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1 Introduction

Let (T, τ) be a Hausdorff topological space, let V1,...,Vk, k ≥ 1, be Banach spaces and let
V = V1 × ...× Vk.
If Ki is a nonempty closed subset of Vi, we consider K =

∏
j=1,..,k

Kj and, given x̄̄x̄x ∈ K, we

denote by x̄̄x̄x−i the point (x̄1, , .., x̄i−1, x̄i+1, ..., x̄k) ∈
∏
j 6=i

Kj = K−i. If xi ∈ Ki, we denote by

(xi, x̄̄x̄x−i) the point (x̄1, , .., x̄i−1, xi, x̄i+1, ..., x̄k) ∈ K.
Let f1, ..., fk be real-valued functions defined on T ×K and bounded from below. Assume
that t ∈ T corresponds to a strategy of a leader playing first and that xxx corresponds to a
strategy profile of k followers playing non-cooperatively (that is, xxx = (x1, ..., xk) means that,
for all i = 1, ..., k, the follower i chooses the strategy xi). The leader aims to minimize with
respect to t the objective function

L : (t,xxx) ∈ T ×K → L(t,xxx) ∈ R ∪ {+∞} ,

knowing that t is constrained in T ′ ⊆ T and xxx belongs to N (t), the set of solutions to the
parametrized Nash equilibrium [28] problem

(NE)(t) find x̄̄x̄x ∈ K such that fi(t, x̄̄x̄x) ≤ inf
xi∈Ki

fi(t, xi, x̄̄x̄x−i) ∀ i = 1, .., k

or, equivalently,

(NE)(t) find x̄̄x̄x ∈ K such that

k∑
i=1

fi(t, x̄̄x̄x) ≤
k∑
i=1

inf
xi∈Ki

fi(t, xi, x̄̄x̄x−i).

When (NE)(t) does not have a unique solution, which is guaranteed only in restrictive
conditions [29], as for bilevel optimization problems two extreme situations can be considered:

• L is minimized with respect to the couple (t,xxx)

• the function sup
xxx∈N (t)

L(t,xxx) is minimized with respect to t.

This leads to formulate the optimistic and the pessimistic bilevel problem with Nash equi-
librium constraints (see, for example,[22] and [24]), also called strong and weak bilevel op-
timization problem when k = 1 and the lower level corresponds to a minimization problem
(see, for example, [21], [10], [8]):

(OBE) find (t̄, x̄̄x̄x) ∈ (T ′ ×K) s.t. x̄̄x̄x ∈ N (t̄) and L(t̄, x̄̄x̄x) = inf
t∈T ′

inf
xxx∈N (t)

L(t,xxx)

(PBE) find t̄ ∈ T ′ s.t. sup
x̄̄x̄x∈N (t̄)

L(t̄, x̄̄x̄x) = inf
t∈T ′

sup
xxx∈N (t)

L(t,xxx).

However, following [24], [25] and [6], one can have also situations in which the leader mini-
mizes the Intermediate Function

C(t) = η(t) inf
xxx∈N (t)

L(t,xxx) + (1− η(t)) sup
xxx∈N (t)

L(t,xxx), (1)
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where η(t) is a real valued function such that 0 ≤ η(t) ≤ 1 for any t.
This actually amounts to an intermediate situation since

inf
xxx∈N (t)

L(t,xxx) ≤ C(t) ≤ sup
xxx∈N (t)

L(t,xxx)

and
v1 = inf

t∈T ′
inf

xxx∈N (t)
L(t,xxx) ≤ v = inf

t∈T ′
C(t) ≤ v2 = inf

t∈T ′
sup

xxx∈N (t)

L(t,xxx).

Then, the problem to be solved by the leader is the minimization problem

(P ) find t̄ ∈ T ′ s.t. C(t̄) = inf
t∈T ′

C(t)

that we call Intermediate Bilevel Problem with Nash Equilibrium Constraints.
Observe that, when η(t) = 0 for every t, the problem (P ) coincides with the bilevel problem
(PBE) and, when η(t) = 1 for every t, t̄ is a solution to (P ) if and only there exists x̄̄x̄x ∈ N (t̄)
such that the couple (t̄, x̄̄x̄x) is a solution to (OBE).
Therefore, assuming that the set T ′ is sequentially compact with respect to τ , it is important
to investigate the τ -lower semicontinuity of the function C. However, we show by Example
2.2 that C may fail to be lower semicontinuous due to the possible lack of lower semicontinuity
of the function

ω : t ∈ T → sup
xxx∈N (t)

L(t,xxx).

Thus, in this paper, we consider, for any ε > 0, the following regularization

Cε(t) = η(t) inf
xxx∈N (t)

L(t,xxx) + (1− η(t)) sup
xxx∈Ñ ε(t)

L(t,xxx)

where

Ñ ε(t) =

{
x̄̄x̄x ∈ K s.t.

k∑
i=1

fi(t, x̄̄x̄x) <

k∑
i=1

inf
xi∈Ki

fi(t, xi, x̄̄x̄x−i) + ε

}
is the set of the strict ε-approximate Nash equilibria defined in [26].
We emphasize that only the second term of C has to be regularized since the function

inf
xxx∈N (t)

L(t,xxx) is lower semicontinuous (see Proposition 2.1) under very general hypotheses.

We will prove that, under sufficiently general assumptions,

• the regularized problem

(P ε) find tε ∈ T ′ s.t. Cε(tε) = inf
t∈T ′

Cε(t)

has at least a solution tε,

• (tε)ε has a τ -limit point t̃ ∈ T ′,

• (Cε)ε epiconverges to cl(C) when ε tends to 0,
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• the optimal values vε = inf
t∈T ′

Cε(t) converge to v when ε tends to zero.

Then, in line with [2], we give the following definition:

Definition 1.1 A point t̃ ∈ T ′ is called a viscosity solution for the intermediate bilevel
problem with Nash equilibrium constraints whenever it is a τ -limit point of a sequence (tεn)n,
where (εn)n decreases to 0, such that:

• tεn is a minimum point for Cεn over T ′ for any n ∈ N,

• lim
n
C εn(tεn) = inf

t∈T ′
C(t).

Note that a similar concept has been considered in [21] for minsup problems with lower level
described by optimization problems, i.e. in the case where η(t) = 0 for every t and k = 1.

2 Preliminary results

First, we recall the definitions that we shall need.
Let (S, σ) be a topological space and (Hn)n be a sequence of subsets of S. Then:

− s ∈ σ-lim inf
n

Hn if and only if there exists a sequence (sn)n σ-converging to s in S

such that sn ∈ Hn for n sufficiently large,
− s ∈ σ-lim sup

n
Hn if and only if there exists a sequence (sn)n σ-converging to s in S

such that snk
∈ Hnk

for a selection of integers (nk)k.

Let (U, σ ′) be a topological space and let Y be a set-valued map from U to S, i.e. a
map which associates to any u ∈ U a subset Y (u) of S.
The map Y is (σ ′, σ)-sequentially lower semi-continuous over X ⊆ U if for every x ∈ X and
every sequence (xn)n σ

′-converging to x in X we have Y (x) ⊆ σ-lim inf
n

Y (xn), i.e.

− for any x ∈ X, any sequence (xn)n σ
′-converging to x in X and any s ∈ Y (x) there exists

a sequence (sn)n σ-converging to s in S such that sn ∈ Y (xn) for n large.

The map Y is (σ ′, σ)-sequentially closed over X if for every x ∈ X and every sequence
(xn)n σ

′-converging to x in X we have σ-lim sup
n

Y (xn) ⊆ Y (x), i.e.

− for any x ∈ X, any sequence (xn)n σ ′-converging to x in X and any sequence (sk)k
σ-converging to s in S, such that sk ∈ Y (xnk

) for a selection of integers (nk)k, we have that
s ∈ Y (x).

The map Y is (σ ′, σ)-sequentially subcontinuous over X if, for every sequence (xn)n σ ′-
converging in X, σ-lim sup

n
Y (xn) 6= ∅, i.e.

− for any x ∈ X and any sequence (xn)n σ ′-converging in X, every sequence (sn)n such
that sn ∈ Y (xn) for any n ∈ N has a σ-converging subsequence.
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For more information about these and related concepts, the reader may refer to [4].

A function h : U×S → R is (σ ′×σ)-sequentially coercive over X×Y , where X×Y ⊆ U×S,
if for every α > inf

X×Y
h there exists a sequentially compact set Hα ⊆ U × S such that

{(x, s) ∈ X × Y : f(x, s) ≤ α} ⊆ Hα.

Given a function g : T → R we denote by clτ g the lower semicontinuous regularization of
g, that is the greatest τ -lower semicontinuous function which minorizes g. It is known that,
for every t ∈ T ,

(clτ g)(t) = lim inf
t′→t

g(t) and inf
T
clτ g = inf

T
g.

Finally, a sequence of functions (gn)n defined on T τ -epiconverges to g in T if

(τ × ν)− lim sup
n

epi gn ⊆ epi g ⊆ (τ × ν)− lim inf
n

epi gn,

where ν is the usual topology on R. This amounts to say that the following conditions hold
together:
• for every t ∈ T and every sequence (tn)n τ -converging to t in T

g(t) ≤ lim inf
n

gn(tn),

• for every t ∈ T there exists a sequence (t′n)n τ -converging to t in T such that

lim sup
n

gn(t′n) ≤ g(t).

Lemma 2.1 [1] If the sequence (gn)n is monotone decreasing and pointwise τ -converges to
g on T , then it also epiconverges to clτ g.

For more informations and further results, the reader may refer to [1] and [9].

For the sake of shortness, in this paper we will omit the term sequentially in any of the
above conditions as well as in the semicontinuity properties for scalar functions.
If the map Y is nonempty-valued and g : X × S → R is a real-valued function, the marginal
(or value) functions

ϕ(x) = inf
s∈Y (x)

g(x, s) and ω(x) = sup
s∈Y (x)

g(x, s)

can be defined.
The following results concerning the lower semicontinuity of ϕ and ω will be used in this
paper.

Lemma 2.2 [13] If the set-valued map Y is (σ ′, σ)-closed and (σ ′, σ)-subcontinuous over X
and if g is (σ ′×σ)-lower semicontinous at (x, s), for every x ∈ X and every s ∈ Y (x), then
the function ϕ is σ ′-lower semicontinuous over X. When Y (x) = Y ⊆ S for every x ∈ X,
then ϕ is σ ′-lower semicontinuous over X whenever g is (σ ′ × σ)-lower semicontinous at
(x, s), for every (x, s) ∈ X × Y , and (σ ′ × σ)-coercive over X × Y .
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Lemma 2.3 [13] If Y is (σ ′, σ)-lower semicontinuous over X and g is (σ ′×σ)-lower semi-
continous at (x, s), for every x ∈ X and every s ∈ Y (x), then the function ω is σ ′-lower
semicontinuous over X.

Therefore, having in mind the expression of the function C(t) in (1), results concerning
closedness and lower semicontinuity of the set-valued map N are crucial. However, while in
[7], [26] and [18] it has been proven that the map N may be closed under sufficiently general
assumptions, in [27] it has been shown that it may fail to be lower semicontinuous, so that
the function C may be not lower semicontinuous.
From now on, given a topology σi on the Banach space Vi we denote by σ the product
topology on the Banach space V and by σ−i the product topology on

∏
j 6=i

Vj .

The following proposition gives a sufficient condition for the closedness of the map N .

Proposition 2.1 [18] The set-valued map N is (τ, σ)-closed over a closed set T ′ ⊆ T if the
following assumptions hold:

i) f =
k∑
i=1

fi is (τ × σ)-lower semicontinuous over (T ′ ×K);

ii) for every (t,xxx) ∈ T ′×K, for every i ∈ {1, .., k} and every sequence (tn,xxx−i,n)n (τ×σ−i)-
converging to (t,xxx−i) in T ′ ×K−i there exists a sequence (x̃i,n)n in Ki such that

fi(t,xxx) ≥ lim sup
n

fi(tn, x̃i,n,xxx−i,n).

We point out that assumption ii) is satisfied if the function fi is (τ×σ)-upper semicontinuous
over T ′ ×K.

Example 2.1 [27] Let k = 2, T = V1 = V2 = R, T ′ = K1 = K2 = [0, 1] and f1(t, x1, x2) =
f2(t, x1, x2) = tx1x2. Then one easily checks that (1, 1) is a Nash equilibrium for the problem
(NE)(0), since N (0) = [0, 1]2, and that lim inf

n
N (1/n) = ({0} × [0, 1])∪ ([0, 1]× {0}), so N

is not lower semicontinuous at t = 0.

Example 2.2 Consider the data of Example 2.1 and the real-valued function L(t, x1, x2) =
x1 + x2 defined on the unitary cube [0, 1]3. One easily checks that

ω(0) = sup
xxx∈N (0)

L(0,xxx) = 2 and ω(1/n) = sup
xxx∈N (1/n)

L(1/n,xxx) = 1

so ω is not lower semicontinuous at t = 0. Therefore, if η(t) = 0 for every t ∈ [0, 1], we have
C(0) = 2 and C(1/n) = 1, so also C is not lower semicontinuous at t = 0.

Nevertheless, it can be proved that the set-valued map Ñ ε, considered in the Introduction,
is lower semicontinuous under suitable assumptions:

Proposition 2.2 [27] The set-valued map Ñ ε is (τ, σ)-lower semicontinuous over T ′ ⊆ T
if the following assumption holds:

i)
k∑
i=1

fi(·,xxx)−
k∑
i=1

inf
xi∈Ki

fi(·,xxx) is τ -upper semicontinuous over T ′ for every xxx ∈ K.
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Remark 2.1 Using Lemma 2.2, it is easy to see that condition i) is satisfied whenever the
following reasonable conditions hold together:
• the function fi is (τ ×σ)-lower semicontinuous and (τ ×σ)-coercive over T ′×K, for every
i = 1, ..., k,

•
k∑
i=1

fi(·,xxx) is τ -upper semicontinuous over T ′ for every xxx ∈ K.

The following result, that will be also used further on, says that any σ-converging sequence
of strict εn-Nash equilibria converges to a Nash equilibrium when (εn)n decreases to zero.

Proposition 2.3 [26] If, for every t ∈ T , the function

xxx ∈ K −→
k∑
i=1

fi(t,xxx)−
k∑
i=1

inf
xi∈Ki

fi(t,xxx)

is σ-lower semicontinuous over K, then for every sequence (εn)n decreasing to zero one has

σ − lim sup
n

Ñ εn(t) ⊆ N (t).

We hilight that, in this paper, we do not consider neither the “large” version of the approximate
ε-Nash equilibrium points

N ε(t) =

{
x̄̄x̄x ∈ K s.t.

k∑
i=1

fi(t, x̄̄x̄x) ≤
k∑
i=1

inf
xi∈Ki

fi(t, xi, x̄̄x̄x−i) + ε

}

neither the classical concept of ε-Nash equilibria:

N̂ ε(t) =

{
x̄̄x̄x ∈ K s.t. fi(t, x̄̄x̄x) ≤ inf

xi∈Ki

fi(t, xi, x̄̄x̄x−i) + ε ∀ i = 1, ..., k

}
.

This is due to the possible lack of lower semicontinuity of these maps under the only as-
sumption i) and in the absence of further convexity assumptions (see examples 3.2, 3.3 and
3.6 in [27] and also Example 3.2 in Section 3).
From now on we assume the following:
a1) the function η(t) is continuous over T ′;
a2) (εn)n is a sequence of positive real number decreasing to zero;
a3) the set of Nash equilibria N (t) is nonempty for any t ∈ T .

3 Regularization and viscosity solutions

In order to prove that the problem (Pε) admits solutions, we will use the lower semicontinuity
of the function Cε defined by

Cε(t) = η(t) inf
xxx∈N (t)

L(t,xxx) + (1− η(t)) sup
xxx∈Ñ ε(t)

L(t,xxx) (2)
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which can be derived from the lower semicontinuity of the functions

inf
xxx∈N (t)

L(t,xxx) and sup
xxx∈Ñ ε(t)

L(t,xxx)

due to assumption a1). Then, using the results in Section 2 we have:

Proposition 3.1 If the following assumptions hold:
i) the set T ′ is τ -sequentially compact;
ii) the function L is (τ × σ)-lower semicontinuous over T ′ ×K;
iii) the function fi is (τ × σ)-lower semicontinuous and (τ × σ)-coercive over T ′ × K for
every i = 1, ..., k;
iv) for every (t,xxx) ∈ T ′×K, for every i ∈ {1, .., k} and every sequence (tn,xxx−i,n)n (τ×σ−i)-
converging to (t,xxx−i) in T ′ ×K−i there exists a sequence (x̃i,n) in Ki such that

fi(t,xxx) ≥ lim sup
n

fi(tn, x̃i,n,xxx−i,n);

v) the function
k∑
i=1

fi(·,xxx) is τ -upper semicontinuous over T ′ for every xxx ∈ K;

vi) the function

xxx ∈ K −→
k∑
i=1

fi(t,xxx)−
k∑
i=1

inf
xi∈Ki

fi(t,xxx)

is τ -coercive over T ′;
then, the problem (Pε) has at least a solution tε.
Moreover, for every sequence of positive numbers (εn)n decreasing to zero the sequence (tεn)n
has a subsequence which τ -converges towards t̃ ∈ T ′.

Proof
Assumptions iii), iv) and v) imply that all assumptions of propositions 2.1 and 2.2 are

satisfied, so that the set-valued map N is (τ, σ)-closed and the set-valued map Ñ ε is (τ, σ)-
lower semicontinuous over T ′ × K. Assumption vi) implies that N is (τ, σ)-subcontinous
over T ′×K. Then, using Lemma 2.2 and Lemma 2.3, one concludes that the function Cε is
τ -lower semicontinous over T ′, so, from assumption i) we infer that the problem (P ε) has a
solution tε. The last assertion also derives from assumption i). 2

We point out that the problem (P ε) is Tikhonov well-posed in the generalized sense [11]
with respect to τ , which means that it has at least a solution and every minimizing sequence
for (P ε) has a subsequence which τ -converges to a minimum point of Cε.
Now, we prove that the sequence of functions (Cεn)n epiconverges to clτ C and, consequently,
the sequence of infima (vεn)n converges to the infimum v.

Proposition 3.2 If the following assumptions hold:
i) the function L(t, ·) is σ-upper semicontinuous over K;
ii) the function

xxx ∈ K −→
k∑
i=1

fi(t,xxx)−
k∑
i=1

inf
xi∈Ki

fi(t,xxx)
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is σ-lower semicontinuous and σ-coercive over K for every t ∈ T ′;
then, the sequence (Cεn)n τ -epiconverges towards clτ C and lim

ε→0
vε = v.

Proof
We use Lemma 2.1 applied to the functions gn = Cεn and we show that the sequence
(Cεn)n, which is monotonically decreasing with respect to n, τ -pointwise converges to C on
T ′. Having in mind the expression of Cεn and C it is sufficient to prove that

lim
n

sup
xxx∈Ñ εn (t)

L(t,xxx) = sup
xxx∈N (t)

L(t,xxx). (3)

The inequality sup
xxx∈N (t)

L(t,xxx) ≤ lim inf
n

sup
xxx∈Ñ εn (t)

L(t,xxx) follows from the inclusion N (t) ⊆

Ñ εn(t) that is true for every n ∈ N and every t ∈ T .
Assume that there exists t ∈ T and a real number c such that sup

xxx∈N (t)

L(t,xxx) < c <

lim sup
n

sup
xxx∈Ñ εn (t)

L(t,xxx). We find an increasing sequence (nk)k and a sequence xxxk such that

xxxk ∈ Ñ εnk (t) and sup
xxx∈N (t)

L(t,xxx) < c < L(t,xxxk). Assumption ii) implies that a subsequence

(xxxk′)k′ of (xxxk)k σ-converges to x̄̄x̄x ∈ K. Then, x̄̄x̄x ∈ N (t) by Proposition 2.3 and we get the
contradiction sup

xxx∈N (t)

L(t,xxx) < L(t, x̄̄x̄x) since the function L(t, ·) is σ-upper semicontinuous at

x̄̄x̄x. Then, (3) is proved.
For the second part we have

v = inf
T ′

C = inf
T ′

clτ C = lim
n

inf
T ′

Cεn = lim
n
vεn ,

due to a known property of epiconvergent sequences [1]; so, lim
ε→0

vε = v. 2

Remark 3.1 Using Lemma 2.2, it is easy to see that condition ii) is satisfied whenever the
following condition holds for every t ∈ T ′:
• the functions fi(t, ·) is σ-continuous and σ-coercive over K for avery i = 1, ..., k.

Corollary 3.1 In the same assumptions of Proposition 3.2, any sequence (tεn)n of solutions
to (P εn) is minimizing for the minimum problem

(P̃ ) find t̃ ∈ T ′ such that (clτ C)(t̃) = inf
t∈T ′

(clτ C)(t).

Proof
We have:

lim sup
n

(clτ C)(tεn) ≤ lim sup
n

C(tεn) = lim
n
vεn = v = inf

t∈T ′
(clτ C)(t).

Since inf
t∈T ′

(clτ C)(t) ≤ (clτ C)(tεn) for every n ∈ N, we get that

lim
n

(clτ C)(tεn) = inf
T ′
clτ C. 2
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It is worth noting that when the assumptions of propositions 3.1 and 3.2 hold, then the
point t̃, towards which a subsequence of (tεn)n τ -converges, is a solution to the relaxed

minimization problem (P̃ ) but it may fail to solve the problem (P ).

Example 3.1 [26] Let k = 2, T = V1 = V2 = R, T ′ = K1 = K2 = [0, 1], f1(t, x1, x2) =
−f2(t, x1, x2) = −x1(t + x2) and L(t,xxx) = t − (x1 + x2). Then one easily checks that
N (0) = [0, 1]×{0} and N (t) = {(1, 0)} if 0 < t ≤ 1, so that, for η(t) = 0, we have C(0) = 0,
C(t) = t − 1 for t ∈]0, 1] and the problem (P ) does not have solution. However one has

Ñ ε(t) = [0, 1]× [0, ε] if t ∈ [0, ε] and

Ñ ε(t) = {(x1, x2) : 1− ε/t < x1 ≤ 1 and 0 ≤ x2 < t(x1 − 1) + ε}

if t ∈]ε, 1]. Therefore, Cε(t) = t for t ∈ [0, ε] and Cε(t) = t − 1 + ε/t for t ∈ ]ε, 1], so, for
every ε < 1/2, the minimum point for Cε is tε =

√
ε, the infimum vε = 2

√
ε − 1 and there

exists the viscosity solution t̃ = 0 for the intermediate bilevel problem (P ).

In conclusion, we get that a viscosity solution for the intermediate bilevel problem with
Nash equilibrium constraints (P ) will exist whenever all assumptions in propositions 3.1 and
3.2 hold and, for the sake of completeness, we write the following, more classic, sufficient
condition.

Corollary 3.2 Assume that the following hold:
i) the set T ′ is τ -sequentially compact;
ii) the set K is σ-sequentially compact;
iii) the function L is (τ × σ)-continuous over T ′ ×K;
iv) the function fi is (τ × σ)-continuous over T ′ ×K for every i = 1, ..., k.
Then, there exists a viscosity solution for the intermediate bilevel problem with Nash equilib-
rium constraints.

Now, we consider the case where k = 1 and there is only one follower at the lower level that
solves the minimization problem:

find x̄ ∈ K such that f1(t, x̄) ≤ inf
x∈K

f1(t, x),

where K is a closed subset of a Banach space V and f1 is a real valued function bounded
from below on T ×K. We denote, for any t ∈ T , byM(t) the set of minimum points for the
function f1 that is assumed to be nonempty.
As in the multifollower case, there are two extreme situations that are nothing else than the
Optimistic and the Pessimistic bilevel optimization problem:

(OPT ) find (t̄, x̄) ∈ (T ′ ×K) s.t. x̄ ∈M(t̄) and L(t̄, x̄) = inf
t∈T ′

inf
x∈M(t)

L(t, x)

(PES) find t̄ ∈ T ′ s.t. sup
x̄∈M(t̄)

L(t̄, x̄) = inf
t∈T ′

sup
x∈M(t)

L(t, x).

The intermediate situation now consists in minimizing the function

C(t) = η(t) inf
x∈M(t)

L(t, x) + (1− η(t)) sup
x∈M(t)

L(t, x)
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that may fail to be lower semicontinuous, so the Intermediate Bilevel Optimization Problem

(P ) find t̄ ∈ T ′ s.t. C(t̄) = inf
t∈T ′

C(t)

may fail to have solutions.
Then, we consider the regularized function

Cε(t) = η(t) inf
x∈M(t)

L(t, x) + (1− η(t)) sup
x∈M̃ε(t)

L(t, x),

where

M̃ε(t) =

{
x̄ ∈ K s.t. f1(t, x̄) < inf

x∈K
f1(t, x) + ε

}
is the set of the strict ε-minima [20], and, applying the previous results, we obtain sufficient
conditions for the existence of viscosity solutions to the intermediate bilevel optimization
problem. In particular, the existence is guaranteed when the constraints T ′ and K are
compact and the objective functions f1 and L are continuous.

Remark 3.2 We point out that our regularization approach differs from that suggested in
[12] in which the function

Jε(t) = η(t) inf
x∈Mε(t)

L(t, x) + (1− η(t)) sup
x∈Mε(t)

L(t, x)

with

Mε(t) =

{
x̄ ∈ K s.t. f1(t, x̄) ≤ inf

x∈K
f1(t, x) + ε

}
is considered. Indeed, as already noted in the Introduction for ε-Nash equilibria, with
this type of regularization the function Jε(t) may fail to be lower semicontinuous and the
corresponding minimum problem may fail to have solution even when the objective f1 and
L are continuous.

Example 3.2 [23] Let k = 1, T = V1 = R, T ′ = K1 = [0, 1], f1(t, x1) = −x2
1 + (1 + t)x1 − t

and L(t, x1) = t + x1. Then one easily checks that M(0) = {0, 1} and M(t) = {0} if
0 < t ≤ 1, so that, for η(t) = 0 for every t, one has C(0) = 1, C(t) = t for 0 < t ≤ 1 and the
problem (P ) does not admit solution. However, since, for ε ∈ ]0, 1/4[,

Mε(t) =
[
0, (t+ 1)/2− 1/2

√
(t+ 1)2 − 4ε

]
∪
[
(t+ 1)/2 + 1/2

√
(t+ 1)2 − 4ε, 1

]
if t ∈ [0, ε]

Mε(t) = [0, ε] ∪ {1} if t = ε

Mε(t) =
[
0, (t+ 1)/2− 1/2

√
(t+ 1)2 − 4ε

]
if t ∈ ]ε, 1]

one has that the function

Jε(t) = t+ 1 if t ∈ [0, ε] and Jε(t) = t+ (t+ 1)/2− 1/2
√

(t+ 1)2 − 4ε if t ∈ ]ε, 1]

10



is not lower semicontinuous at t = ε and does not have minima, so the regularization method
in [12] cannot be applied.
On the contrary, one can checks that the regularization function, introduced in this paper,

Cε(t) = t+ 1 if t ∈ [0, ε[ and Cε(t) = t+ (t+ 1)/2− 1/2
√

(t+ 1)2 − 4ε if t ∈ [ε, 1],

has minimum for tε = ε. Therefore, t̃ = 0 is a viscosity solution for the weak (pessimistic)
bilevel optimization problem.
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