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Abstract 
 
The great interest into hierarchical optimization problems and the increasing use of game theory in many 
economic or engineering applications led to investigate optimization problems with constraints described by the 
solutions to a quasi-variational inequality (variational problems having constraint sets depending on their own 
solutions, present in many applications as social and economic networks, financial derivative models, 
transportation network congestion and traffic equilibrium). These problems are bilevel problems such that at the 
lower level a parametric quasi-variational inequality is solved (by one or more followers) meanwhile at the upper 
level the leader solves a scalar optimization problem with constraints determined by the solutions set to the lower 
level problem. In this paper, mainly motivated by the use of approximation methods in infinite dimensional spaces 
(penalization, discretization, Moreau-Yosida regularization ...), we are interested in the asymptotic behavior of the 
sequence of the infimal values and of the sequence of the minimum points of the upper level when a general 
scheme of perturbations is considered. Unfortunately, we show that the global convergence of exact values and 
exact solutions of the perturbed bilevel problems cannot generally be achieved. Thus, we introduce suitable 
concepts of regularized optimization problems with quasi-variational inequality constraints and we investigate, in 
Banach spaces, the behavior of the approximate infimal values and of the approximate solutions under and 
without perturbations. 
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1 Introduction

Let (X, τ) be a Hausdorff topological space and let E be a real Banach space with dual E∗. Given
a nonempty closed subset H of X, a nonempty convex, closed subset K of E, an operator A from
H ×K to E∗ and a set-valued map S from H ×K to K with nonempty values, we consider, for
every x ∈ H, the parametric quasi-variational inequality Q(x):

find u ∈ S(x, u) such that 〈A(x, u), u− w〉 ≤ 0 ∀ w ∈ S(x, u). (1)

We denote by Q(x) the set of solutions to the problem Q(x) and we remark that the solution map
Q : x ∈ H → Q(x) is set-valued even under restrictive assumptions [5].
The problem Q(x) is a particular case of a more general parametric problem considered in [18]

find u ∈ K such that h(x, u, w) + φ(x, u, u) ≤ φ(x, u, w) ∀ w ∈ E (2)

where h : H ×K ×K → R and φ : H ×K ×K → R ∪ {+∞} are single-valued maps.
Indeed, it suffices to consider the function φ defined by the indicator function ψ of the set S(x, u)
which takes the value 0 on S(x, u) and the value +∞ otherwise, that is φ(x, u, w) = ψS(x,u)(w),
and the function h defined by h(x, u, w) = 〈A(x, u), u − w〉. Also observe that when h(x, u, w) =
〈A(x, u), u − w〉 and φ(x,w) = ψT (x)(w), where T is a set-valued map from H to K, problem (2)
becomes a parametric variational inequality [14].
The great interest into hierarchical optimization problems and the increasing use of game theory
in many economic or engineering applications [23], [10], [6], [9], [24] led to investigate optimization
problems with constraints described by the solutions to a quasi-variational inequ! ality. Such a
problem, that we denominate Semiquasi-variational Bilevel Problem, consists in finding (xo, uo) ∈
H ×K such that

(SB) uo ∈ Q(xo) and f(xo, uo) = min
x∈H

min
u∈Q(x)

f(x, u)

where f is a function from H ×K to R ∪ {+∞}.
Here, in analogy with the term semivectorial introduced in [4], the term ”semiquasi-variational”
means that at the lower level a parametric quasi-variational inequality is solved (by one or more
followers) meanwhile at the upper level the leader solves a scalar optimization problem with con-
straints determined by the solutions set to the lower level problem.
The set of solutions and the infimal value of the problem (SB) are denoted byM and ϕ respectively,
so we have

(xo, uo) ∈M⇐⇒ uo ∈ Q(xo) and f(xo, uo) = ϕ = min
x∈H

min
u∈Q(x)

f(x, u). (3)

In this paper, motivated by the use of approximation methods (penalization, discretization, Moreau-
Yosida regularization...), we are interested in the asymptotic behavior of the infimal values and of
the minimum points when a general scheme of perturbations is considered. More precisely, given
a sequence of operators (An)n, a sequence of functions (fn)n and a sequence of set-valued maps
(Sn)n, we are interested in the asymptotic behavior of the sequences (ϕn)n of the infimal values
for the problems (SB)n as well in the asymptotic behavior of the corresponding sequences (Mn)n
of solutions sets, where

(xn, un) ∈Mn ⇐⇒ un ∈ Qn(xn) and fn(xn, un) = ϕn = min
x∈H

min
u∈Qn(x)

fn(x, u).
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Results concerning the values behavior have been recently obtained in finite dimensional spaces:
− for the infimal value of optimization problems with variational inequality constraints [20];
− for the security value of minsup problems with quasi-variational or variational inequality con-
straints [21].
Here, in the setting of infinite dimensional spaces, we have two aims: one is to investigate the
behavior of the values of semiquasi-variational bilevel problems, one is to study the asymptotic
behavior of their solutions.
When the set-valued maps S and Sn are constant with respect to u, namely S : H → K and
Sn : H → K, the quasi-variational inequalities Q(x) and Qn(x) amount to variational inequalities
so the results on the infimal values behavior of this paper extend the corresponding results in
finite dimensional spaces given in [20]. However, this extension needs different conditions on the
operators A and An compared with the assumptions presented in [20].
In fact, we recall that in order to avoid very restrictive assumptions in the investigation of varia-
tional inequalities in infinite dimensional spaces, the Minty variational inequality (also called dual
variational inequality in [5]) is usually considered. Therefore, due to the infinite dimension of the

space E, we also introduce the parametric Minty quasi-variational inequality Q̃(x) which consists
in finding u ∈ K such that

u ∈ S(x, u) and 〈A(x,w), u− w〉 ≤ 0 ∀ w ∈ S(x, u)

and we denote by Q̃(x) the set of solutions to Q̃(x) for every x ∈ H. Then, the Minty Semiquasi-

variational Bilevel Problem (̃SB) consists in finding (xo, uo) ∈ H ×K such that

uo ∈ Q̃(xo) and f(xo, uo) = min
x∈H

min
u∈Q̃(x)

f(x, u).

The solutions set and the infimal value are denoted by M̃ and ϕ̃ respectively. The investigation of
such problems under perturbations, which will involve the solution sets M̃n and the infimal values
ϕ̃n, will be crucial for the investigation of the asymptotic behavior of semiquasi-variational bilevel
problems in infinite dimensional spaces. We remark that partial results concerning the asymptotic
behavior of solutions to optimization problems with Minty variational inequality constraints have
been stated in [14].
The rest of this paper is organized as follows. The next section contains brief preliminaries on con-
tinuity, convergence and monotonicity properties for functions, set-valued mappings and operators,
as well as two lemmas proven in [13] and in [20]. In the third section, we analyze the convergence
of the exact solutions and of the infimal values and we show that the global convergence of exact
values and solutions cannot generally be achieved. Thus, we introduce suitable concepts of ap-
proximate values and solutions for semiquasi-variational problems and we investigate in Section 4
and in Section 5 the behavior of the approximate infimal values under and without perturbations
respectively. In Section 6 we study the behavior of the related approximate solutions and we also
introduce a concept of hybrid approximate solution that turns out to be useful in the perturbed
case. Section 7 contains a brief discussion on the obtained results.

2 Preliminaries

The following notions ([3], [15]) will be used in the paper. Let τ and σ be topologies on the set X
and on the space E respectively and let s, w, s∗, w∗ denote the strong and the weak topology on
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the spaces E and E∗ respectively.
If (Kn)n is a sequence of nonempty subsets of E, the Painlevé-Kuratowski upper and lower limits
of the sequence (Kn)n, with respect to σ, are defined respectively by
• z ∈ σ-lim sup

n
Kn if there exists a sequence (zk)k σ-converging to z such that zk ∈ Knk

for a

subsequence (Knk
) of (Kn)n and for each k ∈ N;

• z ∈ σ-lim inf
n

Kn if there exists a sequence (zn)n σ-converging to z such that zn ∈ Kn for n

sufficiently large.
We recall that both these sets are σ-closed and may be empty.
A function h : H ⊆ X → R ∪ {−∞,+∞} is τ -coercive on H if for every t ∈ R there exists a set
Ct ⊆ X, sequentially compact in the topology τ , such that

Levt h = {x ∈ H : h(x) ≤ t} ⊆ Ct.

A function g : H ×K → R ∪ {−∞,+∞} is σ−coercive with respect to u on the set K uniformly
with respect to x ∈ H (coercive in u on K for short) if for every t ∈ R there exists a set Yt ⊆ E
sequentially compact in the topology σ such that

(Levt g) (x) = {u ∈ K : g(x, u) ≤ t} ⊆ Yt

for every x ∈ H.
A set-valued map F from H to K is:
− (τ, σ)-sequentially subcontinuous over H, (τ, σ)-subcontinuous for short, if for every x ∈ H, every
sequence (xn)n τ -converging to x in H, every sequence (un)n such that un ∈ F (xn), for every
n ∈ N, has a subsequence σ-converging;
− (τ, σ)-sequentially lower semicontinuous over H, (τ, σ)-lower semicontinuous for short, if for
every x ∈ X and every sequence (xn)n τ -converging to x in H

F (x) ⊆ σ- lim inf
n

F (xn);

− (τ, σ)-sequentially closed over H, (τ, σ)-closed for short, if for every x ∈ H and every sequence
(xn)n τ -converging to x in H

σ- lim sup
n

F (xn) ⊆ F (x).

A sequence (Fn)n of set-valued maps from H to K
− (τ, σ)-lower converges to F in H if for every x ∈ H and every sequence (xn)n converging to x in
H

F (x) ⊆ σ- lim inf
n

Fn(xn);

− (τ, σ)-upper converges to F in H if for every x ∈ H and every sequence (xn)n τ -converging to x
in H

σ- lim sup
n

Fn(xn) ⊆ F (x).

An operator T from K to E∗ is:
− hemicontinuous over K if it is continuous from every segment of K to E∗ endowed with the
weak topology.
− pseudomonotone over K (see, for example, [17]) if

〈Au, u− v〉 ≤ 0 =⇒ 〈Av, u− v〉 ≤ 0 ∀ u and v ∈ K;
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− monotone over K (see, for example, [11]) if

〈Au−Av, u− v〉 ≥ 0 ∀ u and v ∈ K.

A sequence (Tn)n of operators from K to E∗:
− (s, s∗)-G−-converges to T in K if for every u ∈ K there exists a sequence (u′n)n s-converging to
u in K such that s∗-lim

n
Tn(u′n) = T (u), that is

GraphT ⊆ (s× s∗)- lim inf
n

GraphTn;

− is σ-equi-coercive on K if there exist a point vo ∈ K and, for every t ∈ R, a set Zt ⊆ E,
sequentially compact in σ, such that

{u ∈ K : 〈Tn(u), u− vo〉 ≤ t} ⊆ Zt for all n ∈ N;
− is uniformly bounded on K if there exists a positive real number M such that sup

n
||Tn(un)|| ≤M

for every weakly convergent sequence (un)n, un ∈ K for every n ∈ N.
A sequence of functions (gn)n, gn : H ×K → R ∪ {−∞,+∞}:
− sequentially (τ ×σ)-continuously converges to a function g in H×K, c−converges to g in (τ ×σ)
for short, if for every (x, u) ∈ H ×K and every sequence (xn, un)n (τ × σ)-converging to (x, u) in
H ×K, one has lim

n
gn(xn, un) = g(x, u);

− is (τ × σ)-equi-coercive on H ×K if for every t ∈ R there exists a set Wt ⊆ X ×E, sequentially
compact in (τ × σ), such that

Levt gn = {(x, u) ∈ H ×K : gn(x, u) ≤ t} ⊆ Wt for all n ∈ N.

For examples that illustrate and compare the above concepts see [3], [11], [15].

The following lemmas are basic for the next sections.

Lemma 2.1 ([13], Lemma 3.1)
Let (Hn)n∈N∪{0} be a sequence of nonempty convex subsets of E such that:

i) Ho ⊆ s-LiminfnHn;

ii) there exists m ∈ N such that int
⋂

n≥m
Hn 6= ∅.

Then, for every u ∈ intHo there exists a positive real number δ such that

B(u, δ) ⊆ Hn ∀ n ≥ m.

Lemma 2.2 ([20], Lemma 2.3)
Let (Sn)n be a sequence of set-valued maps from H ×K to K.
• If (Sn)n (τ × w, s)-lower converges to S in H ×K, then, for every x ∈ H, every u ∈ K, every
sequence (τ × w)-(xn, un)n converging in H ×K towards (x, u), (xn, un) ∈ H ×K, one has

lim sup
n

d(un, Sn(xn, un)) ≤ d(u, S(x, u)).

• If (Sn)n (τ × w,w)-upper converges to S in H ×K and the following holds:

C0) given a (τ × w)-convergent sequence (xn, un)n, (xn, un) ∈ H × K, every sequence (wn)n,
such that wn ∈ Sn(xn, un) for all n ∈ N, has a weakly convergent subsequence,

4



then, for every x ∈ H, every u ∈ K, every sequence (τ × w)-(xn, un)n converging in H × K
towards (x, u), (xn, un) ∈ H ×K, one has

d(u, S(x, u)) ≤ lim inf
n

d(un, Sn(xn, un)).

3 Values and solutions: asymptotic behavior

With the notations of Section 1, given n ∈ N, we consider the semiquasi-variational bilevel problem

(SB)n find (xn, un) ∈ H ×K such that un ∈ Qn(xn) and fn(xn, un) = min
x∈H

min
u∈Qn(x)

fn(x, u)

where, for any given x ∈ H,

Qn(x) = {u ∈ K : u ∈ Sn(x, u) and 〈An(x, u), u− w〉 ≤ 0 ∀ w ∈ Sn(x, u)}

is the solutions set to the quasi-variational inequality Qn(x).
As observed in the Introduction, we need to introduce also the Minty semiquasi-variational bilevel
problem

(̃SB)n find (xn, un) ∈ H ×K such that un ∈ Q̃n(xn) and fn(xn, un) = min
x∈H

min
u∈Q̃n(x)

fn(x, u)

where, for any given x ∈ H,

Q̃n(x) = {u ∈ K : u ∈ Sn(x, u) and 〈An(x,w), u− w〉 ≤ 0 ∀ w ∈ Sn(x, u)}

is the solutions set to the Minty quasi-variational inequality Q̃n(x).

Throughout the paper we make the following assumptions on the constraints maps:

C1) The set-valued maps S and Sn are closed-valued and convex-valued, for every n ∈ N.
C2) The sequence (Sn)n (τ × w, s)-lower converges to S in H ×K.
C3) The sequence (Sn)n (τ × w,w)-upper converges to S in H ×K.

C4) The sets Q(x) and Q̃(x), Qn(x) and Q̃n(x), are nonempty for every x ∈ H and n ∈ N.

We point out that conditions C1) and C2) together imply that the sequence of sets (Sn(xn, un))n
Mosco converges [1] to the set S(x, u) for every (x, u) ∈ H × K and every sequence (xn, un)n
(τ × w)-converging to (x, u) in H ×K.
In this section, we show that the infimal values ϕn of the problems (SB)n approach from above the
infimal value ϕ of the problem (SB) under suitable assumptions and that this may fail to be true
from below. Moreover, we also show that the limit of a convergent sequence of solutions to (SB)n
may be not a solution to (SB) as well a solution to (SB) may be not approached by a sequence of
solutions to (SB)n, that is, the inclusions

M⊆ s− lim inf
n
Mn and w − lim sup

n
Mn ⊆M

may fail to be true even under very restrictive conditions. Hence, in general we cannot expect that
the sequence (Mn)n Mosco converges to M [1].
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Proposition 3.1 Assume that the following hold:
i) for every x ∈ H, the operator A(x, ·) is hemicontinuous on K;
ii) for every n ∈ N the operator An(x, ·) is monotone on K;
iii) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
is uniformly bounded over K;
iv) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
(s, s∗)-G−-converges to A(x, ·);
v) the sequence (fn)n is (τ × w)-equicoercive on H ×K;
vi) for every (x, u) ∈ X ×K and every sequence (xn, un)n (τ × w)-converging to (x, u) in H ×K
one has

f(x, u) ≤ lim inf
n

fn(xn, un).

Then,
ϕ ≤ lim inf

n
ϕn. (4)

Proof
Assume that (4) does not hold and let a be a real number such that lim inf

n
ϕn < a < ϕ. There

exist an increasing sequence of integers (nk)k and a sequence (xk, uk)k, (xk, uk) ∈ H × K, such
that

uk ∈ Qnk
(xk) and fnk

(xk, uk) < a ∀ k ∈ N.

Assumption v) implies that a subsequence of (xk, uk)k, still denoted by (xk, uk)k, (τ×w)-converges
in H × K towards (xo, uo) ∈ H × K. If we prove that uo ∈ Q(xo), since ϕ ≤ f(xo, uo) ≤ a by
condition vi), we obtain a contradiction.
Assumption C3) implies that uo ∈ S(xo, uo), while assumption C2) implies that for every w ∈
S(xo, uo) there exists a sequence (wk)k strongly converging to w such that wk ∈ Snk

(xk, uk) for k
sufficiently large. By assumption iv), there exists a sequence (w′k)k strongly converging to w such
that (Ak(xk, w

′
k))k strongly converges to A(xo, w). Then, by assumptions ii) and iii) we have that

〈A(xo, w), uo − w〉 = lim
k
〈Ak(xk, w

′
k), uk − w′k〉 ≤ lim inf

k
〈Ak(xk, uk), uk − w′k〉 =

lim inf
k

[〈Ak(xk, uk), uk − wk〉+ 〈Ak(xk, uk), wk − w′k〉] ≤ lim
k
〈Ak(xk, uk), wk − w′k〉 = 0.

Since the operator A is hemicontinuous and the set-valued map S is convex-valued and closed-
valued, the Minty Lemma [5] can be applied and uo is a solution to the quasi-variational inequality
Q(xo). 2

Corollary 3.1 Assume that conditions ii)-vi) of Proposition 3.1 hold, then

ϕ̃ ≤ lim inf
n

ϕn.

Moreover, if the operator An(x, ·) is hemicontinuous on K for every n ∈ N and x ∈ H, then

ϕ̃ ≤ lim inf
n

ϕ̃n.

Proof
From Proposition 3.1 one has that

ϕ ≤ lim inf
n

ϕn
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and ϕ̃ ≤ ϕ by assumptions ii) and iv) because the operator A(x, ·) is monotone on K.
If An(x, ·) is also hemicontinuous on K for every n ∈ N, then ϕn = ϕ̃n and

ϕ̃ ≤ lim inf
n

ϕ̃n. 2

However, a result concerning the asymptotic behavior of the values ϕ̃n can also be obtained directly.
Indeed, the next proposition proves that ϕ̃n approach ϕ̃ from above under different assumptions
and without monotonicity conditions.

Proposition 3.2 Assume that the following hold:
i) for every x ∈ H, the operator A(x, ·) is hemicontinuous on K;
ii) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
strongly pointwise converges to A(x, ·);
iii) for every sequence (xn, un)n (τ × w)-converging in H ×K there exists m ∈ N such that

int
⋂

n≥m

S(xn, un) 6= ∅.

iv) the sequence (fn)n is (τ × w)-equicoercive in H ×K;
v) for every (x, u) ∈ H ×K and every sequence (xn, un)n (τ × w)-converging to (x, u) in H ×K
one has

f(x, u) ≤ lim inf
n

fn(xn, un).

Then,
ϕ̃ ≤ lim inf

n
ϕ̃n. (5)

Proof
Assume that (5) does not hold and let a be a real number such that lim inf

n
ϕ̃n < a < ϕ̃. There

exist an increasing sequence of integers (nk)k and a sequence (xk, uk)k, (xk, uk) ∈ H × K, such
that

uk ∈ Q̃nk
(xk) and fnk

(xk, uk) < a ∀ k ∈ N.

Assumption iv) implies that a subsequence of (xk, uk)k, still denoted by (xk, uk)k, (τ×w)-converges

in H × K towards (xo, uo) ∈ H × K. If we prove that uo ∈ Q̃(xo), since ϕ̃ ≤ f(xo, uo) ≤ a by
condition v), we get a contradiction.
Assumption C3) implies that uo ∈ S(xo, uo), so we have to prove that 〈A(xo, w), w − uo〉 ≤ 0 for
every w ∈ S(xo, uo).
If w ∈ int S(xo, uo), then, due to Lemma 2.1 applied to (S(xk, uk))k and S(xo, uo), w ∈ int S(xk, uk)
for k sufficiently large and one has 〈A(xo, w), w − uo〉 = lim

k
〈A(xk, w), w − uk〉 ≤ 0 since uk ∈

Q̃nk
(xk).

If w /∈ int S(xo, uo), being S(xo, uo) a convex set, there exists a sequence (wk)k strongly converging
to w along a segment such that wk ∈ intS(to, uo), so one has 〈A(xo, wk), wk − uo〉 ≤ 0 for k large.
The conclusion then follows from assumption i). 2

The next example, presented in [20], shows that the sequence (ϕn)n may fail to approach from
below the value ϕ and that the upper limit of the solutions sets Mn may be not contained in M
even in finite dimensional spaces and in very restrictive conditions.
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Example 3.1 Let E = R, K = [0,+∞[, S(x, u) = Sn(x, u) = K, An(x, u) = 1/n and fn(x, u) =
−u + 1/n. The sequences (An)n and (fn)n uniformly converge, and therefore also continuously
converge, to the functions A(x, u) = 0 and f(x, u) = −u respectively. One easily checks that
Qn(x) = {0}, Q(x) = [0,+∞[, so that ϕn = 1/n and ϕ = −∞. MoreoverM = ∅ andMn = X×{0}
for every n ∈ N.

The next example shows that M can be not included in s− lim inf
n
Mn.

Example 3.2 Let E = R, K = [0,+∞[, S(x, u) = Sn(x, u) = K, An(x, u) = A(x, u) = 0 and
fn(x, u) = u/n. The sequence (fn)n continuously converges to the function f(x, u) = 0. One
easily checks that Qn(x) = Q(x) = [0,+∞[, so that Mn = X × {0} for every n ∈ N meanwhile
M = X × [0,+∞[.

The involved operators being monotone and continuous, both examples can be also applied for ϕ̃,
ϕ̃n, M̃ and M̃n, since Qn(x) = Q̃n(x) and Q(x) = Q̃(x) for every x.
Nevertheless, in the next section we prove that the infimal values ϕ and ϕ̃ can be approached from
above and from below by the infimal values of suitable regularized problems and this allows to get
results also on the solutions sets.

4 Approaching the infimal value via regularization

Given a positive real number ε, in whole the paper we consider the following approximate solutions
maps

Qε : x ∈ H → Qε(x) = {u ∈ K : d(u, S(x, u)) ≤ ε and 〈A(x, u), u− w〉 ≤ ε ∀ w ∈ S(x, u)}

Sε : x ∈ H → Sε(x) = {u ∈ K : d(u, S(x, u)) < ε and 〈A(x, u), u− w〉 < ε ∀ w ∈ S(x, u)}
that respectively associate to every x the approximate solutions set, introduced in [12], and the
strict approximate solutions set to Q(x).
Then, in line with [22] [15], [20], we consider the following regularized semiquasi-variational bilevel
problems

(SB)ε find (xo, uo) ∈ H ×K such that uo ∈ Qε(xo) and f(xo, uo) = min
x∈H

min
u∈Qε(x)

f(x, u)

(ŜB)ε find (xo, uo) ∈ H ×K such that uo ∈ Sε(xo) and f(xo, uo) = min
x∈H

min
u∈Sε(x)

f(x, u)

whose corresponding approximate infimal values are respectively

ϕε = inf
x∈H

inf
u∈Qε(x)

f(x, u) ψε = inf
x∈H

inf
u∈Sε(x)

f(x, u).

We point out that
ϕε ≤ ψε ≤ ϕ, (6)

since
Q(x) ⊆ Sε(x) ⊆ Qε(x)

for every x ∈ H.
Both these approximate infimal values approach the value ϕ when the data belong to suitable
classes.
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Proposition 4.1 Assume that the following hold:
i) for every x ∈ H, the operator A(x, ·) is hemicontinuous on K;
ii) for every x ∈ H, the operator A(x, ·) is pseudomonotone on K;
iii) for every u ∈ K, the operator A(·, u) is (τ, s∗)-continuous on H;
iv) the set-valued map S is (τ×w,w)-subcontinuous, (τ×w, s)-lower semicontinuous and (τ×w,w)-
closed over H;
v) for every sequence (xn, un)n (τ × w)-converging in H ×K there exists m ∈ N such that

int
⋂

n≥m

S(xn, un) 6= ∅;

vi) the function f is (τ × w)-lower semicontinuous and (τ × w)-coercive on H ×K.
Then,

ϕ = lim
ε→0

ϕε = lim
ε→0

ψε

Proof First we observe that, in light of inequalities (6), it is sufficient to prove that

ϕ ≤ sup
ε>0

ϕε (7)

since lim
ε→0

ϕε = sup
ε>0

ϕε.

We start by proving that, if (εn)n is a sequence of positive real numbers converging to 0, for every
x ∈ X and every sequence (xn)n τ -converging to x in X one has

w − lim sup
n

Qεn(xn) ⊆ Q(x). (8)

Let (un)n be a sequence weakly converging to u ∈ K such that, for every n ∈ N, un ∈ Qεn(xn),
that is

d(un, S(xn, un)) ≤ εn and 〈A(xn, un), un − v〉 ≤ εn ∀ v ∈ S(xn, un).

Lemma 2.2 applied with Sn = S implies that u ∈ S(x, u) since
d(u, S(x, u)) ≤ lim inf

n
d(un, S(xn, un)) = 0.

So, we have to prove that 〈A(x, u), u− w〉 ≤ 0 for every w ∈ S(x, u).
If w ∈ int S(x, u), then, due assumption v) and Lemma 2.1, w ∈ int S(xn, un) for n sufficiently large
and 〈A(xn, un), un−w〉 ≤ 0 for such integers n. Condition ii) implies that 〈A(xn, w), un−w〉 ≤ 0,
so one gets 〈A(x,w), u− w〉 = lim

n
〈A(xn, w), un − w〉 ≤ 0 by assumption iii).

If w /∈ int S(x, u), being S(x, u) a convex set, there exists a sequence (wn)n strongly converging to
w along a segment such that wn ∈ intS(x, u). So, one has 〈A(x,wn), u− wn〉 ≤ 0 for n large and,
by assumption i), 〈A(x,w), u − w〉 ≤ 0. The operator A(x, ·) being hemicontinuous over K, one
can apply the Minty Lemma ([5]) and

〈A(x, u), u− w〉≤ 0,

so that u ∈ Q(x).
Now, assume that inequality (7) does not hold. Then, there exists a real number a such that

sup
ε>0

ϕε < a < ϕ. (9)
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Let (εn)n be a sequence of positive real numbers decreasing to 0 and let (xn, un)n be a sequence
such that, for every n ∈ N,

un ∈ Qεn(xn) and ϕεn ≤ f(xn, un) < a.

By assumption vi) there exists a subsequence of (xn, un)n, still denoted by (xn, un)n, (τ × w)-
converging in H ×K to a point (xo, uo) ∈ H ×K and such that

f(xo, uo) ≤ lim inf
n

f(xn, un) ≤ a.

From the first part of the proof one infers that uo ∈ Q(xo), so one has ϕ ≤ f(xo, uo) ≤ a which
is in contradiction with (9). 2

A similar result holds also for the value ϕ̃ of the Minty semiquasi-variational problem (̃SB) that
can be approached by the regularized values

ϕ̃ ε = inf
x∈H

inf
u∈Q̃ε(x)

f(x, u) and ψ̃ ε = inf
x∈H

inf
u∈S̃ε(x)

f(x, u)

where, for every x ∈ H,

Q̃ε(x) = {u ∈ K : d(u, S(x, u)) ≤ ε and 〈A(x,w), u− w〉 ≤ ε ∀ w ∈ S(x, u)}

S̃ε(x) = {u ∈ K : d(u, S(x, u)) < ε and 〈A(x,w), u− w〉 < ε ∀ w ∈ S(x, u)} .

In fact, the following proposition provides a sufficient condition for approximating the infimal value
ϕ̃ by ϕ̃ ε and ψ̃ ε.

Proposition 4.2 Assume that conditions
i) for every x ∈ H, the operator A(x, ·) is hemicontinuous on K;
ii) for every u ∈ K, the operator A(·, u) is (τ, s∗)-continuous on H;
iii) the set-valued map S is (τ×w,w)-subcontinuous, (τ×w, s)-lower semicontinuous and (τ×w,w)-
closed over H ×K;
iv) for every sequence (xn, un)n (τ × w)-converging in H ×K there exists m ∈ N such that

int
⋂

n≥m

S(xn, un) 6= ∅.

v) the function f is (τ × w)-lower semicontinuous and (τ × w)-coercive on H ×K.
Then,

ϕ̃ = lim
ε→0

ϕ̃ ε = lim
ε→0

ψ̃ ε.

Proof Arguing as in Proposition 4.1, in order to prove that

ϕ̃ ≤ sup
ε>0

ϕ̃ ε (10)

we first show that for every sequence (εn)n of positive real numbers converging to 0, for every
x ∈ X and every sequence (xn)n τ -converging to x in X one has

w − lim sup
n

Q̃εn(xn) ⊆ Q̃(x). (11)
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Let (un)n be a sequence weakly converging to u ∈ K such that, for every n ∈ N, un ∈ Q̃εn(xn),
that is

d(un, S(xn, un)) ≤ εn and 〈A(xn, v), un − v〉 ≤ εn ∀ v ∈ S(xn, un).

Then, Lemma 2.2 applied with Sn = S implies that u ∈ S(x, u) since
d(u, S(x, u)) ≤ lim inf

n
d(un, S(xn, un)) = 0.

So, we have to prove that 〈A(x,w), u− w〉 ≤ 0 for every w ∈ S(x, u).
If w ∈ int S(x, u), then, due to assumption iv) and Lemma 2.1, w ∈ int S(xn, un) for n sufficiently
large and one has 〈A(xn, w), un−w〉 ≤ 0 that implies 〈A(x,w), u−w〉 = lim

n
〈A(xn, w), un−w〉 ≤ 0

by assumption ii).
If w /∈ int S(x, u), being S(x, u) a convex set, there exists a sequence (wn)n strongly converging to
w along a segment such that wn ∈ intS(x, u), so one has 〈A(x,wn), u − wn〉 ≤ 0 for n large and
again 〈A(x,w), u− w〉 ≤ 0 by assumption i)
Now, assume that inequality (10) does not hold. Then, there exists a real number a such that

sup
ε>0

ϕ̃ ε < a < ϕ̃. (12)

Let (εn)n be a sequence of positive real numbers decreasing to 0 and let (xn, un)n be a sequence
such that, for every n ∈ N,

un ∈ Q̃εn(xn) and ϕ̃εn ≤ f(xn, un) < a.

By assumption v), there exists a subsequence of (xn, un)n, still denoted by (xn, un)n, (τ × w)-
converging to a point (xo, uo) ∈ H ×K and such that

f(xo, uo) ≤ lim inf
n

f(xn, un) ≤ a.

From the first part of the proof one infers that uo ∈ Q̃(xo), and one has ϕ̃ ≤ a which is in
contradiction with (12). 2

Remark 4.1 We point out that even if the operator A(x, ·) is hemicontinuous and pseudomonotone

and Q(x) = Q̃(x), the approximate solutions sets Qε(x) and Q̃ε(x) (resp. Sε(x) and S̃ε(x)) may

fail to be equal, so that ϕε (resp. ψε) may be strictly larger than ϕ̃ ε (resp. ψ̃ ε) (see Section 4 in
[20]).

5 Approaching the infimal value via perturbation and reg-
ularization

From now on, we consider regularizations of the perturbed semiquasi-variational bilevel problems
defined at the beginning of Section 3:

(SB)εn find (xn, un) ∈ H ×K such that un ∈ Qε
n(xn) and fn(xn, un) = min

x∈H
min

u∈Qε
n(x)

fn(x, u)

(ŜB)εn find (xn, un) ∈ H ×K such that un ∈ Sε
n(xn) and fn(xn, un) = min

x∈H
min

u∈Sε
n(x)

fn(x, u)
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whose infimal values are denoted by ϕε
n and ψε

n respectively, as well as the regularized perturbed
Minty semiquasi-variational bilevel problem

(S̃B)εn find (xn, un) ∈ H ×K such that un ∈ Q̃ε
n(xn) and fn(xn, un) = min

x∈H
min

u∈Q̃ε
n(x)

fn(x, u)

whose infimal value is denoted by ϕ̃ε
n.

First we show that the infimal value ϕ can be approached from above by the regularized infimal
values ϕε

n.

Proposition 5.1 Assume that condition C0) in Lemma 2.2 and the following hold:
i) for every x ∈ H and every u ∈ K, the operator A(x, ·) is hemicontinuous on K and the operator
A(·, u) is (τ, s∗)-continuous on H;
ii) for every n ∈ N the operator An(x, ·) is monotone on K;
iii) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
is uniformly bounded over K;
iv) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
(s, s∗)-G−-converges to A(x, ·);
v) the set-valued map S is (τ×w,w)-subcontinuous, (τ×w, s)-lower semicontinuous and (τ×w,w)-
closed over H ×K;
vi) for every sequence (xn, un)n (τ × w)-converging in H ×K there exists m ∈ N such that

int
⋂

n≥m

S(xn, un) 6= ∅.

vii) the function f is (τ × w)-lower semicontinuous and (τ × w)-coercive on H ×K;
viii) the sequence (fn)n is (τ × w)-equicoercive on H ×K;
ix) for every (x, u) ∈ H ×K and every sequence (xn, un)n (τ × w)-converging to (x, u) in H ×K
one has

f(x, u) ≤ lim inf
n

fn(xn, un).

Then, we have
ϕ ≤ lim inf

ε→0
lim inf

n
ϕε
n. (13)

Proof
It is sufficient to prove that

ϕ̃ ε ≤ lim inf
n

ϕε
n ∀ ε > 0 (14)

since in our assumptions
ϕ ≤ ϕ̃ = lim

ε→0
ϕ̃ ε.

Indeed, the Minty Lemma implies that ϕ ≤ ϕ̃ and ϕ̃ = lim
ε→0

ϕ̃ ε by Proposition 4.2.

Assume that inequality (14) fails to be true. Then, there exist ε > 0 and a real number a such that
lim inf

n
ϕε
n < a < ϕ̃ ε.

Let (nk)k be an increasing sequence of positive integers and let (xk, uk)k be a sequence in H ×K
such that

uk ∈ Qε
nk

(xk) and fnk
(xk, uk) < a < ϕ̃ ε ∀ k ∈ N. (15)
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The sequence of functions (fn)n being (τ ×w)-equicoercive, there exists a subsequence of (xk, uk)k,
still denoted by (xk, uk)k, such that (xk)k τ -converges to xo ∈ H and (uk)k weakly converges to
uo ∈ K.
We prove now that uo ∈ Q̃ε(xo). Since uk ∈ Qε

nk
(xk) and Lemma 2.2 holds, one has

d(uo, S(xo, uo)) ≤ lim inf
k

d(uk, Snk
(xk, uk)) ≤ ε.

Consider w ∈ S(xo, uo). Assumption C2) implies that for every w ∈ S(xo, uo) there exists a
sequence (wk)k strongly converging to w such that wk ∈ Snk

(xk, uk) for k sufficiently large. By
assumption iv), there exists a sequence (w′k)k strongly converging to w such that (Ak(xk, w

′
k))k

strongly converges to A(xo, w). So, by assumptions ii) and iii) one has

〈A(xo, w), uo − w〉 = lim
k
〈Ak(xk, w

′
k), uk − w′k〉 ≤ lim inf

k
〈Ak(xk, uk), uk − w′k〉 =

lim inf
k

[〈Ak(xk, uk), uk − wk〉+ 〈Ak(xk, uk), wk − w′k〉] ≤ ε+ lim
k
〈Ak(xk, uk), wk − w′k〉 = ε.

Moreover, assumption ix) implies that f(xo, uo) ≤ lim inf
k

fk(xk, uk) ≤ a < ϕ̃ ε and that gives a

contradiction since uo ∈ Q̃ε(xo). 2

Remark 5.1 We have implicitly proven that ϕ̃ ≤ lim inf
ε→0

lim inf
n

ϕε
n. We can prove directly that

ϕ̃ can be approached from above by (ϕ̃ε
n)n under different assumptions.

Proposition 5.2 Assume that condition C0) in Lemma 2.2, assumptions i) and v)-ix) of Propo-
sition 5.1 and the following hold:
ii) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
strongly pointwise converges to A(x, ·);
iii) for every sequence (xn, un)n (τ × w)-converging in H ×K there exists m ∈ N such that

int
⋂

n≥m

Sn(xn, un) 6= ∅.

Then, we have
ϕ̃ ≤ lim inf

ε→0
lim inf

n
ϕ̃ε
n. (16)

Proof
It is sufficient to prove that

ϕ̃ ε ≤ lim inf
n

ϕ̃ε
n ∀ ε > 0 (17)

since in our assumptions
ϕ̃ = lim

ε→0
ϕ̃ε

by Proposition 4.2.
Assume that (17) fails to be true and let ε be a positive number, let a be a real number such
that lim inf

n
ϕ̃ε
n < a < ϕ̃ ε. There exists an increasing sequence of integers (nk)k and a sequence

(xk, uk)k such that xk ∈ H, uk ∈ Q̃ε
k(xk) and fnk

(xk, uk) < a. A subsequence of (xk, uk), still
denoted by (xk, uk)k, (τ × w)-converges to (xo, uo) ∈ H × K by assumption viii) of proposition

5.1. We can prove that uo ∈ Q̃ε(xo) similarly as in Proposition 3.2 and that gives a contradiction.
2

The approximation from below of the value ϕ can be obtained through the sequence (ψε
n)n.
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Proposition 5.3 Assume that condition C0) in Lemma 2.2, assumptions i)-vi) of Proposition 4.1
and the following hold:
vii) the sequence (An)n ((τ × s), s∗)-G−-converges to A;
viii) for every (x, u) ∈ H ×K and every sequence (xn, un)n (τ × s)-converging to (x, u) in H ×K
one has

lim sup
n

fn(xn, un) ≤ f(x, u).

Then, we have
lim sup

ε→0
lim sup

n
ψε
n ≤ ϕ. (18)

Proof
It is sufficient to prove that

lim sup
n

ψε
n ≤ ψε ∀ ε > 0. (19)

since in our assumptions
lim
ε→0

ψε = ϕ

by Proposition 4.1.
Let a be a real number such that ψε < a and let (xo, uo) ∈ H ×K such that uo ∈ Sε(xo) and
f(xo, uo) < a.
Assumption vii) says that there exists a sequence (xn, u

′
n)n (τ ×s)-converging to (xo, uo) such that

s∗ − lim
n
An(xn, u

′
n) = A(xo, uo).

We claim that u′n ∈ Sε
n(xn) for n sufficiently large.

Indeed, if it is not true, there exists a subsequence (u′nk
)nk

of (u′n)n such that u′nk
/∈ Sε

nk
(xnk

)
for every k ∈ N. From assumption C2) and Lemma 2.2, d(uo, S(xo, uo)) < ε implies that
d(u′n, Sn(xn, u

′
n)) < ε for n sufficiently large. So, by the definition of Sε

nk
, for every k there

exists wnk
∈ Snk

(xnk
, u′nk

) such that

〈Ank
(xnk

, u′nk
), u′nk

− wnk
〉 ≥ ε.

A subsequence of (wnk
)k (still denoted by (wnk

)k) has to weakly converge towards a point wo and
wo ∈ S(xo, uo) by assumptions Co) and C3). Therefore

〈A(xo, uo), uo − wo〉 = lim
k
〈Ank

(xnk
, u′nk

), u′nk
− wnk

〉 ≥ ε.

This leads to a contradiction, so u′n ∈ Sε
n(xn) and ψε

n ≤ fn(xn, u
′
n) for n sufficiently large.

Therefore, by condition viii) one gets lim sup
n

ψε
n ≤ lim sup

n
fn(xn, u

′
n) ≤ f(xo, uo) < a and one

can conclude that lim sup
n

ψε
n ≤ ψε. 2

Assumption viii) of Proposition 5.3 can be weakened if condition vii) is strengthened.

Proposition 5.4 Assume that condition C0) in Lemma 2.2, assumptions i)-vi) of Proposition 4.1
and the following hold:
vii) for every x ∈ H and every sequence (xn)n converging to x in H, the sequence (An(xn, ·))n
(s, s∗)-G−-converges to A(x, ·) in K;
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viii) for every (x, u) ∈ H ×K there exists a sequence (xn)n τ -converging to x in K such that for
every sequence (u′n)n strongly converging to u in K one has

lim sup
n

fn(xn, u
′
n) ≤ f(x, u).

Then, we have
lim sup

ε→0
lim sup

n
ψε
n ≤ ϕ. (20)

Proof
It is sufficient to prove that

lim sup
n

ψε
n ≤ ψε ∀ ε > 0 (21)

since in our assumptions
lim
ε→0

ψε = ϕ

by Proposition 4.1.
Let a be a real number such that ψε < a and let (xo, uo) ∈ H ×K such that uo ∈ Sε(xo) and
f(xo, uo) < a.
Assumption viii) says that there exists a sequence (xn)n τ -converging to xo in H such that for
every sequence (u′n)n strongly converging to uo in K one has

lim sup
n

fn(xn, u
′
n) ≤ f(xo, uo).

This is in particular true for the sequence (u′n)n strongly converging to uo and such that

s∗ − lim
n
An(xn, u

′
n) = A(xo, uo)

which exists by assumption vii). Then, the rest of the proof goes as in Proposition 5.3. 2

Now, we can establish a global approximation result for the infimal value ϕ through both the
regularized perturbed values ϕε

n and ψε
n.

Theorem 5.1 Assume that condition Co) in Lemma 2.2 and the following hold:
i) for every x ∈ H and every u ∈ K, the operator A(x, ·) is hemicontinuous on K and the operator
A(·, u) is (τ, s∗)-continuous on H;
ii) for every n ∈ N the operator An(x, ·) is monotone on K;
iii) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
is uniformly bounded over K;
iv) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
(s, s∗)-G−-converges to A(x, ·) ;
v) the set-valued map S is (τ×w,w)-subcontinuous, (τ×w, s)-lower semicontinuous and (τ×w,w)-
closed over H ×K;
vi) for every sequence (xn, un)n (τ × w, s)-converging in H ×K there exists m ∈ N such that

int
⋂

n≥m

S(xn, un) 6= ∅.

vii) the function f is (τ × w)-lower semicontinuous and (τ × w)-coercive on H ×K;
viii) the sequence (fn)n is (τ × w)-equicoercive on H ×K;
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ix) for every (x, u) ∈ X ×K and every sequence (xn, un)n (τ × w)-converging to (x, u) in H ×K
one has

f(x, u) ≤ lim inf
n

fn(xn, un);

x) for every (x, u) ∈ H × K there exists a sequence (xn)n τ -converging to x in K such that for
every sequence (u′n)n strongly converging to u in K one has

lim sup
n

fn(xn, u
′
n) ≤ f(x, u).

Then, we have
lim
ε→0

lim
n
ϕε
n = ϕ = lim

ε→0
lim
n
ψε
n. (22)

Proof
The inequalities in (6) hold also for the perturbed infimal values, so, given ε > 0, we have

ϕε
n ≤ ψε

n ≤ ϕn ∀ n ∈ N.

Therefore, by (13) and (20) in propositions 5.1 and 5.4, we can show easily that (22) is true. 2

6 Solutions behavior via regularization

We first investigate the inner approach of the the solutions setM by the solutions setsMε or M̃ε

of the regularized problems (SB)ε and (S̃B)ε in the absence of perturbations.

Proposition 6.1 Assume that conditions i)− v) of Proposition 4.1 and the following hold:
vi) the function f is (τ × w)-lower semicontinuous in H ×K.
Then,

(τ × w)- lim sup
ε→0

Mε ⊆M.

Proof
Let (εn)n be a sequence of positive real numbers converging to 0 and let (xn, un)n be a sequence
(τ × w)-converging in H × K to (xo, uo) such that un ∈ Mεn(xn) for every n ∈ N, that is
un ∈ Qεn(xn) and

f(xn, un) = min
x∈H

min
u∈Qεn (x)

f(x, u) = ϕεn .

Arguing as in Proposition 4.1 we get that uo ∈ Q(xo). So, to conclude that (xo, uo) ∈ M, it is
sufficient to prove that f(xo, uo) ≤ ϕ and this follows from inequalities (6) and condition vi) since

f(xo, uo) ≤ lim inf
n

f(xn, un) = lim inf
n

ϕεn ≤ ϕ.

Proposition 6.2 Assume that conditions i)− iv) of Proposition 4.2 and the following hold:
v) the function f is (τ × w)-lower semicontinuous in H ×K.
Then,

(τ × w)- lim sup
ε→0

M̃ε ⊆ M̃.

If, moreover,
vi) for every x ∈ H, the operator A(x, ·) is pseudomonotone on K,
then

(τ × w)- lim sup
ε→0

M̃ε ⊆ M.
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Proof
Let (εn)n be a sequence of positive real numbers converging to 0 and let (xn, un)n be a sequence

(τ × w)-converging in H × K to (xo, uo) such that un ∈ M̃εn(xn) for every n ∈ N, that is

un ∈ Q̃εn(xn) and
f(xn, un) = min

x∈H
min

u∈Q̃εn (x)
f(x, u) = ϕ̃εn .

Arguing as in Proposition 4.2 we get that uo ∈ Q̃(xo). So, to conclude that (xo, uo) ∈ M̃, it is
sufficient to prove that f(xo, uo) ≤ ϕ̃ and this follows from Proposition 4.2 and condition v) since

f(xo, uo) ≤ lim inf
n

f(xn, un) = lim
n
ϕ̃εn ≤ ϕ̃.

Finally, assumptions i) of Proposition 4.2 and vi) imply that M = M̃. 2

The next proposition shows that the solutions set M can be also approximated by the sets Hε

defined by
Hε = {(x, u) : u ∈ Qε(x) and f(x, u) ≤ ψε}

that amount to a sort of hybrid approximate solutions sets since they combine both ”large” and
”strict” regularized problems.

Proposition 6.3 Assume that i)-v) of Proposition 4.1 and the following hold:
vi) the function f is (τ × w)-lower semicontinuous in H ×K.
Then,

(τ × w)- lim sup
ε→0

Hε ⊆M.

Proof
Let (εn)n be a sequence of positive real numbers converging to 0 and let (xn, un)n be a sequence
(τ × w)-converging in H × K to (xo, uo) such that un ∈ Hεn(xn) for every n ∈ N, that is un ∈
Qεn(xn) and

f(xn, un) ≤ ψεn .

Arguing as in Proposition 4.1 we get that uo ∈ Q(xo). So, to conclude that (xo, uo) ∈ M, it is
sufficient to prove that f(xo, uo) ≤ ϕ and this follows from assumption vi) since

f(xo, uo) ≤ lim inf
n

f(xn, un) ≤ lim sup
n

ψεn ≤ ϕ. 2

Theorem 6.1 Assume that condition C0) in Lemma 2.2 and the following hold:
i) for every x ∈ H and every u ∈ K, the operator A(x, ·) is hemicontinuous and pseudomonotone
on K and the operator A(·, u) is (τ, s∗)-continuous on H;
ii) for every n ∈ N and every x ∈ H the operator An(x, ·) is monotone on K;
iii) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
is uniformly bounded over K;
iv) for every x ∈ H and every sequence (xn)n τ -converging to x in H, the sequence (An(xn, ·))n
(s, s∗)-G−-converges to A(x, ·) ;
v) the set-valued map S is (τ×w,w)-subcontinuous, (τ×w, s)-lower semicontinuous and (τ×w,w)-
closed over H ×K;
vi) for every sequence (xn, un)n (τ × w)-converging in H ×K there exists m ∈ N such that

int
⋂

n≥m

S(xn, un) 6= ∅;
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vii) the function f is (τ × w)-lower semicontinuous in H ×K;
viii) for every (x, u) ∈ X ×K and every sequence (xn, un)n (τ ×w)-converging to (x, u) in H ×K
one has

f(x, u) ≤ lim inf
n

fn(xn, un);

ix) for every (x, u) ∈ H ×K there exists a sequence (xn)n τ -converging to x in K such that for
every sequence (u′n)n strongly converging to u in K one has

lim sup
n

fn(xn, u
′
n) ≤ f(x, u).

Then,
(τ × w)- lim sup

ε→0
lim sup

n
Mε

n ⊆M. (23)

Proof
We first prove that

(τ × w)- lim sup
n

Mε
n ⊆ Hε ∀ ε > 0.

Let (xn, un)n be a sequence (τ ×w)-converging in H ×K to (xo, uo) and such that (xn, un) ∈Mε
n

for every n ∈ N, that is
un ∈ Qε

n(xn) and fn(xn, un) = ϕε
n.

We show now that (xo, uo) ∈ Hε, that is uo ∈ Qε(xo) and f(xo, uo) ≤ ψε = inf
x∈H

inf
u∈Sε(x)

f(x, u).

In fact, arguing as in Proposition 5.1 we get that uo ∈ Qε(xo). So, it is sufficient to prove that
f(xo, uo) ≤ f(x′, u′) for any x′ ∈ H and u′ ∈ Sε(x′). Arguing as in Proposition 5.4 we get that for
every (x′, u′) ∈ H ×K, such that u′ ∈ Sε(x′), there exists a sequence (x′n, u

′
n) (τ × s)-converging

to (x′, u′) in H×K such that u′n ∈ Sε
n(x′n) for n sufficiently large, where the sequence (x′n)n is the

sequence existing by assumption ix). Therefore, from conditions viii) and ix) we infer that

f(xo, uo) ≤ lim inf
n

fn(xn, un) ≤ lim inf
n

ψε
n ≤ lim inf

n
fn(x′n, u

′
n) ≤ lim sup

n
fn(x′n, u

′
n) ≤ f(x′, u′).

Then, one has
(τ × w)- lim sup

ε→0
lim sup

n
Mε

n ⊆ (τ × w)- lim sup
ε→0

Hε

and the result follows from Proposition 6.3. 2

7 Conclusions

The semiquasi-variational bilevel problem presents two difficulties: one derives from the bilevel
nature of the problem [8], one derives from the quasi-variational nature of the lower level problem
[2]. Moreover, the infinite dimensional setting requires the use of Minty semiquasi-variational
bilevel problems and this explains the large number of assumptions in many propositions (see also,
for example, [5] and [2]).
In this paper, we are not concerned with the problem of the existence of solutions, that could be
approached using a general result given in [18], and we do not concentrate our interest on problems
in finite dimensional spaces having in mind to present more specific results for applications in a
separate paper.
In fact, we assume thatM is nonempty and we investigate how to determine both the infimal value
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and an optimal solution. So, we consider a sequence of problems (SB)n that could arise from a
perturbations scheme usually used in infinite dimensional spaces such as a discretization. In Section
3, we observe that the classical approach for optimization problems ([1], [7], [25]) is not fruitful
for semiquasi-variational bilevel problems, due to the possible lack of lower convergence of the
constraint maps Qn. Therefore, we follow the approach introduced in [22] for bilevel optimization
problems and we define in Section 4 and in Section 5 suitable regularized problems with or without
perturbations. In this regularization scheme, the constraint maps of the lower level, namely Qε

n

and Sε
n, are smaller than in the original problem but have better properties [19] which allow to

reach the infimal value of the problem (SB) with or without perturbations.
Finally, in Section 6 we employ the results on the infimal values behavior to establish the conver!
gence of a sequence of solutions to the problems (SB)εn towards a solution to the original problem
(SB). At our knowledge, these are the first results concerning optimal solutions of bilevel problems
obtained via the infimal values behavior.
Moreover, we emphasize that the upper limits in (23) cannot be inverted in general (see Example
3.1), so that a result in line with the classical optimization result by H. Attouch (see Proposition
2.9 in [1]) could be not obtained in general.
Finally, we note that Variational Convergence Theory ([1], [7]) and Set-valued Analysis ([2], [25])
are essential tools, respectively, in the investigation of the upper level optimization problem and of
the lower level quasi-variational inequality problem respectively.
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