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1 Introduction

The modeling of expectations as drivers of forward-looking behavior of decisionmakers has always been

a key issue in macroeconomic analysis. Since Lucas (1976), dynamic stochastic models under rational

expectations (RE) have emerged as the reference framework to address policy-related and other questions

of interest in macroeconomics.

The RE benchmark has been severely criticized on the ground of its implausibly strong implications,

and other theories of expectations have emerged in the literature, which attempt to relax the RE postulate

that forecasters’ probability beliefs coincide with the model-implied ones1. Recently, Woodford (2010) has

explored the implications for monetary policy design of the assumption of near-rational expectations, i.e.

of subjective beliefs that are distorted away from the predictions of the underlying (forecast) model via

a change of measure process which fulfills some regularity conditions. Essentially, under near-rationality

the alternative probability measure driving beliefs formation is absolutely continuous with respect to

the model-consistent one, and the relative discrepancy between subjective and objective conditional

probabilities is non-zero almost surely and can be sustained in equilibrium.

From a modeling perspective, Woodford (2010) introduces distorted beliefs in an already approximated

linear-quadratic environment under RE. This assumption has been criticized by Benigno and Paciello

(2010), on the ground that distorted beliefs would not appear in linearly approximated equilibrium

relationships (the AS equation) of an otherwise standard New Keynesian model, as they would rather

vanish within the approximation process. The main goal of the present paper is to shed some light on

this debate by exploiting a perturbation approach to solution of near-rational expectations models in

the sense of Woodford (2010). Specifically, our research question is whether distorted beliefs matter in

first-order approximations to the policy functions. In principle, the answer seems to depend on whether

the martingale representation of the distortion in beliefs is a function of the economy’s fundamentals

(i.e. exogenous states) or is rather state-independent. Perhaps surprisingly, we show that distorted

beliefs have the potential to induce indeterminate solutions even when they depend on fundamentals

solely, as in Woodford (2010). In fact, history-dependent distortions in beliefs may involve stochastic

influence factors (in the form of sunspot information) or rather introduce coefficient instability in first-

order approximations while also increasing the degree of backward dependence. Overall, our results

do not confirm the conjecture of Benigno and Paciello (2010) that linearly perturbed solutions are not

sensitive to the near-rationality hypothesis.

The paper is organized as follows. The second section presents the general class of dynamic, discrete-

1This literature is too broad to be fully referenced here. For a survey on the learning approach vis-à-vis RE, see Evans
and Honkapojha (2001).
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time models we are interested in. In section 3 and 4 we derive first-order approximations to the policy

functions for the models at issue, and discuss existence and uniqueness of solutions. The last section

offers some concluding remarks.

2 The class of models

Let the following nonlinear stochastic vector difference equation:

Êtf(yt+1, yt, xt+1, xt) = 0 (1)

describe the equilibrium conditions of a given dynamic stochastic general equilibrium (DSGE) model,

where expectations Êt are not necessarily rational. Here, the nx × 1 vector xt collects predetermined (or

state) variables, while the ny × 1 vector yt denotes nonpredetermined (or control) variables. The initial

conditions x0 are given.

As in Schmitt-Grohé and Uribe (2004), we partition the state vector xt into endogenous predetermined

state variables x1t and exogenous state variables x2t , with the latter following the law of motion:

x2t+1 = Λx2t + σεt+1 (2)

where it is assumed, without loss of generality, that both x2t and εt are nε× 1 vectors. We also posit that

the innovations εt are independently and identically distributed on a bounded support, with mean zero

and variance/covariance matrix I, and that all the roots of Λ lie within the unit circle. The parameter

σ ∈ <+ is used to scale the amount of uncertainty stemming from the structural shocks εt.

Following Hansen and Sargent (2005) and Woodford (2010), distorted beliefs are constructed on

the basis of martingale representations. Let (Ω,F , {Ft} ,P) be a properly filtered probability space.

Subjective expectations, denoted with Êt := Ê(· | Ft), are associated with a distorted probability measure

P̂ which is (i) absolutely continuous with respect to the objective measure P over any finite horizon,

and (ii) such that (distorted) conditional expectations of any Ft-measurable (square integrable) random

variable wt are expressed as:

Ê(wt+j | Ft) = E

(
Mt+j

Mt
wt+j | Ft

)
∀j ≥ 0 (3)

where Et is the expectations operator associated with the true (model-implied) probability measure P,

and {Mt}∞t=0 - with M0 = 1 - is a non-negative Ft-measurable martingale. Define the scalar process
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mt+1 =Mt+1/Mt if Mt > 0 and mt+1 = 1 if Mt = 02, then it holds:

mt ≥ 0 a.s., Et(mt+1) = 1 ∀t (4)

We also require that mt be bounded from above3.

From a modelling perspective, system (1) may result from optimal decisionmaking on the basis of inter-

nally consistent beliefs which satisfy the aforementioned regularity conditions (e.g. Adam and Woodford,

2012). Remarkably, the departure from the RE setting only implies that the otherwise standard structure

of preferences (objective functions) of decisionmakers, which generate the equilibrium temporary map (1),

are constructed on a distorted probability measure via the martingale representation. This approach is in

line with the extant theory of approximately correct beliefs (e.g. Woodford, 2010), where a degree of cor-

respondence between distorted and model-implied probabilities is specified, without explicitly modeling

the expectations formation process. For the purpose of our analysis, we need not make any assumptions

on the relative distance between conditional probabilities, as we only require that this discrepancy be con-

sistent with the equilibrium system (1). In particular, we do not assume that preferences (of the model’s

agents and/or of policymakers) also consist of some (additive) relative entropy measure, reflecting the

agents’ distrust in the model-implied probability distribution or rather the policymakers’ concerns for

robustness against model misspecification (e.g. Hansen and Sargent, 2005; Woodford, 2010).

One main implication of the aforementioned characterization of beliefs distortion is that the class of

models (1) can be equivalently written as a nonlinear stochastic system:

Etz(yt+1, yt, xt+1, xt,mt+1,mt) = 0 (5)

where the function z maps <2ny+2nx × <+ × <+ into <n+1, with n = ny + nx. The (n+ 1)-th equation

corresponds to the constraint (4).

Time-invariant, analytic solutions to (5) are interpreted as a function of the state vector xt, the

distortion factor mt and of the scaling parameter σ, i.e.:

yt = g(xt,mt, σ) (6)

and

xt+1 = h(xt,mt, σ) + ησεt+1 (7)

2See Woodford (2010) and Adam and Woodford (2012) for further discussion.
3This implies that the distortion factor is restricted to a bounded support. See Kim et al. (2008) for a discussion of the

assumptions on the distributional properties of forcing variables in equilibrium systems like (1).
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where the matrix η := [0, I] is of order nx × nε. The goal is to compute a local approximation of the

functions g and h around the nonstochastic steady state (ȳ, x̄, m̄) of the equilibrium system (5), implicitly

defined by:

z(ȳ, ȳ, x̄, x̄, m̄, m̄) = 0, σ = 0 (8)

and assuming that there exists an arbitrarily small neighborhood of (ȳ, x̄, m̄) for which the solution

functions (g, h) are unique and on which (z, g, h) are sufficiently smooth.

For the purpose of the analysis, we consider two benchmark cases for the distortion factor mt: first,

it is assumed independent of the process εt at all times; second, it is assumed a function of the history

st = σ(xt, xt−1, . . .) of state variables to that point, i.e. mt = m(st). Remarkably, the amount of

uncertainty in the model economy is not fully controlled by the scalar σ: even with σ = 0, there might

still be uncertainty stemming from the sequence {mt}. The following Lemma provides some fairly intuitive

properties of the nonstochastic steady state (NSSS):

Lemma 1. m̄ = 1 and NSSS vectors (ȳ, x̄) are unaltered with respect to the RE setting, under either way

of specifying the mt process, i.e. ȳ = g(x̄, 1, 0) and x̄ = h(x̄, 1, 0).

3 Independent distortion factor

Let the distortion factor mt be independent of the model’s state, and define

Z := Etz (g (h(x,m, σ) + ησε′,m′, σ) , g(x,m, σ), h(x,m, σ) + ησε′, x,m′,m) (9)

Z = Z(x,m,m′, σ)

where a prime superscript is used to indicate t + 1-dated variables. Evidently, derivatives of Z of any

order satisfy:

Zxkmqm′pσj (x,m,m′, σ) = 0 ∀x,m,m′, σ, k, q, p, j (10)

We are looking for first-order approximations to the (g, h) functions of the form:

g(x,m, σ) = ȳ + gx(x̄, 1, 0)(x− x̄) + gm(x̄, 1, 0)(m− 1) + gσ(x̄, 1, 0)σ (11)

h(x,m, σ) = x̄+ hx(x̄, 1, 0)(x− x̄) + hm(x̄, 1, 0)(m− 1) + hσ(x̄, 1, 0)σ (12)
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The unknown coefficients are identified by virtue of (10), from which it follows that:

Zσ(x̄, 1, 1, 0) = 0, Zx(x̄, 1, 1, 0) = 0, Zm(x̄, 1, 1, 0) = 0 (13)

The following result is straightforward:

Lemma 2. In the first-order approximation, the unknowns (gσ, hσ, gx, hx) are unaltered with respect to

the RE framework.

If the homogenous mapping Zσ(gσ, hσ) is invertible, the unique solution is gσ = hσ = 04. Hence, the

scale of structural uncertainty impinges neither on the the control nor on the state variables. Moreover,

the elements of (gx, hx), which satisfy:

Zx(x̄, 1, 1, 0) = [zy′gx + zx′ ]hx + zygx + zx = 0 (14)

are readily derived using the algorithm presented in Schmitt-Grohé and Uribe (2004).

Finally, to find (gm, hm) we differentiate (9) with respect to m and m′ to obtain the systems:

[zy′gx + zx′ zy][hm gm]T = −zm (15)

and

zy′gm = −zm′ (16)

Let z+y′ denote the Moore-Penrose pseudoinverse of the matrix zy′
5. Provided that zy′z

+
y′zm′ = zm′ ,

the complete set of solutions to the overdetermined system (16) is in the form:

gm = −z+y′zm′ + [I − z+y′zy′ ]ξ (17)

for an arbitrary ny × 1 vector ξ. The solution for gm is unique when rank(zy′) = ny. With this solution

(set) at hand, the (possibly non-unique) elements of hm are obtained from (15)’s upper part6.

Remarkably, from (15) and (16) it follows that the existence of the zero solution hm = gm = 0 requires

both zm and zm′ to be zero vectors. This is never the case, as long as distorted conditional expectations

4See Lan and Meyer-Gohde (2012) for a general discussion of the validity of the nonsingularity assumption.
5The pseudoinverse z+

y′ can be accurately computed via the singular value decomposition zy′ = UDV (Golub and Van

Loan, 1996; Ben-Israel and Greville, 2003). In this case, z+
y′ = UD+V . Software packages such as GAUSS and MATLAB

easily implement singular value decomposition procedures. Notice that, if the n × ny matrix zy′ has full rank, then

z+
y′ = (zT

y′zy′ )
−1zT

y′ .
6Since differentiating the (n+ 1)− th equation (Etmt+1 − 1) of Z delivers a zero line in any partial derivative of z other

than zm′ , we can derive a square n× n system from (15).
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enter the expectational difference equation (5). As a consequence, the first-order approximations to the

decision rules (11) and (12) under near-rationality will typically not coincide with their RE counterparts.

Given the importance of the indeterminacy issue for policy analysis (e.g. Beyer and Farmer, 2008),

this result calls for investigating conditions for (local) existence and uniqueness of stable first-order

approximate solutions.

3.1 Local existence and uniqueness of equilibrium

In order to test for the existence of a solution in the first-order approximation of the non-linear system

(6)-(7) and the distortion process mt we gather the approximation into the system


I 0 0

0 I 0

−gx −gm I




x′ − x̄

m′ − 1

y′ − ȳ

 =


hx hm 0

0 0 0

0 0 0




x− x̄

m− 1

y − ȳ

 (18)

Exploiting the fact that the coefficient matrix on the left-hand side of (18) is invertible and using the

concept of the Schur (or Jordan) decomposition delivers a system of the form

R


x′ − x̄

m′ − 1

y′ − ȳ

 = CR


x− x̄

m− 1

y − ȳ

 ; RHCR =


hx hm 0

0 0 0

gxhx gxhm 0

 (19)

in which the eigenvalues are ordered in ascending order along the main diagonal of the left-hand upper

block of the upper-triangular (block-diagonal) matrix C which is bordered by zero blocks7. Stability in

(19) rests therefore entirely on the eigenvalues of the left-hand upper block of RHCR.

Using the results from Hespeler (2008), the system (19) has a convergent solution if (i) its forward-

looking part, i.e. potentially the entire x1t and mt, can be stabilized, i.e. the expectational errors

of any future periods balance the shock terms associated within this period. In addition, potential

expectational errors in the backward-looking system, i.e. x2t , (iia) need to be a function of the ones in the

forward-looking part or (iib) need to be explained as a function of the structural shocks (or of sunspot

shocks). The characteristics of the gross growth rate mt of the martingale process in the distortion in

expectations formation provide additional limitations for the existence of a solution to system (19). The

memory of the martingale process implies that its gross growth rate does not follow any serial correlation

pattern throughout time. Hence, the associated eigenvalues are zero and the series is a stationary one.

Accordingly, the gross growth rate of the martingale process does not add to instability, but belongs to

7For the case of the Jordan decomposition R−1 would be used instead of the complex conjugate of R.
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the stabilizing subset of the system’s forward-looking part.

By combining this conclusion with the result that the control y depends exclusively on x and m it

becomes apparent that the only potentially unstable part of the system is the forward-looking part of x,

i.e. x1. Consequently, assuming unique solutions for all marginal derivatives included in the coefficient

matrices of (18), according to Blanchard and Kahn (1982) the system has a unique solution, if and only

if the row dimension of the vector x1 is equal to the number of unstable eigenvalues in hx. In addition,

since C remains unchanged by postmultiplication by R−1, the question whether gm and hm are unique

does not impact on the stationarity of (18). On the other hand, for non-unique solutions of gm and hm,

the system delivers a multiplicity of stable solutions depending on the degrees of freedom in the solution

space for gm and hm.

4 History-dependent distortion factor

Let now the gross growth rate mt of the martingale process depend on the state st = (xt, xt−1, . . .)
T , i.e.

mt = m(st). Since mt = m(h(xt−1,m(st−1), σ) + ησε, . . .), system (5) is equivalent to:

Etz̃(yt+1, yt, xt+1, st) = 0

for some composite function z̃. The equivalent for (9) can be stated as

Z̃ := Etz̃ (g (h(x,m(x, s), σ) + ησε′,m(x, st−1), σ) , g(x,m(s), σ), h(x,m(s), σ) + ησε′, s)

= Z̃(s, σ). (20)

Hence, Z̃xk
t−i,σ

j = 0 ∀k, j ∧ i ∈ {0, ..., t} follows for the derivatives of any potential order. This involves

t + 1 conditions for the first-order derivatives Z̃xt−i
(s̄, 0) = 0 ∀i ∈ {0, ..., t} and Z̃σ(s̄, 0) = 0. Using

the arguments of section 3 we can establish that any unique solution requires (gσ hσ) = (0 0), and find

solutions for the unknowns (gx, hx) and (gm, hm) similar to those in section 3. However, none of the

latter vectors can be unique as the second vector is the solution to a mixed quadratic equation, on which

the first one depends.

4.1 Local existence and uniqueness of equilibrium

Building on the previous results we test for the existence of a solution following the methodology of

section 3.1, while reducing the (t− 1)-th order difference equations resulting from the linearization (11),

(12) and the process mt = m(h(xt−1,m(st−1), σ)+ησε, . . .) to first-order difference equations by stacking
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lags in the vector of variables (x,m, y)T into a vector of dimension (t−1)×(dim(x) + dim(m) + dim(y)).

Solving for the vector dω = (dx, dm, dy)T and appending identity equations to the system delivers finally


dωt

...

dω1

 = B


dωt−1

...

dω0

 B =



D Ft−2 . . . F0

I 0 . . . 0

0 I . . . 0

0 . . . I 0


, (21)

where

D =


hx + hmhx 0 0

mx 0 0

(gx + gmgx)(hx + hmmx) + gmmx 0 0


and

Fi =


hmhx 0 0

mxi
0 0

(gx + gmgx)hmmx + gmmx 0 0

 .

Defining ω̃t = (dωt, . . . , dω1)T and using the Schur Decomposition G = VBVH equation (21) changes to

Vω̃t = GVω̃t−1. (22)

Similarly to section 3.1, the stability of the system depends on the eigenvalues of the upper-triangular

matrix G. The structure of G implies that the solution is entirely driven by the complete history of the

state vector st. Since condition (i) applies again, the existence of a stable solution requires that shocks

be compensated through expectational errors in the forward-looking part of the current state, i.e. x1t .

Similarly, for the existence of a convergent solution any error in the backward-looking part of the state x2t

needs to be a function of either the errors in the forward-looking state or the shock terms (condition (iia)

or (iib)). The question whether any existing solution is an unique one depends again on the uniqueness

of the solutions for the elements of B as well as on the condition that the number of unstable eigenvalues

in G matches the dimension of the vector x1t . However, as argued above, the elements of the matrix B

are not unique. Hence, no unique convergent solution exists for system (21).

Remarkably, the distortion in beliefs m(st) does matter in the first-order approximation because the

degrees of freedom within the solution space for the derivatives mxt−i may exert a systematic influence

on the policy functions, and/or m(st) influences the linear representation by determining the length of

the minimal state vector st. In both cases, however, the source of beliefs distortion does not involve

any independent (nonstochastic) information set: when relevant in the dynamic structure of first-order
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solutions, it rather introduces stochastic influence factors (in the form of sunspot information) and/or

increases the degree of backward dependence, altering the stability properties of the underlying model.

5 Conclusion

The paper has analyzed first-order approximate solutions to dynamic stochastic models under the near-

rationality hypothesis, in the sense of Woodford (2010). Using a perturbation approach, we have shown

that distorted beliefs do matter in first-order approximations to the policy functions, even when they

depend on the economy’s fundamentals solely. As a main implication, the near-rationality hypothesis

represents a non-negligible source of equilibrium indeterminacy and also emphasizes the potential for

coefficient instability in the dynamic structure of linear approximations. This finding can be thought of

as providing some theoretical support to the modeling assumptions of Woodford (2010).
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