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Abstract 
A recent debate in the forecasting literature revolves around the inability of macroecono-metric models to improve 
on simple univariate predictors, since the onset of the so-called Great Moderation. This paper explores the 
consequences of equilibrium indeterminacy for quantitative forecasting through standard reduced form forecast 
models. Exploiting U.S. data on both the Great Moderation and the preceding era, we first present evidence that (i) 
higher (absolute) forecastability obtains in the former rather than the latter period for all models considered, and 
that (ii) the decline in volatility and persistence captured by a .nite-order VAR system across the two samples is not 
associated with inferior (absolute or relative) predictive accuracy. Then, using a small-scale New Keynesian 
monetary DSGE model as laboratory, we generate arti.cial datasets under either equilibrium regime and investigate 
numerically whether (relative) forecastability is improved in the presence of indeterminacy. It is argued that 
forecasting under indeterminacy with e.g. unrestricted VAR models entails misspecification issues that are 
generally more severe than those one typically faces under determinacy. Irrespective of the occurrence of non-
fundamental (sunspot) noise, for certain values of the arbitrary parameters governing solution multiplicity, the 
pseudo out-of-sample VAR-based forecasts of in.ation and output growth can outperform simple univariate 
predictors. For other values of these parameters, by contrast, the opposite occurs. In general, it is not possible to 
establish a one-to-one relationship between indeterminacy and superior forecastability, even when sunspot shocks 
play no role in generating the data. Overall, our analysis points towards a 'good luck in bad policy' explanation of 
the (relative) higher forecastability of macroeconometric models prior to the Great Moderation period. 
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1 Introduction

A recent debate in the (in�ation) forecasting literature revolves around the inability of elaborate

macroeconometric models to improve on simple univariate predictors, since the onset of the so-

called Great Moderation. Contributions in the �eld include, but are not limited to, Atkeson and

Ohanian (2001), Orphanides and van Norden (2005), Faust and Wright (2009), Tulip (2009),

Rossi and Sekhposyan (2010), Christo¤el et al. (2010), Edge and Gurkaynak (2010), Trehan

(2015). While shown to be robust across a large variety of models �e.g. activity-based Phillips

curves (Stock and Watson, 2007) and factor-augmented autoregressions (D�Agostino et al., 2007)

�, this �nding has been largely associated with the emergence of weakly persistent in�ation

dynamics, as mostly dominated by transitory rather than permanent components (e.g. Stock

and Watson, 2007).

A few authors have investigated this phenomenon in the context of dynamic stochastic gen-

eral equilibrium (DSGE) models. Benati and Surico (2008) exploit a small-scale monetary New

Keynesian model to explore the extent to which the persistence and predictability of in�ation

vary with the parameters of the monetary rule, and conclude that a more aggressive policy stance

towards in�ation caused the decline in in�ation predictability. In the same vein, Fujiwara and

Hirose (2014) suggest that forecast di¢ culties in the Great Moderation period can be poten-

tially associated with the occurrence of equilibrium determinacy. More speci�cally, Fujiwara

and Hirose (2014) argue that the relatively low volatility of macroeconomic aggregates during

the Great Moderation episode, ascribed to active monetary policy behavior (e.g., Clarida et al.,

2000; Lubik and Schorfheide, 2004; Boivin and Giannoni, 2006; Castelnuovo and Fanelli, 2015),

insulated the economy from nonfundamental shocks and hence prevented excessive business cy-

cle �uctuations. The resulting reduction of the persistence and volatility of in�ation and output

turned out to penalize the forecastability of macroeconometric models. Conversely, the superior

forecastability documented on the Great In�ation period would be, according to this argument,

a by-product of equilibrium indeterminacy induced by the �passive�monetary policy conduct of

the Fed, which led to higher persistence and volatility of macroeconomic variables.1

Indeterminacy in DSGE models is generically associated with a richer correlation structure �

1Kolasa et al. (2012) also examine the relative accuracy of DSGE model-based forecasts vis-à-vis professional

ones using real-time data. The authors �nd the DSGE model to be relatively successful in forecasting the U.S.

economy. for almost all the variables and horizons under investigation.
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e.g., a stronger degree of endogenous persistence �of resulting equilibrium representations.2 At

its very core, Fujiwara and Hirose�s (2014) exercise involves generating arti�cially data for output

and in�ation from a standard (calibrated) DSGE model, without restricting the parameter

space to the determinacy region. That is, the DSGE model is assumed to be the actual data

generating process, and then forecasts from univariate autoregressive models are derived using

the time-series simulated for the endogenous variables under determinacy and indeterminacy.

The authors�conclusions then hinge on the enhanced autocovariance patterns of simulated data

under indeterminacy, which result in superior predictive power of the indeterminate version of

the underlying DSGE model, provided the degree of uncertainty about sunspots shocks is not

too large.3

Against this background, this paper aims at exploring the relationship between indeter-

minacy in monetary DSGE models and (relative) forecastability of conventional reduced form

predictors, and understand whether such relationship helps to explain the deteriorating forecast

performance observed on the Great Moderation relative to the preceding era. More speci�cally,

we take an econometric approach and ask two distinct though presumably intimately related

questions: �rst, is indeterminacy per se bound to favor data predictability in absolute terms?

And second, can the declining relative forecastability across the two historical periods be unam-

biguously framed in the context of equilibrium indeterminacy?

Our �ndings point towards a quali�ed negative answer to both these questions. In fact,

we argue that forecasting in�ation and output growth, or any other variables of interest, is a

non-trivial exercise when the data generating process belongs to the class of indeterminate equi-

libria associated with a monetary DSGE model. Appropriate forecasting under indeterminacy

requires estimating the arbitrary auxiliary parameters that index solution multiplicity, as well

as identifying the sunspot shocks that may characterize the dynamics of the system in addition

to fundamental shocks. Making inference on both these features of indeterminate equilibria is a

complicate task even when the investigator speci�es the correct statistical model for the data,

e.g. Lubik and Schorfheide (2003, 2004), Fanelli (2012) and Castelnuovo and Fanelli (2015).

More generally, in the presence of multiple solutions, practitioners who forecast in�ation and

output growth by univariate autoregressive (AR) processes or vector autoregressive (VAR) sys-

tems, face misspeci�cation issues that are comparatively more serious than those he/she would

face under determinacy. As a consequence, the relative predictive accuracy of multivariate mod-

2This argument is not new to the macroeconometrics literature, see e.g. Broze and Szafarz (1991), Lubik and

Schorfheide (2003, 2004).
3The authors warn against drawing general conclusions from their analysis, upon observing that highly volatile

sunspot-driven (nonfundamental) dynamics �which can only arise under indeterminacy �may actually thicken

the veil of uncertainty surrounding the forecasting exercise and thereby worsen the relative accuracy of forecasts.
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els across the two regimes is likely to hinge on the actual degree of misspeci�cation in all the

models the forecaster includes in her battery.

As a �rst step of our analysis, we carry out a simple empirical exercise on U.S. quarterly

data compiled on the time span preceding the Great Moderation, conventionally denoted �Great

In�ation�period (1954-1984), as well as on the Great Moderation one (1984-2008). We exploit

a three-variate VAR for in�ation, output growth and the policy interest rate to forecast the

�rst two variables on both regimes, and then evaluate both absolute and relative forecast accu-

racy, using univariate ARs and random walk (RW) predictors as benchmarks. We establish a

number of basic facts regarding the indeterminacy-forecastability nexus. First, for all models

considered, the absolute accuracy of in�ation forecasts �as measured by the root-mean-square

errors (RMSEs) of the pseudo out-of-sample forecasts � slightly increases across the samples,

notwithstanding the decline of volatility of macroeconomic variables. Roughly the same occurs

for output growth. This result holds true even though the persistence of the two variables, as

measured by the estimated largest root of the VAR companion matrix, declines substantially

across the two regimes. In this sense, macroeconomic time series have become more easier to

forecast in absolute terms, as already pointed out by Stock and Watson (2007). Second, the

VAR-based forecast performance relative to the parsimonious benchmarks is not found to deteri-

orate along the move from the Great In�ation to the Great Moderation period, although a simple

stationary AR(1) process outpredicts the multivariate model in both samples. While con�rming

the existence of a wedge between better data predictability and ability of multivariate models

to improve on univariate predictors, our results point out that enhanced variables persistence

�as possibly originating from, e.g., equilbrium indeterminacy (Lubik and Schorfheide, 2004) �

need not be associated with lower forecast uncertainty in absolute terms, nor does it necessarily

worsen the relative accuracy of more elaborate macroeconometric forecasting models.

We next attempt to interpret this evidence through the lens of a structural DSGE frame-

work capturing the main stylized facts of the U.S. business cycle. Using the small-scale New

Keynesian monetary model investigated in Benati and Surico (2008, 2009) as laboratory, we

generate arti�cial datasets under determinacy and indeterminacy and exploit a reduced form

VAR system to assess both absolute and relative in�ation and output growth forecasts�accu-

racy in either equilibrium regime. Under determinacy, monetary policy is designed to react

aggressively to in�ation and prevents self-ful�lling sunspots, while passive policy stance leads to

equilibrium nonuniqueness. Our analysis shows that in the presence of indeterminate equilibria,

irrespective of the presence of sunspot noise, for certain values of the arbitrary parameters that

govern solution multiplicity, the pseudo out-of-sample forecasts of in�ation and output growth

obtained with �nite-order VARs exhibit smaller average RMSEs, compared to the forecasts com-
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puted with simple univariate AR(1) or RW predictors. For other values of these parameters,

by contrast, the opposite occurs. Hence, a stark asymmetry emerges between our empirical and

numerical �ndings in the presence of indeterminacy, in that stronger (absolute and relative) pre-

dictive ability of multivariate models proves to depend quite heavily on the selected equilibrium

in the indeterminate set, which is assumed to produce the data. When the employed time-series

models are inherently misspeci�ed with respect to this data generating process, persistent dy-

namics induced by indeterminate equilibria do not necessarily lead to superior forecastability. In

particular, our approach shows that �more stable�environments (determinacy) generally enhance

forecastability, while the situation is mixed in dynamically more involved situations. Maintain-

ing that our chosen New Keynesian monetary DSGE model represents a reasonable prima facie

approximation of the post-WWII U.S. business cycle, we read this asymmetry as pointing to a

�good luck in bad policy�explanation of the (relative) higher forecastability of macroeconometric

models prior to the Great Moderation period.

As mentioned, our paper is conceptually related to Benati and Surico (2008) and Fujiwara

and Hirose (2014), yet it di¤ers from these works in several respects. First, Benati and Surico

(2008) refer to a DSGE-based measure of in�ation predictability, whereas we appeal to reduced

form forecasting models and hence employ a standard measure of forecast uncertainty (i.e. the

RMSEs). Remarkably, Benati and Surico (2014)�s conclusions are substantially based on the

idea that more (DSGE-based) persistence leads to superior (DSGE-based) predictability. Our

results are a natural complement to this argument, as they help clarify the subtle link between

indeterminacy (determinacy) of DSGE equilibria and their dynamic (regime-speci�c) properties

on the one hand, and the predictive ability of possibly misspeci�ed forecast models, on the other

hand. Second, while following Fujiwara and Hirose (2014) in not restricting attention to unique

equilibrium models, our analysis is broad in scope as we are interested in exploring the role of

indeterminacy in favoring multivariate forecast models vis-à-vis univariate predictors of macro-

economic time series. Third, from an operational perspective, we run a more comprehensive

simulation experiment that fully exploits the time-series representation of equilibria under inde-

terminacy. In particular, our �ndings are not constrained by the choice of a particular solution

�the orthogonal one (Lubik and Schorfheide, 2003) �from the indeterminate set.

Finally, it is worth remarking that in this paper we are not concerned with the forecast per-

formance of monetary DSGE models vis-à-vis conventional forecasting tools such as univariate

time-series models or naive forecasts. We refer to e.g. Giacomini (2015) for a critical review of

how theory-based models like DSGE models perform in forecasting macroeconomic variables,

see also Gürkaynak et al. (2013). In this respect, we are sympathetic with Wickens�s (2014)

observation that DSGE frameworks would only outperform purely backward-looking time-series
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forecasting models were the theory-implied cross-equation restrictions their structure places on

data to prove empirically valid. Unfortunately, testing the correct speci�cation and the deter-

minacy/indeterminacy of DSGE models before forecasting the variables of interest is not what

practitioners typically do.

The remainder of this paper is organized as follows. Section 2 provides the main idea of

the paper by discussing connections between equilibrium (in)determinacy, misspeci�cation and

forecastability in the context of a simple linear rational expectations model. Section 3 presents

some empirical facts on the forecast accuracy of time-series models on U.S. quarterly data over

both the Great In�ation and Great Moderation periods. Section 4 introduces the reference

small-scale New Keynesian structural model and Section 5 reports its state-space representation

under either equilibrium regime. Section 6 summarizes the results of our simulation experiments

and interpret these results in light of the empirical facts from Section 3. Section 7 o¤ers a few

concluding remarks. A technical Appendix focuses on the derivation of the model�s equilibria.

2 Background

Does indeterminacy imply superior forecast performance of conventional time-series models,

relative to the case of determinacy? To gain insight into this issue, we introduce a simple

univariate linear rational expectations model, already used in Lubik and Schorfheide (2004),

Lubik and Surico (2010) and Fujiwara and Hirose (2014) for illustrative purposes.

Let xt be a (scalar) endogenous variable de�ned on a properly �ltered probability space,

whose dynamics are governed by the following forward-looking equation

xt =
1

�
Etxt+1 + !t; !t � iidN(0; �2!) (1)

where Etxt+1:=E(xt+1 j Ft), Ft represents the conditioning information set at time t, !t is a
fundamental shock, and � is a structural parameter. Initial conditions are kept �xed. As is

known, any solution to (1) satis�es the recursive equation:

xt = �xt�1 � �!t�1 + �t (2)

where �t:=xt � Et�1xt is the endogenous expectation error. When � > 1 (determinacy), the

(locally) unique non-explosive solution is given by

xt = !t (3)
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implying that xt follows white noise dynamics and � is not identi�able. When � < 1 (indetermi-

nacy),4 by contrast, the endogenous forecast error is not constrained by stability requirements,

hence any covariance-stationary martingale di¤erence �t will deliver an RE stationary equilib-

rium of the form (2). In this case, � is identi�able.

The forecast error �t can be expressed as a linear combination of the model�s fundamental

disturbance and a conditionally mean-zero sunspot shock, i.e. �t = ~M!t + st (Lubik and

Schorfheide, 2003), where ~M is an arbitrary parameter unrelated to � and �2!. For simplicity,

we assume st obeys a martingale di¤erence sequence (MDS) with respect to Ft (Etst+1 = 0),

with variance �2s. The full set of solutions under indeterminacy is described by the following

ARMA(1,1)-type process

xt = �xt�1 + ~M!t � �!t�1 + st (4)

Simple inspection of Eq.s (3) and (4) reveals that the content of indeterminacy for the

forecaster is essentially twofold. First, dynamic properties of the model�s equilibrium are richer

under indeterminacy as opposed to the determinate (pure noise) case. For ~M 6= 1 and generic
�2s, Eq. (4) gives rise to a large variety of equilibria.

5 While inducing a richer lag structure

and hence persistence in xt, indeterminacy also implies serial correlation in the composite error

term. As a result, the presence of pure beliefs shocks as well as of an arbitrary response to

the fundamental shock have the potential to induce higher volatility in data generated under

Eq. (4).6 Overall, answering the question of how this feature impacts on data forecastability

under indeterminacy is not a trivial task. Second, indeterminacy involves richly parameterized

time-series representations of equilibria, which are to be estimated for forecasting purposes. A

relevant question is how signi�cant the potential for dynamically misspeci�ed forecasting models

is when the data are generated according to Eq. (4), even in sunspot-free environments.7

4Without loss of generality, we abstract from the random walk case, � = 1, bacause our focus is on stable

(asymptotically stationary) solutions.
5For ~M = 1 and �2s = 0, and despite � < 1, Eq. (4) collapses to a Minimum State Variable (MSV) solution

which is observationally equivalent to the determinate equilibrium in Eq. (3).
6 In principle, volatility in xt may be further ampli�ed by endogenous expectations revisions which are arbitrar-

ily related to fundamentals, whereas the converse might occur for a suitable choice of the reduced form parameter
~M . Moreover, di¤erent dynamic structures of the underlying model, e.g. those featuring lagged expectations,

may allow for serially correlate sunspots to arise in equilibrium (e.g. Sorge, 2012).
7Notice that while determinacy involves a one-to-one mapping between the endogenous variable xt and the

structural shock !t, indeterminacy may generate non-invertibility, i.e. the reduced form (4) might not be inverted

to a (possibly in�nite-order) autoregressive representation with one-sided lag polynomial (invertibility in the

past). More generally, both determinacy and indeterminacy may be associated with nonfundamentalness even

when equilibrium reduced forms are only driven by structural (fundamental) shocks. While non-invertibility may

hinder the possibility of fully recovering the shock !t from an estimated causal AR model of xt, this issue is

immaterial for forecasting purposes, as the MA representation in (4) is naturally chosen to be fundamental. This
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Common intuition suggests that xt in Eq. (3) is less forecastable (predictable) than xt

in Eq. (4) because the variable�s dynamics are purely white noise under determinacy, while it

exhibits some persistence under indeterminacy which can potentially be exploited for forecasting

purposes. As we will illustrate shortly, forecast accuracy under indeterminacy �both in absolute

and relative terms �is likely to depend on the type/degree of dynamic misspeci�cation of the

employed forecast model.

To see this, we consider the extreme case of a forecaster endowed with data x1; x2; :::; xT ,

and wishing to predict the future path of xt by using the simple AR(1) model:

xt = �xt�1 + ut , ut �WN(0; �2u) , j�j < 1 , t = 1; :::; T: (5)

which we assume not to be theory-based. That is, the forecaster is not aware of the regime-

dependent nature of the underlying data generating process (DGP), and also not concerned

with the potential misspeci�cation of the employed forecast model. If Eq. (3) is the true DGP,

this amounts to overspecify the response dynamics including an irrelevant predictor, whereas

an omitted-variable bias arises when Eq. (4) generates the data, irrespective of whether �2s = 0

or �2s 6= 0. Hence, our naive forecaster is either failing to impose relevant restrictions on the

lag structure of the underlying (forecasting) model, or rather forcing the moving average part

of the model�s solution into the error process. From the point of view of the estimation of

the parameters � and �2u, the misspeci�cation implied by the AR(1) model is almost irrelevant

under determinacy, but can be severe under indeterminacy. Which are the consequences on the

forecast performance of the AR(1) model?

We answer this question exploiting the following numerical experiment. First, N =1000

arti�cial samples of length T = 500 are generated from the linear rational expectations model

in Eq. (1) under determinacy and indeterminacy, respectively. In the �rst case, for each of the

1000 simulations we generate 600 synthetic observations from Eq. (3), setting the variance of the

fundamental shock to �2!:=0.5; the �rst 100 observations are then discarded. In the second case,

for each of the 1000 simulations we generate 600 synthetic observations from the ARMA(1,1)-

type process in Eq. (4) by calibrating the structural parameters to �:=0.95 and �2!:=0.5, and

selecting the indeterminacy parameter ~M from the set M:=f1, 1.01, 0.98, 0.85, 0.80, 0.015g;
with no loss of generality with respect to our argument, the sunspot shock is set to zero (�2s:=0).

Also in this case, the �rst 100 observations are discarded. The initial values x0 and !0 are �xed to

zero. On each simulated dataset, we use the �rst T �P observations to estimate the parameters
� and �2u of the AR(1) model through OLS, and the last P observations to evaluate its forecast

accuracy. Absolute forecastability is measured by the average (across simulations) RMSEs.

argument fully generalizes to VAR-based forecasting (e.g. Alessi et al., 2011).
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The forecast performance of the AR(1) model under indeterminacy relative to determinacy is

assessed by the ratio of the average (across simulations) RMSEs obtained in the two cases. But

as is known, absolute evaluation of forecast performance is not likely to be informative, and the

issue of evaluating the forecast performance of a given model is best answered by using relative

evaluation methods that use a benchmark. To quantify the extent of the misspecifciation of the

AR(1) forecast model estimated with OLS, we consider a �theory-based�optimal benchmark,

represented by a forecaster who perfectly knows the data generating process, i.e. whether she

is forecasting future paths for xt under determinacy or indeterminacy, as well as the true values

of the parameters, namely �2! if the data are generated under determinacy, and �, �
2
! and

~M if the data are generated under indeterminacy.8 In our simple example, the indeterminate

(stable) solution has purely backward dynamics, and the variance of (rational) forecast errors

grows with the forecasting horizon at any given date t in which predictions are made. Hence,

this benchmark provides a theoretical lower-bound on the forecasting performance of less-than-

rational forecasting models, e.g. those that are not in the form of the model�s indeterminate

solution. The forecast performance of the AR(1) model relative to this �theory-based�benchmark

is assessed by the ratio of the average (across simulations) RMSEs obtained in the two regimes.

Results for T=500, P=1, P=8 and P=16 are reported in Table 1. The �rst column of Table

1 collects the absolute (average) RMSEs obtained with the AR(1) model under determinacy

and in the six indeterminacy cases. The second column reports the ratio between the average

(across simulations) RMSEs obtained under the indeterminacy scenarios on the average (across

simulations) RMSEs obtained under determinacy. Finally, the last column reports the forecast

performance of the AR(1) model relative to the �theory-based�optimal benchmark.

Focusing on the second and third columns of Table 1, we observe that for any considered

forecast evaluation window, indeterminacy does not necessarily imply superior forecastability.

The average RMSEs obtained under indeterminacy may be lower or higher than the average

RMSEs obtained under determinacy, depending on the values of ~M . As expected, the forecast

performance under the MSV equilibrium is the same as under the determinate solution. But

for ~M=1.01 and ~M=0.98, which are values for which the indeterminate equilibrium is relatively

�close�to the MSV solution, the performance of the AR(1) model may change (albeit slightly)

across the two regimes. For values of ~M that are substantially far from the value that leads to

the MSV solution (e.g. ~M=0.015), the forecast performance can be markedly worse.

The forth column of Table 1 con�rms our conjecture about the misspeci�cation of the AR(1)

8This benchamark forecasting model coincides with the actual law of motion of the economy, and empirical

forecasts of future endogenous variables will necessarily coincide with model-consistent ones. In fact, the h-

step ahead �theory-based�optimal forecasts will be ET�PxT�P+h = 0 under determinacy, and ET�PxT�P+h =

�(xT�P+h�1 � !T�P+h�1) for h = 1 and ET�PxT�P+h = �ET�PxT�P+h�1 for h � 2 under indeterminacy.
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model with respect to the data generating process in either equilibrium regime. Under deter-

minacy, the misspeci�cation of the AR(1) model bears no consequences on the property of the

OLS estimators of � and �2u, and therefore does not a¤ect its forecast performance relative to

the benchmark. Indeed, the chosen univariate predictor has essentially the same average (across

simulation) RMSEs as the �theory-based�benchmark predictor. The same happens under the

MSV indeterminate solution. The picture changes, by contrast, for the other type of indeter-

minate equilibria, for which we observe a non-negligible (though not substantial) forecast error

associated with the misspeci�ed AR(1) predictor.

The simple simulation experiment discussed in this section allows us to conclude that: (i) it

is not necessarily true that forecastability, as measured by the RMSEs associated with a simple

univariate model, improves if the data generating process belongs to the class of indeterminate

equilibria generated by a linear expectational model like Eq. (1); (ii) the endogenous persistence

implied by the indeterminate equilibria in Eq. (4) may, or may not, help forecasters predict the

future path of xt, depending on the forecast model at hand and the magnitude of the auxiliary

parameters that govern model�s indeterminacy; (iii) it is certainly true that a very high degree of

uncertainty resulting from sunspot shocks can reduce forecastability of time-series models, but

the forecast accuracy of these models under indeterminacy can be inferior relative to determinacy

also in the absence of sunspot shocks.

It can be argued that the �ndings obtained in this section are speci�c to the highly stylized

univariate model under investigation. From Section 4 onwards, we show that the argument

can be generalized to more realistic model-based forecasting frameworks, and fruitfully used to

interpret a few empirical facts, to which we turn next.

3 Empirical facts

To shed light on the role of indeterminacy for data forecastability, we implement a simple empir-

ical exercise by which we explore the forecast performance of a set of conventionally employed

time-series models on U.S. data. We consider quarterly data, sample 1954Q4-2008Q2, on three

observable variables collected in the vector yt:=(�ot; �t; Rt)0, where output ot is the log of the

real GDP, the in�ation rate �t is the quarterly growth rate of the GDP de�ator, and the short-

term nominal interest rate Rt is proxied as the e¤ective Federal funds rate expressed in quarterly

terms (averages of monthly values).9

9The source of the data is the Federal Reserve Bank of St. Louis�web site. Our choice of the sample�s chosen

length is due to data availability (in particular, of the e¤ective Federal Funds rate), as well as our intention to

avoid dealing with the �zero-lower bound�phase began in December 2008, which triggered a series of non-standard

policy moves by the Federal Reserve whose e¤ects are hardly captured by our standard New Keynesian model.
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Following most of the literature on the Great Moderation, we divide the post-WWII U.S. era

in two periods, roughly corresponding to the Great In�ation and the Great Moderation samples.

More speci�cally, our Great In�ation sample covers the period 1954Q4-1984Q2 (T = 119), while

our Great Moderation sample covers the period 1985Q1-2008Q2 (T = 94). This choice is

consistent with e.g. D�Agostino et al. (2007) and Castelnuovo and Fanelli (2015).

For either of the two regimes, we apply the following models:

(a) Reduced form VAR systems for the observable variables yt:=(�ot; �t; Rt)0;

(b) univariate AR(1) models for �t and �ot;

(c) univariate RW models for �t and �ot:

The VAR systems in (a) is our reference time-series model through which we investigate

forecastability of in�ation and output, while the models in (b) and (c) serve as benchmarks

(e.g., Atkeson and Ohanian, 2001). Owing to their �exibility, reduced form VAR frameworks

have naturally lent themselves for forecasting since their inception. At the same time, theory-

based structural VAR methods have been widely used to identify the driving force(s) behind the

Great Moderation, see e.g. Stock and Watson (2002), Primiceri (2005), Gambetti et al. (2008),

Benati and Surico (2009).

Our VAR speci�cation includes a constant and its lag order is selected combining the

Schwarz�s criterion with a LM-type vector test for uncorrelated residuals, considering 1 up

to 3 lags. In particular, the selected lag order is the �rst lag chosen by the Schwarz�s criterion

such that the hypothesis of uncorrelated VAR disturbances is not rejected. The AR(1) pre-

dictor in (b) also includes a constant. On both regimes, we use the �rst T � P observations

to estimate the models in (a) and (b) through OLS, and the last P observations to compute

pseudo-out-of-sample forecasts and compute the RMSEs for �t and �ot. Thus, the absolute fore-

cast performance of the VAR systems is measured by the RMSEs. Instead, the VAR forecast

performance relative to the benchmarks in (b)-(c) is computed by the ratio of the corresponding

RMSEs. As a measure of persistence, we employ the (absolute value of the) estimated largest

root of the VAR companion matrix for the model in (a), and the estimated autoregressive coef-

�cients for the univariate model in (b). Alternative measures of persistence in the multivariate

framework have been recently proposed by Cogley and Sargent (2005) and Cogley et al. (2010).

While Cogley and Sargent�s (2005) measure, based on the normalized spectrum at frequency

zero, frames naturally in the frequency-domain approach, Cogley�s et al. (2010) R2-like measure

of persistence seems particularly suited for the case of VAR systems with drifting-parameters.

Given our time-domain approach and the idea of using �xed-parameters VARs on the two sub-

samples, the largest root of the VAR companion matrix appears a tenable summary measure of
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the overall persistence of the variables in yt:=(�ot; �t; Rt)0.10

Results for the evaluation window P = 8 (eight quarters) are summarized in Table 2. The

picture that emerges from Table 2 is the following. First, we notice a substantial reduction of

the variance of the model�s residuals across the two regimes; focusing on the VAR residuals, the

magnitude of the estimated variances of in�ation and output growth on the Great Moderation

sample is roughly half of the magnitude of the estimated variances of the two aggregates on the

Great In�ation sample. A similar reduction of volatility is observed with the estimated AR(1)

models. Second, our measure of persistence reduces substantially in the move from the Great

In�ation (0.9632) to the Great Moderation (0.8545).

Is the observed decline in volatility and persistence associated with inferior VAR forecasta-

bility? The answer seems to be �no�. Table 2 shows that in absolute terms, the VAR-based

RMSEs associated with in�ation and output growth are substantially smaller on the Great

Moderation period compared to the Great In�ation period. This also holds for the AR(1)-based

and (though less markedly) for RW-based absolute RMSEs. This evidence, with supports what

already observed in Stock and Watson (2007) using completely di¤erent models and economet-

ric techniques, suggests that from the point of view of VAR practitioners, in�ation has become

�easier�to forecast in the sense that the risk of in�ation forecasts, as measured by RMSEs, has

fallen. The same is observed for output growth. Such result is somehow expected: business

cycle �uctuations have become considerably more stable during the Great Moderation period

relative to the preceding era, hence more predictable by VARs.

Things are slightly di¤erent when focusing on relative forecast performance. We observe

that the VAR-based forecasts of in�ation and output growth are outperformed by the AR(1)

models on both regimes. As concerns in�ation, the relative forecast performance is substantially

similar in the two regimes: the ratio of the RMSEs obtained with the VAR on the RMSEs

obtained with the AR(1) is 1.3384 on the Great In�ation sample, and 1.2546 on the Great

Moderation sample. As concerns output growth, the relative forecast accuracy seems to be

superior during the Great Moderation: the ratio of the RMSEs computed with the VAR on the

RMSEs computed with the AR(1) is 1.4660 on the Great In�ation sample, and is 1.0059 on

the Great Moderation sample. These evidences seem to re�ect a long-standing tradition that

puzzles macroeconomic forecasting: multivariate models may struggle to signi�cantly improve

on univariate ones. Moreover, the VAR-based forecasts of in�ation and output growth are out-

predicted by the RW models on the Great In�ation sample, but not on the Great Moderation

10See also Koop et al. (1996) and Fanelli and Paruolo (2010) for a comprehensive treatment of measures of shock

persistence in multivariate models like VARs. Instead, a detailed analysis of the persistence of U.S. in�ation may

be found in e.g. Pivetta and Reis (2007), where alternative measures of persistence are discussed for univariate

models. Fuhrer (2010) also explores the notion of in�ation persistence in macroeconomic theory.
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sample. This result is explained by the high persistence of time-series during the Great In�ation.

Overall, using a VAR for yt:=(�ot; �t; Rt)0 and the chosen lag order speci�cation rule, we

do not observe a deteriorating forecast performance on the Great Moderation period compared

to the preceding era, neither in absolute nor in relative terms. Table 2 clearly suggests that

the decline in volatility and persistence captured by the VAR system in the move from the

Great In�ation sample to the Great Moderation sample is not associated with inferior relative

forecast accuracy. This result is not necessarily at odds with what reported and documented in

the literature on the deteriorating performance of macroeconomic forecast models on the Great

Moderation. Note, indeed, that we are just focusing on a VAR model in which the information

set is limited to in�ation, output growth and the short term interest rate, ignoring activity-based

Phillips Curve-type forecasts models, the role of monetary and real aggregates as predictors of

in�ation, among others.

In the next sections we use a New Keynesian monetary DSGE structural model as the

data generating process, and investigate whether the empirical facts reported in Table 2 can be

reconciled with absolute and relative VAR-based forecast accuracy associated with simulated

data.

4 Structural model

We consider Benati and Surico�s (2009) small-scale DSGE model, given by the three equations:

~ot = 
Et~ot+1 + (1� 
)~ot�1 � �(Rt � Et�t+1) + !~y;t (6)

�t =
�

1 + ��
Et�t+1 +

�

1 + ��
�t�1 + �~ot + !�;t (7)

Rt = �Rt�1 + (1� �)('��t + '~y~ot) + !R;t (8)

where

!x;t = �x!x;t�1 + "x;t , -1<�x<1 , "x;t �WN(0; �2x) , x = ~y; �;R (9)

and expectations are conditional on the information set Ft, i.e. Et�:=E(� j Ft): The variables
~ot, �t, and Rt stand for the output gap, in�ation, and the nominal interest rate, respectively; 


is the weight of the forward-looking component in the intertemporal IS curve; � is price setters�

extent of indexation to past in�ation; � is households�intertemporal elasticity of substitution;

� is the slope of the Phillips curve; �, '�, and '~o are the interest rate smoothing coe¢ cient,

the long-run coe¢ cient on in�ation, and that on the output gap in the monetary policy rule,

respectively; �nally, !~o;t, !�;t and !R;t in eq. (9) are the mutually independent, autoregressive

of order one disturbances and "~o;t, "�;t and "R;t are the structural (fundamental) shocks.
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This or similar small-scale models have successfully been employed to conduct empirical

analysis concerning the U.S. economy. Clarida et al. (2000), Lubik and Schorfheide (2004)

and Castelnuovo and Fanelli (2015) have investigated the in�uence of systematic monetary

policy over the U.S. macroeconomic dynamics; Boivin and Giannoni (2006), Benati and Surico

(2009), and Lubik and Surico (2010) have replicated the U.S. Great Moderation, Benati (2008)

and Benati and Surico (2009) have investigated the drivers of the U.S. in�ation persistence;

Castelnuovo and Surico (2010) have replicated the VAR dynamics conditional on a monetary

policy shock in di¤erent sub-samples.

The output gap in Eq. (6) is de�ned by ~o:=ot� ont , where ot is output and ont is the natural
rate of output. We complete the structural model speci�cation by postulating that ont is driven

by a technology shock and follows the Random Walk process

ont = o
n
t�1 + "on;t , "on;t �WN(0; �2on). (10)

Eq. (10) will be used to de�ne the measurement equation associated with the state-space

equilibrium representation of our DSGE model, see the Appendix.

5 Equilibria

We compact the structural system composed by Eq.s (6)-(9) in the general representation

�0Xt = �fEtXt+1 + �bXt�1 + !t (11)

!t = �!t�1 + "t , "t �WN(0;�") (12)

�:=dg(�~o; ��; �R) , �":=dg(�
2
~o; �

2
�; �

2
R)

where Xt:=(~ot; �t; Rt)0, !t:=(!~o;t; !�;t; !R;t)0, "t:=("~o;t; "�;t; "R;t)0 and

�0:=

0BB@
1 0 �

�� 1 0

�(1� �)'~y �(1� �)'� 1

1CCA , �f :=
0BB@

 � 0

0 �
1+�� 0

0 0 0

1CCA , �b:=
0BB@
1� 
 0 0

0 �
1+�� 0

0 0 �

1CCA :
Let �:=(
; �; �; �; �; �; '~o; '�; �~o; ��; �R; �

2
~o; �

2
�; �

2
R)
0 be the vector of structural parameters. The

elements of the matrices �0, �f , �b and � depend nonlinearly on � and, without loss of gener-

ality, the matrix ��0 :=(�0 + ��f ) is assumed to be non-singular. The space of all theoretically

admissible values of � is denoted by P and X0 and X�1 are �xed initial conditions.
A solution to system (11)-(12) is any stochastic process fX�

t g
1
t=0 such that, for �s 2 P,

EtX
�
t+1 = E(X

�
t+1 j Ft) exists and it solves the system (11)-(12) at any t, for �xed initial condi-

tions. A reduced form solution is a member of the solution set whose time-series representation
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is such that Xt can be expressed as a function of "t, lags of Xt and "t and, possibly, other arbi-

trary MDSs with respect to Ft, possibly independent of "t, called �sunspot shocks�(e.g. Broze
and Szafarz, 1991).

As is known, determinacy/indeterminacy is a system property that depends on all elements

in �, see Lubik and Schorfheide (2004) and Fanelli (2012). The solution properties of the system

of Euler equations (11)-(12) depend on whether � lies in the determinacy or indeterminacy region

of the parameter space. Thus, the theoretically admissible parameter space P� is decomposed
into two disjoint subspaces, the determinacy region, PD� , and its complement PI� :=P�nPD� . We
assume that for each �s 2 P�, an asymptotically stationary (stable) reduced form solution to

system (11)-(12) exists, hence the case of non-stationary possibly �explosive�(unstable) indeter-

minacy is automatically ruled out. Since we consider only stationary solutions, PI� contains only
values of � for which multiple stable solutions arise.

A technical discussion of the equilibria associated with the DSGE system (11)-(12) is reported

in the Appendix, where the interested reader is referred to. Next we summarize the state-space

representation of the DSGE model in the two scenarios.

Under determinacy, the so-called ABCD form (Fernández-Villaverde et al. 2007; Ravenna,

2007) of the determinate equilibrium is given by the system

xdt
2n�1

= Ad(�)
2n�2n

xdt�1
2n�1

+ B(�)
2n�(n+b)

udt
(n+b)�1

yt
p�1

= C(�)
p�2n

xdt�1
2n�1

+ D(�)
2n�(n+b)

udt
(n+b)�1

(13)

where xdt :=(X
0
t; X

0
t�1)

0 is the state vector, n is the dimension of the state vector Xt in Eq.

(11) (n = 3 in our speci�c case), yt is the vector of observable variables, which in our speci�c

case is given by yt:=(�ot; �t; Rt)0, �ot being output growth; Ad(�), B(�), C(�) and D(�) are

conformable matrices whose elements depend nonlinearly on �, and udt :=("
0
t; v

0
t)
0 is the vector

containing all system innovations, i.e. the fundamental shocks "t and the innovations associated

with the measurement system, vt, if any. The superscript �d�stands for �determinacy�.

Under indeterminacy, instead, the ABCD representation of the equilibria is given by

xint
3n�1

= Ain(�)
3n�3n

xint�1
3n�1

+ B(�; ~m)
3n�(4n+b)

uint
(4n+b)�1

yt
p�1

= C(�)
p�3n

xint�1
3n�1

+ D(�; ~m)
3n�(4n+b)

uint
(4n+b)�1

(14)

where the superscript �in�stands for �indeterminacy�. Here, the state vector xint :=(X
0
t; X

0
t�1; X

0
t�2)

0

involves an additional lag compared to the case of determinacy, while yt:=(�ot; �t; Rt)0 is still

our vector of observable variables: Notably, the �B�and �D�matrices in Eq. (14) depend not only

on the structural parameters �, but also on a vector of auxiliary parameters, unrelated to �, that
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we collect in the vector ~m. uint :=(e
0
t; v

0
t)
0 is the vector containing all system innovations, i.e. the

shocks et and the innovations associated with the measurement system, vt, if any. Notably, the

sub-vector et does not contain only the fundamental shocks "t, but also additional stochastic

terms, collected in the vector �t. More precisely, et:=("
0
t; �

0
t)
0, where �t is a vector that has the

same dimesion as "t and features a number n2 �dim("t) of possibly non-zero stochastic terms
independent on "t; the remaining dim("t)-n2 elements of �t are equal to zero, see the Appendix.

Thus, while the determinate equilibrium in system (13) depends only on the state variables

and the structural parameters �, the class of indeterminate equilibria summarized by system (14)

features (i) a higher lag order, (ii) a set of auxiliary parameters in addition to the structural

parameters ( ~m), and (iii) additional shocks unrelated to the fundamental shocks (the non-zero

elements of �t). As shown in the Appendix, the �parametric indeterminacy�that springs from ~m

characterizes the moving average part of the VARMA-type reduced form solution for Xt. Such

parameters index solution multiplicity and may arbitrarily amplify or dampen the �uctuations of

the variables in yt other those implied by the fundamental shocks. The �stochastic indeterminacy�

stems from the non-zero sunspot shocks which enter the vector �t. These shocks may arbitrarily

alter the dynamics and volatility of the system, see Lubik and Schorfheide (2003, 2004) and

Lubik and Surico (2010) for discussions. A special case of interest is obtained when ~m=vec(In2)

and no sunspot shocks drive the reduced form; in this case, despite � lies in the indeterminacy

region of the parameter space, the equilibrium collapses to a MSV solution which admits the

same time-series representation as the determinate reduced form solution.

A note of caution about the relationship between persistence and determinacy/indeterminacy

in DSGE models is in order. As already noticed in Section 3, persistence in the observables yt

can be measured in di¤erent ways. Suppose we measure persistence by the largest root of the

companion matrix associated with a �nite-order VAR representation for yt, and assume for sim-

plicity a �purely forward-looking�DSGE model, which corresponds to �b = 0n�n and � = 0n�n

in system (11)-(12). In this case, it is possible to show that system (13) is such that xdt = Xt

and yt depends on the innovations udt alone, while system (14) features VARMA(1,1)-type dy-

namics. Hence, in the �purely forward-looking�case, determinacy implies that the observables yt

are driven by pure noise and have no persistence, while indeterminacy implies more persistence.

In more general and comples situations, however, and as our simulation studies will show, it

is not possible to claim that the persistence of yt under indeterminacy will be generally higher

than the persistence of yt under determinacy.

The richness and variety of equilibria implied by our reference New-Keynesian model can

partly be understood by the graphs in Figure 1. Figure 1 plots simulated paths of in�ation of

length T=150, obtained using the structural model in Eq.s (6)-(10) as data generating process
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under determinacy and indeterminacy. The red line in Figure 1 is generated under determinacy.

The blue line is generated under indeterminacy setting the indeterminacy parameter to ~m=1 and

not including sunspot shocks, which implies a MSV solution; the green line is generated under

indeterminacy by setting the indeterminacy parameter to ~m=1.01 and not including sunpsot

shocks; �nally, the purple line is generated with ~m=1.01, setting the variance of the sunspot

shock to �2s=2. The appealing feature of Figure 1 is that even in the simple case in which the

degree of indeterminacy of the system is only one, there exists a continuum of indeterminate

equilibria and corresponding in�ation paths indexed by the extra parameters ~m and �2s; which

are all consistent with the speci�ed structural model. The variety of indeterminate equilibria

suggest that forecasting in�ation with potentially misspeci�ed time-series models are likely not

to lead to unambiguous resulting about data forecastability.

The simulation experiments we discuss in the next section evaluate the forecast performance

(and persistence) of VARs for yt:=(�ot; �t; Rt)0 when the data are generated under the null

of the DSGE model�s parameters belonging to the determinacy and indeterminacy regions,

respectively.

6 Simulation experiment

In this section, we run a set of Monte Carlo experiments to assess the forecast performance of

the time-series models in (a), (b) and (c) as detailed in Section 3, when the data are produced

by system (6)-(10) under determinacy and indeterminacy, respectively. Speci�cally, we generate

N=1000 synthetic datasets in each regime, assuming Gaussian fundamental shocks. To match

the features of the empirical forecast exercise, we consider periods of unequal lengths in the

two cases: T=94 observations under determinacy, and T=119 observations under the various

indeterminacy scenarios we consider.

Data under determinacy are generated from system (13) for � = �� 2 PD� , where �� is calibrated
to the medians of the posterior distributions reported in Table 1 of Benati and Surico (2009),

column �After the Volcker Stabilization�. Hence, we mimic the scenario documented by Benati

and Surico (2009) for the Great Moderation period, namely a structural system characterized

by an �active�monetary policy able to prevent self-fulling in�ation expectations. We label such

a scenario the Great Moderation-type data generating process. The calibrated � = �� used in the

simulation experiment under determinacy is reported for ease of exposition in the right column

of Table 3.

Data under indeterminacy are generated from system (14) for � = �� 2 PI� , where �� is
calibrated to the medians of the posterior distributions reported in Table 1 of Benati and Surico
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(2001), column �Before October 1979�. In this case, we mimic the scenario documented by Benati

and Surico (2009) for the Great In�ation period, namely a structural system characterized by a

�passive�monetary policy that does not react aggressively enough to in�ation shocks, inducing

multiple (stable) equilibria. In this framework, the degree of indeterminacy of the system is

one (i.e. n2=1), hence we also need to calibrate the indeterminacy (scalar) parameter ~m and

the variance of the (univariate) sunspot shock �t = st (which is also assumed Gaussian). The

calibrated � = �� used in the simulation experiment under indeterminacy is again reported in the

left column of Table 3, along with the indeterminacy parameters, summarized at the bottom.

The di¤erences in the values assumed by the structural parameters � in the two scenarios

are highlighted in bold in Table 3. It can be noticed that the main divergence across the two

data generating processes essentially lies in the conduct of monetary policy, namely in the long

run response of the policy rate to output gap and in�ation shocks.

On each simulated dataset, we apply the models (a), (b) and (c), where, as in the empirical

forecast exercise of Section 3, the VAR for yt:=(�ot; �t; Rt)0 is the reference system and the

univariate models in (b) and (c) serve as benchmarks. The VAR lag order is selected using

Schwarz�s criterion, considering 1 up to 3 lags. Observe that all three models are misspeci�ed

by construction with respect to the true data generating processes in Eq.s (13) and (14).

The �rst T � P observations are used to estimate the models in (a) and (b) by OLS, and

the last P observations to compute forecasts for �t and �ot and associated RMSEs. In partic-

ular, the absolute VAR forecast performance is measured by the average (across simulations)

RMSEs, while the relative VAR forecast performance with respect to the benchmarks in (b)-(c)

is computed by the ratio of the corresponding average (across simulations) RMSEs. In line with

the empirical exercise of Section 3, our measure of persistence is the modulus of the estimated

largest root of the VAR companion matrix; we refer to the estimated autoregressive coe¢ cient

for the AR(1) models. Results are summarized in Table 4 for the evaluation windows P=8 (eight

quarters).

Several interesting �ndings emerge from the picture. First, in absolute terms, forecast un-

certainty of VAR-based forecasts �as measured by their RMSEs �is generally lower under de-

terminacy compared to the case of indeterminacy, for both in�ation and output growth.11 This

11As expected, the (average) RMSEs associated with the VAR-based forecasts obtained under a MSV indeter-

minate equilibrium is very close to the (average) RMSE obtained under Great Moderation-type scenario. It is

worth remarking that di¤erently from the simple univariate case discussed in Section 2, the MSV solution in this

case has the same time-series representation as the determinate solution but is characterized by di¤erent values

for the structural parameters �. Hence, the average RMSEs associated with the VAR model under the MSV data

generating process, need not to coincide numerically with the average RMSEs associated with the VAR under the

determinate data generating process.
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�nding is consistent with the entries of Table 2 reporting empirical results, and lines up with

our a-priori conjecture: the forecast ability of possibly misspeci�ed macroeconometric models is

superior in relatively stable environments in which only fundamental shocks drive �uctuations,

and deteriorates in environments in which additional (intrinsic and extrinsic) sources of business

cycle �uctuations other than fundamental shocks, not accounted by the forecast model, are at

work.

Second, persistence tends to increase as the model�s reduced form solution is �far�from the

MSV solution. In general, however, for particular values of the indeterminacy parameters, the

largest root of the approximating VAR can be smaller under indeterminacy relative to the case

of determinacy. Hence, our simulation results seem to suggest the richer correlation structure

and stronger degree of endogenous persistence featured by indeterminate equilibria need not be

associated with superior forecast performance relative to the case of determinacy. In fact, a

severe model misspeci�cation of the forecast model relative to the true DGP �which typically

involves quite complex cross-equation restrictions under indeterminacy �may adversely a¤ect

forecastability, which is a conditional property, even when the variables of interest feature higher

persistence.12 Apparently, the forecast performance of VARs under the Great In�ation-type

scenario tends to deteriorate, for �xed indeterminacy parameter, as the uncertainty resulting

from sunspot shocks (�2s) increases.

Third, when considering relative forecast accuracy, we observe that the VAR-based forecasts

are substantially similar to that of the AR(1)-based forecasts under determinacy, but may be

inferior or superior to the AR(1)-based forecasts under indeterminacy, depending on the values

taken by the indeterminacy parameters ~m and �2s. For some values of ~m and �2s, the VAR

forecasts are inferior to that of AR(1) models. For other values, the converse occurs. A similar

property characterizes the VAR-based forecasts relative to the RW�s. In general, it is not possible

to claim that the relative performance of the VAR model is superior or inferior to that of our

univariate benchmarks under indeterminacy.

Assuming that the New Keynesian DSGE model as expressed in Eq.s (6)-(10) represents a

good prima facie approximation of the post-WWII U.S. business cycle, we read these �ndings

as pointing to a �good luck in bad policy�explanation of the (relative) higher forecastability of

macroeconometric models prior to the Great Moderation period.

12Along the same line, Canova and Gambetti (2010) emphasize that, conditional on lags of the endogenous

variables, past expectations Granger-cause current values of the latter under ideterminacy but not under deter-

minacy, and hence �irrespective of higher persistence �the omission of (proxies for) such expectations from the

forecast model may result in larger prediction errors in the former regime.
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7 Concluding remarks

This paper has analyzed the consequences of indeterminacy for quantitative forecasting through

popular reduced form time-series models. Our simulation as well as empirical �ndings suggest

that forecastability under indeterminacy may be severely undermined by model misspeci�ca-

tion issues, even when extrinsic uncertainty (i.e. sunspot noise) plays no role in generating the

data. Although indeterminacy need not imply superior forecastability - however measured - of

(potentially misspeci�ed) macroeconometric models, it may well be the case that a particular

multivariate model estimated on data generated under indeterminate equilibria produces bet-

ter forecasts than univariate predictors, regarless of the level of persistence and volatility that

characterizes the observed time-series.

How should a practitioner address forecasting when she believes that a DSGE model describes

the observed economy? Of course, forecasts should be computed from the DSGE model. But in

these cases, understanding which regime observed samples belong to and the forecaster himself

operates in, should be regarded as a necessary stage in the process of developing forecasting

models suitable for that speci�c regime. As a minimal requirement, the auxiliary components

that characterize business cycle �uctuations under indeterminacy should be properly identi�ed

and incorporated in the forecast model to improve on forecast accuracy.

With this in mind, we argue that forecasting ought to be confronted with misspeci�cation

and/or identi�ability issues which typically arise when theoretical models are to be meaning-

fully taken to the data. As emphasized in Fanelli (2012) and Castelnuovo and Fanelli (2015),

the potential for dynamic misspeci�cation �i.e. the omission of lags, expectational leads and/or

relevant variables with respect to the actual data generating process �and the strength of local

identi�cation of the underlying model�s parameters (as well as sunspot-related ones) may well

drive an incorrect assessment of determinacy versus indeterminacy, see Mavroeidis (2005, 2010).

Lack of identi�ability across model structures may also generate empirical di¢ culties in dis-

criminating between determinate equilibrium frameworks driven by exogenous shocks featuring

a richer dynamic structure (e.g. MA shocks) and indeterminate equilibrium ones subject to

nonfundamental � or arbitrarily related to fundamentals � sunspots (e.g., Beyer and Farmer,

2007, 2008; Sorge, 2012). Overall, for DSGE model-based forecasting purposes we believe there

remains the need to tackle a misspeci�cation-robust approach to testing whether a determinate

or an indeterminate equilibrium is supported by the data.
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Appendix: DSGE equilibria and their representation

In this Appendix, we discuss the solutions associated with the DSGE model compacted in Eq.s

(11)-(12). To keep exposition as general as possible, throughout this Appendix we denote with

n the dimension of the state vector Xt in Eq. (11) (notice that n = 3 in our speci�c case).

Moreover, we use the notations �A(�)�and �A:=A(�)�to indicate that the elements of the matrix

A depend nonlinearly on the structural parameters �, hence in our setup �0:=�0(�), �f :=�f (�),

�b:=�b(�), �:=�(�) and ��0 :=�
�
0 (�):We call �stable�a matrix that has all eigenvalues inside the

unit disk and �unstable�a matrix that has at least one eigenvalue outside the unit disk. Thus,

denoted with �max(�) the absolute value of the largest eigenvalue of the matrix in the argument,
we have �max(A(�)) < 1 for stable matrices and �max(A(�)) > 1 for unstable ones. We also

consider the partition �:=(�0s, �
0
")
0, where �" contains the non-zero elements of vech(�") and

�s all remaining elements. The �true�value of �, �0:=(�00;s, �
0
0;")

0, is assumed to be an interior

point of P: The corresponding partition of the parameter space is given by P:=P�s �P�" . This
partition is important because the determinacy/indeterminacy of the system depends only on

the values taken by �s.

A detailed derivation of the time-series representation of the reduced form solutions asso-

ciated with the New-Keynesian DSGE system (11)-(12) is reported in Castelnuovo and Fanelli

(2015). Using the Binder and Pesaran�s (1995) solution method, they show that unique-

ness/multiplicity of solutions is governed by the stability/instability of the the matrixG(�s):=(��0�
�f�1)

�1�f , where �1 stems from the solution of a quadratic matrix equation.

Determinacy

For values of �s such that the matrix G(�s):=(��0 ��f�1) is stable, i.e. �max(G(�s))<1, then
�s 2 PD�s and the reduced form solution to system (11)-(12) can be represented in the form

(In � �1(�s)L� �2(�s)L2)Xt = ut , ut:=�(�s)�1"t (15)

where L is the lag operator (LjXt = Xt�j), �1(�s), �2(�s) and �(�s) are 3� 3 matrices whose
elements depend nonlinearly on �s and embody the cross-equation restrictions implied by the

small New-Keynesian model. The matrices �1(�s) and �2(�s) in Eq. (15) are obtained as the

unique solution to the second-order quadratic matrix equation

��=(��0 ���f��)�1��b (16)

where ��f , ��0, ��b and the stable matrix �� are respectively given by

��0:=

 
��0 0n�n

0n�n In

!
, ��f :=

 
�f 0n�n

0n�n 0n�n

!
, ��b:=

 
��b;1 ��b;2

In 0n�n

!
, ��:=

 
�1 �2

I3 03�3

!
;
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and ��b;1:=(�b + ��0), �
�
b;2:=���b and �(�):=(�0 � �f�1(�)). The matrix �1:=�1(�s) is the

one that enters the de�nition of G(�s).

A convenient representation of the equilibrium in Eq. (15) is given by 
Xt

Xt�1

!
xdt

=

 
��1 ��2

In 0n�n

!
Ad(�s)

 
Xt�1

Xt�2

!
xdt�1

+

 
���1

0n�n

!
Gd(�s)

"t (17)

where ��1 = �1(�s), ��2 = �2(�s), �� = �(�s), the matrices Ad(�s) and Gd(�s) are 2n � 2n and
2n�n, respectively, and the superscript �d�stands for �determinacy�. Let yt:=(y1;t; y2;t; � � � ; yp;t)0

be the p� 1 vector of observable variables:
When all variables in Xt are observed, yt = Xt, the state system (17) along with the mea-

surement system: yt = Hxdt , H:=(In : 0n�n), give rise to a VAR representation for yt (Xt)

with coe¢ cients that depend on � through the CER in Eq. (16). In general, however, not all

variables in Xt belong to the forecaster�s information set. In this case, the measurement system

will take the form

yt = Hx
d
t +Qvt (18)

where H is a p � 2n matrix, vt a b � 1 vector (b � p) of measurement errors with covariance

matrix �v, and Q is a p � b selection matrix. For the speci�c structural model we consider in
the paper, the counterpart of the measurement system (18) is given by

0BB@
�ot

�t

Rt

1CCA
yt

=

0BB@
1 0 0 �1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1CCA
H

0BBBBBBBBBB@

~ot

�t

Rt

~ot�1

�t�1

Rt�1

1CCCCCCCCCCA
xdt

+

0BB@
1

0

0

1CCA
Q

"on;t

vt

and is obtained by exploiting the RW assumption in Eq. (10). Let ut:=("0t; v
0
t)
0 be the (n+ b)-

dimensional vector containing all system innovations. By substituting Eq. (17) into Eq. (18) and

using some algebra, one obtains the ABCD form (Fernández-Villaverde et al. 2007; Ravenna,

2007) of the determinate equilibrium:

xdt
2n�1

= Ad(�s)
2n�2n

xdt�1
2n�1

+ B(�s)
2n�(n+b)

ut
(n+b)�1

yt
p�1

= C(�s)
p�2n

xdt�1
2n�1

+ D(�s)
2n�(n+b)

ut
(n+b)�1

(19)

where B(�s):=(Gd(�s) : 02n�b), C(�s):=HAd(�s) and D(�s):=(HGd(�s) : Q).
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Provided a suitable set of minimality and identi�cation conditions are met (Komunjer and

Ng, 2011), system (19) can be used as the data generating process implied by our reference

New-Keynesian DSGE model under determinacy. Replacing �s with � it corresponds to system

(13) in Section 5 of the paper.

Indeterminacy

For values of �s such that the matrixG(�s):=(��0��f�1)�1�f is unstable, i.e. �max(G(�s))>1,
then �s 2 PI�s and the class of reduced form solutions associated with the New-Keynesian system
(11)-(12) becomes more involved from a dynamic standpoint. When �max(G(�s))>1, the matrix

G(�s) can be decomposed in the form

G(�s)=P (�s)

 
�1 0n1�n2

0n2�n1 �2

!
P�1(�s)

where P (�s) is a n � n non-singular matrix, �1 is the n1 � n1 (n1 < n) Jordan normal block

that collects the eigenvalues of G(�s) that lie inside the unit disk, and �2 is the n2�n2 (n2 � n)
Jordan normal block that collects the eigenvalues of G(�s) that lie outside the unit disk. Observe

that n1 + n2=n, where n2 determines the �degree of multiplicity�of solutions.

The reduced form solutions can be given the VARMA-type representation:

(In ��(�s)L)(In � �1(�s)L� �2(�s)L2)Xt = (	(�s; ~m)��(�s)L)V (�s; ~m)�1"t + � t (20)

� t:=(	(�s; ~m)��(�s)L)V (�s; ~m)�1P (�s)�t + P (�s)�t (21)

where the matrices �1(�s) and �2(�s) are de�ned as in the case of determinacy, see Eq. (16),

while the matrices �(�s), 	(�s; ~m) and V (�s; ~m) are respectively given by

�(�s):=P (�s)

 
0n1�n1 0n1�n2

0n2�n1 ��12

!
P�1(�s) , 	(�s; ~m):=P (�s)

 
In1 0n1�n2

0n2�n1 ~M

!
P�1(�s)

V (�s; ~m):=(�0(�s)� �f (�s)�1(�s))� �(�s)�f (�s)(In �	(�s; ~m)):

The n2 � n2 sub-matrix ~M of 	(�s; ~m) contains a set of arbitrary auxiliary parameters that do

not depend on �s; for ease of reference, we collect these parameters in the vector ~m:=vec( ~M).

The �additional� vector moving average term � t depends on an extra source of random �uc-

tuations potentially independent on the fundamental disturbances "t, i.e. on the n � 1 vector
�t:=(0

0
n1�1; s

0
t)
0, where st is a n2�1MDS which collects the �sunspot shocks�featured by the sys-

tem. We assume, without any loss of generality, that st has a time-invariant covariance matrix

�s. The sunspot shocks might be also absent form the reduced form solution, i.e. �s = 0n2�n2
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implying �t=0n�1 a.s. (and � t=0n�1 a.s.). This situation will be denoted �indeterminacy without

sunspots�.

A convenient representation of the class of indeterminate equilibria described by Eq.s (20)-

(21) is given by the system0BB@
Xt

Xt�1

Xt�2

1CCA
xint

=

0BB@
�(��1 + ��) (��1 ��� ��2) ��2 ��

In 0n�n 0n�n

0n�n In 0n�n

1CCA
Ain(�s)

0BB@
Xt�1

Xt�2

Xt�3

1CCA
xint�1

+

0BB@
�K1 �K2

0n�2n 0n�2n

0n�2n 0n�2n

1CCA
Gin(�s; ~m)

 
et

et�1

!
"0t

(22)

where ��1 = �1(�s), ��2 = �2(�s), �� = �(�s); �	 = 	(�s; ~m); �V = V (�s; ~m), �K1:=[ �	�V �1 :

( �	�V �1 + In) �P ], K2:=[ ���V �1 : ���V �1 �P ] are n� 2n matrices, et:=("0t; � 0t)0 is a 2n� 1 vector that
collects the fundamental and sunspot shocks of the system, the matrices Ain(�s) and Gin(�s; ~m)

are 3n� 3n and 3n� 4n, respectively, and the superscript �in�stands for �indeterminacy�.
Given the p� 1 vector of observables yt, the associated measurement system is given by

yt = Hx
in
t +Qvt (23)

and, a part from their dimensions, the matrices H, Q and the vector vt have the same meaning

as in Eq. (18). For the speci�c structural model we consider in the paper, the counterpart of

the measurement system (23) is given by

0BB@
�ot

�t

Rt

1CCA
yt

=

0BB@
1 0 0 �1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1CCA
H

0BBBBBBBBBBBBBBBBBB@

~ot

�t

Rt

~ot�1

�t�1

Rt�1

~ot�2

�t�2

Rt�2

1CCCCCCCCCCCCCCCCCCA
xint

+

0BB@
1

0

0

1CCA
Q

"on;t

vt

:

Upon de�ning the (4n+ b)-dimensional vector ut:=(et; v0t)
0 which contains the complete set

of innovations, the ABCD form of the indeterminate equilibria reads

xint
3n�1

= Ain(�s)
3n�3n

xint�1
3n�1

+ B(�s; ~m)
3n�(4n+b)

ut
(4n+b)�1

yt
p�1

= C(�s)
p�3n

xint�1
3n�1

+ D(�s; ~m)
3n�(4n+b)

ut
(4n+b)�1

(24)
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where B(�s; ~m):=(Gin(�s; ~m) : 02n�b), C(�s):=HAin(�s) and D(�s; ~m):=(HGin(�s; ~m) : Q).

Also in this case, provided a suitable set of minimality and identi�cation conditions are met,

system (24) can be used as the data generating process implied by our reference New-Keynesian

DSGE model under indeterminacy. Replacing �s with � it corresponds to system (14) in Section

5 of the paper.
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TABLES
Table 1. RMSEs for xt computed from data simulated from the linear rational expectations model

in Eq. (1) under determinacy and indeterminacy.

Equilibrium regime AR(1) Relative to DET. Relative to BECH.

T=500 Evaluation window: P = 1

DETERMINACY 0.5561 - 1

INDETERMINACY. MSV 0.5561 1 1

INDETERMINACY, ~M = 1:01 0.5627 1.012 1.0114

INDETERMINACY, ~M = 0:98 0.5468 0.983 0.9829

INDETERMINACY, ~M = 0:85 0.6890 0.996 1.1046

INDETERMINACY, ~M = 0:80 0.5564 1.0005 1.249

INDETERMINACY, ~M = 0:015 0.5273 0.948 63.18

T=500 Evaluation window: P = 8

DETERMINACY 0.6791 - 1

INDETERMINACY, MSV 0.6791 1 1

INDETERMINACY, ~M = 1:01 0.6866 1.0110 1.0009

INDETERMINACY, ~M = 0:98 0.6662 0.9810 1.0008

INDETERMINACY, ~M = 0:85 0.6545 0.9638 1.0932

INDETERMINACY, ~M = 0:80 0.6799 1.0011 1.1639

INDETERMINACY, ~M = 0:015 1.1526 1.6972 1.1360

T=500 Evaluation window: P = 16

DETERMINACY 0.6919 - 1

INDETERMINACY, MSV 0.6919 1 1

INDETERMINACY, ~M = 1:01 0.6995 1.011 1.0008

INDETERMINACY, ~M = 0:98 0.6785 0.9810 1.0002

INDETERMINACY, ~M = 0:85 0.5393 0.9695 1.0604

INDETERMINACY, ~M = 0:80 0.6256 0.9592 1.1046

INDETERMINACY, ~M = 0:015 1.4076 2.0344 1.0554

NOTES: Resu lts are based on N=1000 simulations. Data under determ inacy are generated from Eq. (3) w ith �2!=0.5. Data under

indeterm inacy are generated from Eq. (4) w ith �:= 0.95, �2! := 0.5 and �s= 0, for d i¤erent values of ~M and �xed in itia l cond itions.

�AR(1)�: average (across simulations) absolute RMSEs obtained w ith the model in Eq. (5). The �rst T � P observations are used to

estim ate the model and the remain ing P observations to compute the RMSEs. �Relative to DET .�: ratio b etween the average RMSE obtained

w ith the AR(1) model under indeterm inacy and the average RMSEs obtained w ith the AR(1) model under determ inacy. �Relative to BENCH.�:

ratio b etween the average AR(1)-based RMSE and the average RMSEs obtained under a �theory-based� b enchmark,.
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Table 2. Absolute and relative RMSE for in�ation and output growth computed on the Great In�ation

and Great Moderation samples with time-series models

Great In�ation: 1954Q4-1984Q2 T = 119 Evaluation window: P = 8

RW (c) Absolute Relative to RW
(b), (a)/(c)

Relative to AR
(c), (a)/(b)

Variance Persistence

in�ation

output growth

0.3289

0.6643

-

-

1.0794

0.6350

AR(1) (b)

in�ation

output growth

0.3047

1.0462

0.9264

1.5749

-

-

0.3743

1.0935

0.8490

0.2796

VAR (a) 3 lags

in�ation

output growth

0.4078

1.5337

1.2340

2.3087

1.3384

1.4660

0.3552

0.9876
0.9632

Great Moderation: 1985Q1-2008Q2 T = 94 Evaluation window: P = 8

RW (c)

in�ation

output growth

0.3034

0.4951

-

-

1.4999

1.0412

AR(1) (b)

in�ation

output growth

0.2023

0.4755

0.6667

0.9604

-

-

0.1876

0.4989

0.6145

0.1905

VAR (a) 3 lags

in�ation

output growth

0.2538

0.4783

0.8365

0.9661

1.2546

1.0059

0.1754

0.4775

0.8545

NOTES: Forecasts are computed using the �rst T � P obsertations of the sample to estim ate the model and the last remain ing P

observations to compute one-step ahead forecasts (�xed schem e) of in�ation and output grow th P tim es and the corresp onding RMSEs: �RW

(c)� stands for un ivariate random walk ; �AR(1) (b)� stands for un ivariate autoregressive model of order one which includes a constant; �VAR

(a)�denotes a three-variate VAR system for yt:=(�ot; �t; Rt)
0
which includes a constant and whose lag order is selected using Schwarz�s

(SC) in formation criterion combined w ith a LM -typ e vector test for uncorrelated VAR disturbances, considering 1 up to 3 lags. �ot is

multip lied by 100. �Variance� rep orts the estim ated variance of residuals for �t and �ot by the AR(1) and VAR models�. �Persistence�

rep orts the estim ated autoregressive co e¢ cient for the AR(1) model and the absolute value of the estim ated largest ro ot of the VAR companion

matrix .
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Table 3 Values of the structural parameters of the New Keynesian model in Eq.s (6)-(9) used in the

simulation experiments of Section 6.

Great In�ation
data generating process

Great Moderation
data generating process

Parameter Interpretation �� ��


 IS: forward looking term 0.744 0.744

� IS: inter. elast. of substitution 0.124 0.124

� NKPC: indexation past in�ation 0.059 0.059

� NKPC: slope 0.044 0.044

� Rule, smoothing term 0.595 0.834

'~o Rule, reaction to output gap 0.527 1.146

'� Rule, reaction to in�ation 0.821 1.749

�eo Output gap shock, persistence 0.796 0.796

�� In�ation shock, persistence 0.418 0.418

�R Policy rate shock, persistence 0.404 0.404

�2eo IS: shock variance 0.055 0.055

�2� NKPC: shock variance 0.391 0.391

�2R Policy rule: shock variance 0.492 0.492

�2on Natural rate of output: shock variance 0.25 0.25

~m; Indeterminacy parameters 1; 1.01; 0.98 -

�2s Variance of sunspot shock 0; 2; 5 -

NOTES: �� under determ inacy is ca librated to the m edians of the p osterior d istributions rep orted in Table 1 of Benati and Surico

(2009), co lumn �A fter the Volcker Stab ilization�. �� under indeterm inacy is ca librated to the m edians of the p osterior d istributions rep orted

in Table 1 of Benati and Surico (2009), co lumn �Before Octob er 1979�. In b old the param eter values that change across the two regim es.
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Table 4. Absolute and relative (average) RMSE for in�ation and output growth computed from data

simulated from the New-Keynesian DSGE model in Eq.s (6)-(10) under determinacy and indeterminacy

on di¤erent sample lenghts.

Evaluation window: P = 8

Absolute
(a)

Relative to RW
(a/c)

Relative to AR
(a/b)

VAR persistence

T = 94

DETERMINACY

in�ation

output growth

1.1714

1.3580

0.7655

0.7778

1.0094

1.0048
0.8496

T = 119

INDETERMINACY: MSV solution

in�ation

output growth

1.2793

1.3373

0.7413

0.7498

1.0029

1.0001
0.8214

INDETERMINACY: ~m=1.01, �2s=0

in�ation

output growth

2.6674

5.5618

0.8118

0.8018

0.9647

0.9942
0.8454

INDETERMINACY: ~m=0.98, �2s=0

in�ation

output growth

2.4867

5.5395

0.8467

0.8014

0.9835

0.9954
0.8238

INDETERMINACY: ~m=1.01, �2s=2

in�ation

output growth

5.5149

6.2177

1.0265

0.8284

1.0064

0.9995
0.9710

INDETERMINACY: ~m=1.01, �2s=5

in�ation

output growth

7.7233

7.0334

1.0369

0.8538

1.0170

0.9998
0.9729

NOTES: Resu lts are based on N=1000 simulations. Data under determ inacy are generated by simulating system (13) for �= �� 2PD� ,
where �� is ca librated as in the right column of Table 2. Data under indeterm inacy are generating by simulating system (14) for �=�� 2PI� ,
where �� and the indeterm inacy param eters ~m and �2s are calibrated as in the left co lumn of Table 2. Forecasts are computed using

T � P observations to estim ate the model and the last P observations to evaluate forecasts (�xed schem e) and the corresp onding RMSEs:

(a) denotes the three-variate VAR system for yt:=(�ot; �t; Rt)
0
whose lag order is selected using Schwarz�s (SC) in formation criterion ,

considering 1 up to 4 lags; �RW� stands for un ivariate random walk , i.e . m odel (c); �AR(1)� stands for un ivariate autoregressive model of order

one, i.e . m odel (b). �VAR persistence rep ortes the absolute value of the largest estim ated root of the VAR companion matrix�.
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FIGURES
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Figure 1. Simulated in�ation paths (T = 150) obtained using the New-Keynesian DSGE model in

Eq.s (6)-(10) as data generating process under determinacy (red line) and indeterminacy (blue, green and

purple lines). The red line is obtained by simulating system (13) for � = �� 2 PD� , where �� is calibrated to
the medians of the posterior distributions reported in Table 1 of Benati and Surico (2001), column �After

the Volcker Stabilization�. The other lines are obtained from system (14) for � = �� 2 PD� , where �� is
calibrated to the medians of the posterior distributions reported in Table 1 of Benati and Surico (2009),

column �Before October 1979�, setting the indeterminacy parameter ~m and variance of the sunspot shock

to di¤erent values (see main text).
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