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1 Introduction

Given a Hausdorff topological space (X, τ) and a real Banach space E with dual E∗, let
H ⊆ X be a τ -closed set, K ⊆ E be a closed and convex set. If h is a real-valued function
defined in H × E × E and S is a set-valued map from H ×K to K with nonempty values,
we consider, for any x ∈ H, the parametric Quasi-Equilibrium Problem (QE)(x) (called
quasi-variational problem in [21]) which consists in finding u ∈ K such that

u ∈ S(x, u) and h(x, u, v) ≤ 0 ∀ v ∈ S(x, u)

and we denote by Q(x) the solution set, that is

u ∈ Q(x) ⇐⇒ u solves (QE)(x).

We stress that the solution map Q is generally set-valued even under restrictive assumptions
[6]. We also observe that, by taking appropriate functions and maps, several parametric
problems can be described by a Quasi-Equilibrium Problem(QE)(x): Variational Inequal-
ity [6], Complementarity Problem [31], Nash Equilibrium Problem [30], Implicit Variational
Problem [18], Quasi-Variational Inequality [6], Generalized Variational Inequality [18], Gen-
eralized Quasi-variational Inequality [18], Equilibrium Problem [7], Social (or Generalized)
Nash Equilibrium Problem [10], Mixed Quasivariational-like Inequality [8].
In this paper, we consider the following MinSup problem which can be seen as a model of a
pessimistic two-stage problem [26], [27], [14], [11], [33] with quasi-equilibrium constraints:

(MS) find xo ∈ H such that sup
u∈Q(xo)

f(xo, u) = min
x∈H

sup
u∈Q(x)

f(x, u)

where f is a function from H ×K to R ∪ {+∞}.
The set of solutions and the infimum of the problem (MS) are denoted by MS and ω
respectively, so we have

xo ∈MS ⇐⇒ uo ∈ Q(xo) and sup
u∈Q(xo)

f(xo, u) = min
x∈H

sup
u∈Q(x)

f(x, u) (1)

and
ω = inf

x∈H
sup

u∈Q(x)

f(x, u). (2)

Unfortunately, constrained MinSup problems may fail to have a solution when the constraint
map is not lower semicontinuous (see, for example, [16]) and this could be the case for the
map Q [26], [19]. So, it is interesting to point the attention to the value ω, which is defined
but hardly computable in the absence of solutions. We show that ω can be obtained as the
limit of values of appropriate MinSup problems having solutions under suitable assumptions.
More precisely, for any given x ∈ H and any positive real number ε, we consider the ε-quasi-
equilibrium problem

(QE)ε(x) find uε ∈ K such that d (uε, S (x, uε)) ≤ ε and h(x, uε, v) ≤ ε ∀ v ∈ S(x, uε)

and the strict ε-quasi-equilibrium problem

(SQE)ε(x) find uε ∈ K such that d (uε, S (x, uε)) < ε and h(x, uε, v) < ε ∀ v ∈ S(x, uε).
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We denote by Qε and Sε the corresponding solutions maps

Qε : x ∈ H → Qε(x) = {uε ∈ K such that d (uε, S (x, uε)) ≤ ε and h(x, uε, v) ≤ ε ∀ v ∈ S(x, uε)}

Sε : x ∈ H → Sε(x) = {uε ∈ K such that d (uε, S (x, uε)) < ε and h(x, uε, v) < ε ∀ v ∈ S(x, uε)}
and by ωε and σε the values

ωε = inf
x∈H

sup
u∈Qε(x)

f(x, u) σε = inf
x∈H

sup
u∈Sε(x)

f(x, u)

of the following MinSup problems

(MS)ε find xε ∈ H such that sup
u∈Qε(xε)

f(xε, u) = min
x∈H

sup
u∈Qε(x)

f(x, u) = ωε

(SMS)ε find xε ∈ H such that sup
u∈Sε(xε)

f(xε, u) = min
x∈H

sup
u∈Sε(x)

f(x, u) = σε.

We prove that, under suitable assumptions, ωε and σε converge to ω whenever ε converges
to zero, so both of the values are ”good” candidates to approach the value ω.
However, for the same reasons as for the problem (MS), the problem (MS)ε may fail to
have solutions (see Example 4.1), whereas we prove, under appropriate conditions of minimal
character, that the problem (SMS)ε has a solution xε.
We also introduce two other types of approximate values for (MS), µε and νε, defined by
the aid of different approximate solutions maps for quasi-equilibrium problems, T ε and Sε,
and which also converge to ω whenever ε converges to zero, .
Moreover, we define a regularization class, called inner regularization, for the lower level
problem and we prove that S = {Sε, ε > 0} and S = {Sε, ε > 0} are inner regularizations
under suitable assumptions. Then, in the spirit of [2], we introduce a concept of viscosity
solution associated to an inner regularization and we prove existence results for viscosity
solutions associated to a general inner regularization and to the families S and S.
This paper carries on the study on Optimistic (MinMin) Bilevel Problems with Variational
Inequality Constraints and on Pessimistic (MinSup) Bilevel Problems with Quasi -variational
Inequality constraints in finite dimensional spaces, made in [20] and in [22] respectively,
and on Optimistic Bilevel Problems with Quasi-variational inequality in infinite dimensional
spaces, made in [24]. Moreover, we emphasize that here we concentrate our attention on
unperturbed problems having in mind to investigate in a separate paper how to approach ω
in the presence of perturbations.

2 Preliminaries and auxiliary results

Let τ and σ be topologies on the set X and on the space E respectively.
We denote by s and w the strong and the weak topology on the space E, and by clseqτ (Y )
the sequential closure of a set Y ⊆ X.
A function g : H ⊆ X → R ∪ {+∞} is sequentially τ -coercive on H if for every t ∈ R there
exists a set Ct ⊆ X, sequentially compact in the topology τ , such that

Levt g = {x ∈ H : g(x) ≤ t} ⊆ Ct.
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A function f : H ×K → R ∪ {+∞} is sequentially σ-coercive with respect to u on the set
K uniformly with respect to x ∈ H (coercive in u on K for short) if for every t ∈ R there
exists a set Yt ⊆ E sequentially compact in the topology σ such that

(Levt f) (x) = {u ∈ K : f(x, u) ≤ t} ⊆ Yt

for every x ∈ H.
A sequence of functions (gn)n defined on X sequentially τ -epiconverges to g in X if
• for every x ∈ X and every sequence (xn)n τ -converging to x in X

g(x) ≤ lim inf
n

gn(xn),

• for every x ∈ X there exists a sequence (x′n)n τ -converging to x in X such that

lim sup
n

gn(x′n) ≤ g(x).

For the above notion and related arguments see [1] and [9].
If (Kn)n is a sequence of nonempty subsets of E, the Painlevé-Kuratowski upper and lower
limits of the sequence (Kn)n, with respect to σ, are defined respectively by [5]
• z ∈ σ-lim sup

n
Kn if there exists a sequence (zk)k σ-converging to z such that for a subse-

quence (Knk
) of (Kn)n zk ∈ Knk

for each k ∈ N;
• z ∈ σ-lim inf

n
Kn if there exists a sequence (zn)n σ-converging to z such that zn ∈ Kn for

n sufficiently large.
We recall that both these sets are σ-closed and may be empty.
A set-valued map F from H to K is:
− (τ, σ)-sequentially subcontinuous over H, (τ, σ)-subcontinuous for short, if for every x ∈ H,
every sequence (xn)n τ -converging to x in H, every sequence (un)n such that un ∈ F (xn),
for every n ∈ N, has a subsequence σ-converging;
− (τ, σ)-sequentially lower semicontinuous over H, (τ, σ)-lower semicontinuous for short, if
for every x ∈ X and every sequence (xn)n τ -converging to x in H

F (x) ⊆ σ- lim inf
n

F (xn);

− (τ, σ)-sequentially closed over H, (τ, σ)-closed for short, if for every x ∈ H and every
sequence (xn)n τ -converging to x in H

σ- lim sup
n

F (xn) ⊆ F (x).

A function l from K ×K to R is:
− pseudomonotone over K if

l(u, v) ≤ 0 =⇒ l(v, u) ≥ 0 ∀ u, v ∈ K;

− monotone over K if
l(u, v) + l(v, u) ≥ 0 ∀ u, v ∈ K.
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Throughout this paper, we omit the term sequentially for short, when there is no ambiguity,
and we make the following blanket assumptions [6]:

A) h(x, u, u) = 0, for every x ∈ H and every u ∈ K;

B) Q(x) 6= ∅, for every x ∈ H.

The following results will be widely used in the paper.

Proposition 2.1 [21, Lemma 3.1] If h(x, ·, v) is w-lower semicontinuous on the segments
of K for every (x, v) ∈ H ×K, h(x, u, ·) is concave on K for every (x, u) ∈ H ×K and S is
convex-valued and closed-valued, then the set Q of solutions to the quasi-equilibrium problem
(QE)(x) contains the set of solutions to the following problem

find u ∈ S(x, u) such that h(x, v, u) ≥ 0 ∀ v ∈ S(x, u).

Proposition 2.2 Let S be a set-valued map from H ×K to K.
If S is (τ × s, s)-lower semicontinuous in H × K, then, for any (x, u) ∈ H × K and any
sequence (xn, un)n (τ × s)-converging in H ×K towards (x, u) one has

lim sup
n

d(un, S(xn, un)) ≤ d(u, S(x, u)).

P roof
Omitted since it is an easy adaptation of the first part of [20, Lemma 2.3].

Proposition 2.3 If S is (τ × w,w)-closed and (τ × w)-subcontinuous in H ×K, then, for
any (x, u) ∈ H ×K and any sequence (xn, un)n (τ ×w)-converging in H ×K towards (x, u)
one has

d(u, S(x, u)) ≤ lim inf
n

d(un, S(xn, un)).

The same result holds if the space E is reflexive and S is only (τ × w,w)-closed.

Proof
The proof of the first part is omitted since it is an easy adaptation of the second part of [24,
Lemma 2.2].
Assume that the space E is reflexive and that there exists a ∈ R such that

lim inf
n

d(un, S(xn, un)) < a < d(u, S(x, u)).

Then, for every k ∈ N there exists a positive integer nk ≥ k such that d(unk
, S(xnk

, unk
)) < a.

So, we determine a sequence (znk
)k such that znk

∈ S(xnk
, unk

) and ||znk
− unk

|| < a for
every k ∈ N. Since the sequence (znk

)k is bounded and E is reflexive, a subsequence has to
weakly converge to z ∈ K and z ∈ S(x, u) because S is (τ ×w,w)-closed. Therefore we have

||z − u|| ≤ lim inf
k

d(unk
, S(xnk

, unk
)) ≤ a < d(u, S(x, u))

and this gives a contradiction. 2

4



3 Convergence towards ω of the approximate values

We prove that the regularization method presented in the Introduction allows to asymptot-
ically reach the value of the MinSup problem (MS).

Proposition 3.1 Assume that the following hold:
i) the set-valued map S is convex-valued, (τ × w,w)-subcontinuous, (τ × w, s)-lower semi-
continuous and (τ × w,w)-closed on H ×K;
ii) the function h(x, u, ·) is concave on K for every (x, u) ∈ H ×K;
iii) the function h(x, ·, v) is w-lower semicontinuous over the segments of K for every
(x, v) ∈ H ×K;
iv) for every (x, u, v) ∈ H ×K ×K and every sequence (xn, un, vn)n (τ ×w× s)-converging
to (x, u, v) in H ×K ×K one has

lim inf
n

h(xn, un, vn) + h(x, v, u) ≥ 0;

v) the function −f is w-coercive in u on K;
vi) for every x ∈ H there exists a sequence (xn)n τ -converging to x in H such that for every
u ∈ K and every sequence (un)n w-converging to u in K one has

lim sup
n

f(xn, un) ≤ f(x, u).

Then,
ω = lim

ε→0
ωε.

Proof
We observe that

lim
ε→0

ωε = inf
ε>0

ωε,

since ωε is increasing with respect to ε and ε converges to zero. Moreover, ω ≤ ωε since
Q ⊆ Qε. So, we have to prove that

inf
ε>0

ωε ≤ ω. (3)

Assume that (3) does not hold. There exist c ∈ R such that

ω < c < inf
ε>0

ωε

and x̃ ∈ H such that
f(x̃, u) < c ∀ u ∈ Q(x̃). (4)

Due to assumption vi), there exists a sequence (x̃n)n τ -converging to x̃ in H such that
lim sup

n
f(x̃n, un) ≤ f(x̃, u) for every u ∈ K and every sequence (un)n w-converging to u in

K.
Then, for every sequence of positive real numbers (εn)n decreasing to 0 we have that c <
ωεn ≤ sup

u∈Qεn (x̃n)

f(x̃n, u) for every n ∈ N. So, there exists a sequence (ũn)n such that

ũn ∈ Qεn(x̃n) and c < f(x̃n, ũn) ∀ n ∈ N. (5)
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Form assumption v) one has that a subsequence (ũnk
)k of (ũn)n w-converges to a point

ũ ∈ K and we can prove that ũ ∈ Q(x̃). Indeed, applying the first part of Proposition 2.3
we get that ũ ∈ S(x̃, ũ) because d(x̃, S(x̃, ũ)) ≤ lim inf

k
d(x̃nk

, S(x̃nk
, ũnk

)) ≤ lim
k
εnk

= 0.

So, it remains to prove that h(x̃, ũ, v) ≤ 0 for every v ∈ S(x̃, ũ). Since S is (τ × w, s)-lower
semicontinuous on K, for any given v ∈ S(x̃, ũ) there exists a sequence (vnk

)k s-converging
to v ∈ K such that vnk

∈ S(x̃nk
, ũnk

) for k sufficiently large, so h(x̃nk
, ũnk

, vnk
) ≤ εnk

.
Therefore, by assumption iv), we have

−h(x̃, v, ũ) ≤ lim inf
k

h(x̃nk
, ũnk

, vnk
) ≤ 0

and ũ ∈ Q(x̃) by Proposition 2.1.
Then, f(x̃, ũ) < c by (4) and this is in contradiction with (5) due to assumption vi). 2

Remark 3.1 We can drop the subcontinuity assumption from condition i) of Proposition
3.1 whenever the space E is reflexive using the second part of Proposition 2.2.

Remark 3.2 Condition iv), which implies that the function h(x, ·, ·) is monotone over K ×
K, introduced by the authors, has been used in [17], [18] and [21]. It has been proved to be
satisfied when, for example, X = N and h(n, u, v) = 〈 Anu, u−v〉, (An)n being a sequence of
operators from E to E∗, under suitable assumptions. It is worth mentioning that in this case
the quasi-equilibrium problem (QE)(n) amounts to a quasi-variational inequality for every
n ∈ N. Condition vi) is a particular case of a convergence notion introduced by Attouch and
Wets in [3] and used, for example, in [26] and in [16] for MinSup problems with optimization
constraints.

Corollary 3.1 In the same assumptions of Proposition 3.1 we also have:

ω = lim
ε→0

σε.

Proof
Since Q(x) ⊆ Sε(x) ⊆ Qε(x) for every x ∈ H, we have

ω ≤ σε ≤ ωε

and the result follows from Proposition 3.1. 2

Remark 3.3 We have implicitely proven that if assumptions i) − iv) hold, then for every
x ∈ H and every sequence (xn)n τ -converging to x in H

w - lim sup
n
Qεn(xn) ⊆ Q(x). (6)

One can also consider the approximate values obtained by another type of approximate
solutions maps for quasi-equilibrium problems, similar (but not exactly the same) to those
introduced in [21] . Namely, we define, for every x ∈ H,

T ε(x) = {uε ∈ K such that d (uε, S (x, uε)) ≤ ε and h(x, uε, v) ≤ ε||uε − v|| ∀ v ∈ S(x, uε)}

Sε(x) = {uε ∈ K such that d (uε, S (x, uε)) < ε and h(x, uε, v) < ε||uε − v|| ∀ v ∈ (S(x, uε)− {uε})} .
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We denote by µε and νε the values

µε = inf
x∈H

sup
u∈T ε(x)

f(x, u) νε = inf
x∈H

sup
u∈Sε(x)

f(x, u)

of the corresponding MinSup problems

find xε ∈ H such that sup
u∈T ε(xε)

f(xε, u) = min
x∈H

sup
u∈T ε(x)

f(x, u)

find xε ∈ H such that sup
u∈Sε(xε)

f(xε, u) = min
x∈H

sup
u∈Sε(x)

f(x, u)

and we prove a result analogous to Proposition 3.1.

Proposition 3.2 Assume that the assumptions of Proposition 3.1 hold. Then

ω = lim
ε→0

µε = lim
ε→0

νε.

Proof
The proof of the first equality is similar to the proof of Proposition 3.1 and the difference
lies in proving that the weak limit u of a sequence (un)n, such that un ∈ T εn(xn) for every
n ∈ N, is a solution to (QE)(x).
Let v ∈ S(x, u) and let (vn)n be a sequence strongly converging to v such that vn ∈
S(xn, un) for n sufficiently large. Since un ∈ T εn(xn), we have h(xn, un, vn) ≤ εn||un −
vn||. The sequence (||un − vn||)n being bounded, from condition iv) we get −h(x, v, u) ≤
lim inf

n
h(xn, un, vn) ≤ 0 and u ∈ Q(x) by Proposition 2.1.

The second equality follows because ω ≤ νε ≤ µε. 2

4 Viscosity solutions

The strict approximate solutions maps Sε and Sε have not been explicitely used in the
previous results since the convergence of σε and νε towards ω has been easily deduced from
the convergence of ωε and µε. Nevertheless, in the following we will see that they play
an important role in the construction of viscosity solutions for the problem (MS), so we
start this section by a brief investigation of their properties. It is clear that both maps are
not closed in general, however, the following proposition proves that they can approach the
solutions map Q under appropriate conditions.

Proposition 4.1 Assume that the following hold:
i) the set-valued map S is convex-valued, (τ × w, s)-lower semicontinuous and (τ × w,w)-
closed and (τ × w,w)-subcontinuous on H ×K;
ii) the function h(x, u, ·) is concave on K for every (x, u) ∈ H ×K;
iii) the function h(x, ·, v) is w-lower semicontinuous over the segments of K for every (x, v) ∈
H ×K;
iv) for every (x, u, v) ∈ H ×K ×K, for every sequence (xn, un, vn)n (τ ×w× s)-converging
to (x, u, v) in ×K ×K,

lim inf
n

h(xn, un, vn) + h(x, v, u) ≥ 0.
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Then, for every x ∈ H and every sequence (xn)n τ -converging to x in H we have:

w − lim sup
n

Sεn(xn) ⊆ Q(x).

If, moreover, the space E is reflexive, then we also have

w − lim sup
n

Sεn(xn) ⊆ Q(x).

Proof
Observe that in our assumptions Proposition 3.1 applies, so the first inclusion follows from
(6) because Sε(x) ⊆ Qε(x).
Let (un)n be a sequence weakly converging to u in K such that un ∈ Sεn(xn) for every
n ∈ N, i.e.

d(un, S(xn, un)) < εn and h(xn, un, v) < εn||un − v|| ∀ v ∈ (S(x, un)− {un}) . (7)

Since in our assumptions Proposition 2.1 applies, it suffices to prove that u ∈ S(x, u) (and this
follows from the second part of Proposition 2.3) and that h(x, v, u) ≥ 0 for every v ∈ S(x, u).
Let v ∈ S(x, u). If v = u we have h(x, u, u) = 0 by assumption A) in Section 2. If v 6= u, due
to the (τ × w, s)-lower semicontinuity of the map S, there exists a sequence (vn)n strongly
converging to v such that vn ∈ (S(x, un)− {un}) for n sufficiently large. Then, the result
follows from iv) and (7). 2

The following proposition gives a sufficient condition for the lower semicontinuity of Sε and
Sε.

Proposition 4.2 Assume that the following hold:
i) the set-valued map S is (τ × w,w)-subcontinuous, (τ × w, s)-lower semicontinuous and
(τ × w,w)-closed on H ×K;
ii) for every (x, u) ∈ H ×K and every sequence (xn)n τ -converging to x in H there exists a
sequence (un)n strongly converging to u in K such that for every v ∈ K and every sequence
(vn)n weakly converging to w in K one has

h(x, u, v) ≥ lim sup
n

h(xn, un, vn).

Then, the maps Sε and Sε are (τ, s)-lower semicontinuous over H.

Proof
Assume that there is a point x in H such that Sε is not (τ, s)-lower semicontinuous at
x. There exist a sequence (xn)n τ -converging to x in H and a point u ∈ Sε(x) such that
u /∈ s − lim inf

n
Sε(xn). Therefore, the sequence (un)n in condition ii) has a subsequence

(unk
)k such that unk

/∈ Sε(xnk
) for every k ∈ N. Since d(u, S(x, u)) < ε and S is (τ ×w, s)-

lower semicontinuous at x, from Proposition 2.2 we infer that d(unk
, S(xnk

, unk
)) < ε for

k sufficiently large. Then, for such indexes k there exists vnk
∈ S(xnk

, unk
) such that

h(xnk
, unk

, vnk
) ≥ ε. The map S being (τ × w,w)-subcontinuous and (τ × w,w)-closed,

there exists a subsequence of (vnk
)k w-converging to v ∈ S(x, u) and h(x, u, v) ≥ ε by

8



condition ii), but this is in contradiction with u ∈ Sε(x).
Assume now that there is a point x in H such that Sε is not (τ, s)-lower semicontinuous at
x. Arguing as before, we determine vnk

∈ (S (xnk
, unk

)− {unk
}) such that

h(xnk
, unk

, vnk
) ≥ ε||unk

− vnk
||

and the result follows from the (τ×w,w)-subcontinuity and (τ×w,w)-closedness assumption
and condition ii), due to the weak lower semicontinuity of the norm ‖ · ‖. 2

The use of strict ε-solutions has been proven to be very fruitful when (QE)(x) is:

• an optimization problem [26], [16],
• a variational inequality [20],
• a quasi-variational inequality [22],
• a Nash equilibrium problem [28] [23],
• a generalized Nash equilibrium problem [29].

Now, inspired by [2], we introduce the viscosity solutions for the MinSup problem with
quasi-equilibrium constraints that, roughly speaking, are the limit points of suitable approx-
imating sequences whose corresponding values converge to the value ω.
To this end, we give the following definition.

Definition 4.1 We say that a family of maps D = {Dε, ε > 0}, where Dε : x ∈ H →
Dε(x) ⊆ K, is an inner regularization for the family of quasi-equilibrium problems {(QE)(x), x ∈ H}
if the following conditions are satisfied:

R1) for every x ∈ H, every sequence (xn)n τ -converging to x in H and every sequence
(εn)n decreasing to zero, one has

w − lim sup
n

Dεn(xn) ⊆ Q(x);

R2) Dε is τ -lower semicontinuous on H, for every ε > 0.

Corollary 4.1 In the same assumptions of propositions 4.1 and 4.2 the family {Sε, ε > 0}
and the family {Sε, ε > 0} are inner regularizations for the family of quasi-equilibrium prob-
lems {(QE)(x), x ∈ H}.

Then, we can define a D-viscosity solution for the problem (MS).

Definition 4.2 Let D be an inner regularization for the family {(QE)(x), x ∈ H}. A point
x̃ ∈ H is said to be a D-viscosity solution for the MinSup problem with quasi-equilibrium
constraints (MS) if there exists a sequence (xεn)n, xεn ∈ H for any n ∈ N, such that:

V0) x̃ ∈ clseqτ {xεn , n ∈ N};

V1) sup
u∈Dεn (xεn )

f(xεn , u) = min
x∈H

sup
u∈Dεn (x)

f(x, u);

V2) lim
n

sup
u∈Dεn (xεn )

f(xεn , u) = ω.
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Due to Corollary 4.1, we can consider S-viscosity solutions and S-viscosity solutions and,
for the sake of easy readibility, in the next we use the following notations:

FD
ε (x) = sup

u∈Dε(x)

f(x, u), FS
ε (x) = sup

u∈Sε(x)

f(x, u), FSε (x) = sup
u∈Sε(x)

f(x, u), F (x) = sup
u∈Q(x)

f(x, u).

The following examples show that {Qε, ε > 0} and {T ε, ε > 0} may fail to be an inner reg-
ularization even if the corresponding “strict” approximations {Sε, ε > 0} and {Sε, ε > 0}
are inner regularizations.

Example 4.1 Let X = E = R, H = K = [0, 1], S(x, u) = K, h(x, u, v) = v2 − u2 +
(1 + x)(u − v) and f(x, u) = x + u for every (x, u, v) ∈ [0, 1]3. Then one easily checks that
Q(0) = {0, 1} and Q(x) = {0} if 0 < x ≤ 1, so that one has F (0) = 1, F (x) = x for
0 < x ≤ 1 and the problem (MS) does not have a solution. Let ε ∈ ]0, 1/4[, then we get

Qε(x) =
[
0, (x+ 1)/2− 1/2

√
(x+ 1)2 − 4ε

]
∪
[
(x+ 1)/2 + 1/2

√
(x+ 1)2 − 4ε, 1

]
if x ∈ [0, ε[

Qε(x) = [0, ε] ∪ {1} if x = ε

Qε(x) =
[
0, (x+ 1)/2− 1/2

√
(x+ 1)2 − 4ε

]
if x ∈ ]ε, 1].

It is easy to check that

sup
u∈Qε(x)

f(x, u) = x+1 if x ∈ [0, ε] and sup
u∈Qε(x)

f(x, u) = x+(x+1)/2−1/2
√

(x+ 1)2 − 4ε if x ∈ ]ε, 1]

and that the regularized problem (MS)ε does not have a solution.This is essentially due to
the lack of lower semicontinuity of the map Qε at the point x = ε.
On the contrary, since

Sε(x) =
[
0, (x+ 1)/2− 1/2

√
(x+ 1)2 − 4ε

[
∪
]
(x+ 1)/2 + 1/2

√
(x+ 1)2 − 4ε, 1

]
if x ∈ [0, ε[

Sε(x) = [0, ε[ if x = ε

Sε(x) =
[
0, (x+ 1)/2− 1/2

√
(x+ 1)2 − 4ε

[
if x ∈ ]ε, 1],

we have
FS
ε (x) = x+ 1 if x ∈ [0, ε[

FS
ε (x) = x+ (x+ 1)/2− 1/2

√
(x+ 1)2 − 4ε if x ∈ [ε, 1].

Therefore, the point xε = ε is a minimum point for the function FS
ε and the problem

(SMS)ε has a solution. Moreover, since also condition V2) is satisfied, the point x̃ = 0 is a
S-viscosity solution for the MinSup problem (MS).

Example 4.2 Let X = E = R, H = K = [0, 1], S(x, u) = K, h(x, u, v) = x(u − v) and
f(x, u) = x + u for every (x, u, v) ∈ [0, 1]3. Then one easily checks that Q(0) = [0, 1] and
Q(x) = {0} if 0 < x ≤ 1, so that one has F (0) = 1, F (x) = x for 0 < x ≤ 1 and the problem
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(MS) does not have a solution. For every ε > 0 we have T ε(x) = [0, 1] if x ∈ [0, ε] and
T ε(x) = {0} if x ∈]ε, 1] and the function

sup
u∈T ε(x)

f(x, u) = x+ 1 if x ∈ [0, ε] and sup
u∈T ε(x)

f(x, u) = x if x ∈ ]ε, 1]

is not lower semicontinuous at x = ε. On the contrary, since Sε(x) = [0, 1] if x ∈ [0, ε[
and Sε(x) = {0} if x ∈ [ε, 1], we have that FSε (x) = x + 1 if x ∈ [0, ε[ and FSε (x) = x if
x ∈ [ε, 1]. So, the function FSε is lower semicontinuous and it is easy to check that x = 0 is
a S-viscosity solution for (MS).

Now, we prove the existence of a D-viscosity solution under quite general assumptions.

Proposition 4.3 Assume that D is an inner regularization map. If H is sequentially com-
pact, conditions v)− vi) in Proposition 3.1 and the following hold:
vii) the function f is (τ × w)-lower semicontinuous on H ×K.
Then, there exists a D-viscosity solution for the problem (MS).

Proof
From classical results on semicontinuity properties of marginal functions [15] we get that
the function FD

ε is τ -lower semicontinuous on H, since the function f is (τ × w)-lower
semicontinuous on H ×K and the map Dε is (τ, s)-lower semicontinuous on H. Therefore,
for every ε > 0 there exists xε ∈ H such that

FD
ε (xε) = min

x∈H
sup

u∈Dε(x)

f(x, u)

since FD
ε is τ -lower semicontinuous on H and H is sequentially compact.

Then, for any given sequence of positive numbers decreasing to zero, (εn)n, the sequence
(xεn)n has a limit point x̃ and arguing as in Proposition 3.1 we get limn F

D
εn(xεn) = ω, so

all conditions of Definition 4.2 are satisfied. 2

Corollary 4.2 If H is sequentially compact, all assumptions in propositions 3.1 and 4.2
and the following hold:
vii) the function f is (τ × w)-lower semicontinuous on H ×K;
Then, there exists a S-viscosity solution for the problem (MS).
If, moreover, the space E is reflexive, then there exists an S-viscosity solution for the problem
(MS).

Proof
The existence of a S-viscosity solution and of a S- viscosity solution follows from Corollary
4.1 and Proposition 4.3. 2

Remark 4.1 We point out that Definition 4.2 could have been given even if the class D
was not an inner regularization for (MS), but an existence result would not be guaranteed
in this case. Indeed, even if the map Qε in Example 4.1 satisfies condition R1), it lacks
condition R2) and it is easy to see that condition V1) in Definition 4.2 is not fulfilled.
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Remark 4.2 In a recent paper we have defined viscosity solutions for bilevel problems with
constraints described only by Nash equilibria in finite dimensional spaces [23]. Here, in
order to take into account the difficulties inherent infinite dimensional spaces, in defining
viscosity solutions we do not require that the approximating sequence (supu∈Dεn (·) f(·, u))n
τ -epiconverges to clτ (F ), the τ -lower semicontinuous regularization, because this is guaran-
teed under a too strong condition (see assumption vii) in the proposition below). Neverthe-
less, we explicitely give the following epi-convergence result for the specific regularizations
Sε and Sε, since it could be useful in finite dimensional spaces.

Proposition 4.4 Assume that conditions i)− v) in Proposition 3.1 and the following hold:
vii) for every x ∈ H the function f(x, ·) is w-upper semicontinuous on K;
Then, for every sequence (εn)n of positive numbers decreasing to zero, the sequence of func-
tions (gn)n, defined by gn(x) = FS

εn(x) for any n ∈ N, τ -epiconverges to clτ (F ).
If, moreover, the space E is reflexive, the same occurs for the sequence defined by gn(x) =
FSεn(x).

Proof
It suffices to prove that (gn)n pointwise converges to F in H since the sequence (gn)n is
monotone [1]. Given any x ∈ H, F (x) ≤ lim infn F

S
εn(x) because Q(x) ⊆ Qεn(x). Assume

that there exists a ∈ R such that F (x) < a < lim supn F
S
εn(x). Then, there exist an

increasing sequence of positive integers (nk)k and a sequence (unk
)k such that unk

∈ Sεnk (x)
and a < f(x, unk

) for every k ∈ N. Due to assumption vi), the sequence (unk
)k has a

subsequence, still denoted by (unk
)k, weakly converging to a point u ∈ K and, by Proposition

4.1, u ∈ Q(x). Therefore, f(x, u) ≥ a by assumption vii), so F (x) = supu∈Q(x) f(x, u) ≥ a

and we get a contradiction. The proof for FSεn is similar and we omit it.

5 Conclusions

We considered a class of two-stage problems in Banach spaces which may fail to have a solu-
tion even in very restrictive assumptions. This is a wide class since it contains, for example,
pessimistic (weak) bilevel optimization problems and minsup problems with constraints de-
scribed by Nash equilibria or by variational and quasi-variational inequalities. We proposed
different types of regularization for these problems and we showed that all of them allow
to approach the value of such a problem. Then, we defined a concept of viscosity solution
whose existence is guaranteed under reasonable assumptions when associated to a class of
maps which are regularizing for the lower stage problem. We showed that two of the in-
troduced regularizations are suitable to get the existence of a viscosity solution under mild
assumptions.
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