν , σ−i,ν |Q′

θ,ν
), (12)

V P
i,ν(xi,ν , σ−i,ν |τi(θ)) = Ui(xi,ν , σ−i,ν |Q′′

θ,ν
). (13)

For every converging subsequence
{
V O

i,k(xi,k, σ−i,k|τi(θ))
}

k∈N ⊆
{
V O

i,ν(xi,ν , σ−i,ν |τi(θ))
}

ν∈N

there exists a corresponding subsequence {Q′
θ,k
}k∈N ⊂ {Q′

θ,ν
}ν∈N such that V O

i,k(xi,k, σ−i,k|τi(θ)) =

Ui(xi,k, σ−i,k|Q′
θ,k

) for every k. Let {Q′
θ,h
}h∈N be a converging subsequence of {Q′

θ,k
}k∈N, with

Q′
θ,h
→ Q′

θ
. From the definition (1) of the utility Ui it immediately follows that

lim
h→∞

Ui(xi,h, σ−i,h|Q′
θ,h

) = Ui(xi, σ−i|Q′
θ
). (14)

From the assumptions it follows that Lim sup
ν→∞

Φi,ν(τi(θ)) ⊆ Φi(τi(θ)). So, the limit Q′
θ

belongs

to Φi(τi(θ)) which implies that

Ui(xi, σ−i|Q′
θ
) ≤ V O

i (xi, σ−i|τi(θ)).

Since the sequence
{
V O

i,k(xi,k, σ−i,k|τi(θ))
}

k∈N converges, then (12) implies that the sequence{
Ui(xi,k, σ−i,k|Q′

θ,k
)
}

k∈N
converges and, from (14), its limit is Ui(xi, σ−i|Q′

θ
). Summarizing, we

get the following
lim
k→∞

V O
i,k(xi,k, σ−i,k|τi(θ)) =

lim
k→∞

Ui(xi,k, σ−i,k|Q′
θ,k

) = Ui(xi, σ−i|Q′
θ
) ≤ V O

i (xi, σ−i|τi(θ)). (15)

Following the same steps, for every converging subsequence
{
V P

i,k(xi,k, σ−i,k|τi(θ))
}

k∈N ⊆
{
V P

i,ν(xi,ν , σ−i,ν |τi(θ))
}

ν∈N

it follows that

lim
k→∞

V P
i,k(xi,k, σ−i,k|τi(θ)) = lim

k→∞
Ui(xi,k, σ−i,k|Q′′

θ,k
) ≥ V P

i (xi, σ−i|τi(θ)) (16)

Since (15) and (16) hold respectively for all converging subsequences{
V O

i,k(xi,k, σ−i,k|τi(θ))
}

k∈N and
{
V P

i,k(xi,k, σ−i,k|τi(θ))
}

k∈N, then we get the following condi-

tions respectively for the upper and lower limits of the sequences
{
V O

i,ν(xi,ν , σ−i,ν |τi(θ))
}

ν∈N and{
V P

i,ν(xi,ν , σ−i,ν |τi(θ))
}

ν∈N:

lim sup
ν→∞

V O
i,ν(xi,ν , σ−i,ν |τi(θ)) ≤ V O

i (xi, σ−i|τi(θ)) (17)

V P
i (xi, σ−i|τi(θ)) ≤ lim inf

ν→∞
V P

i,ν(xi,ν , σ−i,ν |τi(θ)). (18)
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Conversely, V O
i and V P

i are well posed by definition so there exist Q′
θ

and Q′′
θ

in Φi(τi(θ))
such that

Ui(xi, σ−i|Q′
θ
) = V O

i (xi, σ−i|τi(θ)) and Ui(xi, σ−i|Q′′
θ
) = V P

i (xi, σ−i|τi(θ))

From the assumptions it follows that Φi(τi(θ)) ⊆ Lim inf
ν→∞

Φi,ν(τi(θ)). Hence there exist sequences

{Q′
θ,ν
}ν∈N and {Q′′

θ,ν
}ν∈N, with Q′

θ,ν
and Q′′

θ,ν
in Φi,ν(τi(θ)) for every ν ∈ N, such that Q′

θ,ν
→ Q′

θ

and Q′′
θ,ν

→ Q′′
θ

as ν → ∞. From the definition (1) of the utility Ui it immediately follows

that Ui(xi,ν , σ−i,ν |Q′
θ,ν

) → Ui(xi, σ−i|Q′
θ
) and Ui(xi,ν , σ−i,ν |Q′′

θ,ν
) → Ui(xi, σ−i|Q′′

θ
) as ν → ∞.

Moreover, for every ν ∈ N, we get by definitions (6) and (7) that

V O
i,ν(xi,ν , σ−i,ν |τi(θ)) ≥ Ui(xi,ν , σ−i,ν |Q′

θ,ν
),

V P
i,ν(xi,ν , σ−i,ν |τi(θ)) ≤ Ui(xi,ν , σ−i,ν |Q′′

θ,ν
).

Hence, for every converging subsequences
{
V O

i,k(xi,k, σ−i,k|τi(θ))
}

k∈N ⊆
{
V O

i,ν(xi,ν , σ−i,ν |τi(θ))
}

ν∈N

and {
V P

i,k(xi,k, σ−i,k|τi(θ))
}

ν∈N ⊆
{
V P

i,ν(xi,ν , σ−i,ν |τi(θ))
}

ν∈N ,

we get
lim
k→∞

V O
i,k(xi,k, σ−i,k|τi(θ)) ≥

lim
k→∞

Ui(xi,k, σ−i,k|Q′
θ,k

) = Ui(xi, σ−i|Q′
θ
) = V O

i (xi, σ−i|τi(θ)) (19)

and
lim
k→∞

V P
i,k(xi,k, σ−i,k|τi(θ)) ≤

lim
k→∞

Ui(xi,k, σ−i,k|Q′′
θ,k

) = Ui(xi, σ−i|Q′′
θ
) = V P

i (xi, σ−i|τi(θ)) (20)

Since (19) and (20) hold respectively for the converging subsequences
{
V O

i,k(xi,k, σ−i,k|τi(θ))
}

k∈N and
{
V P

i,k(xi,k, σ−i,k|τi(θ))
}

ν∈N ,

then we get the following conditions respectively for the lower and upper limits of the sequences{
V O

i,ν(xi,ν , σ−i,ν |τi(θ))
}

ν∈N and
{
V P

i,ν(xi,ν , σ−i,ν |τi(θ))
}

ν∈N:

V O
i (xi, σ−i|τi(θ)) ≤ lim inf

ν→∞
V O

i,ν(xi,ν , σ−i,ν |τi(θ)), (21)

lim sup
ν→∞

V P
i,ν(xi,ν , σ−i,ν |τi(θ)) ≤ V P

i (xi, σ−i|τi(θ)). (22)

Therefore, for every (x1, . . . , xn) ∈ X and for every (σ1, . . . , σn) ∈ S, for every sequence
{(x1,ν , . . . , xn,ν)}ν∈N ⊂ X converging to (x1, . . . , xn) and every sequence {(σ1,ν , . . . , σn,ν)}ν∈N ⊂
S converging to (σ1, . . . , σn), conditions (17) and (21) imply that (10) holds, while, conditions
(18) and (22) imply that (11) holds, for every player i.

Now, let {σ∗ν}ν∈N be the sequence of strategy profiles converging to σ∗ where each σ∗ν is an
equilibrium of G O,P

ν . Given θ ∈ Θ and a player i ∈ O, by definition it follows that, for every
ν ∈ N,

V O
i,ν(σ

∗
i,ν(τi(θ)), σ

∗
−i,ν |τi(θ)) ≥ V O

i,ν(xi, σ
∗
−i,ν |τi(θ)) ∀xi ∈ Xi.

7



From (10) and taking the limit as ν →∞, we get

V O
i (σ∗i (τi(θ)), σ

∗
−i|τi(θ)) = lim

ν→∞
V O

i,ν(σ
∗
i,ν(τi(θ)), σ

∗
−i,ν |τi(θ)) ≥

lim
ν→∞

V O
i,ν(xi, σ

∗
−i,ν |τi(θ)) = V O

i (xi, σ
∗
−i|τi(θ)) ∀xi ∈ Xi

Following the same steps and from (11), we get that for a pessimistic player i ∈ P it follows
that

V P
i (σ∗i (τi(θ)), σ

∗
−i|τi(θ)) ≥ V P

i (xi, σ
∗
−i|τi(θ)) ∀xi ∈ Xi

Since, θ is arbitrary then σ∗ is a mixed equilibrium of G O,P and we get the assertion. 2

4 A counterexample

The key assumption in the previous limit theorem is contained in formula (5) which involves
two conditions respectively on upper and lower limits of the sequences of sets of posteriors.
In this section we present the Kajii and Ui counterexample and we emphasize that the limit
property of the equilibria fails by removing from the the assumption (5) even only one of these
two conditions. More precisely, it turns out that in this example, the limit property of the
equilibria fails because the condition on the upper limits is not satisfied.

The example consists in a 2 player game. The set of states is Θ = {1, 2, 3a, 3b, 4a, 4b}. For
every ε ∈ [0, 1] , players have a common set of priors over Θ, which is:

P1,ε = P2,ε =
{

P ∈ ∆(θ) |P ({1}) = P ({2}) =
ε

2
, P ({3a, 3b}) = P ({4a, 4b}) =

1− ε

2

}
.

Let E = {1, 2} ⊂ Θ. The game has this form

L R
U 1,-2 0,0
D 0,-2 1,0

L R
U 1,1 0,0
D 0,1 1,0

if θ ∈ E if θ /∈ E

The ranges of the two signals (τ1, τ2) are

T1 = {{1, 3a, 3b}, {2, 4a, 4b}}
T2 = {{1, 3a, 4a}, {2, 3b, 4b}}

and, for every θ ∈ Θ, τi(θ) ∈ Ti is the set containing θ. Assume that both players use the Full
Bayesian Updating Rule and are pessimistic. Then, for every ε ∈ [0, 1] the posteriors of Player
1 are

Φ1,ε({1, 3a, 3b}) = {P ∈ ∆(Θ) | P ({1}) = ε, P ({3a, 3b}) = 1− ε}
Φ1,ε({2, 4a, 4b}) = {P ∈ ∆(Θ) | P ({2}) = ε, P ({4a, 4b}) = 1− ε}.

For every ε ∈]0, 1], the posteriors of Player 2 are

Φ2,ε({1, 3a, 4a}) =
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P ∈ ∆(Θ)

∣∣∣∣∣∣∣

P ({1}) = ε
ε+2(λ+µ)

P ({3a}) = 2λ
ε+2(λ+µ)

with λ, µ ∈ [
0, 1−ε

2

]

P ({4a}) = 2µ
ε+2(λ+µ)





(23)

and
Φ2,ε({2, 3b, 4b}) =




P ∈ ∆(Θ)

∣∣∣∣∣∣∣

P ({2}) = ε
ε+2(λ+µ)

P ({3b}) = 2λ
ε+2(λ+µ)

with λ, µ ∈ [
0, 1−ε

2

]

P ({4b}) = 2µ
ε+2(λ+µ)





(24)

while, for ε = 0, they are:
Φ2,0({1, 3a, 4a}) =



P ∈ ∆(Θ)

∣∣∣∣∣∣

P ({1}) = 0
P ({3a}) = λ

λ+µ
with λ, µ ∈ [

0, 1
2

]
, (λ, µ) 6= (0, 0)

P ({4a}) = µ
λ+µ



 (25)

and
Φ2,0({2, 3b, 4b}) =



P ∈ ∆(Θ)

∣∣∣∣∣∣

P ({2}) = 0
P ({3b}) = λ

λ+µ
with λ, µ ∈ [

0, 1
2

]
, (λ, µ) 6= (0, 0)

P ({4b}) = µ
λ+µ



 (26)

The previous formulas show that the updated probabilities of the set E do not depend on the
signal for both the players:

{P (E) |P ∈ Φ1,ε(t1)} = P1(ε) ∀t1 ∈ T1

{P (E) |P ∈ Φ2,ε(t2)} = P2(ε) ∀t2 ∈ T2

where

P1(ε) = {ε} ∀ε ∈ [0, 1]; P2(ε) =

{
0 if ε = 0[

ε
2−ε

, 1
]

if ε ∈]0, 1]

Then, for every ε > 0 and for every pair (t1, t2) ∈ T1 × T2, the game is

L R
U 1,1-3P2(ε) 0,0
D 0,1-3P2(ε) 1,0

where P2(ε) ∈
[

ε
2−ε

, 1
]
.

We denote the mixed actions as follows: x1 = prob(U), 1 − x1 = prob(D), x2 = prob(L) and
1−x2 = prob(R). Therefore, with an abuse of notation, x1 identifies a mixed action of Player 1
and x2 a mixed action of Player 2. The utility of Player 2 does not depend on Player 1’s action
choice so

V P
2,ε(x2, σ1) = min

P2(ε)∈[ ε
2−ε

,1]
x2(1− 3P2(ε)) = −2x2

Hence, action x2 = 0 is strictly dominant for Player 2 regardless of the signal. So, the mixed
strategy σ∗2,ε, defined by σ∗2,ε(t2) = 0 for all t2 ∈ T2, is a strictly dominant strategy for Player 2.
It is trivial to check that there exists a unique best reply σ∗1,ε of Player 1 to Player 2’s strategy
σ∗2,ε. This is defined by σ∗1,ε(t1) = 0 for all t1 ∈ T1. This implies that, for every ε > 0, the set of
equilibria is given by N(ε) = {(σ∗1,ε, σ

∗
2,ε)}. Now, for ε = 0 and for every pair (t1, t2) ∈ T1 × T2,

the game is
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L R
U 1,1 0,0
D 0,1 1,0

It follows directly that the mixed strategy σ̂2, defined by σ̂2(t2) = 1 for all t2 ∈ T2, is a strictly
dominant strategy for Player 2. Since there exists a unique best reply σ̂1 of Player 1 to Player
2’s strategy σ̂2, defined by σ̂2(t1) = 1 for all t1 ∈ T1, then the set of equilibria for ε = 0 is given
by N(0) = {(σ̂1, σ̂2)}. It immediately follows that for every sequence εν → 0, the corresponding
sequence of equilibria {(σ∗1,εν

, σ∗2,εν
)}ν∈N do not converge to the unique equilibrium (σ̂1, σ̂2) in

N(0).
Now we show that the failure of the limit property in this example depends on a lack of the

sequential upper convergence property of the sequence of posteriors of Player 2. This can be
easily seen: consider the probability distribution P ∈ ∆(Θ) defined by P (a) = 1 and P (θ) = 0
for all θ ∈ Θ \ {a}. It easily follows that P ∈ Φ2,εν ({1, 3a, 4a}) for every ν ∈ N since P can
be obtained from (23) when λ = µ = 0 for every εν . Hence P ∈ Lim sup

ν→∞
Φ2,εν ({1, 3a, 4a}).

However, from (25), we immediately get that P /∈ Φ2,0({1, 3a, 4a}). So

Lim sup
ν→∞

Φ2,εν ({1, 3a, 4a}) * Φ2,0({1, 3a, 4a})

meaning that sequential upper convergence property of the sequence of posteriors does not
hold. Conversely, it can be also checked that the sequential lower convergence property of the
sequence of posteriors holds in this example. In fact, it follows easily from (23,24,25,26) that
the following conditions hold

Φ2,0({1, 3a, 4a}) ⊆ Lim inf
ν→∞

Φ2,εν ({1, 3a, 4a})
Φ2,0({2, 3b, 4b}) ⊆ Lim inf

ν→∞
Φ2,εν ({1, 3b, 4b}).
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