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In previous papers we studied a game model in which players' uncertainty is expressed entirely in the space of 
probabilities (lotteries) over consequences, it depends on the entire strategy profile chosen by the agents and it is 
described by the so called ambiguous beliefs correspondences. In this paper, we extend the previous results by 
embodying variational preferences in the model. We give a general existence result that we apply to a particular 
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1 Introduction

It is well known that decisions often involve imprecise probabilities, therefore many models have

been introduced in the literature in order to deal with this kind of ambiguity. In the standard

decision theory models, the source of uncertainty is described by an underlying state space and

ambiguous beliefs are usually represented by fixed subsets of priors (probability distributions) over

this set of states3. The decision maker’s action set is a subsets of acts which are functions from

the state space to a space of consequences and he is endowed with an utility function which gives

a numerical outcome for every possible consequence, that is for every action choice and realization

of the state. Recent paper have also investigated this kind of ambiguity in strategic interactions:

Kajii and Ui (2005) first investigate the effects of uncertainty aversion in incomplete information

games with multiple priors. Bade (2011) considers games à la Aumann (1997) under more general

preferences. Finally, Azrieli and Teper (2011) characterize equilibrium existence in terms of the

preferences of the players4.

There is a different strand of research in decision theory which shows that an agent, facing

ambiguity, is not able to understand what the relevant states are and therefore the information

available can be expressed entirely in the space of probabilities (lotteries) over consequences (see

Ahn (2008), Olszewski (2007) and Stinchcombe (2003)). Despite the approach without the state

space and the classical multiple prior approach can be reconciled by a generalized form of proba-

bilistic sophistication where an ambiguous act is evaluated by its induced set of distributions over

consequences (see Ahn (2008) and Olszewski (2007)), game theory provides further evidence that

ambiguity cannot always be reconducted to the classical approach with a state space and multi-

ple priors. In fact, the recent literature on ambiguous games (see for instance Dow and Werlang

(1994), Lo (1996), Klibanoff (1996), Eichberger and Kelsey (2000) and Marinacci (2000), Lehrer

(2012), Riedel and Sass (2013)) has shown that in a game there is a specific source of ambiguity

since players may have ambiguous beliefs about opponents’ strategy choices. There is no evidence

in the literature showing that this kind of ambiguity can be properly reconducted to incomplete

information games à la Harsanyi (that is, with state space) under multiple priors which, in turn,

must be generalized in order to encompass this specific game theoretical issue. In previous papers,

we introduced and studied the (so called) model of game under ambiguous beliefs correspondences5

which provides a rather general tool to study ambiguity in games. The key point of our approach

is that, for every player, ambiguity is directly represented by a belief correspondence which maps

the set of strategy profiles to the set of all subsets of probability distributions over the outcomes

3This is known as the multiple prior approach (see Gilboa and Scmeidler (1989)). A slightly different approach

involves non additive probabilities (capacities) à la Schmeidler (1990) instead of multiple priors. Those models build

upon the Anscombe and Aumann (1963) model of decision under uncertainty rather then the Savage’s one (1954).
4Similar approaches and applications can be found in Xiong (2014) and Zhang, Luo and Ma (2013).
5De Marco and Romaniello (2012) presents the general model, an existence theorem and many motivating

examples. Stability of the equilibria is studied in De Marco and Romaniello (2013,b). An application to coalition

formation is the subject of De Marco and Romaniello (2011).
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of the game. For each player and for every given strategy profile, the belief correspondence gives

the set of probability distributions over the possible outcomes of the game that the corresponding

player perceives to be feasible and consistent with the actual strategy profile. On the one hand, be-

liefs correspondences might represent objective (exogenous) ambiguity as done in Ahn (2008) and

Olszewski (2007); on the other hand, it turns out (see the examples in De Marco and Romaniello

(2013,b)) that many existing models of ambiguous game have an equivalent formulation in terms

of belief correspondences. For example, a notion of equilibrium in incomplete information games

with multiple priors and the partially specified equilibrium concept by Lehrer (2012) can both be

regarded as particular cases of our notion of equilibrium under ambiguous belief correspondences.

In our previous works, we considered players endowed only with the classical maxmin prefer-

nces6. In this paper we study a generalization of our equilibrium concept in which we relax the

assumption imposed on the ambiguity attitudes of the players. More precisely we consider players

endowed with variational preferences as introduced and axiomatized by Maccheroni, Marinacci

and Rustichini (2006). This class of preferences generalizes maxmin preferences and embodies the

approach of the works of Hansen and Sargent (2001) on uncertainty in macroeconomics since their

model provides a particular class of variational preferences as well. Under variational preferences,

players evaluate any ambiguous belief by the worst possible value (given the set of probability

distributions) assumed by the sum of the expected utility with a nonnegative function of the prob-

abilities called index of ambiguity aversion. This index plays a very important role as a measure

of ambiguity aversion. For instance, maximal ambiguity aversion corresponds to index ambiguity

aversion identically equal to zero and gives back maxmin preferences. While, minimal ambiguity

aversion corresponds to ambiguity neutrality and gives back subjective utility preferences. Given

the flexibility of the variational preferences model, it seems interesting and natural to look at this

kind of preferences in games. In De Marco and Romaniello (2013,a) we extend the Kajii and Ui’s

notion of mixed equilibrium by allowing for variational preferences and we investigate the issue of

the existence and stability of equilibria. In this paper we look at the equilibria in games under

variational preferences in the more complex model with ambiguous belief correspondences; first,

we present an existence theorem and then we show in an illustrative example (in which beliefs over

opponents’ strategy profile are given by the set of Nah equilibria of specific subgames) that the

assumptions in the main existence theorem can be easily obtained in specific applications.

The last section is devoted to the issue of stability of equilibria. The problem of the limit

behavior of the equilibria in games has been extensively studied in the literature (see, for instance,

Fudenberg and Tirole (1993) for the standard problem, Friedmann and Mezzetti (2005), McKelvey

and Palfrey (1995), Morgan and Scalzo (2008), Yu et al. (2007)) for recent results under relaxed

or different assumptions and references. The question whether the limit property extends to the

equilibrium concepts in ambiguous games has been studied in De Marco and Romaniello (2013,a)

for the equilibria in the Kajii and Ui model under variational preferences, in De Marco and Ro-

maniello (2013,b) for equilibria under ambiguous beliefs correspondences and maxmin preferences,

6Indeed, we considered also their counterpart: maxmax preferences.
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in Stauber (2011) for an equilibrium notion in ambiguous games which relies on the Beweley una-

nimity rule. Maccheroni, Marinacci and Rustichini (2006) raise the question of the limit behavior

of variational preferences; they show that variational preferences become more ambiguity averse

as the ambiguity indices become smaller. So they point out (pp 1459-1450) that it is natural to

look for conditions under which a sequence of variational preferences converges to the variational

preference corresponding to the limit index of ambiguity aversion and give a limit result (Propo-

sition 12 in their paper) based on a kind of monotone convergence assumption on the sequence of

indices of ambiguity aversion. However, they suggest the use of epiconvergence7 to obtain further

limit results. In this paper we precisely tackle this question in our model without state space; in

fact, our stability result is based on a different kind of convergence8 on the sequence of indices of

ambiguity aversion which relies on the notion of epiconvergence and which guarantees the contin-

uous convergence of variational preferences. This result, in turn, has an immediate and relevant

implication in games since it guarantees the convergence of sequences of equilibria of perturbed

games to the equilibria of the unperturbed game.

The paper is organized as follows: Section 2 presents the model and the equilibrium notion

then it studies the equilibrium existence issue. Section 3 shows an application to the case in which

beliefs over opponents’ strategy profile are given by a set of equilibria. The stability issue is studied

in Section 4.

2 Model and Equilibria

2.1 The model

We consider a finite set of players I = {1, . . . n}; for every player i, Ψi = {ψ1
i , . . . , ψ

k(i)
i } is the

(finite) pure strategy set of player i, Ψ =
∏

i∈I Ψi and Ψ−i =
∏

j ̸=iΨj. Denote with Xi the set of

mixed strategies of player i and each strategy xi ∈ Xi is a vector xi = (xi(ψi))ψi∈Ψi
∈ Rk(i)

+ such

that
∑

ψi∈Ψi
xi(ψi) = 1. Denote also with X =

∏n
j=1Xj and with X−i =

∏
j ̸=iXj.

The set of all the possible outcomes of the game is denoted by Ω ⊆ Rn and ωi represents the

payoff of player i when outcome ω ∈ Ω is realized. We denote with P the set of all the probability

distributions over Ω so that beliefs will be represented by subsets of P . Beliefs are unambiguous

if they are singletons, they are ambiguous otherwise. The information (about the outcomes of the

game) available to each player i is summarized by an exogenous set-valued map Bi : X  P , called

beliefs correspondence, which gives to player i and for every strategy profile x ∈ X, the ambiguous

belief over outcomes Bi(x) ⊆ P . The set Bi(x) represents the set of probability distributions over

Ω which are feasible and consistent, in view of player i, with the actual strategy profile9 x. Note

7see for instance Aubin and Frankowska (1990) or Rockafellar and Wets (1998) for detailed surveys.
8This condition has been defined and used in a more general setting in Lignola and Morgan (1992).
9In this view, the strategy set X has a double use: first it represents the joint set of objects of choice of players

but, at the same time, it stands for the set of variables that parameterize the beliefs of each player.
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that, the standard (unambiguous) normal form games (even under incomplete information) give

rise to single valued beliefs correspondences. While complete ignorance would be represented by

correspondences such that Bi(x) = P for every x.

As recalled in the Introduction, we point out that the restrictions imposed by the beliefs

correspondences may come up from different sources of ambiguity; for instance, they might be

given by objective and exogenous ambiguity as in the decision theory models in Ahn (2008) and

Olszewski (2007) or, as shown in De Marco and Romaniello (2013,b), they can come up from

multiple priors on a state space or from partial information about opponents’ behavior caused by

partially-specified probabilities as in the Lehrer’s (2012) model of partially specified equilibrium.

Now, we introduce variational preferences. We assume that each agent is endowed with the

following utility function:

F V
i (x) = min

ϱ∈Bi(x)

[∑
ω∈Ω

ϱ(ω)ωi + ci(ϱ)

]
∀x ∈ X, (1)

ci : A(P) → R+, called index of ambiguity aversion, is a convex and lower semicontinuous function,

where A(P) is the affine hull of the set P ⊂ R|Ω|, that is, the smallest affine set containing P :

A(P) =

{
K∑
k=1

αkϱk |K ∈ N>0, ϱk ∈ P , αk ∈ R,
K∑
k=1

αk = 1

}
,

and R+ = [0,+∞[∪{+∞}. For the sake of simplicity we denote with Ei[ϱ] =
∑

ω∈Ω ϱ(ω)ωi and

with

φi(ϱ) = Ei[ϱ] + ci(ϱ) (2)

so that F V
i (x) = minϱ∈Bi(x) φi(ϱ). Then we consider the game

ΓV = {I; (Xi)i∈I ; (F
V
i )i∈I}.

This game is a classical strategic form game10. So,

Definition 2.1: A Nash equilibrium of ΓV is called MMR11 equilibrium under beliefs correspon-

dences Bi.

We emphasize that the notion of equilibrium above is the natural generalization of the classical

concept of Nash equilibrium for our model with beliefs correspondences. In fact, the Nash equi-

librium concept assumes that rational players will choose the most preferred strategy given their

beliefs about what other players will do and it imposes the consistency condition that all players’

beliefs are correct. Similarly, in an equilibrium under ambiguous beliefs correspondences x, each

10When a game ΓV is considered, then it is implicitly assumed that its utility functions FV
i are well posed, (i.e.

minϱ∈Bi(x)

∑
ω∈Ω ϱ(ω)ωi + ci(ϱ) exists for every x ∈ X); obviously, this latter condition is guaranteed, for instance,

when beliefs correspondences have closed values.
11Maccheroni-Marinacci-Rustichini
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player chooses the most preferred strategy xi given his information on the consequences of each

strategy choice x′i ∈ Xi under the assumption that this information is consistent with the actual

strategy profile chosen, i.e. it is provided by the ambiguous belief over outcomes Bi(x′i, x−i).

2.2 Equilibrium existence

Aim of this subsection is to provide an existence result for MMR equilibria which are, by definition,

equilibria of the strategic form game ΓV . It is well known (see for instance Rosen (1965)) that

the existence of equilibria depends on the properties of the best reply correspondences, i.e. the

set-valued12 maps BRV
i : X−i  Xi defined, for every player i, by

BRV
i (x−i) =

{
xi ∈ Xi | F V

i (xi, x−i) = max
xi∈Xi

F V
i (xi, x−i)

}
. (3)

Namely, the classical Rosen’s existence theorem requires that each BRV
i has to be closed with not

empty, closed and convex images. Below, we investigate those properties.

Preliminaries on set-valued maps

We start by recalling well known definitions and results on set-valued maps which we use below.

Following Aubin and Frankowska (1990)13, recall that if Z and Y are two metric spaces and

C : Z  Y a set-valued map, then

i) Lim inf
z→z′

C(z) =
{
y ∈ Y | lim

z→z′
d(y, C(z)) = 0

}
,

ii) Lim sup
z→z′

C(z) =
{
y ∈ Y | lim inf

z→z′
d(y, C(z)) = 0

}
and Lim inf

z→z′
C(z) ⊆ C(z′) ⊆ Lim sup

z→z′
C(z). Moreover

Definition 2.2: Given the set-valued map C : Z  Y , then

i) C is lower semicontinuous in z′ if C(z′) ⊆ Lim inf
z→z′

C(z); that is, C is lower semicontinuous

in z′ if for every y ∈ C(z′) and every sequence (zν)ν∈N converging to z′ there exists a se-

quence (yν)ν∈N converging to y such that yν ∈ C(zν) for every ν ∈ N. Moreover, C is lower

semicontinuous in Z if it is lower semicontinuous for all z′ in Z.

ii) C is closed in z′ if Lim sup
z→z′

C(z) ⊆ C(z′); that is, C is closed in z′ if for every sequence (zν)ν∈N

converging to z′ and every sequence (yν)ν∈N converging to y such that yν ∈ C(zν) for every
ν ∈ N, it follows that y ∈ C(z′). Moreover, C is closed in Z if it is closed for all z′ in Z;

12We recall that set-valued maps are indistinctly called correspondences as well
13All the definitions and the propositions we use, together with the proofs can be found in this book.
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iii) C is upper semicontinuous in z′ if for every open set U such that C(z′) ⊆ U there exists η > 0

such that C(z) ⊆ U for all z ∈ BZ(z
′, η) = {ζ ∈ Z |; ||ζ − z′|| < η};

iv) C is continuous (in the sense of Painlevé-Kuratowski) in z′ if it is lower semicontinuous and

upper semicontinuous in z′.

Finally, recall the following result: If Z is closed, Y is compact and the set-valued map C : Z  Y

has closed values, then, C is upper semicontinuous in z ∈ Z if and only if C is closed in z14.

The next definition will also be used:

Definition 2.3: Let Z a convex set, then the set-valued map C : Z  Y is a said to be concave

if

tC(z) + (1− t)C(ẑ) ⊆ C(tz + (1− t)ẑ) ∀ z, ẑ ∈ Z, ∀ t ∈ [0, 1] (4)

while it is convex 15 if

C(tz + (1− t)ẑ) ⊆ tC(z) + (1− t)C(ẑ) ∀ z, ẑ ∈ Z, ∀ t ∈ [0, 1] (5)

Continuity

Let Dom(ci) = {ϱ ∈ A(P) | ci(ϱ) < +∞} be the effective domain of ci and c
D
i the restriction of ci

to Dom(ci). The relative interior of Dom(ci) is

relint(Dom(ci)) = {ϱ ∈ Dom(ci) | ∃ϵ > 0, B(ϱ, ϵ) ∩ A(P) ⊂ Dom(ci)}.

Then

Proposition 2.4: Assume that

i) Bi is continuous with not empty and closed images for every x ∈ X.

ii) relint(Dom(ci)) ∩ Bi(x) ̸= ∅ for every x ∈ X

iii) cDi is continuous in Dom(ci) ∩ P.

Then, F V
i is continuous in X and BRV

i is a closed set-valued map with not empty and closed

images for every x−i ∈ X−i.

Proof. Since ci is lower semicontinuous then the effective domain Dom(ci) is a closed set. Consider

the set-valued map Di defined by

Di(x) = Dom(ci) ∩ Bi(x) ∀x ∈ X.

14Every set-valued map in this paper satisfies the assumptions of this result. Hence upper semicontinuity and

closeness coincide in this work.
15Note that a set-valued map is concave if and only if its graph is a convex set. For this reason, some authors

call convex set-valued maps those that here we call concave.
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Di is upper semicontinuous since if we regard Dom(ci) as a constant correspondence then Di it is

the intersection of two closed set-valued maps which is closed by Theorem 16.25 in Aliprantis and

Border (1999) and therefore Di is upper semicontinuous since Di has closed images. Similarly, if

we regard relint(Dom(ci)) as a constant correspondence then the set-valued map x  D̂i(x) =

relint(Dom(ci))∩Bi(x) is lower semicontinuous. In fact, D̂i is the intersection between the constant

correspondence x  relint(Dom(ci)) and Bi, the latter being lower semicontinuous from the

assumptions. Now, since relint(Dom(ci)) and Bi(x) are subsets of A(P) for every x ∈ X, they can

be regarded as subsets of R|Ω|−1. In this case, the constant correspondence x  relint(Dom(ci))

has open graph (in X × R|Ω|−1) and Bi is obviously lower semicontinuous; hence, in light of

assumption ii), we can apply Proposition 11.21 in Border (1985) so that their intersection is a

lower semicontinuous set-valued map. It immediately follows that x ∈ X  D̂i(x) ⊂ R|Ω| is lower

semicontinuous. Now, the two correspondences Di and D̂i have the same closure x D∗
i (x), that

is D∗
i (x) is the closure of the two sets D̂i(x) and Di(x) for every x in X. Lemma 16.22 in Aliprantis

and Border (1999) states that a set-valued map is lower semicontinuous if and only if its closure is.

Therefore D∗
i is lower semicontinuous since D̂i is lower semicontinuous. Applying again the same

Lemma we get that Di is lower semicontinuous.

Now, denote with

hi(x) = min
ϱ∈Di(x)

[Ei[ϱ] + cDi (ϱ)] ∀x ∈ X.

By applying the Berge maximum theorem (see also Aubin and Frankowska (1990), Border (1985)),

it follows that hi is continuous on the compact set X. By construction,

hi(x) = min
ϱ∈Di(x)

Ei[ϱ] + cDi (ϱ) = min
ϱ∈Bi(x)

Ei[ϱ] + ci(ϱ) = F V
i (x) ∀x ∈ X

so F V
i is continuous in X, which implies (for the Berge maximum theorem) that BRV

i is closed

with not empty and closed images for every x−i ∈ X−i.

Convexity

In order to obtain the convexity of the images of the correspondences BRV
i , the assumptions that

must be imposed on the index of ambiguity aversion are very demanding. In fact, the initial

assumption of convexity for the index of ambiguity aversion implies that the utility functions F V
i

derive from the minimization of convex functions and therefore they are concave only in very

particular cases. On the other hand, the sufficient conditions - usually required to have a best

reply BRV
i having convex images - involve the quasi concavity of F V

i . However we are able to

give sufficient conditions which involve the convexity of the belief correspondence (i.e. the nature

of the ambiguity the player is facing) and the ambiguity attitude of the player since they impose

restrictions on the index of ambiguity aversion. The next Section 3 shows that it is not difficult

to find examples satisfying all of the assumptions of Proposition 2.5 below.
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Proposition 2.5: Assume that for every x−i ∈ X−i, xi, x̂i in Xi and t ∈ [0, 1] it follows that if

ϱ∗ ∈ Bi(txi + (1− t)x̂i, x−i) then there exist ϱ ∈ Bi(xi, x−i) and ϱ̂ ∈ Bi(x̂i, x−i) such that

ϱ∗ = tϱ+ (1− t)ϱ̂ and ci(ϱ
∗) = tci(ϱ) + (1− t)ci(ϱ̂). (6)

Then, F V
i (·, x−i) is a concave function and BRV

i (x−i) is a convex set for every x−i ∈ X−i.

Remark 2.6: The assumption in the previous proposition implicitly requires Bi(·, x−i) to be a

convex set-valued map in Xi, that is, for every xi and x̂i in Xi, t ∈ [0, 1] it follows that

Bi(txi + (1− t)x̂i, x−i) ⊆ tBi(xi, x−i) + (1− t)Bi(x̂i, x−i). (7)

Moreover, it can be easily checked that if Bi(·, x−i) is a convex set-valued map in Xi and ci is

an affine function then the assumption of the previous proposition are satisfied.

Proof of Proposition (2.5). Let xi and x̂h be in Xi and t ∈ [0, 1]. Let ϱ∗ ∈ Bi(txi + (1− t)x̂i, x−i)

be such that F V
i (txi + (1 − t)x̂i, x−i) = Ei(ϱ

∗) + ci(ϱ
∗). From the assumptions it immediately

follows that there exist ϱ ∈ Bi(xi, x−i) and ϱ̂ ∈ Bi(x̂i, x−i) such that ϱ∗ = tϱ + (1 − t)ϱ̂ and

ci(ϱ
∗) = tci(ϱ) + (1− t)ci(ϱ̂). Since Ei(ϱ

∗) = tEi(ϱ) + (1− t)Ei(ϱ̂), then

F V
i (txi + (1− t)x̂i, x−i) = Ei(ϱ

∗) + ci(ϱ
∗) ≥

t

[
min

ϱ∈Bi(xi,x−i)
(Ei(ϱ) + ci(ϱ))

]
+ (1− t)

[
min

ϱ∈Bi(x̃i,x−i)
(Ei(ϱ) + ci(ϱ))

]
=

tF V
i (x̃i, x−i) + (1− t)F V

i (x̃i, x−i)

and F V
i (·, x−i) is concave for all x−i. Finally, it follows that BRV

i has convex images for every

x−i ∈ X−i.

From the Nash equilibrium existence theorems (see for instance Rosen (1965)), it immediately

follows that

Theorem 2.7: Suppose that, for every player i, the assumptions of Propositions 2.4 and 2.5 are

satisfied. Then, the game ΓV has at least an MMR equilibrium.

3 An Example: beliefs given by equilibria

As shown in De Marco and Romaniello (2013,b) a class of beliefs correspondences over outcomes

can be obtained in the classical case in which players have ambiguous beliefs about opponents’

strategy choices. More precisely, now we assume that each player i is endowed with a payoff

function fi : Ψ → R and a belief correspondence from strategy profiles to correlated strategies, i.e.

Ki : X  ∆, where ∆ is the set of probability distributions over Ψ; when the strategy profile x is

chosen by the agents, player i has the ambiguous belief Ki(x) ⊆ ∆ over the set of pure strategy

profiles Ψ.
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In this case the set of outcomes of the game is given by Ω = {(f1(ψ), . . . , fn(ψ)) |ψ ∈ Ψ}; then,
each Ki induces the beliefs correspondence over outcomes Bi : X  P in the obvious way:

Bi(x) = {ϱ ∈ P | ∃π ∈ Ki(x) with ϱ(fi (ψ)) = π(ψ) ∀ψ ∈ Ψ} ∀x ∈ X. (8)

Remark 3.1: If Ki(x) = {x} and the index ci is identically equal to 0 for every player i, then the

corresponding game ΓV coincides with the mixed extension of the game Γ = {I; Ψ1, . . . ,Ψn; f1, . . . , fn}
so that the set of equilibria of ΓV coincides with the set of Nash equilibria in mixed strategies of

Γ.

A particular case of the approach described above is provided by the example given below

in which beliefs to a player over his opponents’ strategy profiles are given by the set of Nash

equilibria of the game between the opponents once they have observed player’s action16. The

underlying idea in this example is that each player believes that his opponents will observe his

action before choosing their strategies and then, they will react optimally. So that player’s beliefs

about opponents’ behavior are naturally given by the equilibria of the game between his opponents

given the player’s action.

For a given player i, denote with Ji = I \ {i}, then, for every pure strategy ψi ∈ Ψi, consider

the game

G(ψi) = {Ji; (Ψj)j∈Ji ; (g
ψi

j )j∈Ji}

where Ψj is the pure strategy set of player j and the payoff function gψi

j : Ψ−i → R is the payoff

function of player j which corresponds to the payoff of player j in the game Γ when player i

chooses ψi, i.e., g
ψi

j ((ψ̂h)h∈Ji) = fj(ψ̂1, .., ψ̂i−1, ψi, ψ̂i+1, .., ψ̂n) for every ψ̂−i ∈ Ψ−i. Denote with

χi(ψi) the set of Nash equilibria in mixed strategies of the game G(ψi). With an abuse of notation,

we identify each equilibrium in χi(ψi) with the probability distribution it induces on Ψ−i; in other

words each element µψi
∈ χi(ψi) is a probability distribution on Ψ−i induced by some mixed

strategy equilibrium of the game G(ψi); note that each µψi
(ψ−i) denotes the probability assigned

by µψi
to the strategy profile ψ−i. Recall that, for every player i, Ψi = {ψ1

i , . . . , ψ
k(i)
i }. Let

Bi : X  P be the set-valued map defined, for every x ∈ X, by

ϱ ∈ Bi(x) ⇐⇒


∃µ1 ∈ χi(ψ

1
i ), . . . , µk(i) ∈ χi(ψ

k(i)
i ) such that

ϱ(fi(ψ
t
i , ψ−i)) = xi(ψ

t
i)µt(ψ−i) ∀t ∈ {1, . . . , k(i)}, ∀ψ−i ∈ Ψ−i.

(9)

We emphasize that this set-valued map represents the idea that player i believes that the other

players will observe his play and then they will react by choosing a Nash equilibrium.

16A similar idea has been firstly investigated in De Marco and Romaniello (2012) in which correlated equilibria

have been used. Here we focus on Nash equilibria because we do not need the additional properties of correlated

equilibria
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Lemma 3.2: The set-valued map Bi defined in (9) is continuous with not empty and closed values

for every x ∈ X. Moreover, Bi(·, x−i) is convex for every x−i ∈ X−i.

Proof. For every ψi, G(ψi) is a finite game so (it is well known that) the set χi(ψi) of Nash equilibria

in mixed strategies of G(ψi) is not empty and closed.

Now, we show that the set-valued map Bi is closed for every x ∈ X. In fact, given a point

x ∈ X, let (xν)ν∈N be a sequence in X converging to x where we denote with xν = (x1,ν , . . . , xn,ν).

Let (ϱν)ν∈N be a sequence converging to ϱ with in ϱν ∈ Bi(xν) for every ν ∈ N. It follows that

ϱν(fi(ψ
t
i , ψ−i)) = xi,ν(ψ

t
i)µt,ν(ψ−i) with µt,ν ∈ χi(ψ

t
i) for every t ∈ {1, . . . , k(i)}, ψ−i ∈ Ψ−i and

every ν ∈ N. For every t, the sequence {µt,ν}ν∈N converges to a point µt; being χi(ψ
t
i) closed then

µt ∈ χi(ψ
t
i) for every t and hence ϱ ∈ Bi(x). Therefore Bi is closed in x. Applying the previous

arguments to the constant sequence (xν)ν∈N with xν = x for every ν ∈ N, it follows that the image

Bi(x) is also closed for every x ∈ X. Being P compact and X closed it follows that Bi is upper

semicontinuous in X.

The set-valued map Bi is also lower semicontinuous in every x ∈ X. In fact, given a point x ∈ X,

consider ϱ ∈ Bi(x) and a sequence (xν)ν∈N in X converging to x. Since for every t ∈ {1, . . . , k(i)}
and ψ−i ∈ Ψ−i it follows that ϱ(fi(ψ

t
i , ψ−i)) = xi(ψ

t
i)µt(ψ−i) with µt ∈ χi(ψ

t
i), consider ϱν defined

by ϱν(fi(ψ
t
i , ψ−i)) = xi,ν(ψ

t
i)µt(ψ−i) for every t ∈ {1, . . . , k(i)}, ψ−i ∈ Ψ−i and for every ν ∈ N. It

immediately follows that ϱν → ϱ as ν → ∞ which implies that Bi is lower semicontinuous in x.

Finally, given α ∈]0, 1[, consider ϱ ∈ Bi(αx′i + (1− α)x′′i , x−i). It follows that

ϱ(fi(ψ
t
i , ψ−i)) = [αx′i(ψ

t
i)+(1−α)x′′i (ψti)]µt(ψ−i) with µt ∈ χi(ψ

t
i), ∀t ∈ {1, . . . , k(i)}, ∀ψ−i ∈ Ψ−i

Now, if ϱ′ and ϱ′′ are defined respectively by ϱ′(fi(ψ
t
i , ψ−i)) = x′i(ψ

t
i)µt(ψ−i) and ϱ

′′(fi(ψ
t
i , ψ−i)) =

x′′i (ψ
t
i)µt(ψ−i) for all t ∈ {1, . . . , k(i)} and ψ−i ∈ Ψ−i then

ϱ′ ∈ Bi(x′i, x−i), ϱ′′ ∈ Bi(x′′i , x−i), and ϱ = αϱ′ + (1− α)ϱ′′

which finally implies that

Bi(αx′i + (1− α)x′′i , x−i) ⊆ αBi(x′i, x−i) + (1− α)Bi(x′′i , x−i)

so that Bi(·, x−i) is convex for every x−i ∈ X−i.

Remark 3.3: Suppose that player i has a fixed set of ambiguous beliefs Di over opponents’

strategy profile but he believes that with probability ε his opponents will observe his action before

their play and they will react optimally by playing a Nash equilibrium. Then player i has the

following belief correspondence B′
i : X  P defined by

ϱ ∈ B′
i(x) ⇐⇒


∃µ1 ∈ χi(ψ

1
i ), . . . , µk(i) ∈ χi(ψ

k(i)
i ) and di ∈ Di

such that

ϱ(fi(ψ
t
i , ψ−i)) = xi(ψ

t
i)[(1− ε)di + εµt(ψ−i)] ∀t ∈ {1, . . . , k(i)}, ∀ψ−i ∈ Ψ−i.

Following the same steps in the proof of Lemma 3.2, it follows that B′
i is continuous with not

empty and closed values for every x ∈ X and B′
i(·, x−i) is convex for every x−i ∈ X−i.
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Now we show that if the index of ambiguity aversion depends only on the beliefs that each player

has about his opponents’ behavior (as it seems natural since ambiguity concerns only opponents’

strategy profiles) then existence of equilibria is readily obtained under standard assumptions.

Proposition 3.4: Assume that for every player i:

a) The set-valued map Bi is defined by formula (9).

b) P ⊂ relint(Dom(ci)).

c) There exists a continuous function γi : ∆−i → R, where ∆−i is the set of probability distri-

butions over Ψ−i, such that

ci(ϱ) = γi(ϱΨ−i
) ∀ϱ ∈ P ,

where ϱΨ−i
is the marginal of ϱ over Ψ−i.

Then the game ΓV has at least an MMR equilibrium.

Proof. Assumption (a) immediately implies that Lemma 3.2 holds so (i) in Proposition 2.4 is

satisfied. Assumption (b) implies that (ii) in Proposition 2.4 holds and Assumption (c) implies

that (iii) in Proposition 2.4 is also satisfied. Finally, from Lemma 3.2 we get that the belief

correspondences are convex.; then it can be immediately checked that Assumption c) immediately

implies that the assumptions in Proposition 2.5 are satisfied. Hence, from Theorem 2.7 we get the

assertion.

4 The stability result

As recalled in the introduction, Maccheroni, Marinacci and Rustichini (2006) first study the prob-

lem of the limit behavior of variational preferences in the standard single agent decision problem

with state space. Here, we look at our model with beliefs correspondences and we consider the

converge assumptions defined in Lignola and Morgan (1992). In particular, we obtain the contin-

uous convergence of variational preferences which, in turn, guarantees convergences of sequences

of equilibria to an equilibrium of the unperturbed game.

Problem statement

For every player i, consider a sequence {ci,ν}ν∈N of indices of ambiguity aversion and a sequence

{Bi,ν}ν∈N of beliefs correspondences and let {F V
i,ν}ν∈N be the corresponding sequence of variational

preferences:

F V
i,ν(x) = min

ϱ∈Bi,ν(x)

[∑
ω∈Ω

ϱ(ω)ωi + ci,ν(ϱ)

]
∀x ∈ X,
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and the corresponding sequence of games17 {Γν}ν∈N, where

Γν = {I; (Xi)i∈I ; (F
V
i,ν)i∈I}. (10)

In this section we look for conditions of convergence of the sequences {ci,ν}ν∈N to the indices of

ambiguity aversion ci and of {Bi,ν}ν∈N to the belief correspondences Bi for i = 1, . . . , n, which

guarantee that:

i) The corresponding sequences of variational preferences {F V
i,ν}ν∈N converge in an appropriate

way to the variational preferences F V
i corresponding to ci and Bi for i = 1, . . . , n.

ii) Converging sequences of equilibria of the perturbed games {Γν}ν∈N have their limits in the

set of equilibria of the unperturbed game Γ corresponding to the variational preferences F V
i ,

for i = 1, . . . , n.

Technical tools

Definition 4.1: Given a sequence of functions {gν}ν∈N, with gν : Z ⊆ Rk → R for every ν ∈ N.
Then {gν}ν∈N epiconverges to the function g if

i) For every z ∈ Z there exists a sequence {zν}ν∈N ⊂ Z converging to z such that

lim sup
ν→∞

gν(zν) 6 g(z)

ii) For every z ∈ Z and for every sequence {zν}ν∈N ⊂ Z converging to z it follows that

g(z) 6 lim inf
ν→∞

gν(zν).

Moreover, the sequence of functions {gν}ν∈N hypoconverges to the function g if the sequence of

functions {−gν}ν∈N epiconverges to the function −g.

Definition 4.2: Given a sequence of functions {gν}ν∈N, with gν : Z ⊆ Rk → R for every ν ∈ N.
Then {gν}ν∈N continuously converges to the function g if it hypoconverges and epiconverges to g,

that is for every z ∈ Z and for every sequence {zν}ν∈N ⊂ Z converging to z it follows that

lim sup
ν→∞

gν(zν) 6 g(z) 6 lim inf
ν→∞

gν(zν).

17Again, it is implicitly assumed that the utility functions FV
i,ν are well posed along the sequence.
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4.1 Result

Theorem 4.3: Given the n-tuple of beliefs correspondence (B1, . . . ,Bn), the n-tuple of indexes of

ambiguity aversion (c1, . . . , cn) and the corresponding game ΓV . Assume that,

i) For every player i, (Bi,ν)ν∈N is a sequence of correspondences, with Bi,ν : X  P for every

ν ∈ N, which is sequentially convergent to Bi, that is, for every x ∈ X and every sequence

(xν)ν∈N converging to x,

Lim sup
ν→∞

Bi,ν(xν) ⊆ Bi(x) ⊆ Lim inf
ν→∞

Bi,ν(xν) (11)

where

Lim inf
ν→∞

Bi,ν(xν) = {ϱ ∈ P | ∀ε > 0 ∃ν s.t. forν > ν S(ϱ, ε) ∩ Bi,ν(xν) ̸= ∅} ,

Lim sup
ν→∞

Bi,ν(xν) = {ϱ ∈ P | ∀ε > 0 ∀ν ∈ N ∃ν > ν s.t. S(ϱ, ε) ∩ Bi,ν(xν) ̸= ∅} .

and S(ϱ, ε) is the ball in R|Ω| with center ϱ and radius ε.

ii) For every ϱ and for every sequence {ϱν}ν∈N ⊂ P converging to ϱ it follows

ci(ϱ) 6 lim inf
ν→∞

ci,ν(ϱν) (12)

iii) For every x ∈ X, for every sequence {xν}ν∈N ⊂ X converging to x and for every ϱ ∈ Bi(x)
there exists a sequence {ϱν}ν∈N converging to ϱ, with ϱν ∈ Bi,ν(xν) for every ν ∈ N, such that

lim sup
ν→∞

ci,ν(ϱν) ≤ ci(ϱ) (13)

Then,

a) For every player i, the sequence {F V
i,ν}ν∈N continuously converges to F V

i

b) If the sequence (x∗ν)ν∈N ⊂ X converges to x∗ ∈ X and, for every ν ∈ N, x∗ν is an equilibrium

of the game ΓVν . Then, x
∗ is an equilibrium of the game ΓV .

Proof. a) First we prove that for every every x ∈ X and for every sequence {xν}ν∈N ⊂ X converging

to x

F V
i (x) 6 lim inf

ν→∞
F V
i,ν(xν).

For every ϱ ∈ P , denote with φi(ϱ) = Ei[ϱ] + ci(ϱ) and φi,ν(ϱ) = Ei[ϱ] + ci,ν(ϱ). Let ϱ and ϱν be

such that φi(ϱ) = F V
i (x) and φi,ν(ϱν) = F V

i,ν(xν). Suppose that

lim inf
ν→∞

F V
i,ν(xν) < F V

i (x), (14)
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then there exists a subsequence {xνk}k∈N such that φi,νk(ϱνk) = F V
i,νk

(xνk) < F V
i (x) for every k ∈ N.

The corresponding sequence {ϱνk}k∈N has a converging subsequence {ϱνh}h∈N. Let ϱ̂ be its limit,

then from assumption (i) it follows that ϱ̂ ∈ Bi(x) and so φi(ϱ) 6 φi(ϱ̂). From assumption (ii) we

get

F V
i (x) = φi(ϱ) 6 φi(ϱ̂) 6 lim inf

h→∞
φi,νh(ϱνh) = lim inf

h→∞
F V
i,νh

(xνh)

and this contradicts (14). Then

F V
i (x) 6 lim inf

ν→∞
F V
i,ν(xν). (15)

Now, we prove that for every every x ∈ X and for every sequence {xν}ν∈N ⊂ X converging to

x

lim sup
ν→∞

F V
i,ν(xν) 6 F V

i (x). (16)

Let ϱ ∈ Bi(x) be such that φi(ϱ) = F V
i (x). From assumption (iii) there exists a sequence {ϱν}ν∈N

converging to ϱ such that ϱν ∈ Bi,ν(xν) for all ν ∈ N and lim sup
ν→∞

ci,ν(ϱν) 6 ci(ϱ). Being, F
V
i,ν(xν) 6

φi,ν(ϱν) for every ν ∈ N then immediately follows that

lim sup
ν→∞

F V
i,ν(xν) 6 lim sup

ν→∞
φi,ν(ϱν) 6 φi(ϱ) = F V

i (x)

.

Summarizing, for every every x ∈ X and for every sequence {xν}ν∈N ⊂ X converging to x

lim sup
ν→∞

F V
i,ν(xν) 6 F V

i (x) 6 lim inf
ν→∞

F V
i,ν(xν),

which means that the sequence {F V
i,ν}ν∈N continuously converges to F V

i .

b) Let (x∗ν)ν∈N ⊂ X be a sequence converging to x∗ ∈ X such that, for every ν ∈ N, x∗ν is an

equilibrium of the game ΓVν then, for every ν, it follows that

F V
i,ν(x

∗
i,ν , x

∗
−i,ν) ≥ F V

i,ν(x
′
i, x

∗
−i,ν) ∀x′i ∈ Xi

taking the limit as ν → ∞ we get

F V
i (x∗i , x

∗
−i) = lim

ν→∞
F V
i,ν(x

∗
i,ν , x

∗
−i,ν) ≥ lim

ν→∞
F V
i,ν(x

′
i, x

∗
−i,ν) = F V

i (x′i, x
∗
−i) ∀x′i ∈ Xi

which implies that x∗i is a best reply to x∗−i and we get the assertion.

Remark 4.4: The previous theorem could also be proved by applying the different stability results

for marginal functions under constraints given in Lignola and Morgan (1992). We prefer to give

a direct proof in order to better clarify the role of the assumptions in our model. However, the

arguments we use are naturally similar to the ones contained in the proofs by Lignola and Morgan

(1992).
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