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1. Introduction

Studies of animal behaviour have found many prastighich create collective benefits at some
apparent cost or risk to individual participanExamples include alarm calls, food-sharing,
grooming, and participation in inter-group warfaf@ne of the most fundamental problems in
evolutionary biology since Darwin (1859) has bezextplain how such forms of cooperation
evolve by natural selection. An analogous probileeconomics has been to explain how
cooperative human practices, such as the fulfilroémarket obligations, the provision of public
goods through voluntary contributions, and the ngan@ent of common property resources, are
consistent with the traditional assumption of indiaal self-interest. Many different theories have
been proposed by biologists and economists aslpessilutions. Among the mechanisms that
have been modelled are direct and indirect recigra@putation, third-party punishment, kin
selection, group selection, and the ‘green beaethanism. (For an overview of these
mechanisms, see Nowak, 2006.) Some economistscohavieined biological and economic modes
of explanation, hypothesizing that human coopenatiche modern world is a product of
genetically hard-wired traits that evolved by natselection to equipomo sapiensor life in
hunter-gatherer societies. In some versions efftiipothesis, those traits act as equilibrium
selection devices in the modern ‘game of life’ (mmore, 1994, 1998); in others, they can
generate non-selfish behaviour in modern sociétigs Boyd et al. 2005; Bowles and Gintis,
2011).

However, a recent trend in biology has been totgpresvhether such sophisticated
explanations are always necessary. Many formppédi@ntly cooperative behaviour have been
found to be forms of mutualism: the ‘cooperatingdividual derives sufficient direct fitness benefit
to make the behaviour worthwhile, and any effecthanfitness of others is incidental (e.g. Clutton-
Brock, 2002, 2009; Sachs et al., 2004). The Snidwgme (Sugden, 1986), in which equilibrium
involves cooperation by one player and free-ridigghe other, is increasingly used in biology as a
model of such behaviour. In this paper, we preaeardw model of the evolution of cooperation
which fits with this trend of thought.

Our methodological approach treats the biologacal economic problems of cooperation as
isomorphic to one another. That is, we hypotheiaethe emergence and reproduction of human
cooperative practices are governed by evolutionaghanisms that are distinct from, but
structurally similar to, those of natural selectiddandidate mechanisms include trial-and-error
learning by individuals, imitation of successfulgtgours, and cultural selection through inter-

group competition. Analyses which use this appnaaay be both informed by and informative to
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theoretical biology. For example, Sugden’s (198&lysis of the emergence of social norms was
inspired by the earlier work of theoretical biolsgi, but it developed new models (in particulag, th
Snowdrift and Mutual Aid games) which have sincerbeidely used in biology (e.g. Leimar and

Hammerstein, 2001; Nowak and Sigmund, 2005). Tbdehthat we present in this paper can be

interpreted as a representation either of natetatson or of trial-and-error human learning.

Our modelling strategy is distinctive in that #as$ three assumptions which in combination
rule out most of the mechanisms that feature isteg theories of cooperation. Specifically, we
assume that interactions are anonymous, that évoltakes place in a large, well-mixed
population, and that the evolutionary process $ekcategies according to their material payoffs.
The assumption of anonymity excludes mechanismescbas reputation, reciprocity or third-party
punishment. The assumption of well-mixedness edagunechanisms of group or kin selection.
The assumption that selection is for material pisyexcludes mechanisms which postulate non-
selfish preferences as an explanatory primitiveorkivig within the constraints imposed by these
assumptions, we are able to generate a simplecdndtrmodel of cooperation.

Our model adapts the familiar framework of a Rrexts Dilemma that is played recurrently
in a large population. We introduce two additiofeatures, which we suggest can be found in

many real-world cases of potentially cooperativtenaction, both for humans and for other animals.

The first additional feature is that participatiarthe game is voluntary. One of the
restrictive properties of the Prisoner’s Dilemmahiat, in any given interaction, an individual must
act eithempro-socially (the strategy of cooperation)anti-socially (the strategy of defection or
cheating, which allows a cheater to benefit atetkigense of a cooperator). There is no opportunity
to be simplyasocial. We add an asocial strategy, that of optunigof the interaction altogether.

The second additional feature is that the paywit €ach player receives if they both
cooperate is subject to random variation. Befti@osing his (or her, or its) strategy, each player
knows his own cooperative payoff, but not the otilayer’'s. With non-zero probability, the payoff
from mutual cooperation is greater than that frévaating against a cooperator. Thus, there are
circumstances in which it would be profitable fgolayer to cooperate if he were sufficiently

confident that the other player would cooperate too

As an illustration of the kind of interaction tr@air model represents, we offer the following
variant of Rousseau’s (1755/ 1988, p. 36) storywfting in a state of nature. Two individuals
jointly have the opportunity to invest time and igyeto hunt a deer. The hunters can succeed only
by acting on a concerted plan out of sight of ometlaer. A hunt begins only if both individuals

agree to take part. Each can then cheat by urdlgtg@ursuing a smaller prey, which the other’s
8



deer-hunting tends to flush out and make easieatich. The anticipated benefit of deer-hunting to
an individual, conditional on the other’s not chegt can be different for different individuals and
on different occasions. Sometimes, but not alwtys,benefit is sufficiently low that unilateral

cheating pays off.

As a more modern illustration, consider two indivals who make contact through the
internet. One of them is offering to sell some@adich has to be customized to meet the specific
requirements of the buyer; the other is lookinguy such a good. If they agree to trade, each
individual invests resources in the transactiortifexging information, producing and dispatching
the good, sending payment). Each may have oppbesito gain by deviating from the terms of
the agreement. Sometimes, but not always, thefibeheompleting the transaction is sufficiently

low that unilateral cheating pays off.

We will show how the interaction of voluntary peipation and stochastic payoffs can
induce cooperation. Of course, it is well knowattholuntary participation can facilitate
cooperation when players can distinguish betweere mod less cooperative opponents. If such
distinctions are possible, voluntary participataam allow cooperators to avoid interacting with
cheats. This can sustain cooperation without deslrfor informationally and cognitively more
demanding strategies of reciprocity or punishmean-+dea that can be traced back to Adam
Smith’s (1763/ 1978, pp. 538-539) analysis of tmasthiness among traders in commercial

societies. But such mechanisms are ruled out baoonymity assumption.

In our model, voluntary participation facilitatesoperation by a different route. Because
would-be cheats have the alternative option of participation, and because non-participation is
the best response to cheating, the equilibriumuieaqy of cheating is subject to an upper limit. If
cheating occurs at all, the expected payoff fromatimg cannot be less than that from non-
participation. Thus, for any given frequency obperation, the frequency of cheating is self-
limiting. The underlying mechanism is similar k@t of the Lotka—Volterra model of interaction
between predators and prey: the size of the pregafmlation (the frequency of cheating) is
limited by the size of the prey population (thegirency of cooperation).

Clearly, however, this mechanism can support emain only if, when the frequency of
cheating is sufficiently low, some players choasedoperate. This could not be the case if, as in
the Prisoner’s Dilemma, cooperation vewaysa weakly dominated strategy. In our model,
random variation in the payoff from mutual coopenatnsures that players sometimes find it
worthwhile to cooperate, despite the risk of magtrcheat. The players who cooperate are those
for whom the benefit of mutual cooperation is stiéfint to compensate for this risk. Because
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cooperators are self-selecting in this way, theaye payoff in the game is greater than the payoff
to non-participation. In other words, despite pihesence of cheats, beneficial cooperation occurs.

In Section 2 we present the model and identifiN&sh equilibria. We show that, provided
the upper bound of the distribution of cooperabeaefit is not too low, the game has at least one
equilibrium in which beneficial cooperation occuls. Section 3 we investigate some comparative-
static properties of the model. We show that adiktribution of cooperative benefit becomes
more favourable, the maximum frequency of coopenatinat is sustainable in equilibrium
increases. In Section 4 we examine the dynamitseofnodel, using analytical methods. Our
analysis suggests that, in the neighbourhood térior’ equilibria in which some but not all
players choose non-participation, the dynamicsemndar to those of predator-prey models; but we
cannot establish theoretically whether these dayialiare locally stable. When an interior
equilibrium exists, the non-participation equililom is locally unstable, but selection pressureeclos
to it is very weak. In Section 5 we explore th@awyics further by means of computer simulations.
In the special cases of the model that we simwiegdjnd a long-run tendency for convergence
towards equilibrium states. There are large-spgaddator-prey cycles around interior equilibria,
but evolutionary paths can remain very close to-panticipation equilibria for extremely long
periods. In Section 6, we discuss the contributiat our model can make to the explanation of
cooperative behaviour. We show that, despite shadme features of existing biological models

of mutualism and voluntary participation, it is@ata distinct causal mechanism.

2. Themodd: equilibrium properties

We consider a setting with a large number of irdinais, interacting anonymously in an
indefinitely long sequence of periods. In eachqekrindividuals are randomly matched to play a
two-player game. In a representative game betwksmersi andj, the benefits from cooperation
andx; are independent realizations of a random varizbiéose distributiorf(.) is continuous with
support kmin, Xmay- Each player knows his own benefit but not thfahe other player. Given this
knowledge, he chooses one of three options — tparate (C), to cheat (D), or not to participate
(N). The payoff matrix is shown in Table 1.
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Table 1: Payoff matrix for the game

player]
N C D
N 0,0 0,0 0,0
playeri C 0,0 Xi, Xi b, a
D 0,0 a, b —C, C

Xmax>a>Xmin= 0;b>a>c> 0.

The essential features of the game are containtiebistructure of best responses. The
conditionXmax > @ > Xmin IMposes the assumption that either C or D mayedeétter response to C,
depending on the relevant player’s realizatioiX.of The conditiorb > ¢ implies that, as in the
Prisoner’s Dilemma, D is better than C as a resptm®. Given that the payoff to N is normalized
to zero,a > 0 implies that cheating gives a higher payaddintinon-participation if the opponent
cooperates; > 0 implies that the opposite is the case if thpament cheatdy > a implies that the
benefit from cheating a cooperating co-player $s linan the cost inflicted on the latter. The
conditionxmin = 0 (which is not essential for our main resultsplies that players are never worse

off from mutual cooperation than from non-partitipa.*

We assume that, in any given period, for any gplayeri, there is some critical value Bf
such that plays C if and only ik; is greater than or equal to this value. Given déissumption,
which attributes a minimal degree of rational cetesicy to players’ behaviour, we can represent a
strategy for playing the game by two variablese-dhtical value oX, denoted by, and the
probabilitytthat D is played, conditional ofibeing below that critical value. To simplify the
exposition, we impose the harmless condition xRt B < Xmax. A Strategy 8, 1) is an

equilibriumif it is a best reply to itself.

Some significant properties of equilibrium hold &l parameter values. FirsB, () =

(Xmax 0) is an equilibrium. In thison-participation equilibriumN is always chosen; players’

! Provided that this best response structure istaiaid, the main implications of the model are gresd.
It is not essential that the payoff from playin@@ainst C is stochastic and that all other payariésnot; but
there must be some random variation in the paysfifsh that the best reply to C is sometimes C and
sometimes D.
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payoffs are zero, and unilateral deviations leadktither gain nor loss. Second, there is no
equilibrium in which C is played with nonzero prbiday but D is not played: against an opponent
who might play C but will not play D, the best ngphooses D wher <a. Third, there is no
equilibrium in which D is played but not C: agdias opponent who might play D but will not
play C, N is the unique best reply. Thus, only tyges of equilibrium participation are possible.
Depending on the parameter values, there may b@enor equilibriumwith Xmin <8 < Xmaxand 0
<m< 1, characterized by N, D and C being played wihzero probability; and there may be a

boundary equilibriunwith Xmin < B < Xmaxandrt= 1: in this case, D and C are played but not N.

We now analyse these equilibria. Consider anyasliafacing an opponent whose strategy
is (B, ), in an interaction in whick =3. LetVy, Vb, Vc andVy be the expected payoffs to player
from playing N, D, C and M respectively, where Mhg mix of D with probabilitytand N with
probability (1-+). Letg(x) = F(X)/[1-(X)], whereF(.) is the cumulative df.). Itis

straightforward to derive the following expressions

V=0 1)
Vb = [1-F(B)la-F(p)mc (2)
Ve = [1-F(B)IB — F(B)mb (3)
Vi = TiVp. (4)

In analysing equilibrium, it is convenient to warka (3, ) space defined ymin < B < Xmax
andrmt= 0. Notice that this space includes points at tvimic 1. Although such points have no
interpretation within our model, equations (1)-&pve defind/\, Vb, Ve, andVy, for all values of
T This allows us to define the loci of points lmst 3, ) space at which the mathematical
equations/y = Vp andV¢ =V are satisfied, and then to characterize equilibrizrms of these
loci, imposing the inequalitg< 1 as an additional constraint. This method ofyamais useful in

simplifying the proofs of our results.

First, consider the locus of points in tlfie 1) space at whicNy =Vp. Any interior
equilibrium must be a point on th¥D locus with 0 <1t < 1; any boundary equilibrium must be a

point at whichVy < Vp andmt= 1. By (1) and (2), this locus is determined by:
Vo> (or<)Vy < alte> (or <) g(P). (5)

This is a continuous and downward-sloping curveciiimcludes the poinkga, 0) and is

asymptotic t3 = xmin. It divides the[§, ) space into three regions: the set of poamt$he locus, at
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which Vy = Vp; the set of pointgisidethe locus (that is, below and to the left), atathy < Vp;
and the set of pointsutsidethe locus (that is, above and to the right), atclvy > Vp.

Now consider the locus of points at whidp=Vy. Every equilibrium must be a point on
this CM locus with eitherrt= 0 (the non-participation equilibrium), Ore< 1 (an interior
equilibrium), ort= 1 (a boundary equilibrium). Combining equati¢2s-(4), this locus is

determined by:
Ve=(or<) Vw < (B-ra)/[r(b-c)] > (or <)g(P). (6)

This is a continuous curve which includes the m&#in, Xmin/a) and qay 0). It divides thef, ™)
space into three regions: the set of poamtshe locus, at whicN¢c = Vy; the set of pointgsidethe

locus, at whichV/c > Vy; and the set of pointautsidethe locus, at whicNy > Vc.

Propostions (5) and (6) together imply the follogvresult about the relative positions of the

two loci:
if Ep =En andf <Xmax thenEc> (or <)Ey < B> (or <) ablc. (7)

The loci intersect at the non-participation equilim (Xmax 0). If Xmax< ablc, there is no other
intersection and hence no interior equilibriiniThis case is illustrated in Figure 1a. (The &ve
shown by the curves ND and CM; N is the non-paréition equilibrium. The arrows refer to the
dynamic analysis, which will be presented in Settdg If insteadkmnax > aldc, there is exactly one

other intersection, g =ab/c. There are now three alternative cases.

In the first case, illustrated in Figure 1b, tmgersection is att< 1. This intersection,
denoted |, is an interior equilibrium, defined Py ab/c, 1= a/g(ab/c).> These values ¢ andmt
imply that the probability with which C is playechnditional on participation in the game (i.e.
conditional on Nhot being played) is/(a + c), ensuring thaVp = 0. (Equivalently, the frequencies
with which C and D are played are in the ratia.) There may also be boundary equilibria; these

occur if the CM locus intersects the lime= 1 to the left of the ND locus.

In the second case, the loci interseat atl. Because the CM locus is continuous, and
becausemir/a < 1, there must be at least one point to theoletthe ND locus at which the CM

locus intersects the lime= 1 Any such point is a boundary equilibrium. Thise&sillustrated in

% In this case, it is possible that the CM locustisécts the line= 1, creating boundary equilibria.
However, this would require a high proportion c& ghrobability mass dfX) to be between andXmay
despite the fact that,.«< ab/c.

% The equilibrium value oft can be derived from (2) by using the fact thagririnterior equilibriumy/; = 0.
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Figure 1c; B is a boundary equilibrium. In therdhcase (not illustrated), the loci intersect elyact
attt= 1. Then this intersection is a boundary equiliin. In this case, there may be other

boundary equilibria.

The foregoing argument establishes:

Result 1 If xnax> alic, there is at least one (interior or boundary) Eouim with 0 <Tt<

1 andXmin < B < Xmax

In other words, provided the upper tail of the riligttion of cooperative benefit is not too short,

there is at least one equilibrium in which bothr@ ® are played with positive probability.

We now consider players’ payoffs in such equitibrLetV*([3, ) be the ex ante expected
payoff to any playet, prior to the realisations of the random variaklgiven thai and his
opponent play according fpandrt We will call V*(3, ) thevalueof the game conditional o3 (

).

The following results are derived in the Appendix:

Result 2 In every interior and boundary equilibruium, tfsdue of the game is strictly
positive.

Result 3 Suppose there are two equilibri@, 1), (', ¢), such thafy <f'. ThenV*([3, ) >
V*(B', 7).

Result 2 establishes that in every interior andhibl@uy equilibrium, cooperative activity creates
positive net benefits relative to the benchmarkai-participation, despite the presence of cheats.
If there are multiple equilibria, one of these istidguished by its having the lowest valug3of
(Since there can be no more than one interior ibguim, no two equilibria have the same value of
B.) Result 3 establishes that this is the equiiiarat which the value of the game is greatest. We

will call this thehighest-value equilibrium

3. Themodd: compar ative statics

The frequency of cooperative behaviour that casustained in equilibrium depends on the
distribution of cooperative beneit To keep the exposition simple, we analyse tfecebf a

rightward shift from one distributior to an unambiguously superior distributi@when there is
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no change in the suppo®fn, Xmad. That is, for almin <z < Xmax G(2) < F(2). The values of all
other parameters are held constant.

Using (5) it can be shown that if some po[Bitrf) is on the ND locus for the distributidh
it is inside the corresponding locus fér Similarly, using (6), if some poinB (1) is on the CM
locus for the distributiof, it is inside the corresponding locus r Thus, an improvement in the
distribution of cooperative benefit moves both logtwards. Figure 2 illustrates the effects of a
shift in the distribution fronf (inducing the loci NDF) and CM§)) to G (inducing the loci NDG)
and CM@)).

As this diagram shows, if the game has interioildxjia for both distributions, those
equilibria have the same value[®fnamelyab/c, but theG equilibrirum has a higher value af
SinceG(ab/c) < F(ab/c), and since the frequencies with which C and Dpdaiged are in the fixed
ratioc: a, both C and D are played with higher frequencthaG equilibrium than in thé&
equilibrium. More intuitively, the relationship tveeen cooperation and cheating is analogous to
that between prey and predator. If the distributdcooperative benefit becomes more favourable,
a higher frequency of cooperation is induced; batrhore cooperation there is, the more cheating

can be sustained.

If the game has boundary equilibria for both ditions, the highest-valu@ equilibrium
must be to the left of the highest-vakiequilibrium. (This can be seen by consideringdtfect of
an outward shift of the CM locus in Figure 1c.)uShthe former equilibrium induces a higher

frequency of cooperation than the latter.

The following general result is proved in the Apgien

Result 4 Supposemax > ab/c and letF, G be two distributions oX such that is rightward
of F. Then in the highest-valu& equilibrium, the frequency of cooperation andvhkie

of the game are both strictly greater than in tighdst-value= equilibrium.

Thus, as the distribution of cooperative benefiddmes progressively more favourable, the
maximum sustainable frequency of cooperation irsgsa Increases in cooperation are associated

with increases in cheating until the frequency afi4participation falls to zero.

* This comparative-static property is compatible vétiidence that in both human and non-human
interaction, the level of cooperation is greatee, higher the payoffs to cooperation (Heinrichlet2901;
Clutton-Brock, 2002).
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4. Themodd: dynamics

We now consider the dynamics of the model, undestimple assumption th@tandm evolve
independently. (In a biological application, tlesquivalent to assuming thifaiandrtare
determined by distinct genes.) It is sufficienagsume that, in the population as a whole, theeval
of 3 tends to increase (respectively: decreasey it Vc (Vm < V), and that the value aftends to
increase (decrease)Mp >V (Vb <Vy). This gives the dynamics shown in phase-diagam in
Figure 1.

In the case shown in Figure 1a, the dynamics im#ighbourhood of the non-participation
equilibrium (N) are cyclical; at the level of geabty at which we are working, it is not possibbe t
determine whether this equilibrium is locally s&bln the cases shown in Figures 1b and 1c, the
non-participation equilibrium is locally unstabl@n these cases, all paths from points close to N
but below the ND locus lead away from N, and musnéually pass through or to the left of I.)
However, in states in which almost all players @®noon-participation, selection pressure is weak,

and so the dynamics shown in the diagrams mighk wery slowly in the region close to N.

It is clear from Figure 1b that, in the neighbowti@f an interior equilibrium (1), the
dynamics exhibit cycles. Described in terms ofdlielution of the frequencies of the three
strategies N, C and D, these cycles are similttrdse of the Rock—Scissors—Paper game. (The
frequency of cooperation is greatest towards thiefdhe diagram, where the value®fs low.
From there, evolutionary paths lead towards theityifi, where the values @fandmtare both
high, and the frequency of cheating is greatesbmRhere, paths lead towards the bottom right,
wheref is high andtis low, and the frequency of non-participatiomgisatest. And from there,
paths lead back towards the left.) These patlesmle predator—prey cycles, cheats acting as
predators and cooperators as prey.

If the CM locus cuts the line= 1 at a point wherp < ab/c, this point is a boundary
equilibrium. If (as in the case shown in Figuré fiaints to the left of this equilibrium are outsid
the locus, the equilibrium is locally stable. Nditboundary equilibria have this property, but
whenever the ND and CM loci intersectra# 1, there must be at least one locally stablentaty

equilibrium.
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5. Simulations

In this Section we briefly illustrate some basiattees of our theoretical model by means of
computer simulation.We analyze the evolution pfandr, and the associated relative frequencies

pr(C) and pr(D) with which strategies C and D deyed, given different distributions &t

All the simulations we present use the parameter8,b = 4,c = 2. However, provided the
conditionb >a>c > 0 holds, our main qualitative results are noisgese to the values of these
parameters. In all the simulationshas a uniform distribution over the interval ¥Qay;
depending on the simulatioxyax takes one of the values 5, 6, ..., 11. This rarig@loies spans
the regimes represented in Figures 1a, 1b andf M.« = 5 (and hencinax < ab/c) or Xmax= 6
(implying xmax= ak/c), the only equilibrium is the non-participatidhhequilibrium as in Figure 1a.
If Xmax= 7, 8 or 9, there is a non-participation equilibr and an interiol-equilibrium with 3 =
ab/c, as in Figure 1b. bKyax= 10, the ND and CM loci intersect at(c, 1), which we will treat as
a limiting case of | equilibrium; the CM locus hesecond intersection with the lirme= 1,inducing
a stable boundary equilibrium wifh< ab/c (aB-equilibrium). If If Xxnax= 11, there is a non-
participation equilibrium, an unstable boundaryibiium and a B-equilibrium, as in Figure fc.
The values oB, 1, pr(C) and pr(D) in these theoretical N-, |- an@d@uilibria are shown in the top
part of Table 2.

[Table 2 near here]

In our simulations, we fix the size of the popidatat 100 individuals. The game
represented in Table 1 is played for a total of @00cycles each consisting of 1d@unds In
each round, each individual is randomly matcheth aitother individual belonging to the same
population to play the game. In accordance withtbeoretical model, each individuak
endowed with aype(fi, T5) and plays the following strategy: choose C if antiy if x; = [3;,
otherwise choose D with probability and N with probability 1 . Thus, an individual’s type

fully determines her strategy.

The initial values of; andrs for each individual are independent draws fromamifly

distributed random variables, taking values overititervals [Oxmnad and [0,1] respectively. Our

® The computer program was written in Python 3.3.0Mgtteo Morini, University of Turin. Both the comigu
program and the data used to write this Sectidhepaper are available upon request.

6 Considering all possible valuesxf,, there is an N-equilibrium for al ., > 0, an I-equilibrium for alk,«in the
interval 6 <xXnax< 10, and a B-equilibrium for af;,,> 9.9.
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approach to selection adapts a mechanism knowouéestte wheel selectiofthe most common
fithess proportionate selectidgachnique). At the end of each cycle, individuals ranked
according to their payoffs in that cycle. Eachiwidlal in the bottom 10 per cent of this rankisg i
randomly replaced by another individual whose tigoe copy from one of the individuals in the top
90 per cent of the ranking. The probability thatradividual’s type is used for replacement is
proportional to the relative payoff of that indivia. In other words, it is as if each individual
belonging to the top 90 per cent of the rankingeagssociated to a section of a hypothetical
roulette wheel, with sections of different sizeggrtional to the individual's payoff. The whesl i
then spun and the individual associated with thenwmig section is selected. The wheel is spun as
many times as it is necessary to complete theeepiant process. As the probability that a given
type is transmitted is higher the greater the irdgtayoff of the individual carrying that type, reo
successful types tends to spread through the pigula

During replacementnutationoccurs with independent probability 0.01. Mutatioay
affect either or both of the componeftandrs of the transmitted type; given that mutation osgur
each component is affected with independent prdibabi5. When a component is affected by
mutation, a random process determines (with equdlgbility) whether its value increases or
decreases. Subject to the constrairkf30< xnaxand 0< 15 < 1, the absolute value of any increase

and decrease is always 0.01.

The results of these simulations are summarizélderottom part of Table 2. To remove
the effects of the initial assignment of types,regort means and standard deviationgpoft, pr(C)
(i.e. the proportion of C choices over a cycle) ar{@®) for cycles 101 to 100 000. The first thing
to notice is that the simulated proportions of @ &nchoices show a qualitative pattern that is
consistent with our model. At valuesxafx up to 7, both proportions are close to zero. thiss
value ofxmax increases above 7, the proportion of C choicagases steadily, to 65 per cenkadx
=11. The proportion of D choices increases with until the proportion of N choices has fallen to

zero, and then falls.

We now consider the data in more detail. xfdx = 5 andxmax = 6, the only theoretical
equilibrium is the N-equilibrium, but our theoreti@nalysis was unable to establish the stability
properties of that equilibrium. The simulated megalues of3 andmare very close to the
corresponding N-equilibrium values, and the stathdigviations are very small. The implication is
that, given the dynamics of our simulation modatse equilibria are highly stable. Further
evidence of this stability is provided by Figureadiich shows the evolution @fandmtand of the
frequencies of C, D and N choices, over the §34 and first 10 000 cycles, whep.x= 5. Notice
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that the value o rapidly approaches,a, with the consequence that the frequency with wklas
chosen rapidly approaches zero. (This frequenclpge to zero after less than 300 cycles, and
remains close to zero from then on.) The valua @éclines steadily until, after about 5000 cycles,

it is close to zero, at which level it remainsorarthen on, N is almost always chosen.
[Figure 3 near here]

When the system is close to the N-equilibrium,dtuehastic properties of our simulation
model can generate occasional increases in thedney of C or D choices. One might think that
such perturbations could activate a macro pattérose dynamics would resemble a typical
predator-prey cycle (see Figures 1la and 1b), wgukaying cheats act as predators and C-playing
co-operators as prey. Butin fact, such cyclesatebserved. The reason why the system remains
close to the N equilibrium is that selection pressiare very weak in this region, and the mutation
mechanism generates a micro-level predator-pregmics which prevents escape to regions with
greater selection pressures. To check this exjpptamave have employed a simple method to detect
a micro predator-prey process in the time serieeigeed by simulations (e.g. Jost and Arditi,
2000). We have verified that the rate of changieffrequency of predators (i.e. D choices) is a
positive function of the prey-predator ratio (ilee ratio of the frequency of C choices to thabof
choices). Depending on the cycles under considerghe correlation coefficient between the two
variables ranges from 0.46 to 0.58 andghalue is always such as to reject the null hypsithef

no correlation.

At Xmax= 7, there is also a theoretical I-equilibrium, th& simulated mean values[band
miremain very close to N-equilibrium, and the stadd#eviations remain small. Our discussion of
thexmax = 5 andxmax = 6 simulations can be extended to explain thalls@bility of N-equilibrium

in this case.

At Xmax = 8, in contrast, the simulated means are closieettheoretical I-equilibrium, with
relatively large standard deviations. This pattrresults is consistent with a macro-level
predator-prey cycle. Figure 4 confirms this coyjee. Over 100 000 cycles, the path[&ff)
observations traces out a clockwise loop around-grgiilibrium (shown as E in the figures),

corresponding with the theoretical dynamics shawhRigure 1b.
[Figure 4 near here]

At first sight, the simulated means and stand@ndations foxmax = 9 appear anomalous,
since they do not correspond closely with eitheptbtical equilibrium. However, Figure 5 shows

that the path off{, ) observations is beginning to trace out a clockia®p around the I-
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equilibrium. Because movement around this loggxisemely slow when the value ois close to
1, the means and standard deviations reportedhte Pareflect the properties of the path in this

region.
[Figure 5 near here]

At Xmax = 10, there is an N-equilibrium, an I-equilibritand a B-equilibrium. The
simulated means are close to the B-equilibriunfiaalgh there is considerable variatiorirthe
value ofttis very close to the equilibrium value of 1, wiittle variation. Atxmax= 11, there is an
N-equilibrium and a B-equilibrium; the simulated ane and standard deviations are again close to
B-equilibrium, with the same patterns as whgg = 10.

6. Discussion

We do not intend to claim that our model represtgrgsnechanism that underlies human and
animal cooperation. There is no good reason tpaagthat cooperation is a single phenomenon
with a unified causal explanation. We find it mptausible to view cooperation as a family of
loosely-related phenomena which may have multipleses. We offer our model as a stylized

representation anemechanism by which cooperation might emerge ansigie

Our model is unusually robust in that it assunmdg materially self-interested motivations
and applies to anonymous, well-mixed populatidinsclaiming this as a merit of the model, we do
not deny that individuals sometimes act on proaauotivations, nor that many recurrent
cooperative interactions are between individuale ate known to one another, nor that
populations of potential cooperators are oftencstmed into clusters of individuals who interact
mainly with their neighbours. Each of these fagtwan contribute to the explanation of cooperation
in particular environments. Nevertheless, thedheas depend on non-anonymity, or on population
structures taking particular forms, have restrictethains of application. And it is hardly
controversial to claim that self-interest is a atarly common and reliable motivation.

As an illustration of how theories with less robassumptions can be restricted in their
application, we consider the currently much-diseddsypothesis of altruistic punishment (Fehr and
Géachter, 2000; Gintis et al, 2005). The key insiglithat multilateral cooperation can be sustained
in equilibrium if individuals have low-cost optiow$ punishing one another, and if even a relatively
small proportion of individuals have relatively vkgareferences for punishing non-cooperators.
However, the general effectiveness of this mecihmawispends on the cost of punishing being low
relative to the harm inflicted, and on the absesfagpportunities for punishees to retaliate

20



(Herrmann et al, 2008; Nikiforakis, 2008); andatjuires that at least some individuals have non-
selfish preferences for punishing. Such preferemncight be sustained lxyltural group selection

in hunter-gatherer economies, where groups ard amalinter-group warfare is frequent, but these
conditions are not typical of the modern world; maenong hunter-gatheretsplogical group
selection of altruistic punishment would be frustdhby inter-group gene flow (Boyd et al, 2005).
Altruistic punishment should be understood as ahaeism that can sustain cooperation in specific
types of environment, not #se solution to the problem of explaining cooperatidiie claim no

more than this for our own model.

We have said that our model is in the same sErgome recent work by biologists, which
finds apparently cooperative behaviour to be diydmtneficial to the individual cooperator (see
Section 1 above). But, as we now explain, theanatbory principles used by these biologists are

not the same as those exhibited in our model.

One of the fundamental features of our modelas tine cooperative behaviour it describes
is reciprocally beneficial By this, we mean the following. Such cooperai®not simply a
unilateral action by one individual which, intemtadly or unintentionally, confers benefits on
another; it is theompositiorof cooperative actions by two or more individusiee combined
effect of which is to benefit each of them. Ineatlwords, each cooperator benefits from his action
only if this action is reciprocated by one or more othdividuals. In the absence of enforceable
promises, reciprocally beneficial cooperation regmiat least one individual to choose a
cooperative action without assurance that othellg@dgiprocate. In our model, any player who
chooses to cooperate incurs a risk of loss, wisgkalized if his opponent cheats. One might think
(as we are inclined to do) that reciprocal bensfé hallmark of genuine, as opposed to apparent,
cooperation (see also Sachs et al., 2004; West20@v7). In biological models of mutualism,

cooperation is not reciprocally beneficial, in #ense we have defined.

In the Snowdrift game, which is often used to maggparently cooperative animal
behaviour, cooperation and cheating are best regigsdo one another. In the original story, two
drivers are stuck in the same snowdrift. Bothehsvhave shovels, and so each can choose whether
or not to dig. If either driver digs a way out fus own car, the other can drive out too. Each
would rather be the only one to dig than remaiglsturhis defines a game with Chicken payoffs;
in a pure-strategy Nash equilibrium, one driveischgd the other free-rides (Sugden, 1986). Such
an equilibrium is not a case of reciprocally betiefibehaviour.

Clutton-Brock (2009) offers the Soldier's Dilemm&aamodel of mutualism in biology. In
this game, a patrol of soldiers is ambushed byettemy. Soldiers who fire back attract incoming
21



fire and increase their chance of being killed. flBypg back, however, each individual reduces the
probability that the patrol will be overrun. Thaig from this may be such that from an individual’s
perspective there is no dilemma at all: firing batky give the best chance of individual survival,
irrespective of what the others do. A biologicglizalent to this game (or perhaps to Snowdrift)
can be found in the behaviour of certain birds lswashmals, such as Arabian babblers and meerkat,
which feed in predator-rich environments. Indiatkiof these species go on sentinel duty once
they have fed for long enough to be close to satigClutton Brock et al., 1999). In these games,
cooperation is chosen either as a dominant straiegyg a best response to other players’ non-

cooperation; it is not reciprocally beneficial.

In the story of the Soldier’'s Dilemma, it would batural to assume that cooperation would
be a dominant strategy only if the number of sefdie the patrol was relatively small, so that each
of them received a significant share of the totalddit created by his own cooperative action.
Hauert et al (2002) present a model which can loenstood as a version of the Soldier's Dilemma
in which the size of the patrol is endogenous.sTeiam-player model of voluntary contributions
to a public good, but with an outside option of +participation. A player who takes the outside
option receives a small positive payofivith certainty, but forgoes any share in the bienef the
public good. Players who participate can eith@pevate (contribute to the public good) or cheat
(not contribute). Each cooperator incurs a codt ahd creates a benefitrofwhere 1 < <n andr
>0 + 1), which is divided equally between all pagignts. This game has no pure-strategy Nash
equilibrium. (If all one’s opponents take the adsoption, the best response is to cooperate; if
they all cooperate, the best response is to clie¢agy all cheat, the best response is the outside
option.) There is a unique symmetrical mixed-sggtNash equilibrium in which the expected
payoff to all three strategiesas More intuitively, in equilibrium the expectedmber of
participants in each game is sufficiently smalk tt@operation and cheating are equally profitable.

Replicator dynamics have the Rock-Scissors-Papsical/pattern.

There are some similarities between Hauert etna@idel and ours: both models include a
non-participation option, and both induce mixe@sgy equilibria with predator—prey
characteristics. However, Hauert et al’'s moddkedsf from ours in two significant ways. First, the
mechanism that induces cooperation works througlatian in the number of participants in the
cooperative activity. For this reason, the moa@einot represent cooperative activities which
require a fixed number of participants. In pafacpit cannot represent activities which inhengntl
involve just two individuals — as, for example, mfigms of market exchange do. Second, because

the costs and benefits of contributing to the pugbod are non-stochastic, the expected payoffs to
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cooperation, cheating and non-participation areakiguequilibrium. Thus, although some
cooperative activity takes place in equilibriumstactivity generates no net benefit relative ta-no

participation: it is not reciprocally beneficial.

We suggest that our analysis provides a stylizeagbsentially realistic account of a
mechanism by which reciprocally beneficial cooperatan emerge and persist in anonymous,
well-mixed populations in which strategies are sielé according to their material payoffs. Using
two simple components — voluntary participation atwthastic payoffs — that have not previously

been put together, we have constructed a robustrglepurpose model of cooperation.

We are conscious that, for some theoretically-oeemconomists, the mechanism we have
described may seem rather prosaic. For decadePriboner's Dilemma has been used as the
paradigm model of cooperation problems, and thelpro of explaining cooperation in that game
has been treated as a supreme theoretical chall&figered in that perspective, a modelling
strategy which relaxes the assumption that cooperat always a dominated strategy may seem
too easy. But we share the view of Worden andri.é2007) that many real-world cooperation
problems are less intractable than the Prisondal&srina. Neglecting these cases results in an
incomplete body of theory and fosters unwarranegspnism about the possibility of spontaneous

cooperation.
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Appendix: Proofsof results

Proof of Result 2 Let (3, ) be any interior or boundary equilibrium, and ddes any player.
With probabilityF(), x; < andi plays N or D. In an interior equilibriutvp =Vy=0. Ina
boundary equilibriumyp = Vy = 0 and N is not played. In either caise expected payoff is equal
to Vp and is non-negative. With probability IH3), x, = B andi plays C. Ifx =3, i is indifferent
between C and D and the expected payoff is againif x, > 3, i plays C; his expected payoff
(conditional onx; > 3) exceeds that in the =3 case by [1 +(B)](x —B); here 1 () represents
the probability that's opponent plays C. Hence:

VE(B, M = Vo + [1 -F(B)] E[max(x —B, 0)], (A1)

where E is the expectation operator. Sige 0 andp < Xmax the value oW*([3, T) is strictly

positive.

Proof of Result 31f (3, M) and @', 1) are both interior and/or boundary equilibria, &e8 can be
derived from (A1) using the fact th¥p is decreasing if§ (an implication of (2)). Iff§, ) is the

non-participation equilibriumy*(3, m = 0 and so Result 3 follows trivially from Resalt

Proof of Result 4ASupposemax > alb/c. Let (3, ) be the highest-value equilibrium and letfy’, 1)
be the highest-valu@ equilibrium. There are three possibilitie€ase 1 (3, ) and @', 1) are
both interior equilibria. Thefd’ =3 =ab/c andm > 1t (This case is illustrated in Figure 2.) Since
G(B") <F(B), the frequency of cooperation is higher in @equilibrium. Using (Al) and the fact
thatVp = 0 in every interior equilibrium, it can be shottrat the value of the game is strictly
greater in thé& equilibrium. Case 2 (3, ) and @', 1) are both boundary equilibria. Then
(because the CM locus f@rlies outside the CM locus fé1) B' < andrt =mt= 1. SinceG(p') <
F(B), the frequency of cooperation is higher in @equilibrium. Using (2), it can be shown that
Vp is strictly greater in th& equilibrium. Then, using (Al) in relation to tHestributionsF andG,
it can be shown that the value of the game iststrgeater in the&s equilibrium. Case3: (B, 1) is
an interior equilibrium and3(, 1) is a boundary equilibrium. Th@i<p and 1 =it > 1t Since
G(B") <F(B), the frequency of cooperation is higher in @equilibrium. In the interior
equilibrium,Vp = 0. In the boundary equilibriutwy > 0. Then, using (A1), it can be shown that

the value of the game is strictly greater in @equilibrium.
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Derivation of theoretical equilibrium values in Tlal®

To identify the theoretical equilibrium valuesfpéndxr, consider that whexy,= 0 and the

distribution ofX is rectangular, we can write:

B(ﬁ) — B(xnfax)
(xmax—ﬁ)( 1 ) (Xmax—B) (xn}ax).

Xmax

gB) =

As any boundary equilibrium must lie on the CM Is@imt = 1, any such equilibrium must come

out as a solution of the following equation:

(B-a) — B(xnfax)
b-c (xmax_B)( L )

Xmax

or B2 — B(xpmax + @ — b + ¢) + ax,,.x = 0. Our theoretical analysis shows that, if theeetao
boundary equilibria, the equilibrium with the lowealuep is stable (i.e. is a B-equilibrium) while

the other equilibrium is unstable. Thus, the vaitig in B-equilibrium is given by:

B = A—JA2—4axpax
B 2

whereAd = x,.« + @a — b + c¢. To identify the interior equilibria we have ugbeé fact that the
equilibrium value ofitcan be derived from (2) and from the property,thmasn interior

equilibrium,Vp = 0.

In I- and B- equilibria, pr(C) = 1(Xmay- In l-equilibria, pr(D) P1vxmax N B-equilibria,
pr(D) = 1 —pr(C).
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Table2: Theoretical and simulated values of variablesfor different values of Xmax

value ofXmnay

5 6 7 8 9 10 11
Theoretical values
N-equilibrium:
B 5 6 7 8 9 10 11
T 0 0 0 0 0 0 0
pr(C) 0 0 0 0 0
pr(D) 0 0 0 0 0
[-equilibrium:
B - - 6 6 6 6 -
T - - 025 0.5 0.75 1 -
pr(C) - - 0.143 0.250 0.333 0.400 -
pr(D) - - 0.214 0.375 0.500 0.600 -
B-equilibrium:
B - - - - - 5 4.26
T - - - - - 1 1
pr(C) - - - - - 0.500 0.613
pr(D) - - - - - 0.500 0.387
Simulated values
(cycles 101 to 100 000)
B: mean 4982 5981 6.980 5.687 4.923 5.334 33.88

(standard deviation)

TC mean

(standard deviation)
pr(C): mean

(standard deviation)
pr(D) mean

(standard deviation)

(0.004) (0.006) (0.008) @@)2 (0.513) (0.227) (0.220)

0.004 0.006 0.010 0.505 0.976 0.993 0.996

(0.001) (0.009) (0.021) T@)0 (0.028) (0.009) (0.007)

0.004 0.003 0.003 0.289 0.453 0.466647

(0.001) (0.001) (0.001) 28)0(0.057) (0.023) (0.021)

0.004 0.006 0.010 0.359 0.534 0.53035D
(0.001) (0.010) (0.022) ¥6)0 (0.056) (0.024) (0.021)

The derivation of theoretical values is explainedhe Appendix. Non-existence of an equilibriunthad relevant type

is denoted by ‘—'.



Figure1l. Equilibriaand dynamics

Figure 1a: Non-participation the only equilibrium
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Figure 1c: A boundary equilibrium
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Figure 2: Effects of a shift in the distribution of cooper ative benefit
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Figure 3: Dynamicsof N-equilibrium (Xmax = 5)

Figure 3a. Evolution d¥ andx over the first 500 Figure 3b: Evolution of andz over the first 10 000
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Figure4: Dynamicsaround I-equilibrium (Xmax =8)

Figure 5a: First 25 000 cycles. Figure 5b: First 310 cycles
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Figure5: Dynamicsaround I-equilibrium (Xmax = 9)
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Figure 5b: First 50 0G/cles
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