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1 Introduction

For a game with transferable utility, formed by a set N of players and by a function ν

that associates each S ⊆ N with a real number ν(S), the stable set has been the very first

solution concept to be considered. It was introduced by von Neumann and Morgenstern

(1944) and it hinges on two requirements of self-consistency which can be interpreted as

acceptable behaviors within a society. In the most general framework of an abstract game

(X,�) consisting of a set X of outcomes and a dominance relation � over them, a stable

set is defined as a subset S ⊆ X that satisfies the following two conditions:

1. no outcome in the stable set S is dominated by another outcome in S [internal

stability];

2. every element which lies outside the set S is dominated by some element in S

[external stability].

The argument behind these conditions can be summarized as follows: the first one guar-

antees that, once an outcome within S is selected, there is no interest in deviating toward

any other outcome y; according to the second condition, on the contrary, every outcome

which is not in S is unstable because dominated by some element in S. Of course, only

one of these two properties, that is the internal stability, is satisfied by the core. With

regard to the external stability, a core outcome must be undominated by any outcome,

including those that can, in their turn, be dominated. Stable sets can be considered as

arising exactly by this conceptual deficiency of the core1.

Despite there is not a huge literature on stable sets, mainly due to the technical dif-

ficulty to work with them 2, the seminal definition by von Neumann and Morgenstern is

general enough to allow applications in a wide variety of formats which go from coopera-

tive games (Lucas, 1994), voting theory (Anesi, 2010) and exchange economies (Einy and

Shitovitz, 2003, Greenberg at al., 2002, Hart, 1974). In particular, the analysis of a pure

exchange economy, as far as stability is concerned, may produce different conclusions with

1Some controversy regarding the very logic under the stable set concept has been arisen by Harsanyi
that, during the seventies, formulated the notion of sophisticated stable sets. The flaw that the new
concept aims to amend is the following: in the stable set logic a deviation cannot be considered as valid
if there is a further deviation toward some stable outcome.

2The stable set theory has some undesirable properties. Precisely, as in the following quotation by
(Lucas, 1994): Although some lack of uniqueness for cooperative game solution concepts seems reasonable,
there are clearly too many stable sets for most games. At the same time there are some games, presumably
rare, for which no stable sets at all exist.
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respect to the analysis which focuses on the payoff space. This is due to the fact that,

differently by core and Pareto optimal allocations, the utility levels derived from a stable

set in the allocation space might not be a stable set in the payoff space and conversely

(see Greenberg at al., 2002).

In this paper we analyze stable sets in a general equilibrium context. Precisely, we

are interested in economies with a finite number of agents which trade finite commodities

under exogenous uncertainty represented by a finite set Ω of distinct states of nature.

We assume that agents exchange at the ex-ante stage, that is, before the true state of

nature has been realized, and that they initially have asymmetric information modeled

by partitions of Ω. Moreover, an exogenous rule regulates the information sharing process

among the individuals by specifying which is the information that each agent can use in

every possible coalition he can join. This approach is general enough to include usual

way of modeling information sharing, like the private, the fine, the coarse rules, but also

situations in which the rule may vary depending on the coalition or the case when it may

be a combination of the previous ones.

In a pure exchange economy, once a dominance relation has been defined over the

set of allocations, a non empty set V of individually rational allocations is said to be

stable if it is internally and externally stable. Also in this framework, differently by the

core, there is no general theory and there are no tools. A basic problem is due to the

fact that again, differently by the core, stable sets are in general not unique. The two

main theoretical questions to be investigated in exchange economies with asymmetric

information are therefore the existence and uniqueness of stable sets.

Inspired by a paper of Einy and Shitovitz (2003), the primary focus of this paper is

to analyze whether the set V formed by all the Pareto optimal symmetric individually

rational allocations is the unique stable sets for an economy with asymmetric information.

To this aim, we distinguish two different settings as concerns preferences: a model without

expectations, where agents preferences are formulated without referring to subjective

probabilities and an expected utility model where preferences are described by state–

dependent utility functions.

As to the first model, we solve simultaneously two problems related with stable sets:

the fact that they may fail to exist and that they cannot be unique. Indeed, we prove that

the set V is actually the only stable set of symmetric allocations for the economy. Such

a result is obtained assuming that utility functions are strictly monotone, quasi concave,

continuous, that everything on the boundary is associated with a zero utility and that

the initial endowment, besides being strictly positive once summed up over the traders,
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is such that if agent i initially owns a positive quantity of some good in a state of nature,

then no other agent initially owns this good in the same state.

On the contrary, for the second model we provide an example which shows that V is not

externally stable. The example basically consists of an allocation which is in the core of

the economy and which is not symmetric. Further, we remark that, despite this model is

less general than the previous one, not all the assumptions stated for the state-dependent

utility functions translate into the corresponding ones for expected utility functions; this

is the point that has to be considered in order to obtain positive results for the second

model.

The negative results regarding the model with expectation are partially amended in

the last part of our paper: in it, a weaker relation of dominance is introduced where agents

take part in a coalition using only some shares of their strictly positive endowments. Under

this notion, referred as Aubin dominance relation, the corresponding set V is proved to

be stable under assumptions which can be also met in a model with expected utility

functions.

In conclusion, the results proved in the paper, focusing on a way to define basic concepts

based on information sharing rules, lead to well-behaved stable sets, pointing out that

only the information assigned to the grand coalition matters for their non-emptiness and

uniqueness.

The paper proceeds in the following order. In the first section we outline the model

without expectations along with all the definitions and assumptions needed throughout

the paper. This model is developed in the next two sections; in particular, Section 3 col-

lects some preliminary results about it and Section 4 contains the main result concerning

the internal and external stability of the set V . The model with expectations is illustrated

in Section 5 where an example is also provided to show that the set V is not externally

stable and a remark points out a difficulty in obtaining the proper assumptions on the

expected utility functions. Section 6 deals with the notion of incentive compatibility for

an asymmetric information economy with an information sharing rule; we show that ev-

ery Pareto optimal allocation in the unique stable set V is weakly coalitional incentive

compatible, provided the rule is bounded. Finally, Section 7 presents a weaker result on

the stability when a weaker notion of dominance is adopted.
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2 The economic model without expectations

We consider a pure exchange economy E with uncertainty and asymmetric information.

The exogenous uncertainty is formulated by a measurable space (Ω,F) where Ω denotes

a finite set of states of nature and the field F represents the set of all the events.

The economy is characterized by a finite population of agents, indexed by i ∈ N =

{1, . . . , n}, and a finite number l of commodities. Rl is the commodity space and Rl
+ is

the consumption set of each agent in each state of nature.

Every subset of N is referred to as a coalition.

Traders are not necessarily able to distinguish which state of nature ω in a finite set Ω of s

elements actually occurs. Their initial information is modeled by a measurable partition

Πi of Ω. The interpretation is that if ω0 ∈ Ω is the state of nature that is going to be

realized, agent i observes the element of Πi which contains ω0.

The state-dependent initial endowment of physical resources for each agent i is given by:

ei : Ω −→ Rl
+.

The function ei is assumed to be known to trader i and constant on each element of the

partition Πi. We consider the case where trade agreements are arranged in the ex-ante

stage, that is, before the state of nature occurs. At this stage, each agent i ∈ N has to

choose among plans of contingent commodities xi ∈ Rl·s
+ according to his preferences.

With regard to preferences, we assume that agent i’s preferences are described by a

cardinal utility function defined over the contingent commodities, that is:

Ui : Rl·s
+ −→ R.

We do not consider ex-ante agents’ preferences as necessarily derived from state-dependent

preferences by taking expectations with respect to some subjective probability measure

over the states of the world (as, for example, in Maus 2003, Radner 1968). The case of

expected utility functions can be seen, under suitable assumptions, as included in this

more general approach.

In the economy E it is not ruled out the case that more agents have the same character-

istics. In particular, two agents are said to be of the same type if they are identical as

regards the initial endowment, the initial information and the utility function. We denote

by m the number of types in the economy E and by Tj the set of all traders of type j,

with 1 ≤ j ≤ m3.

3When necessary, the double subscript i, j will be used to name traders, where the first index i ∈
{1, . . . ,m} denotes the type and the second subscript j denote the j-th copy of type i.
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It clearly holds that m ≤ n, that |T1| + . . . + |Tm| = n and that {T1, . . . , Tm} forms a

partition of the set N .

We assume that the initial information of each trader may change when he becomes mem-

ber of a coalition and we adopt the notion of information sharing rule as introduced by

Allen (2006) in order to model this phenomenon.

Given a coalition S, an information sharing rule for S is a function Γ(S) which associates

a partition Γi(S) of Ω to each member i ∈ S; the partition Γi(S) is intended as the infor-

mation that agent i can dispose of once the coalition S has been formed. An information

sharing rule Γ for the economy E is a collection (Γ(S))S⊂N . This general way of modeling

information sharing within coalitions includes as particular examples some concrete and

obvious cases: the private, the fine, the coarse information sharing rules. In the private

information sharing rule, each trader just uses his initial information in every coalition he

takes part in; that is:

Γi(S) = Πi , ∀S ⊆ N , ∀ i ∈ S.

In the case of the fine information sharing rule, traders pool their information within

every coalition; that is:

Γi(S) =
∨
i∈S

Πi , ∀S ⊆ N , ∀ i ∈ S.

In the coarse information sharing rule, agents within a group are restricted to use their

common information, that is:

Γi(S) =
∧
i∈S

Πi , ∀S ⊆ N , ∀ i ∈ S.

However, all arbitrary possibilities are allowed. In particular, the definition of informa-

tion sharing rule does not imply any relation among the information sharing rules used

by different coalitions, or a relation between the coalition’s information and the agents’

private information.

The exchange economy with asymmetric information is thus formalized by the collection:

E = {(Ω,F); N = {1, . . . , n}; Rl
+; (Πi, Ui, ei)i∈N , ; Γ}.

The following definitions are needed for developing the paper.

Definition 2.1 (allocation) An allocation for the coalition S in the economy E is a

vector x = (xi)i∈S with xi ∈ Rl·s
+ such that:

i) xi is Γi(S) - measurable, for every i ∈ S (informational feasibility);

ii)
∑

i∈S xi =
∑

i∈S ei (physical feasibility).
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The term “allocation” will be the short form for “allocation for the grand coalition N”. In

particular, the information Γi(N) is interpreted as the final information available to trader

i at the time of consumption. Hence, at the time of consumption the same communication

takes place as in the grand coalition.

Definition 2.2 (Dominance) Let x and y be two allocations and S ⊆ N be a non

empty coalition. We say that x ex-ante dominates y via S if:

i) x is an allocation for S;

ii) Ui(xi) > Ui(yi),∀ i ∈ S.

Moreover, we say that x dominates y, denoted by x � y, if there exists a non empty

coalition S such that x ex-ante dominates y via S. Along with the dominance relation,

some basic equilibrium notions are defined.

Definition 2.3 (weakly Pareto optimality) An allocation x is said to be ex-ante

weakly Pareto optimal (or ex-ante weakly efficient) if there does not exist an allocation y

which dominates x via N .

Definition 2.4 (Pareto optimality) An allocation x is said to be ex-ante Pareto

optimal (or ex-ante efficient) if there does not exist an allocation y such that:

Ui(yi) > Ui(xi) for at least one i ∈ N and Ui(yi) ≥ Ui(xi) for every i ∈ N \ {i}.

Definition 2.5 (Core) An allocation x is said to be a core allocation for the economy

E if there do not exist a coalition S ⊆ N and an allocation y for the coalition S such that

Ui(yi) > Ui(xi), ∀ i ∈ S.

That is, a feasible allocation belongs to the core of the economy if it is not possible

for agents to join a coalition, redistribute their endowment among themselves letting

each member use the information prescribed by the sharing rule Γ and obtain a strictly

preferred allocation for each of them.

We will denote by CΓ(E) the set of the core allocations for the economy E under the

information sharing rule Γ.

Definition 2.6 (Individual rationality) An allocation x is ex-ante individually ra-

tional if it holds that:

Ui(xi) ≥ Ui(ei),∀i ∈ N.

6



We will denote by I the set of all the individually rational allocations for the economy E.

Definition 2.7 (Symmetry) An allocation x is said to be symmetric if it gives the same

utility to traders of the same type. That is:

for every 1 ≤ i ≤ m, for every j, k ∈ Ti, Ui(xi,j) = Ui(xi,k) .

Definition 2.8 (Internal stability) A set V of individually rational allocations is

internally stable if the following condition holds:

if x ∈ V then there is no y ∈ V such that y � x.

Definition 2.9 (External stability) A set V of individually rational allocations is

externally stable if the following condition holds:

if x ∈ I \ V then there is y ∈ V such that y � x.

Definition 2.10 (Stable set) A set V of individually rational allocations is said to be

a (Von Neumann–Morgenstern) stable set if it is both internally and externally stable.

It follows immediately from the definitions that the core is internally stable and therefore

it is a subset of each stable set. If it is externally stable, then it contains each stable set

and therefore it is the unique stable set of the economy4.

Remark 2.1 The previous core notion encompasses traditional ways to define the core

with asymmetric information when the information of coalitions is taken as given rather

than chosen strategically. This is the case of the private, the fine, the coarse, the weak

fine, the strong coarse core notions among the others. More extreme cases are possible,

as the one in which all information use is forbidden or the one in which the asymmetric

information is removed by requiring pooling of all information (compare Allen, 2006).

Similar considerations hold true for the efficiency notions (for a comparison among them

we refer to Hahn and Yannelis, 1997).

4The core rarely constitutes a stable set. In most cases, it consists generically of a single competitive
allocation, by the equivalence theorem. This implies that it is not externally stable.
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2.1 The Assumptions

The Assumption which, differently combined, will be used throughout the paper are the

following.

(2.1) For every i ∈ N, Ui is weakly strictly monotone.

That is, for every x, y ∈ Rl·s
+ , x � y implies Ui(x) > Ui(y). 5

(2.2) For every i ∈ N, Ui is continuous.

(2.3) For every i ∈ N, Ui is quasi–concave.

(2.4) If a is on the boundary of Rl·s
+ , then for every i ∈ N , Ui(a) = Ui(0).

(2.5)
∑

i∈N ei � 0.

(2.6) For all j ∈ {1, . . . ,m} there exist kj ∈ {1, . . . , l} and ωj ∈ Ω such that for every

r 6= j, e
kj
r (ωj) = 0 (where e

kj
r (ωj) denotes the kj component of the vector er(ωj)).

Assumptions (2.1) and (2.4) together imply that the utility function of every agent is

strictly positive on the interior of the orthant Rl·s
+ and obtains the zero value on its bound-

ary. So agents prefer ex-ante interior commodities to the boundary ones (the boundary

aversion assumption). Assumption (2.6) means that, although each commodity will be

present on the market in each possible state by (2.5), each type of traders has a corner on

some commodity in some state of nature. In models without uncertainty, it is sometimes

referred as the glove market assumption on initial endowments.

The next assumptions are relative to the information sharing rule.

(2.7) The information sharing rule Γ is bounded; that is, for all i ∈ N and for all

coalitions S with i ∈ S, it holds that:

Γi(N) � Γi(S)6.

(2.8) Given two coalitions S, S
′ ⊆ N such that {j ∈ {1, . . . ,m} : S ∩ Tj 6= ∅} = {j ∈

{1, . . . ,m} : S
′ ∩ Tj 6= ∅}, it holds that:

Γi(S) = Γi(S
′
) for every i ∈ S ∩ S

′
.

5The symbol � has the usual interpretation, that is, given x, y ∈ Rk:

x � y ⇐⇒ xi > yi, for every i = 1, . . . , k.

6Given two partitions P and Q of Ω, P is finer than Q, denoted P � Q, if for every A ∈ P there is
B ∈ Q such that A ⊆ B.
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The intuition behind the assumption (2.7) is that membership in the grand coalition N

cannot make an individual worse off from the informational viewpoint: the information

can only become finer when joining the grand coalition N .

The interpretation of the last assumption is the following: if two coalitions contain the

same agents’ types, then the information that a trader has in each coalition is the same.

Both these properties hold for the private information sharing rule, where each trader just

uses his initial information in every coalition he takes part in. They also hold valid for the

fine information sharing rule, where traders pool their information within every coalition.

On the contrary, the coarse information sharing rule, where agents within a group are

restricted to use their common information, is not bounded while it meets Assumption

(2.8)7. Assumption (2.8) is of course satisfied by each information sharing rule depending

on information types of coalitions.

3 Some preliminary results

As a first result, we want to prove that under the Assumption (2.1), (2.2) and (2.4), every

weakly Pareto optimal allocation is also Pareto optimal.

Lemma 3.1 Under the assumptions (2.1), (2.2), (2.4), every weakly Pareto optimal al-

location is Pareto optimal.

Proof. Let us consider a feasible allocation x = (x1, . . . , xn) which is weakly Pareto

optimal.

Assume, by contradiction, that x is not Pareto optimal. This means that there exists

an allocation y = (y1, . . . , yn) such that Ui(yi) > Ui(xi) for at least one i ∈ N and

Ui(yi) ≥ Ui(xi) for every i 6= i.

By the inequality Ui(yi) > Ui(xi) and by the assumption (2.4), it follows that:

yi � 0.

Indeed, let us suppose that yi has a null component; then, by Assumption (2.4), it would

be Ui(yi) = Ui(0). If also xi has a null component, then Ui(xi) = Ui(yi) and the inequality

Ui(yi) > Ui(xi) would be contradicted. If, on the contrary, xi � 0, then by Assumption

(2.1) it follows that Ui(xi) > Ui(0) = Ui(yi) and the same inequality as before would be

contradicted as well.

7A modification of the coarse information sharing rule by altering the information assigned to the
grand coalition implies that the boundedness assumption is satisfied, see Allen (2006).
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By yi � 0 and by Assumption (2.2), it follows that we can pick some 0 < ε < 1 such that

Ui(yi − ε1) > Ui(xi), where 1 denotes the unit vector in Rl·s.

Consider the allocation z for the economy E defined by:

zi =


yi − ε1, if i = i

yi +
ε

n− 1
1, if i 6= i

The allocation z is clearly physically feasible for the grand coalition N . It is also infor-

mationally feasible.

Moreover, by the assumption (2.1), it holds true that:

Ui(zi) > Ui(yi), ∀ i ∈ N \ {i}

We can thus conclude that the allocation z dominates x via the grand coalition N , which

contradicts the weakly Pareto optimality of x and establishes the validity of our claim. �

Let V denote the set of all individually rational symmetric Pareto optimal allocations

of the economy E, that is:

V = {x ∈ I : x is symmetric and Pareto optimal}

Before proceeding to show that the set V is stable à la Von Neumann and Morgenstern,

we want to show that it is non empty. To accomplish this aim, we need some preliminary

results.

Lemma 3.2 Under the assumptions (2.2), (2.3) and (2.7), the core CΓ(E) is non empty.

Proof.

The proof goes along a standard line which basically consists in three steps: a cooperative

game without side payments (N, G) is associated with the economy E; the game–theoretic

core of this game is proven to be non–empty by using the Scarf’s theorem (1967); and,

lastly, a core allocation for the economy E is derived from a core imputation for the game

(N, G).

The game in question, which in our case also accounts for the information sharing rule Γ,

is defined as follows; for every coalition S ⊆ N :

G(S) =

{
ξ = (ξ1, . . . , ξn) ∈ Rn : there exists an allocation x for the coalition S such that

ξi ≤ Ui(xi),∀ i ∈ S

}

10



Among the assumptions required by Scarf’s result, the only one which requires some

attention is the balancedness of the game.

About this point, Theorem 7.8 in Allen (2006) states that the fact that the information

sharing rule is bounded is sufficient for the game to be balanced.

To conclude the proof, it suffices to consider any allocation x = (x1, . . . , xn) associated

with ξ ∈ Core(G); this allocation is easily proven to be feasible for the grand coalition N

and unblocked by any coalition S. �

Lemma 3.3 Let i ∈ N and x, y ∈ Rl·s
+ such that Ui(x) > Ui(y). Then, for every 0 < α <

1, it holds that Ui(αx + (1− α)y) > Ui(y).

Proof. By Ui(x) > Ui(y), it follows that x � 0 (the proof is the same as in the previous

Lemma 3.1).

By the continuity assumption (2.2), there exists β ∈ (0, 1) such that Ui(βx) > Ui(y).

Let 0 < α < 1. By the quasi–concavity assumption (2.3), it follows that:

Ui(αβx + (1− α)y) ≥ Ui(y)

Since α(1 − β)x + αβx + (1 − α)y � αβx + (1 − α)y, by the monotonicity assumption

(2.1) it follows that:

Ui(α(1− β)x + αβx + (1− α)y) = Ui(αx + (1− α)y) > Ui(αβx + (1− α)y). �

Proposition 3.1 Under the assumptions (2.1), (2.2), (2.3), (2.4), (2.7) and (2.8), every

core allocation is symmetric.

Proof.

Let x = (x1,1, . . . , x1,n; . . . ; xm,1, . . . , xm,n) be a core allocation 8.

By rearranging consumers of each type, we can assume without loss of generality that

(i, 1) is the worst–off agent among those of type i, that is:

Ui(xi,j) ≥ Ui(xi,1), for all i and j

Now, assume by way of contradiction that there exist some k ( 1 ≤ k ≤ m) and some

r ( 1 < r ≤ n) such that:

Uk(xk,r) > Uk(xk,1).

8To preserve simplicity, the proof is done for types including the same number of traders, that is
|T1| = |T2| = . . . = |Tm| = n. However, the result is valid also in a more general framework.
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By the assumptions (2.1) and (2.4), it follows that xk,r � 0.

Define the average consumption for each type:

yi =
1

n

n∑
j=1

xi,j , i ∈ N.

and consider the allocation:

y = (y1, . . . , y1; . . . ; yn, . . . , yn)

The allocation y is physically and informationally feasible.

Moreover, we have that Uk(yk) > Uk(xk,1) and Ui(yi) ≥ Ui(xi,1) for every i 6= k.

By the continuity assumption, we can pick some 0 < ε < 1 such that Uk(yk − ε1) >

Uk(xk,1), where 1 denotes the unit vector of Rl·s
+ .

The coalition of the worst-off agents, that is, S = {11, 21, . . . ,m1} can thus block the

allocation x by allocating to every agent (i, 1) the bundle (zi,1)i∈I defined as follows:

zi,1 =


yk − ε1, if i = k

yi + ε
m−1

1, if i 6= k

Indeed, the allocation (zi,1)i∈I is clearly physically and informationally feasible for the

coalition S. Moreover,

Ui(zi,1) > Ui(yi) ≥ Ui(xi,1), ∀ i ∈ N\{k}

where the first inequality follows from Assumption A.1.

We can thus conclude that coalition S blocks the allocation x, which is impossible.

This contradiction establishes the validity of our claim, that is, the core allocation x is

symmetric. �

The following result is an easy consequence of the previous statements.

Corollary 3.1 Under the assumptions (2.1), (2.2), (2.3), (2.4), (2.7) and (2.8), the set

V is non empty.

Finally, we state the following Lemma which, apart from being interesting in its own

right, is useful in bypassing the welfare theorems which are used in Einy and Shitovitz in

order to prove that the set V is externally stable.

Lemma 3.4 Under the assumption (2.3), every individually rational symmetric alloca-

tion which is not weakly Pareto optimal can be dominated by a weakly Pareto optimal

symmetric allocation.
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Proof. Let z be an allocation which is individually rational symmetric and not Pareto

optimal and let us define the following sets:

A = {x = (x1, . . . , xn) : x is informationally and physically feasible}

and

A = {x ∈ A : x is individually rational, symmetric and Ui(xi) ≥ Ui(zi),∀i ∈ N}

and the function Ũ defined as follows:

Ũ(x1, . . . , xn) =
∑
i∈N

Ui(xi)

The set A is compact and non empty (since z is not Pareto optimal) and the function Ũ

is continuous on A.

Moreover, Ũ has a maximal element on the set A. Let us denote it by g. It holds that g

is individually rational, symmetric and Ui(gi) ≥ Ui(zi),∀i ∈ N .

We want to prove that g is also Pareto optimal.

By way of contradiction, let us suppose that g is not Pareto optimal. Then, there exists

an allocation γ such that:

Ui(γi) > Ui(gi),∀i ∈ N

Let us consider the average over types and let us denote it by γ. The allocation γ is

symmetric and it is individually rational since:

Ui(γi) ≥ Ui(gi),∀i ∈ N

Moreover, Ui(γi) ≥ Ui(zi),∀i ∈ N .

Then, the allocation γ belongs to A.

But, it holds that:

Ũ(γ) =
∑
i∈N

Ui(γi) >
∑
i∈N

Ui(gi) = Ũ(g)

and this contradicts the fact that g is a maximal element for the function Ũ on the set A.

Then, the maximal element g is symmetric, individually rational, Pareto optimal and such

that Ui(gi) ≥ Ui(zi), ∀ i ∈ N. �

As a consequence of the previous Lemma, Remark 2.4 in Einy and Shitovitz (which

is used in proving Theorem A in their paper) can be restated for the asymmetric informa-

tion framework; that is, in order to prove that V is externally stable, it suffices that every

individually rational Pareto optimal allocation which is not symmetric is dominated by
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some element in V (provided Assumptions (2.1), (2.2) and (2.4) hold).

In fact, let x ∈ I \ V . If x is not Pareto optimal, then there exists a symmetric Pareto

optimal allocation y which dominates x. Since x is individually rational, y is also indi-

vidually rational and therefore it is an element of the set V .

Hence, in order to prove that V is externally stable, it suffices to prove that every individ-

ually rational, non-symmetric, Pareto optimal allocation is dominated by some element

in V .

4 Main result

This section contains the main result of the paper, namely that the set V is stable.

To preserve clearness and for the sake of comparison with the economic model which will

be analyzed in the next section, we consider internal and external stability separately.

Theorem 4.1 Let the economy E satisfy assumptions (2.1),(2.4),(2.6). Then, the set:

V = {x ∈ I : x is symmetric and Pareto optimal }

is internally stable.

Proof. By way of contradiction, let us assume that V is not internally stable. Then, there

exist two allocations x and y in V and a nonempty coalition S such that:

Ui(xi) > Ui(yi), ∀i ∈ S (1)

and ∑
i∈S

xi ≤
∑
i∈S

ei. (2)

By (1), it follows that xi � 0,∀i ∈ S; then, by (2):∑
i∈S

ei � 0

By Assumption (2.6), this implies that S ∩ Tj 6= ∅, for every 1 ≤ j ≤ m. Since x and y

are symmetric, then Ui(xi) > Ui(yi),∀i ∈ N , and this contradicts the Pareto optimality

of y.

Then, the set V is internally stable. �

Moving to the external stability, the following result holds valid.
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Theorem 4.2 Let the economy E satisfy assumptions (2.1)–(2.5), (2.8) and assume that:

|T1| = |T2| = . . . = |Tm|

Then, the set:

V = {x ∈ I : x is symmetric and Pareto optimal }

is externally stable.

Proof. Let x ∈ I \ V . By the previous remark, we may assume that x is an individually

rational non symmetric Pareto optimal allocation for the economy E.

We have to find an allocation z which belong to V and dominates x.

Consider the average consumption for each type, that is:

yj =
1

|Tj|
∑
k∈Tj

xk , j = 1, . . . ,m.

Since x is assumed to be non-symmetric, there exist an agents’ type j ∈ {1, . . . ,m} and

an agent k ∈ Tj such that:

Uj(yj) 6= Uj(xk)

Without loss of generality, we can assume that j = 1. Then, by the previous Lemma 3.3,

it holds that there exists i1 ∈ T1 such that:

U1(y1) > U1(xi1)

and by the quasi concavity, for every 2 ≤ j ≤ m, there exists ij ∈ Tj such that:

Uj(yj) ≥ Uj(xij)

By the continuity assumption, we can pick some 0 < ε < 1 such that:

U1(y1 − ε1) > U1(xi1) (3)

where 1 denotes the unit vector in Rl·s
+ .

Let us consider the allocation z for the economy E defined by:

zi(ω) =


y1(ω)− ε1, if i ∈ T1

yj(ω) +
ε

m− 1
1, if i ∈ Tj , j 6= 1

The allocation z is both physically and informationally feasible.

Let us consider a coalition S formed by the agent ij for each possible type Tj, j = 1, . . . ,m;

that is:

S = {i1, . . . , im}
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It holds that the allocation z is feasible for the coalition S; in fact, for every ω ∈ Ω:

m∑
j=1

zj(ω) =
m∑

j=1

yj(ω) =
1

|Tj|

n∑
i=1

xi(ω) =
1

|Tj|

n∑
i=1

ei(ω) =
m∑

j=1

ei(ω)

Since {j ∈ {1, . . . ,m} : S ∩ Tj 6= ∅} = {1, . . . ,m}, it holds that ΓS
ij

= ΓN
ij

; hence, the

allocation z is also informationally feasible for the coalition S.

Moreover, the monotonicity assumption (2.1) and condition (3) imply that Uj(zj) > Uj(xj)

for every j ∈ {1, . . . ,m}, that is z is an allocation for the economy E which dominates

the allocation x via the coalition S.

If z is Pareto optimal, then z ∈ V and the proof is finished.

If z is not Pareto optimal, as a consequence of Lemma 3.4, we can find an individually

rational, symmetric, Pareto optimal allocation which dominates z and this concludes the

proof. �

As a consequence of the previous theorems, we can state what follows.

Corollary 4.1 Let the economy E satisfy assumptions (2.1)–(2.6), (2.8) and assume

that:

|T1| = |T2| = . . . = |Tm|

Then, the set:

V = {x ∈ I : x is symmetric and Pareto optimal }

is a von Neumann-Morgenstern stable set. Moreover, V is the unique stable set of sym-

metric allocations.

Remark 4.1 As the proof of Theorem 4.1 clearly shows, the glove market and the bound-

ary aversion assumptions are essential to prove internal stability of the set V . Their com-

bination permits to prove that whenever a coalition is able to block, then it must contain

each type of trader. This conclusion, due to the assumption (2.8), implies also that only

the final information that traders receive in the grand coalition matters for the set V to

be stable. As a further comment, we remark that the same conclusion of Theorem 4.1

(and therefore of Corollary 4.1) could be reached replacing the glove market structure

assumption with a suitable restriction on coalition formation. Assuming that the only

possible coalitions in the society are those containing each type of traders, the set V is

still internally stable. Restriction on coalition formation are traditional in the study of

the core (see for example Hervés-Beloso and Moreno-Garćıa, 2001), and especially moti-

vated in economies with asymmetric information where the lack of communication among
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traders may avoid the formation of some coalitions. The boundary aversion assumption

however cannot be removed. It is also essential for the validity of Theorem 4.2.

5 The model with expected utilities

In this section we want to analyze a model which differs from the one analyzed so far in

that the utility functions are state dependent.

In this model, each trader i is characterized by a strictly positive probability measure qi

on Ω, representing his prior beliefs concerning states of nature and by a state-contingent

cardinal utility function representing his preferences:

ui : Ω× Rl
+ −→ R

For any x : Ω −→ Rl
+, consumer i’s ex-ante expected utility is denoted by hi; it is defined

by:

hi(x) =
∑
ω∈Ω

qi(ω)ui(ω, x(ω))

Notice that in general this model is a special case of the one described in the previous

sections in the sense that one can move from this one to the previous one by taking the

expectations of the state-dependent utility functions.

In spite of this, it is not possible to argue straightforwardly that, under the same as-

sumptions used in the previous sections, the same results hold valid for this model. The

crucial point is that not all the assumptions stated for the state-dependent utility func-

tions translate into the corresponding ones for expected utility functions hi. This point

is analyzed in section 5.2.

5.1 A negative result

We want to show that, in a model with state-contingent cardinal utility functions and

expectations, the set:

V = {x ∈ I : x is symmetric and Pareto optimal}

is not stable à la von Neumann–Morgenstern. In particular, we provide an example which

shows that it is not externally stable.

To this end, we need to find an allocation x ∈ I \ V which is not dominated by any

allocation y ∈ V .
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The allocation defined in the Example 11, page 408 in Maus (2004) serves this purpose.

Let us analyze such example.

Consider an economy with three different types of agents (denoted by 1, 2 and 3), two

agents of each type, three states of nature (denoted by a, b and c) and one good in each

state. Each type has a state-dependent utility function specified as follows:

u1(a, x) = 3x ; u1(b, x) = 3x ; u1(c, x) = 30x.

u2(a, x) = 3x ; u2(b, x) = 30x ; u2(c, x) = 3x.

u3(a, x) = 30x ; u3(b, x) = 3x ; u3(c, x) = 3x.

All agents assign equal prior probability to each state of nature. The agents’ endowment

and their initial information are displayed below:

Information Endowment

Type Πi a b c

1 {{a,b},{c}} 1 1 0

2 {{a,c},{b}} 1 0 1

3 {{b,c},{a}} 1 1 1

Denote by ij (i = 1, 2, 3 and j = 1, 2) the j-th agent of type i and consider the allocation

x defined as follows:

Agent State: a b c

11 0 0 2

12 0 0 2

21 0 2
10

0

22 0 38
10

0

31 3 0 0

32 3 0 0

It belongs to the private core of the economy E and, as a consequence, it is both individ-

ually rational and weakly Pareto optimal. But it is not symmetric. Therefore, x ∈ I \ V .

The allocation x cannot be dominated by any y via a coalition S because this would

contradict the fact that x is a private core allocation for the economy E.

This is enough to conclude that V is not externally stable and, hence, it is not a von

Neumann–Morgenstern stable set.

Note that, in the previous example, Assumption (2.6) is not satisfied. However, as shown

in the previous section, this assumption is used only in order to prove that the set V is
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internally stable. The example we have just provided shows that Theorem 4.2 does not

hold. It is an open question whether an extension of Theorem 4.1 concerning the inter-

nal stability can be obtained for the model with expectations. The proof of the internal

stability implies however a difficulty related to the Assumption (2.4) as remarked in the

next section.

5.2 A remark about the boundary aversion assumption

We want to compare a model with state dependent utility functions and a model without

expectations from the point of view of Assumption (2.4).

We will denote by ui and hi the state-contingent cardinal utility function and the ex-ante

expected utility function, respectively.

Assume that the utility functions ui are such that everything in the interior is preferred

to anything on the boundary of Rl·s
+ .

We show that this assumption does not translate into the corresponding one for the

expected utility functions hi.

To this end, consider a framework with two equally probable states of nature (denoted by

a and b) and two commodities. The utility functions in each state are given by:

u(a, (x1, x2)) = x1x2 u(b, (x1, x2)) = 2x
1
2
1 x

1
2
2

Let us consider the bundles of commodities x and y given by:

x(a) = (1/2, 1/2) x(b) = (1/2, 1/2)

y(a) = (0, 1) y(b) = (1, 1)

It holds that:

h(x) = 5/8 and h(y) = 1

In conclusion, the state–dependent utility functions u are such that everything in the

interior is preferred to anything on the boundary while the expected utility function h

does not inherit the same property.

5.3 Some positive cases for expected utility models

A specific case belonging to the expected utility realm where the boundary aversion as-

sumption is satisfied is represented by Cobb–Douglas subjective expected utility prefer-

ences.
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Precisely, the axiomatic foundation of Cobb–Douglas preferences in Faro (2013) provides

an (expected) utility function U which has all the properties required for the set V to be

stable.

Consider the case of a finite number n of states of nature and just one commodity. Sup-

pose that each trader i has a preference relation � on Rn
++.

We list some relevant properties for the preference relation � which are needed for the

axiomatization:

• � is homothetic if for all x, y ∈ Rn
++ and k > 0 it holds that:

x � y ⇒ kx � ky

• � is strongly homothetic if for all x, y, z ∈ Rn
++ it holds that:

x � y ⇒ xz � yz9.

• � is log-convex if for all x, y,∈ Rn
++ and k ∈ (0, 1) it holds that:

x � y ⇒ xky1−k � y.

• � is power invariant if for all x, y ∈ Rn
++ and k > 0 it holds that:

x � y ⇒ xk � yk

• � is indifference invariant if for all x, y ∈ Rn
++ such that x � y, if x′ ∼ x and y′ ∼ y

then x′ � y and x � y′;

As a consequence of his main Theorem 4, Faro (2013) provided the following result:

Proposition 5.1 The following conditions are equivalent:

1. A binary relation � is non-trivial, reflexive, strictly monotone, locally lower contin-

uous, indifference invariant and strongly homothetic;

2. A binary relation � is non-trivial, strictly monotone, continuous, power invariant

and strongly homothetic;

3. A binary relation � is a Cobb–Douglas Subjective Expected utility preference, that

is there exists a strictly positive probability q = (q1, . . . , qn) such that:

x � y ⇔
n∏

k=1

xqk

k ≥
n∏

k=1

yqk

k

9xz denotes the coordinatewise product vector
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where monotonicity, strict monotonicity and continuity properties are defined in a usual

way. The representation U(x) =
∏n

k=1 xqk

k can be extended to the positive orthant Rn
+ by

defining:

U(x) = 0 for all x ∈ ∂(Rn
+)

leading to an utility function U that clearly satisfies all the assumptions needed for the

set V to be stable.

A positive conclusion holds true also for the so called Cobb–Douglas Maxmin Subjective

Expected utility preferences due to the following result in Faro (2013).

Proposition 5.2 The following conditions are equivalent:

1. A binary relation � is a non-trivial, continuous, strictly monotone, log-convex,

power invariant and homothetic weak order if and only if there exists a unique

non-empty closed and convex set C of strictly positive probability measures such

that:

x � y ⇔ minp∈C

n∏
k=1

xpk

k ≥ minp∈C

n∏
k=1

yqk

k

As in the previous case, the representation can be extended to the positive orthant Rn
+.

6 Coalitional incentive compatibility of vNM stable

sets

In this section we raise the question whether the allocations contained in the set V are

incentive compatible. This issue is much relevant because incentive compatibility ensures

somehow a form of stability: if a state contingent contract can be manipulated by an agent

which does not truthfully reveals his information, then such a contract is not enforceable.

In order to deal with the incentive compatibility, we need to introduce the ex-post utility

functions.

For every trader i ∈ N , the ex-post utility function ui is given by:

ui : Ω× Rl
+ → R

We assume that ui(·, x) is Γi
N -measurable, for every i ∈ N .

The following axiom, which is assumed to hold valid throughout the rest of the paper,

relates ex-ante and ex-post utility functions; in line with the paper by de Castro, Pesce,

and Yannelis ( 2011), we call it Ex-ante/Ex-post Consistency Axiom.
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Ex-ante/Ex-post Consistency Axiom

For every i ∈ N , for every ω̄ ∈ Ω and for every x, y, z : Ω → Rl
+:

ui(ω̄, x(ω̄)) > ui(ω̄, y(ω̄)) ⇒ Ui(x(ω̄), zΩ\{ω̄}) > Ui(y(ω̄), zΩ\{ω̄})

where (x(ω̄), zΩ\{ω̄}) denotes the function that is valued x(ω̄) if ω = ω̄ and z(ω) otherwise.

We adopt the following definition of incentive compatibility:

Definition 6.1 An allocation x : Ω → (Rl
+)n is weak coalitionally incentive compatible

if the following does not hold:

There exist a coalition S ⊆ N and two states of nature a, b ∈ Ω such that:

i) Γi
S(a) ∈

∧
i∈S Γi

S,∀i ∈ S;

ii) a ∈ Γj
N(b),∀j ∈ N \ S;

iii) ui(a, ei(a) + xi(b)− ei(b)) > ui(a, xi(a)),∀i ∈ S.

Note that, if the information sharing rule Γ is bounded and such that Γi
N = Γj

N for every

i, j ∈ N 10, then conditions i) and ii) cannot be met simultaneously; as a consequence,

every allocation is weak coalitionally incentive compatible (see also Koutsougeras and

Yannelis, 1993).

Proposition 6.1 Suppose that the information sharing rule Γ is bounded. Then, every

Pareto optimal allocation is weak coalitionally incentive compatible.

Proof. Let x be a Pareto optimal allocation. By way of contradiction, let us suppose

that x is not weak coalitionally incentive compatible. Hence, by definition, there exist a

coalition S ⊆ N and two states of nature a, b ∈ Ω such that:

i) Γi
S(a) ∈

∧
i∈S Γi

S,∀i ∈ S;

ii) a ∈ Γj
N(b),∀j ∈ N \ S;

iii) ui(a, ei(a) + xi(b)− ei(b)) > ui(a, xi(a)),∀i ∈ S.

10This holds, for example, for the fine information sharing rule Γ defined by Γi
S =

∨
i∈S Πi, for every

i ∈ S, for every S ⊆ N .
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By ii), it follows that:

a ∈
⋂
j /∈S

Γj
N(b)

⋂
j /∈S Γj

N(b) is a block of the partition
∨

j /∈S Γj
N .

Denoting by zi the net-trade of agent i, that is, zi(·) = xi(·) − ei(·), it holds then true

that: ∑
i/∈S

zi(·) is
∨
i/∈S

Γi
N − measurable

and thus: ∑
i/∈S

zi(a) =
∑
i/∈S

zi(b)

By the physical feasibility of the allocation x, it follows that, for all ω ∈ Ω:∑
i∈N

zi(ω) =
∑
i∈S

zi(ω) +
∑
i/∈S

zi(ω) = 0

and hence: ∑
i∈S

zi(a) = −
∑
i/∈S

zi(a)

and: ∑
i∈S

zi(b) = −
∑
i/∈S

zi(b)

Then: ∑
i∈S

zi(a) = −
∑
i/∈S

zi(a) = −
∑
i/∈S

zi(b) =
∑
i∈S

zi(b)

Let us define, for every i ∈ S:

z∗i (ω) =


zi(ω), if ω /∈ Γi

N(a);

zi(b), if ω ∈ Γi
N(a).

z∗i is Γi
N -measurable, for every i ∈ S. Moreover, for every ω ∈ Ω it holds that:∑

i∈S

z∗i (ω) +
∑
i/∈S

zi(ω) = 0

Indeed, if ω /∈ Γi
N(a):∑

i∈S

z∗i (ω) +
∑
i/∈S

zi(ω) =
∑
i∈S

zi(ω) +
∑
i/∈S

zi(ω) = 0
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If ω ∈ Γi
N(a):∑

i∈S

z∗i (ω)+
∑
i/∈S

zi(ω) =
∑
i∈S

zi(b)+
∑
i/∈S

zi(ω) =
∑
i∈S

zi(b)−
∑
i∈S

zi(ω) =
∑
i∈S

zi(b)−
∑
i∈S

zi(a) = 0

Let us consider the allocation x∗ defined as follows; for every i ∈ N :

x∗
i =


ei + z∗i , if i ∈ S;

ei + zi, if i /∈ S.

It is physically feasible; in fact, for every ω ∈ Ω:∑
i∈N

x∗
i (ω) =

∑
i∈S

[ei(ω) + z∗i (ω)] +
∑
i/∈S

[ei(ω) + zi(ω)] =
∑
i∈N

ei(ω)

Moreover, it is also informationally feasible; indeed, since Γ is bounded, both ei and z∗i

are Γi
N -measurable.

If i ∈ S and ω ∈ Γi
N(a), it holds that:

ui(ω, x∗
i (ω)) = ui(ω, ei(ω) + z∗i (ω)) = ui(ω, ei(ω) + zi(b)) =

(since ui(ω, ·) = ui(a, ·) for all ω ∈ Γi
N(a))

= ui(a, ei(a) + xi(b)− ei(b)) > ui(a, xi(a)) = ui(ω, xi(ω)).

where the inequality follows by condition iii) and the last equality is a joint consequence

of the measurability of the allocation x and the function ui(·, x).

On the contrary, if i ∈ S and ω /∈ Γi
N(a), it holds that:

ui(ω, x∗
i (ω)) = ui(ω, xi(ω)).

By the ex-ante/Ex-post Consistency Axiom, it then follows that for every i ∈ S:

Ui(x
∗
i ) > Ui(xi).

and this contradicts the Pareto-optimality of the allocation x.

Hence, x is weak coalitionally incentive compatible. �

7 A weaker result

It is the aim of this section to prove a weaker result about the stability of the set V in

order to include the model with expected utility functions. As observed in section 5.2, the
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main reason why the set V of symmetric Pareto optimal allocations may not be stable in

the expected utility model is that the expectation does not inherit from state dependent

utilities the boundary aversion property.

We propose a weaker notion of dominance according to which agents take part in a

coalition using only same shares of their endowments. Assuming that agents have a strictly

positive initial endowments in each state of nature and strict concave utility functions, we

are able to show that there is a unique stable set made by symmetric allocations. This

set consists of all allocations which are individually rational, symmetric and cannot be

dominated by the whole society when agents use only partially the initial resources.

Precisely, we shall assume throughout the main results of this section that the physical

feasibility of allocations is satisfied with free disposal and the following two conditions

substitute for (2.3) and (2.5), respectively:

(2.3)
′
For every i ∈ N, Ui is strictly concave.

(2.5)
′
ei(ω) � 0,∀ω ∈ Ω, ,∀i ∈ N .

Moreover, we shall dispense with assumptions (2.4) and (2.6) and requires the following

assumption on the information sharing rule:

(2.9) Given two coalitions S, S
′ ⊆ N such that S

′ ⊆ S, it holds that:

Γi(S) � Γi(S
′
) for every i ∈ S

′
.

The intuition behind this assumption is that the information of each trader cannot get

worse when the coalition he takes part increases its size. It holds for the private and the

fine information sharing rule, while it is not satisfied by the coarse. Of course assumption

(2.9) implies that the information sharing rule is also bounded.

For each function γ : N → [0, 1], denote by Sγ the support of γ, that is, the set of

traders i ∈ N such that γ(i) = γi 6= 0. Based on this, a weaker notion of dominance over

allocations can be provided.

Definition 7.1 (Weak Dominance) Let x and y be two allocations and γ : N → [0, 1]

be such that Sγ 6= ∅. We say that x ex-ante w-dominates y via γ if:

i) xi is Γi(Sγ) - measurable, for every i ∈ Sγ;

ii) Ui(xi) > Ui(yi),∀ i ∈ Sγ;
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iii)
∑
i∈N

γixi ≤
∑
i∈N

γiei.

Moreover, we say that x weakly dominates y, denoted by x �w y, if there exists γ such

that x ex-ante weakly dominates y via γ.

After rewriting condition iii) as
∑
i∈Sγ

γixi ≤
∑
i∈Sγ

γiei, i) and iii) can be interpreted, respec-

tively, as informational and physical feasibility of x with respect to γ. The coalition γ is

called an Aubin or generalized coalition and interpreted as a coalition in which a trader

may employ only the share γi of his resources. Of course ordinary coalitions, which can be

identified with their characteristic functions, represent a particular case. The weak dom-

inance relation is also referred as the Aubin dominance. The corresponding core CΓ
A(E)

is called the Aubin core and has been studied in the case of private information sharing

rule in Graziano and Meo (2005).

Let Ṽ denote the set of all individually rational symmetric allocations of the economy

E which cannot be weakly dominated by another allocation via the whole coalition of

traders; that is, for an allocation x ∈ Ṽ there does not exists γ with full support (i.e.

Sγ = N) and y such that conditions i), ii) and iii) in Definition 7.1 are satisfied. We

proceed to show that the set Ṽ is stable à la Von Neumann and Morgenstern with respect

to the weak dominance relation just defined. In what follows, we shall denote by G the

set

G = {γ : N → [0, 1] : Sγ = N}.

We start providing a straightforward extension of lemma 3.4.

Lemma 7.1 Under the assumption (2.3), every individually rational symmetric alloca-

tion which is not in Ṽ can be weakly dominated by an allocation of Ṽ .

Proof. Let z be an allocation which is individually rational symmetric and not in Ṽ .

Define the sets:

B = {x = (x1, . . . , xn) : x is informationally and physically feasible with respect to γ ∈ G},

B = {x ∈ B : x is individually rational, symmetric and Ui(xi) ≥ Ui(zi),∀i ∈ N}

and the function Ũ as:

Ũ(x1, . . . , xn) =
∑
i∈N

Ui(xi)

The set B is compact and non empty (since z is not in Ṽ ) and the function Ũ is continuous

on B.
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Moreover, Ũ has a maximal element on the set B. Let us denote it by g. It holds that g

is individually rational, symmetric and Ui(gi) ≥ Ui(zi),∀i ∈ N .

We want to prove that g belongs to Ṽ .

By way of contradiction, let us suppose that g is not in Ṽ . Then, there exists a function

γ : N → [0, 1] with full support and an allocation h such that:

i) hi is Γi(Sγ) - measurable, for every i ∈ Sγ;

ii) Ui(hi) > Ui(gi),∀ i ∈ Sγ;

iii)
∑

i∈N γihi ≤
∑

i∈N γiei.

Let us rename γj
i and hj

i the elements relative to type j in the feasibility condition iii)

and denote by γj the sum (
∑

i∈Tj
γj

i ) for each type j. Then by the concavity assumption

we have that:

Ui(hj) > Ui(gj),∀ i ∈ Tj,∀ j = 1 . . . m

where:

hj = γj
∑
i∈Tj

γj
ih

j
i

and

γj
i =

γj
i

γj .

The allocation h is symmetric and it is individually rational since:

Ui(hi) ≥ Ui(gi),∀i ∈ N.

Moreover, it belongs to B.

But, it holds that:

Ũ(h) =
∑
i∈N

Ui(hi) >
∑
i∈N

Ui(gi) = Ũ(g)

and this contradicts the fact that g is a maximal element for the function Ũ on the set B.

Theorem 7.1 Let the economy E satisfy the assumptions (2.1),(2.2), (2.3)
′
, (2.5)

′
,

(2.9). Then, the set Ṽ is internally stable.

Proof. By way of contradiction, let us assume that Ṽ is not internally stable. Then, there

exist two allocations x and y in Ṽ and γ : I → [0, 1] such that:
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i) yi is Γi(Sγ) - measurable, for every i ∈ Sγ;

ii) Ui(yi) > Ui(xi),∀ i ∈ Sγ;

iii)
∑
i∈N

γiyi ≤
∑
i∈N

γiei.

Since εyi + (1 − ε)ei tends to yi as ε tends to 1, by continuity assumption, we can find

ε ∈]0, 1[ with Ui(εyi + (1− ε)ei) > Ui(xi) for all i ∈ Sγ.

The inequality
∑
i∈Sγ

γiyi ≤
∑
i∈Sγ

γiei can be written as
∑
i∈Sγ

γi

ε
(εyi) ≤

∑
i∈Sγ

γi

ε
(εei) and,

consequently, as
∑
i∈Sγ

γi

ε
[εyi + (1− ε)ei] ≤

∑
i∈Sγ

γi

ε
ei, where εyi + (1 − ε)ei is strictly

positive and Γi(Sγ)-measurable.

Now, we prove that w =
∑
i∈N

γi(ei − yi) is strictly positive. By the arguments above, we

can assume in iii) that yi is strictly positive. It is then enough to take a positive ε with

Ui(εyi) > Ui(xi) for all i ∈ Sγ to have that

∑
i∈Sγ

γiyi −
∑
i∈Sγ

γi(εyi) =
∑
i∈Sγ

γiyi(1− ε)

is strictly positive and therefore that even∑
i∈Sγ

γiyi −
∑
i∈Sγ

γi(εyi) +
∑
i∈N

γi(ei − yi) =
∑
i∈N

γi(ei − εyi)

is strictly positive.

Assume that γ /∈ G. Then for each i ∈ N \ Sγ monotonicity ensures that Ui(xi + ei) >

U(xi). Choose λ > 0 with w−λ
∑

i/∈Sγ
xi ≥ 0. Now modify γ and y replacing, for i /∈ Sγ,

γi by λ and yi by xi + ei. The modified γ belongs to G and y weakly dominates x since

we have ∑
i∈Sγ

γiyi +
∑
i/∈Sγ

λ(xi + ei) = −w +
∑
i∈Sγ

γiei +
∑
i/∈Sγ

λ(xi + ei) =

∑
i∈Sγ

γiei − w + (λ
∑
i/∈Sγ

xi) +
∑
i/∈Sγ

λei ≤
∑
i∈Sγ

γiei +
∑
i/∈Sγ

λei. �

Theorem 7.2 Let the economy E satisfy assumptions (2.1), (2.2), (2.3)′, (2.5)′, (2.8)

and assume that:

|T1| = |T2| = . . . = |Tm|

Then, the set Ṽ is externally stable.
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Proof. Let x ∈ I \ Ṽ . By the previous Lemma, we may assume that x is an individually

rational non symmetric allocation for the economy E which cannot be blocked by γ ∈ G.

Consider the average consumption for each type, that is:

yj =
1

|Tj|
∑
k∈Tj

xk , j = 1, . . . ,m.

Since x is assumed to be non-symmetric, there exist an agents’ type j ∈ {1, . . . ,m} and

an agent k ∈ Tj such that:

Uj(yj) 6= Uj(xk)

Without loss of generality, we can assume that j = 1. Then, by the strict concavity

assumption, it holds that there exists i1 ∈ T1 such that:

U1(y1) > U1(xi1)

and , for every 2 ≤ j ≤ m, there exists ij ∈ Tj such that:

Uj(yj) ≥ Uj(xij)

By the continuity assumption, there exists ε > 0 such that U1(εy1) > U1(xi1).

Then from the inequality

m∑
j=1

yj ≤
m∑

j=1

ej

we derive
m∑

j=2

yj +
1

ε
[εy1 + (1− ε)e1] ≤

m∑
j=2

ej +
1

ε
e1

where ỹ1 = [εy1 + (1− ε)e1] is strictly positive and U1(ỹ1) > U1(xi1).

Again by the continuity assumption, we can pick some 0 < δ < 1 such that:

U1(δỹ1) > U1(xi1). (4)

Let us consider the allocation z for the economy E defined by:

zi(ω) =


δỹ1(ω), if i ∈ T1

yj(ω) + (1−δ)
ε(m−1)

ỹ1, if i ∈ Tj , j 6= 1

The allocation z is symmetric, informationally feasible and dominates x with full support.

Since it is also individually rational, if z ∈ Ṽ the proof is finished.
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If z /∈ Ṽ , then there exists by previous Lemma, an allocation h in Ṽ which dominates z

with full support. �

As a consequence of the previous theorems, we can state what follows.

Corollary 7.1 Let the economy E satisfy assumptions (2.1),(2.2), (2.3)
′
, (2.5)

′
, (2.8),

(2.9) and assume that:

|T1| = |T2| = . . . = |Tm|

Then, the set: Ṽ is a von Neumann-Morgenstern stable set. Moreover, Ṽ is the unique

stable set of symmetric allocations.

Remark 7.1 We remark that the free disposal assumption made in this section does not

guarantee that the allocations in the set Ṽ are weakly coalitional incentive compatible.

Moreover, under the assumption of the present section, the Aubin core CΓ
A(E) is made by

symmetric allocations since it is a subset of the stable set Ṽ . The study of Aubin core

and stable sets in the case of games with generalized coalitions is provided by Muto and

al. (2006).
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