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Abstract 
Why do `Free' and `Pay' content cohabit in practically all media markets? We develop a model in which two 
identical broadcasters compete for viewers and advertisers that leads to endogenous differentiation. We show 
that differentiation does not require heterogeneous agents. Instead, we relate it to the `two-sided' nature of these 
markets. The asymmetric outcome is driven by the property that business models form strategic substitutes: if one 
station goes towards the ‘pay’ business model the rival has stronger incentives to choose the ‘free’ business 
model and viceversa. We propose a simple and natural property of the advertising technology that enhances 
strategic substitutability guaranteeing differentiation. In regime of competition there is a misallocation of 
advertising messages and therefore a waste of viewer attention. We show that a multi-station monopolist does not 
necessarily maintain differentiation and never offers content for free. 
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1 Introduction

We often observe the coexistence within a media market of outlets that follow opposite

business models. For instance Free-to-Air (FTA) broadcasters distribute content free

of charge and depend entirely on advertising revenue, whereas Pay-TV broadcasters rely

mostly on subscription fees. Likewise, among the news media some outlets collect revenues

solely from ads while others put their content behind paywalls. Why do these opposite

funding regimes, with either advertisers or consumers footing the bill, so frequently co-

exist? Can these striking differences in business models be traced back to competition

among firms?

In this paper we argue that a “principle of differentiation” driven by strategic consid-

erations helps to account for these asymmetric outcomes. We design a model in which,

under certain conditions, two identical broadcasting stations with the same set of po-

tential viewers and advertisers elect opposite pricing structures (business models), each

raising most of its revenues from distinct sides of the market. We shut down preference-

driven differentiation to separate our story from classic differentiation results. We do so

assuming all agents are homogeneous thus sharing the same preferences. Instead we relate

differentiation to the ‘two-sided’ nature of these markets.

We show that the key property leading to the asymmetric equilibrium is a strong form

of strategic substitutability. Loosely speaking, if one station supplies more advertising

and decreases or eliminates subscription fees (i.e., shifts towards the FTA model), it

increases its competitor’s incentive to raise fees and reduce advertising (i.e., to move

towards the Pay-TV model), and vice-versa. To understand what drives this property

notice that in media markets consumers and advertisers typically satisfy their needs for

content and advertising on multiple outlets (what the literature calls “multi-homing”).

This means that if one broadcaster moves towards an FTA model and the competitor

mimics this move, the two stations, catering the exact same viewers, turn out to be

substitute means of delivering advertising messages to the same audience. Such an overlap

induces competition for advertising dollars in the form of lower ad prices. Moreover, the

move towards FTA, and in particular the resulting increase in the amount of advertising

aired, increases viewers’ willingness to pay for ad-free content. Both effects make it more

attractive for the competitor to shift the other way, towards the Pay-TV model. Strategic

substitutability can also be illustrated the other way around. If a station moves towards

Pay-TV pricing, setting a positive subscription fee and not supplying advertising space,

the other station becomes advertisers’ only medium for reaching viewers, making the FTA

option more attractive.



We argue that this reasoning is sound if and only if the revenue potential of both the

market for viewers and the market for ads is positive and balanced. If one side is ‘too

attractive’ then the asymmetric equilibrium breaks down. Indeed we show that the extent

of differentiation (i.e. the ‘distance’ between the equilibrium business models) is hump

shaped in the revenue potential of one side relative to the other.

Strategic substitutability needs to be ‘strong enough’ for an asymmetric outcome to

always exist. We provide a mathematically simple, rather weak and intuitive sufficient

condition for existence that can be traced back to a property of the technological process

that describes how advertising works. Such property, namely strict log-concavity, captures

a fact well taken in the industry which is that concentrating the messages of an advertiser

on a smaller number of outlets (one in our model) maximally increases the reach of his

advertising campaign.

From a normative viewpoint we document an allocative inefficiency stemming from

competition which occurs whenever both stations are active on the advertising side of the

market. We show that under strict log-concavity competition may lead all advertisers to

broadcast on all stations resulting in a lower overall industry surplus.

We use our model to discuss the exercise of market power by contrasting the duopoly

outcome with the outcome implemented by a hypothetical monopoly owner of both sta-

tions. We show that under the same conditions that guarantee existence in duopoly, a

monopolist does not have preferences over the business models of the individual stations.

Furthermore there is no outcome in which a monopolist offers content free of charge. So

the ‘Free-to-Air’ business model arises only in the competitive setting. In this sense the

incentives to differentiate are stronger in competition.

We also provide a thorough discussion of a richer model accounting for preference

heterogeneity and in particular viewers having a different taste for marginal quality. We

argue that this reinforces the baseline logic leading to differentiation. Finally some policy

lessons are drawn.

Relation to the literature. Our paper naturally relates to the literature on endogenous

product differentiation in traditional markets as a means to relax price competition.1 In

these models ex-ante symmetric firms differentiate their products (for instance, offering

high- and low-quality versions) to cater to different types of consumer. Likewise, in our

1The classical references are Hotelling (1929) and d’Aspremont et al. (1979) for endogenous differen-
tiation by variety and Shaked and Sutton (1982) for endogenous differentiation by quality.
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model one firm supplies high-quality (for instance ad-free) paid content to viewers and

another firm supplies low-quality (ad-supported) free content to viewers. However, the

classic results rely heavily on the heterogeneity of consumer tastes, which is necessary

for screening purposes. What distinguishes this paper is the fact that heterogeneity

within either market side is not essential to the asymmetric outcome. Indeed, we obtain

differentiation assuming throughout the paper homogeneous viewers and homogeneous

advertisers. What is essential is the presence of two separate types of agents which is one

of the defining features of two-sided markets.

This paper contributes to a thriving literature on differentiation in media markets.

Peitz and Valletti (2008) and Anderson, Foros and Kind (2016) have studied media outlets’

choice of genre and content, extending the classic differentiation frameworks to two-sided

outlets in the context, respectively, of single- and multi-homing consumers. We do not

explicitly differentiate according to content; however, in our framework one can consider

the quality of airtime to be better, the lower the amount of advertising breaks. A few

recent works focus specifically on business models. Weeds (2013), among other things,

provides an alternative case for the thesis that Pay-TVs and FTAs cohabit, in a framework

akin to Shaked and Sutton (1982) with exclusive and heterogeneous consumers. The

drivers of differentiation in our paper are different (and we speculate complementary) to

hers. Kind, Nielssen and Sorgard (2009) link symmetric business models to the extent

of content differentiation among firms. Content substitutability, they contend, makes it

harder to extract rents though subscriptions and thus fosters FTA. Another related work

is Dietl, Lange and Lin (2012), which takes the nature of the operators as given (one free,

one pay) and draws implications on the quantity of ads. Unlike these papers, we posit

generalized multi-homing agents and obtain asymmetric rather than symmetric outcomes.

The paper also contributes to the broader literature on the exercise of market power

and the effect of competition in two-sided markets. So far, theories of “price skewness” in

this literature have focused on the reasons why all the platforms in a given market may

tilt their pricing structure to one side or the other. By now there is a well-established

understanding of symmetric business model equilibria characterized by asymmetric price

structures, with all platforms cross-subsidizing the same side at the expense of the other.

Which side is favored, then, depends on the relative elasticity and the strength of indi-

rect network externalities, the established result in two-sided markets (Rochet and Tirole

(2006), Armstrong (2006), Bolt and Tienman (2008) and Schmalensee (2011), Spiegel

(2013)). This offers a good explanation for one fundamental feature of two-sided markets,

namely the unbalanced price structures, but it neglects another key feature, the coexis-

tence of opposing price structures. To our knowledge, only Ambrus and Argenziano (2010)
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study in a general setting the case of asymmetric network equilibria with single-homing

consumers. They show that asymmetric networks arise endogenously in equilibrium: each

one relatively cheaper and larger on one side. Their argument depends on heterogeneity

among consumers in how much they value the network good and is thus different from but

complementary to ours, which relies on multi-homing. Finally, our paper is related to a

recent strand of theoretical and empirical work that revisits some classic results in media

economics (for instance Anderson and Coate (2005), Crampes, Haritchabalet and Jullien

(2009)), allowing consumers to satisfy their content needs on multiple platforms: Ander-

son, Foros and Kind (2016), Ambrus, Calvano and Reisinger (2016) and Athey, Calvano

and Gans (2016). We share with these works the idea that multi-homing viewers are less

valuable, as they can be served by advertisers via different operators, so the associated

rents are competed away.

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 illustrates the equilibrium and comparative statics in duopoly. Section 4 provides the

monopoly benchmark. Section 5 informally discusses the case with viewers having het-

erogeneous preferences for content quality. Section 6 provides policy lessons. All proofs

are in Appendix.

2 The model

Two broadcasting stations, indexed by i = 1, 2, offer their content and advertising services

to a continuum of identical viewers and identical advertisers (mass one). We allow agents

to patronize more than one station if they wish so. We follow the literature and refer

to this behavior as ‘multi-homing’ (as opposed to ‘single-homing’ referring to that of

patronizing only one). To simplify the notation we do not index viewers nor advertisers.

Viewer preferences and choices. Viewers choose which stations to patronize, if any.

Conditional on their subscription choice, they must allocate to the stations a finite en-

dowment of time which for simplicity we assume equal to 2 slots.2 Let vi ≥ 0 be the

amount of time spent watching station i (referred to as ‘viewing time’). Each slot is as-

sumed of length 1 so vi ∈ {0, 1, 2}. Let ai denote the quantity of advertising on station i

which is assumed nonnegative and weakly lower than some arbitrary real a. The function

2Finiteness can also be justified on the grounds that content (movies, episodes of a TV-series, enter-
tainment) require a minimum allotting of time to be consumed.
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U(v1, v2, a1, a2) denotes the gross utility from watching. We decompose the utility as the

sum of the gross utility of single-homing on station i and j given by some function u(·)
and a function g(·) capturing the fact that content substitutability reduces the overall

utility for those who multi-home:

U(v1, v2, a1, a2) :=
∑
i=1,2

u(vi, ai)− g(v1, v2). (2.1)

Assume that u, g (and hence U) are twice continuously differentiable in all arguments.

We assume that u(vi, ai) ≥ 0 with u(0, ai) = 0. That is a ‘free’ subscription is always

welcome. g(·) ≥ 0 and is symmetric in (v1, v2). Furthermore:

(Love for Content with Diminishing Returns) ∂u
∂vi

> 0 and ∂2u
∂v2i

< 0.

(Love for variety) u(2, ai) ≤ U(1, 1, ai, aj).

(Advertising Aversion) ∂u
∂ai

= −vi.

(Content Substitutability) g(v1, v2) = 0 if and only if v1v2 = 0.

These assumptions capture two key features of this market. First, content is preferred

to advertising: willingness to pay decreases in ai and it does so in proportion to the view-

ing time. So ai can be though as a vertical (quality) dimension of differentiation. Second

viewers have taste for variety: spreading attention on different outlets always increases

utility. This naturally implies a tendency to multi-home. We also allow differentiation

along a horizontal (variety) dimension captured by our content substitutability assump-

tion. Of course this plays a role only if both stations are actually consumed. The utility of

not subscribing to any station is normalized to zero. All viewers get a payoff equal to the

utility minus all fees paid. In appendix A we provide an illustration of these assumptions

with a quadratic utility function in the spirit of Levitan and Shubik (1980).

Advertising technology and preferences. Advertisers wish to inform viewers. In-

forming one viewer is worth k. Their payoff is equal to k times the number of viewers

informed.

How do viewers get informed? Throughout the paper we need to distinguish be-

tween the quantity of advertisement on station i allocated to a given individual advertiser

denoted mi, and the aggregate quantity of advertising ai. Clearly in equilibrium we

require the allocation to individual advertisers to integrate to ai across all advertisers.

φ : [0, a] → [0, 1] denotes a function that maps advertising exposure ei := mivi to the
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probability that a given viewer with viewing time vi is informed through station i. If

vi is identical across all viewers then φ(ei) reads also as the fraction of the population

informed through station i. It is assumed to be twice continuously differentiable, strictly

increasing and strictly concave, with φ(0) = 0 and φ(a) < 1. As a multi-homing viewer

can be informed through either of the two stations, the probability of being informed at

least once on some station is denoted Φ and assumed equal to one minus the probability

that the viewer is not informed on either station. That is:

Φ(ei, ej) := 1− (1− φ(ei))(1− φ(ej)). (2.2)

This formulation captures the fact that advertising on i and j are substitute means to

inform a multi-homing viewer. On the contrary if the viewer single-homes, say on station

i, then ej = 0 and Φ = φ(ei). In this case i becomes a competitive bottleneck to reach

this viewer.

Stations. The stations’ profit is equal to the sum of subscription and advertising rev-

enues. Stations choose the quantity of ads ai ∈ [0, a], the subscription fee fi ≥ 0 and

(a continuum of) advertising contracts (one for each advertiser) which specify a quantity

mi ≥ 0 in exchange for a payment ti.

Observe that we do not allow subscription fees to be contingent on viewing choices

{vi, vj}, that is on the viewing time actually spent on each station as we deem it unrealistic.

For instance, this rules out equilibrium outcomes in which viewers are basically paid to

watch commercials (fi < 0 and ai large). Indeed, in this case one would expect them to

just grab the subsidy and choose vi = 0.

Timing and Equilibrium. At stage 1 the stations simultaneously choose the quantity

of advertising.3 At stage 2 the stations simultaneously choose the subscription fees and

post the advertising contracts. At stage 3, viewers and advertisers observe the stations’

offers and choose which station(s) to patronize (if any) and viewers allocate their attention.

The equilibrium concept is Subgame Perfect Nash Equilibria.4

3Our timing implicitly assume that the aggregate quantity of ads is fixed when advertisers and viewers
make their choices. The assumption captures the idea that content production and the program schedules
(and therefore the quantity of commercial breaks) are set in advance. In the United States, for instance,
broadcasters and advertisers meet on a seasonal basis at an “upfront” event to sell commercials on
the networks’ upcoming programs whose length is predetermined. Unsold airtime, if any, is filled with
tune-ins.

4We break indifferences as follows: If a viewer / advertiser is indifferent between subscribing / accepting
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3 Competition leads to differentiation

Viewers’ choices and equilibrium subscription fees. Let Ii(vi > 0) be an indicator

function equal to 1 if its argument holds true and zero otherwise. The viewer problem is:

max
vi,vj

U(v1, v2, a1, a2)−
∑
i=1,2

fiIi(vi > 0). (3.1)

subject to vi ∈ {0, 1, 2} for i = 1, 2 and v1 + v2 ≤ 2

The above formulation encompasses two problems. First, given strategies (fi, ai) and

(fj, aj), viewers need to choose which (if any) stations to subscribe to. Second, given

subscription choices, they choose how to allocate time. Love for content and love for

variety immediately imply that the optimal time allocation is equal to (vi = 2, vj = 0),

(vi = 0, vj = 2) and (vi = 1, vj = 1) conditional on single-homing on i, single-homing on j

and multi-homing respectively. Given this, consider subscription choices. A key object in

what follows is the incremental utility that the viewer would get if she were to subscribe

to station i given that she has already subscribed to j 6= i:

∆Ui(ai, aj) = U(1, 1, ai, aj)− u(2, aj) ≥ 0 (3.2)

Observe that if i chooses a fee smaller or equal than the incremental utility then all

viewers necessarily subscribe to i and this holds true for all fj. We now claim that each

station charging a subscription fee equal to its incremental value (inducing all viewers

to multi-home) is the unique equilibrium subscription fee. This is what Anderson, Foros

and Kind (2016) in a closely related setting refer to as the ‘incremental pricing principle’.

Intuitively, station i cannot raise fi unilaterally above its incremental utility without

losing the viewers in the subgame that follows. Similarly no station can unilaterally lower

its fee below the incremental value without leaving money on the table. In summary,

letting fi(ai, aj) denote the unique Subgame Perfect subscription fee then competition to

get the viewer on board leads to (a formal proof is provided in appendix B.2):

fi(ai, aj) := ∆Ui(ai, aj) for i = 1, 2. (3.3)

a contract or not, she/he opts to subscribe / accept. If a station is indifferent between a fee /contract
which induces no viewer / advertiser participation and a fee which induces some viewer / advertiser
participation, it always chooses the latter.
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Note that when station j reduces its advertising quantity, it lowers the incremental utility

∆Ui, thereby forcing i to reduce its subscription fee.

Equilibrium advertising contracts. Recall that stations can in principle discriminate

advertisers by tailoring the contracts at the single advertiser level. So we split the analysis

in two parts. First, we derive the equilibrium fee ti given an arbitrary feasible allocation

mi. Second we show that in equilibrium each station i = 1, 2 necessarily propose the same

mi to all its advertisers.

Let ∆Φi, referred to as the incremental probability of station i, denote the increase

in the probability of informing a multi-homing viewer (who allocates her time spending

one slot on both stations) if the advertiser were to purchase mi ads on i in addition to

mj ads on j. Hence, ∆Φi is equal to the expected probability that a multi-homing viewer

is informed through i but not through j:

∆Φi(mi,mj) := Φ(mi,mj)− Φ(0,mj) (3.4)

= φ(mi)(1− φ(mj)) ≥ 0. (3.5)

By an argument analogous to the one presented above, in equilibrium ti and tj must be

equal to k times the respective incremental probabilities:

ti(mi,mj) = k ·∆Φi(mi,mj) for i = 1, 2. (3.6)

How do stations allocate the aggregate quantity ai across advertisers? Diminishing

returns (φ strictly concave) imply that the incremental probabilities are strictly concave

in mi and therefore that in equilibrium stations ‘spread’ their advertising quantity across

all advertisers. As there is a unit mass of advertisers then this means that in equilibrium

mi = ai
1

= ai for all advertisers. The following claim takes stock.

Claim 1 With competing stations, given any pair of first-stage choices {ai, aj}, each

station i offers the same contract to all advertisers {ti,mi} and all advertisers accept all

contracts. The contracts have the feature mi = ai and ti = k ·∆Φi(mi,mj) for i = 1, 2.

Equilibrium quantity. Given aj,the problem for station i is:

max
ai∈[0,a]

πi := π(ai, aj, k) = ∆Ui(ai, aj) + k ·∆Φi(ai, aj). (3.7)

k parametrizes the relative profitability of the two sides of the market. When choosing

the quantity of advertising, the stations trade-off revenues from subscription for revenues
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(a) k ≤ k

ai

a

aj a0

(b) k ≥ k

Figure 1: i’s best responses (solid line - blue) and j’s (dotted line - red)

from advertising. Indeed if the profit maximizing quantity lies in the interior of the choice

set, it is characterized by the familiar first order condition equating marginal revenues on

opposite sides:

∂πi
∂ai

=
∂∆Ui
∂ai

+ k
∂∆Φi

∂ai
= 0. (3.8)

A Subgame Perfect Nash Equilibrium is basically a vector of fees and quantities

satisfying (3.3), (3.6) and solving problem (3.7) for i = 1, 2. As asymmetric equilibria

always come in pairs, without loss of generality we restrict attention to equilibria with

a1 ≥ a2. So an asymmetric equilibrium is an equilibrium in which 1 supplies more ads

a?1 > a?2 ≥ 0 and hence has lower subscription prices 0 ≤ f ?1 < f ?2 and larger advertising

fees t?1 > t?2 ≥ 0.

Clearly if k = 0, that is informing viewers is worthless, then the game has a trivial

unique symmetric equilibrium in which both stations forego advertising altogether: a?1 =

a?2 = 0 and set the same subscription fee. Figure 1 (a) depicts this situation showing

the shape of the best responses and their intersection in the origin. On the contrary, if

informing viewers is arbitrarily profitable (that is k is sufficiently large) then the game

has another straightforward symmetric equilibrium which is unique in which both stations

advertise as much as feasible a?1 = a?2 = a and set the same subscription fee (Figure 1 (b)).

It follows that an asymmetric equilibrium can obtain in loose terms only for ‘intermediate’

values of k. The next claim formalizes this requirement providing a necessary condition

on k for an asymmetric outcome to exist (proof in appendix B.3).
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Claim 2 An asymmetric equilibrium exists only if:

k :=

(
∂φ(0)

∂ei

)−1
< k <

(
∂φ (a)

∂ei
(1− φ(a))

)−1
:= k (3.9)

From now on assume that k ∈ (k, k). A fundamental property of the game which is key

in driving the asymmetric outcome is that quantities form strategic substitutes, i.e. the

optimal quantity of firm i decreases with the quantity of firm j. In other words, the best

responses are negatively sloped. Loosely speaking if one station goes towards the ‘pay’

business model (that is decreases quantity ai and increases subscription fee fi) then the

other station has a stronger incentive to move in the opposite direction and go towards

the ‘free’ business model (that is increasing advertising and decreasing subscription fee)

and vice-versa. Intuitively, if a competitor supplies a larger quantity of ads, the marginal

returns of advertising for a station go down as the probability that the viewer is not

informed by the competitor and that can be potentially informed on the station shrinks.

To see this via an extreme example note that if aj is such that φ(aj) is close to 1 then

∆Φi is close to zero and so i has basically no incentive to trade-off subscription revenues

for advertising ones and the optimal ai is close to 0.

The fact that the best responses are negatively sloped (as opposed to positively sloped)

makes it possible that they cross at least once away from the diagonal. Strategic sub-

stitutability by itself, however, does not imply that an asymmetric equilibrium exists.5

Necessary Condition (3.9) merely says that reaction functions are not flat guaranteeing

that the best response to 0 is strictly larger than that to a. Intuitively strategic substi-

tutability needs also to be ‘strong enough’ to guarantee existence, in a sense we make

precise below.

The next proposition proposes a sufficient condition, strict log-concavity of 1−φ that

we argue being intuitive and natural in our setting. As we will show, it can be traced back

to a readily interpretable property of the ‘communication technology’ embedded in the

function φ(e) which we expect to naturally hold in media markets. Symmetric equilibria

are not ruled out. However as will be clear from the discussion that follows, log-concavity

has the additional benefit of making these symmetric outcomes unstable guaranteeing at

5We refer the reader to Amir, Garcia and Knauff (2010) for an excellent discussion of asymmetric
outcomes in static games with global strategic substitutes. They also provide sufficient conditions for
asymmetric outcomes (diagonal non concavities) that are different than the ones offered in this paper.
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the same time existence and uniqueness of a stable asymmetric one.

Proposition 1 Suppose that 1 − φ(e) is strictly log-concave in exposure and k falls in

the interval characterized by (3.9). Then an asymmetric equilibrium exists and is unique.

Proof in appendix B.4. Why is a log-concave technology sufficient for existence? 1−φ
strictly log concave implies that the function Φ has the following property (formal proof

in appendix B.4):

Φ(e1 + e2, 0) > Φ(e1, e2) for all e1, e2 > 0. (3.10)

It says that multi-homers are easier to inform ‘concentrating’ advertising on one station

rather than spreading it around. It captures a point that is well taken in the industry

which is that multi-station advertising campaigns are wasteful as individual stations can-

not predict which ads viewers have seen on other outlets. This leads to lower reach, that

is some individuals not being exposed on either station.6 Log-concavity encapsulates the

idea that strategic substitutability is ‘strong enough’ implying the (local) property that

the best response function is very steep (slope lower than -1) when it crosses the diagonal.

This immediately guarantees existence of an asymmetric outcome. To build geometric

intuition figure 2 shows the qualitative shape of the best response of firm i (solid blue)

and j (dotted red) in two notable cases discussed below. Observe in both diagrams that

in a left neighborhood of the crossing point, i’s best response (solid line) must lie above

the inverse of j (dotted line) due to the slope being larger than −1. But then the two

lines must eventually cross again giving rise to an asymmetric equilibrium. The same

property implies that such asymmetric equilibrium is stable while the symmetric equilib-

rium (which always exists) is not stable for a wide range of best response dynamics. In

this sense the symmetric outcome is less compelling.7,8

6Tying ads to content and synchronizing airings are simple strategies that tv-stations, newspapers
and websites use to enhance reach leading to (3.10). To see this with a simple illustration suppose each
station has two units of content each requiring one unit of attention and supplies only one advertising
message tied to each piece of content. Suppose there are two advertisers each purchasing two messages.
Viewers consume one random piece of content on each station. If advertisers concentrate all messages
on one station then all consumers eventually are exposed. If advertisers purchase one message on each
outlet then on average a quarter of consumers are not informed.

7In fact with continuous best responses, a symmetric pure strategy equilibrium always exist. See Vives
(1990) footnote 7 and theorem 4.2 (iii.) for a formal argument in a related context

8In oligopoly models, stability is often used as a selection criterium for a number of reasons. For
instance stable equilibria are ‘more compelling’ in that they allow to think of the static equilibrium as
the rest point of some dynamic adjustment process which captures some learning or bounded rationality of
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a

ai

aj a
0

(a) Case k ≤ k̂: one station supplies.

a

ai

aj a
0

(b) Case k > k̂: Both stations supply.

Figure 2: Asymmetric equilibria

How does the asymmetric equilibrium look like? The following proposition completes

the description of the equilibrium providing a full characterization of the quantities (proof

in appendix B.5).

Proposition 2 Suppose 1− φ is strictly log-concave. Then there are thresholds k̃ and k̂

with k < k̃ ≤ k̂ < k such that:

(i.a) If (k, k̃] then a?2 = 0 and a?1 ∈ (0, a)

(i.b) If (k̃, k̂] then a?2 = 0 and a?1 = a,

(ii.) If (k̂, k] then a?2 > 0 and a?1 = a.

Depending on the relative profitability of k we can have basically one of two regimes.

If k is ‘small’ then only one station is active on the advertising side of the market (figure

2(a))). Furthermore if a?1 < a then 1 choses the quantity that equates marginal returns

on opposite side of the market:

1 = k · ∂φ(a?1)

∂a1
. (3.11)

the players. ‘Stability guaranteeing’ assumptions are also needed to ensure ‘natural’ comparative statics
results such as output going down with marginal costs (Dixit (1986)). See Vives (2001) chapter 2 for a
definition and discussion of this property)
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If k is ‘large’ then both stations are active with station 1 at capacity and a?2 equating

revenues on opposite sides of the market figure 2(b):

1 = k · ∂φ(a?2)

∂a2
(1− φ(a)). (3.12)

Intuitively the threshold between the two regimes, denoted k̂, is such that station 2 is just

indifferent between supplying one unit or not when the rival station supplies at capacity

a. Geometrically, log-concavity does not restrict the solid line to be concave. However

proposition 2 says that it cannot be ‘too convex’ by which we mean that i’s best reponse

never crosses j’s (dotted line) in the interior of the strategy space [0, a]2.

Applying the implicit function theorem to (3.11) and (3.12) allows to establish that

whenever a?i is interior then it must be continuous and monotone increasing in k. This

coupled with proposition 2 implies that differentiation is maximally enhanced when the

revenue potential of the two sides is most balanced.

Proposition 3 The extent of differentiation, as measured by a?1 − a?2 is continuous and

hump-shaped in the relative profitability of advertising k.

Specifically a?1 − a?2 is equal to zero for k 6∈ [k, k], increasing for k < k̃, decreasing for

k > k̂ and flat otherwise.

Relationship with classic results on product differentiation. The result on asym-

metric business models relates to the theoretical literature on endogenous product differ-

entiation. Following Hotelling (1929), these studies typically analyze equilibrium oligopoly

models with a product-choice stage preceding price competition, as in D’Aspremont et

al. (1979) and Shaked and Sutton (1982). Product differentiation emerges in equilibrium,

with ex-ante identical firms supplying different products. It is ‘strategic’ in that it is

driven by the need to relax price competition rather than by the need to cater to demand.

These differentiation results depend crucially on the assumption that consumers have

different tastes for either quality (vertical differentiation) or variety (horizontal differen-

tiation). So consumers with different characteristics (or of different “types”) patronize

different firms in equilibrium. Heterogeneity is key in that it allows firms to set posi-

tive mark ups. While consumer and advertiser heterogeneity is certainly an important

feature of media markets, an important insight of our analysis is that heterogeneity is

not essential to sustain an asymmetric equilibrium outcome. So our model contributes

providing a principle of differentiation which does not rely on preferences. Indeed in our

setting viewers and advertisers are all alike and in equilibrium consume the same bundle
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of products. However having two groups of agents implies that each firm has two different

sources of profits corresponding to the two sides. In analogy to the classic result, differ-

entiation is ‘strategic’ as choosing to raise revenues from the opposite side as one’s rival

allows to relax price competition on that side and vice-versa. However the mechanism is

different: it is heterogeneity across rather than within sides of the market that leads to

different business models.9 In this sense our result is not just the simple extension of a

familiar result to two-sided platforms. Instead, it highlights in a multi-sided environment

an additional and specific source of differentiation that cannot arise in one-sided settings.

The analysis maintained the assumption that the stations have substitutable but oth-

erwise ‘symmetric’ content. Clearly assuming that distaste for advertising is correlated

with taste for content quality in other dimensions, the stations will have an additional in-

centive to differentiate along these other dimensions with the Pay-TV opting for ‘premium

content.’ The analysis of the interactions between business model choice and content

choice is left to future work.

4 Monopoly

To better understand how competition works we contrast the duopoly outcome with that

arising when a monopolist controls both stations.

It is reasonable to assume that a multi-station monopolist can also offer a bundle.

That is a ‘bouquet of stations’ to viewers and a ‘multi-station campaign’ to advertisers.

To account for this we allow the monopolist to offer bundles in addition to individual

subscriptions. That is, at stage 2 he may set an additional transfer, denoted t12, that the

advertiser needs to pay to be allotted (m1,m2) ads and a viewer subscription fee, denoted

f12 for a bouquet including both stations. As the monopolist problem is symmetric in

(a1, a2), we maintain without loss of generality that a1 ≥ a2.

Conditional on purchasing a subscription, viewers’ time allocation does not depend

on the ownership structure so nothing changes: love for variety and love for content imply

that multi-homing viewers allocate one time slot to each station and single-homing viewers

both slots to the same station.

Consider now the optimal subscription fees. In our simple setting pure bundling is

an obvious course of action as it allows to capture all the surplus in the industry. As the

9We are indebted to Helen Weeds and Patrick Rey for raising this issue and helping us develop this
argument.
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monopolist cannot improve on what he can achieve through pure bundling, f1 and f2 are

optimally set arbitrarily high. The optimal bundle fee leaves viewers indifferent:

f12(a1, a2) = U(1, 1, a1, a2). (4.1)

Consider the advertising contracts. Given an arbitrary advertiser and an arbitrary al-

location (mi,mj) the optimal price necessarily leaves such advertiser indifferent between

accepting or not:

t12(m1,m2) = k · Φ(m1,m2). (4.2)

Once more, pure bundling allows to capture all the surplus of the advertiser so t1 and t2

are optimally set arbitrarily high.

We now turn to the optimal allocation across advertisers of the inventory (ai, aj).

Diminishing returns from advertising (φ strictly concave) pin down the total quantity mi+

mj offered to individual advertisers which needs to be spread equally. So mi+mj = ai+aj.

How is this quantity allocated across stations? Under strict log-concavity we know (4.2)

is maximized when all the advertising messages are concentrated on one station. So the

optimal allocation (and hence contract) at the individual advertiser level is either (mi =

ai+aj,mj = 0) or (mi = 0,mj = ai+aj). How many of these contracts can the monopolist

provide? Given that total supply is predetermined and equal to ai and aj he can offer

up to ai/(ai + aj) advertisers a contract {mi = ai + aj, mj = 0, t12 = k · φ(ai + aj)} and

up to aj/(ai + aj) advertisers a contract {mi = 0, mj = ai + aj, t12 = k · φ(ai + aj)}. So

contrary to what we found in the previous section different advertisers are offered different

contracts in equilibrium whenever ai, aj > 0.

Claim 3 Given a pair of first-stage choices {ai, aj}, a monopoly owner offers two con-

tracts {m′i,m′j, t′12} and {m′′i ,m′′j , t′′12} to two different arbitrary subsets of advertisers of

mass ai
ai+aj

and
aj

ai+aj
respectively and all advertisers accept. If 1 − φ is strictly log-

concave the contracts have the feature that m′i = m′′j = ai + aj, m
′
j = m′′i = 0 and

t′12 = t′′12 = k · φ (ai + aj).

Observe that in equilibrium the price of both advertising bundles is the same and all

advertisers are indifferent. Under log-concavity the total advertising revenues are equal

to the price of the bundle times the mass 1 of advertisers.

Plugging the equilibrium fees, the problem of the monopolist is:

max
(a1,a2)∈[0,a]2

πm(a1, a2) := U(1, 1, a1, a2) + k · φ (ai + aj) (4.3)
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Inspection of (4.3) already allows to draw a number of lessons on the nature of the

problem. First, in analogy to canonical models one would conjecture that market power

goes hand-in-hand with higher prices. Indeed, subscription and advertising fees increase

when the market is monopolized (in a sense that we make precise below). Second, profits

in (4.3) depend on the total quantity of advertising a1 + a2. The cost (in terms of lost

viewer surplus) of an extra unit of advertising is 1 regardless of whether it comes from an

increase in ai or aj whereas the benefit in terms of increased advertising surplus depends

on total inventory ai + aj. It follows that the monopolist does not have preferences over

the business models of the individual stations. Furthermore this is an obvious source of

multiplicity as the following proposition remarks.

Proposition 4 Suppose that 1 − φ(e) is strictly log-concave in exposure and k ∈ (k, k).

Then a continuum of equilibria exist. That is a pair (am1 , a
m
2 ) is part of an equilibrium if

and only if am1 + am2 = am12 where am12, is the unique quantity equating marginal returns on

opposite side of the market:

−1 + k · ∂φ(am12)

∂ai
= 0. (4.4)

Does monopoly lead to quantity restrictions? The following formal statement basically

says that market power leads to no change in quantities and to higher subscription fee if

k ∈ (k, k̂) (or equivalently a?2 = 0), whereas hardly compares otherwise.

Proposition 5 Suppose that 1− φ(e) is strictly log-concave in exposure.

(i.) If (k, k̂] then a?1 > a?2 = 0, am12 = a?1 + a?2, fm12 > f ?1 + f ?2 and tm12 = t?1 + t?2 .

(ii.) If k ∈ (k̂, k] then a?1 > a?2 > 0 and am12 R a?1 +a?2, then fm12 R f ?1 +f ?2 and tm12 R t?1 + t?2.

We address these two cases in turn. To appreciate why the duopoly and monopoly

outcome coincide in case (i.) notice that given a?2 = 0 the profit of firm 1 in duopoly

can be decomposed as the total surplus πm minus the advertiser and the viewer outside

option. That is the value of single-homing on 2:

a?1 = arg max
[a1∈0,a]

π(a1, 0) = ∆U1(a1, 0, 1, 1) + k ·∆Φ1 (a1,0) (4.5)

= πm(a1, 0)− u(2, 0)− k · φ(0).

Crucially firm 1 has no control over the outside options which depend on 2’s strategy only.

Then, given a2 = 0 the value of a1 that maximizes π(a1, 0) coincides with am12 and the result

follows. In summary while on the one hand individual station choices have an externality
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on the rival’s payoff through their effect on the outside option, these externalities only

affect the profit level and not the marginal returns. Therefore while this setting differs

from that of competition, the incentives are remarkably similar. In case (ii.) in duopoly

both stations are active on the advertising side of the market. All advertisers multi-

home and purchase a quantity of messages m?
1 = a?1 and m?

2 = a?2. In light of our earlier

discussion on the role of technological log-concavities in shaping the advertising surplus, it

is not surprising that a monopolist, which can control the joint allocation, would instead

concentrate all messages on one station. By doing so, the monopolist achieves a higher

surplus through higher efficiency. Also, and most importantly for the question at hand,

this changes also its incentives at the margin leading to a different total quantity and

hence allocation. We thus contribute to the debate on the effects of market power on the

amount of advertising in the marketplace (Anderson and Coate (2005); Anderson, Foros

and Kind (2016), D’Annuzio and Russo (2017)) uncovering a different motive, linked

to the technology, for why competitive pressure may lead to a distortion in the level of

advertising.

By a revealed preference argument the monopolist obtains larger profits than the sum

of the duopoly ones and this also implies that the sum of the fees are always larger in

monopoly than in duopoly. Moreover viewers always have to pay for access. So, in contrast

with the duopoly outcome, under no condition a monopolist chooses a business model

entailing free access to content. There is therefore a sense in which market power threatens

the existence of free content which in many jurisdictions is considered a legitimate public

policy goal.

The fact that monopoly profits are equal to the total surplus in the industry allows to

use our model to also tackle normative issues. In particular it allows to use the monopoly

outcome as a normative benchmark for the competitive one. As showed in section 3, if

k > k̂, competitive pressure induces an outcome in which advertisers purchase advertis-

ing messages on both stations. Under log-concavity, allocative efficiency requires instead

that advertisers concentrate their effort on one station (see claim 3). Hence competi-

tion leads to a ‘misallocation’ of advertising messages. More precisely by ‘misallocation’

we mean two things. First, given a total quantity, a planner can always enhance total

surplus reallocating messages across advertisers. Second, as this affects marginal returns

from supplying advertising, it also implies that the market provision (a?1 + a?2) does not

necessarily maximize consumer surplus.

Proposition 6 Suppose that 1 − φ(e) is strictly log-concave and k > k̂ (or equivalently

a?1 > a?2 > 0) then competition leads to a misallocation of advertising messages.
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5 Heterogeneous preferences and viewer sorting

To emphasize the role of ‘two sidedness’ in shaping the asymmetric outcome, the model

proposed shuts down the classic demand-driven incentives to differentiate assuming that

all agents share the same preferences. In Calvano and Polo (2016) we analyze a richer

model allowing for a continuum of heterogeneous viewers with idiosyncratic taste for

quality (in particular different marginal dis-utility from advertising).10,11 Under conditions

analogous to those presented in Proposition 1, an asymmetric equilibrium exists with one

station raising money only from subscription fees (i.e. a Pay-TV) and a second station

raising money solely from the advertising side of the market (i.e. a FTA).

How does preference heterogeneity affect incentives? With heterogeneous viewers the

choice to subscribe can differ across viewers, with some of them single-homing and others

accessing both stations. An important (and realistic) equilibrium feature in this richer

setting is that the two stations cater to different subsets of viewers with the FTA serving

all viewers and the Pay-TV serving only some with strong distaste for advertising / taste

for quality. So in contrast with the analysis in section 3, the FTA serves a mixture of

single-homing and multi-homing viewers. A key insight from previous work is that demand

composition matters for profits and hence for incentives. The reason being that single-

homing viewers are more valuable than multi-homing ones for advertising purposes as the

outlet who caters them becomes a bottleneck monopolizing and monetizing accordingly

their attention. So in the richer model stations have preferences over the demand level

(how many?) and its composition (single- vs multi-homers). In the rest of this section

we provide some broad intuition why the new effects in play there actually reinforce and

10We posit a utility function in the spirit of Levitan and Shubik (1980):

U(a1, a2, v1, v2; θ) =

2∑
i=1

[
θ(1− ai)vi −

2− σ
2

v2i

]
− σv1v2, (5.1)

with vi ∈ [0, 1] denoting viewing time on station i, θ denoting idiosyncratic marginal utility from exposure
to content and σ ∈ [0, 1) measuring the degree of substitutability between stations (contents).

11Another ingredient we did not consider is advertisers’ heterogeneity, say, in the expected profit of
informing. Athey et al (2017) show that equilibrium sorting of advertisers across outlets arises in a
setting with exogenous viewer demand and log-concave technology. Those advertisers whose opportunity
cost of not informing viewer is highest multi-home while low value advertisers single-home on the outlet
with the larger number of viewers in relative terms. We speculate that the externalities discussed above
leading to negatively sloped response function with the amount of advertising on one station reducing
the incremental probability on the other would carry over to this richer setting. A full-fledged analysis
of this case is left for future work.
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enrich the baseline logic presented. The reader is referred to Calvano and Polo (2016) for

the analysis.

Station i’s marginal returns to increasing one’s strategy (by which we mean increasing

advertising and reducing subscription fees) decrease with station j’s strategy (and vice-

versa) even in this richer setup. First, consider the case ai > aj and fi < fj. That

is the case when station i is closer to a free-to-air business model and station j to a

pay business model. Now consider what happens when firm j further increases fj and

decreases aj, that is it strengthens its ‘pay’ nature further reducing its audience. Some of

the previously shared viewers are now exclusively served by firm i, as individuals formerly

at the margin between single-homing and multi-homing now strictly prefer to single-

home.12 This selection is favorable to firm i, whose incentives to provide advertising and

thus to move in the opposite direction, other things held constant, increase. This is what

we refer to as ‘composition effect’ since the impact of the ‘pay’ station’s strategy on the

‘free’ station’s incentives is due to its effect on the composition of the rival’s viewer base.

Second, consider the impact on firm j’s incentives of firm i strengthening its FTA nature

by increasing ai. In addition to the effects already highlighted in section 2 and driving

j to reduce aj,
13 demand for j’s subscription increases, as the former marginal viewer

now strictly prefer to subscribe to j. This effect, which we refer to as ‘level effect’ further

pushes j towards setting a higher fj thus sharpening its ‘pay’ nature.14

In summary, elastic demand due to heterogeneous preferences preserves and reinforces

the strategic substitutability property which is key for differentiation.

12This new effect adds up to the one we already found in the benchmark model. When aj is reduced
the incremental probability of informing viewers on station i increases, leading this station to increase
the quantity of advertising ai.

13An increase in ai raises the incremental utility of station j leading to a lower response aj .
14Calvano and Polo (2016) also allow viewers to choose the viewing time on a continuous set rather

than a discrete grid. Then we identify additional effects working at the intensive margin that go in the
same direction of what we already observe in the benchmark model. Single-homers spend more time
on the patronized station than multi-homers. Hence, when fj is raised inducing some multi-homers to
watch only station i, this latter gains exclusive viewers that spend more time watching its programs. The
willingness to pay of advertisers is further enhanced. Conversely, when station i increases its quantity of
advertising ai multi-homing viewers of station j spend more time watching its programs, with a higher
willingness to pay that allows to raise fj .
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6 Policy implications: business models and the rele-

vant market

An established practice in antitrust and media regulation is to treat operators that have

opposite business models as belonging to different relevant markets. For instance, in

the merger cases BSkyB/Kirch Pay-TV15 and News Corporation/Premiere16 the Euro-

pean Commission has ruled that FTA and Pay-TV operators belong to separate prod-

uct markets. The German Bundeskartellamt reached similar conclusions examining the

Springer/ProSieben/Sat1 case. The common view is that a Pay-TV broadcaster deals

only with viewers, whereas an FTA deals only with advertisers, with no overlapping or

competitive constraints. This argument is then extended also to the case when a Pay-

TV raises most of its revenues from subscription but offers also some advertising. To

the best of our knowledge BSkyB/ITV is the only case in which an authority (the UK

Competition Commission) has taken a different position, recognizing that “ in two-sided

markets suppliers can compete with one another at different price points, given the ability

to generate revenues in two separate markets. For instance, FTA services may compete

directly for viewers with pay services, with higher viewing figures indirectly generating

higher advertising revenues.”(UK Competition Commission (2007), par. 4.6)

There are two complementary arguments for the traditional approach, as is maintained

by Filistrucchi et al. (2014). First, until recently antitrust authorities and regulators had

not been willing to recognize the two-sided nature of many media markets, although

two-sidedness has started to influence their practice in other areas, such as credit cards.

Moreover, from the one-sided perspective, there is a tradition of requiring a positive price

(the so-called “trade relationship”) as a prerequisite for market interaction and antitrust

concerns.17

15See case COMP/JV.37, BSkyB/Kirch Pay TV (Mar. 21 2000). The merger involved BSkyB, whose
main activity was pay-TV broadcasting in the UK, and KirchPayTV Gmbh offering pay-TV services in
Germany and Austria. The Commission distinguished two product markets, one for pay-TV and one for
interactive digital TV, according to the nature of the business model, without considering the advertising
and viewer sides of the market.

1618 See case COMP/M.5121, 2008 O.J. (C 219) 2. The concentration involved the acquisition of a
25% stake in Premiere, a pay-TV operator active in Germany and Austria, by News Corporation, a large
international media company active in the pay-TV segment. The Commission considered the pay-TV
services only, expressing some concern for vertical relationships but ignoring the impact of FTA operators.

17In KinderStart v. Google the Court of the Northern District of California, for instance, held that
there is “no authority indicating that antitrust law concerns itself with competition in the provision of
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If stations adopting different business models belong to different relevant markets,

in the logic of the SSNIP test we should observe that once we pool together the two

activities no raise in prices or change in strategies should derive, since this excercise

would simply add together two independent lines of business. We showed instead that

moving to a monopoly adversely affects prices and, depending on the parameters, also

affects the total quantity/quality of contents and how such quantity is allocated across

stations and advertisers. The two stations, in duopoly, deeply affect each other strategic

choices. In this sense observing the adoption of very different business models does not

imply that strategic interaction is weak, but rather that it is strong leading stations to

adopt different business models to relax and therefore restrain competition. This result

directly implies that the two stations should belong to the same relevant market, even

when in a duopoly they would follow opposite business models as a FTA and a Pay-TV.
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A Illustrating the assumptions with quadratic utility

Consider the following quadratic utility function is in the spirit of Levitan and Shubik

(1980):

u(ai, vi) = (γ − ai)vi −
β

2
v2i (A.1)

g(vi, vj) =
v1v2

2
(A.2)

and check the parameter restrictions that make the six assumptions holding.

(Love for variety and diminishing returns): ∂u
∂vi

= γ − ai − βvi > 0 for ai ∈ [0, a]

and vi ∈ {0, 1, 2} requires β < γ−a
2

; ∂2u
∂v2i

= −β < 0 Summing up we need:

0 < β <
γ − a

2
(A.3)

that implies γ > a.

(Love for variety): u(2, ai) ≤ U(1, 1, ai, aj) corresponds to

2(γ − ai)− 2β ≤ 2γ − ai − aj −
β

2
− 1

2
(A.4)

that simplifies to

aj ≤ ai + β − 1

2
. (A.5)

This condition holds for any (ai, aj) ∈ [0, a]2 if

β ≥ a+
1

2
. (A.6)

(Advertising aversion): ∂u
∂ai

= −vi
(Content substitutability): Since g(vi, vj) = v1v2 the assumption on content substi-

tutability is always satisfied.

To sum up if

γ > a (A.7)

a+
1

2
≤ β <

γ − a
2

, (A.8)

the four assumptions are satisfied. For example, if γ = 3, 25, β = 1, 25 and a = 0, 5 the

assumptions are satisfied.
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B Mathematical Proofs

B.1 Intermediate and instrumental results

The following results will be used throughout the appendix. Consider the following family

of optimization problems parametrized by aj and k where ∆Ui(ai, aj) is defined in (3.2):

b(aj, k) := arg max
ai∈[0,a]

π(ai, aj) = ∆Ui(ai, aj) + k ·∆Φi(ai, aj). (B.1)

Claim 4 b : [0, a] × R → [0, a] is well-defined, single-valued, continuous, nondecreasing

in k and nonincreasing in aj. If b(aj, k) ∈ (0, a) then b is increasing in k.

Proof: The objective function is the sum of a linear and a strictly concave function

and so is strictly concave. By Berge’s maximum theorem the solution correspondence of

the problem, denoted b(aj, k), is non-empty, single valued and continuous. The objective

function is strictly submodular in (ai, aj) and supermodular in (ai, k) (strictly so for

k > 0). Then b(aj, k) is nonincreasing in aj and nondecreasing in k by Topkis (1978)

Theorem 6.3. For the case where b is interior then the stronger result follows by noting

the property of increasing marginal returns ∂2πi

∂ai∂k
> 0 and applying Edlin and Shannon

(1998) theorem 1. �

Claim 5 Suppose the assumptions of proposition 1 hold. If (a?1, a
?
2) belongs to the equilib-

rium set then (a?1, a
?
2) 6∈ (0, a)2. So in equilibrium either (i) a?2 = 0 or (ii.) a?1 = a. That

is the unique asymmetric equilibrium cannot be ‘interior.’

Proof: We proceed by contradiction. A stable interior asymmetric equilibrium is any

(a1, a2) with a1 ≥ a2 such that

a > a1 > a2 > 0 (B.2)

− 1 + k
∂φ

∂a1
(1− φ(a2)) = 0 (B.3)

− 1 + k
∂φ

∂a2
(1− φ(a1)) = 0 (B.4)

∂2φ

∂a1∂a1
(1− φ(a2)) ≤ 0 (B.5)

∂2φ

∂a2∂a2
(1− φ(a1)) ≤ 0 (B.6)

∂2φ

∂a1∂a1
(1− φ(a2))

∂2φ

∂a2∂a2
(1− φ(a1)) +

∂φ

∂a1

∂φ

∂a2
> 0 (B.7)
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Consider now the following auxiliary problem:

max
a1,a2∈[0,a]

U(1, 1, a1, a2) + k · Φ(a1, a2) (B.8)

Note that any (a1, a2) satisfying (B.2) through (B.7) must also be an interior local

maximum of (B.8) (the first and second order sufficient conditions for an interior lo-

cal maximum of (B.8) are (B.3) through (B.7)). Consider now the locus {(a1, a2) : a1 >

a2 and a1 +a2 = a?1 +a?2} . We have that U is constant along this locus while by property

(3.10), Φ increases which contradicts the working hypothesis (a?1, a
?
2) being a local maxi-

mum of (B.8). It follows that there can be no (a1, a2) satisfying (B.2) through (B.7) and

therefore no interior equilibrium. �

B.2 Equilibrium subscription fee

Love for content and substitutability imply that:

u(2, ai) + u(2, aj) > u(1, ai) + u(1, aj) > U(1, 1, ai, aj) > 0 (B.9)

which in turn implies ∆Ui < u(2, ai). Offers fi > u(2, ai) are always rejected by all viewers

so are weakly dominated by fi = 0. By assumption all stations when indifferent choose

fi = 0, so we can restrict attention to equilibrium candidates in which fi ≤ u(2, ai) and

fj ≤ u(2, aj).

Let us derive the optimal fee for station i for different values of the rival station’s

subscription fee. Consider two cases: if 0 ≤ fj ≤ ∆Uj < u(2, aj) the viewers choose station

j regardless of their choice on station i. If 0 ≤ fi ≤ ∆Ui then the viewers will subscribe

also to station i, whereas by setting ∆Ui < fi ≤ u(2, ai) station i would not induce the

viewers to add i to j. Notice that in this case the viewers single-homes. Choosing only

station j gives a net utility u(2, aj) − fj ≥ u(2, aj) + u(2, ai) − U(1, 1, ai, aj) whereas

single-homing on i would give u(2, ai) − fi ≤ u(2, aj) + u(2, ai) − U(1, 1, ai, aj). Hence,

single-homing on j is the viewers’ optimal choice. We conclude that if 0 ≤ fj ≤ ∆Uj then

setting fi = ∆Ui is the optimal choice for station i.

Consider next the case ∆Uj < fj ≤ u(2, aj). In this case the viewers choose station j

stand alone but not if they already subscribe for station i. If this latter sets fi ≤ ∆Ui the

viewers choose it (and do not subscribe for station j) whereas setting a fee ∆Ui < fi ≤
u(2, ai) makes viewers opting for single-homing on the more convenient station. Then

the optimal response to fj is to set fi = fj + u(2, ai) − u(2, aj) − ε bringing all viewers

onboard, an instance of Bertrand competition.
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Putting together the optimal replies in the two regions, since fi < ∆Ui cannot be

optimal the only equilibrium involves each station setting the subscription fee equal to its

incremental utility: f ∗i (ai, aj) = ∆Ui(ai, aj).

B.3 Proof of claim 2

Suppose for some k̃ we have b(0, k̃) = 0. Then by claim 4 (monotonicity) b(aj, k̃) = 0

for all aj > 0. The unique equilibrium is a?i = a?j = 0. Notice that b(0, k) = 0 if and

only if ∂π(0,0,k)
∂ai

= −1 + k ∂φ(0)
∂ei
≤ 0 which is equivalent to k ≤

[
∂φ(0)
∂ei

]−1
. Similarly suppose

that for some k̃ we have b(a, k̃) = a then by claim 2 b(aj, k) = a for all aj ≤ a. The

unique equilibrium when k = k̃ is a?i = a?j = a. Notice that b(a, k) = a if and only if

∂π(a,a,k)
∂ai

= −1 + k ∂φ(a)
∂ei

(1− φ(a)) ≥ 0 which is equivalent to k ≥
[
∂φ(a)
∂ei

(1− φ(a))
]−1

. So

for k outside the interval (3.9) an asymmetric equilibrium cannot exist �.

B.4 Proof of property (3.10) and Proposition 1

Log-concavity implies (3.10). We show that if 1−φ(x) is strictly log concave in x and

φ(0) = 0 then condition (3.10) holds. To simplify the exposition let g(x) := log(1−φ(x)).

By definition strict log-concavity is equivalent to

g(tx+ (1− t)y) > tg(x) + (1− t)g(y) for all 0 < t < 1. (B.10)

y = 0 implies g(0) = 0 so x > 0 the above reduces to:

g(tx) > tg(x) for all 0 < t < 1, x > 0 (B.11)

Let tx = x/(x+ y) and ty = x/(x+ y). Applying (B.11) twice with weights tx and ty we

have

g(tx(x+ y)) = g(x) > txg(x+ y) and g(ty(x+ y)) = g(y) > tyg(x+ y) (B.12)

Observe that tx + ty = x/(x+ y) + y/(x+ y) = 1. Using this fact with (B.12) we obtain

g(x) + g(y) > (tx + ty)g(x+ y) = g(x+ y). (B.13)
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Finally applying the definition of g, Φ, the properties of the log(x), for all x, y > 0 we

have:

log(1− φ(x)) + log(1− φ(x)) > log(1− φ(x+ y)) (B.14)

⇔ log((1− φ(x))(1− φ(y))) > log(1− φ(x+ y)) (B.15)

⇔ (1− φ(x))(1− φ(y)) > (1− φ(x+ y)) (B.16)

⇔ φ(x+ y) > 1− (1− φ(x))(1− φ(y)) (B.17)

⇔ Φ(x+ y, 0) > Φ(x, y) (B.18)

Proof of Proposition 1: Since φ is concave, ∂φ(0)
∂ei

> ∂φ(a)
∂ei

(1 − φ(a)) and therefore the

interval (3.9) is non-empty. For the rest of the proof suppose (3.9) is satisfied. Since b

is continuous in aj and maps a compact set A into itself there is at least a fixed point,

denoted a?, corresponding by definition to a symmetric equilibrium. a∗i = a∗j = a∗.

Moreover, as b in nonincreasing in aj then a? is necessarily unique. In addition recall that

(3.9) is equivalent to b(a, k) < a and b(0, k) > 0. So a? ∈ (0, a) and is characterized by

the first order condition (3.8). By the implicit function theorem around the fixed point:

∂b(a?, k)

∂aj
=

(
∂φ(a∗)
∂ei

)2
∂2φ(a∗)
∂e2i

(1− φ(a?))
. (B.19)

1−φ(x) strictly log-concave is equivalent (by definition) to the second derivative of log(1−
φ(x)) being strictly negative. Differentiating leads to the equivalent condition

(
∂φ(x)
∂x

)2
>

−∂2φ(x)
∂x2

(1 − φ(x)) for all x. It follows that 1 − φ strictly log-concave implies that (B.19)

is < −1 (notice that this means that the symmetric equilibrium is unstable).

(B.19) implies that b(aj) is strictly monotone around a? and thus its inverse b−1 exists

and has slope ∈ (−1, 0). In a left neighborhood of a?, denoted a?− we have.

b(a?−) > b−1(a?−) (B.20)

That is: i’s best response is above the inverse of j’s best response for ai smaller and close

to a?. To show existence we now argue that there is a value of a ∈ [0, a?) such that i’s

best response must lie (weakly) below j’s inverse and so by continuity an asymmetric

equilibrium exists. The only difficulty is that b being weakly monotone in aj implies that
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b−1 is a convex valued correspondence:

b−1(x) := {a ∈ [0, a] : b(a) = x}. (B.21)

So we are looking for a value of a such that:

a < a? (B.22)

b(a) ≤ sup{b−1(a)} (B.23)

To this end consider the candidate a = b(a). Clearly a > a? implies b(a) < a? by

monotonicity of b around a? so (B.22) holds. Next observe that by definition (B.21)

a ∈ b−1(b(a)). So sup{b−1(b(a))} = a which by definition is greater or equal than b(a) so

(B.23) holds and therefore at least an asymmetric equilibrium exists.

By Claim 5 the asymmetric equilibrium can be one of three types: (i) (a?1 < a, a?2 = 0);

(ii.) (a?1 = a, a?2 = 0); (iii.) (a?1 = a, a?2 > 0). These three cases are mutually exclusive. To

see this suppose there is an equilibrium of type (i.) then b(0) < a so (ii) cannot occur and

b(0) < a so by monotonicity of b(a > 0) < a ruling out (iii). By an analogous argument

if there is an asymmetirc equilibrium of type (ii.) then (i.) and (iii.) cannot exists and if

there is an equilibrium of type (iii.) then (ii.) and (i.) cannot exits. Uniqueness follows

from claim 4 (monotonicity of best response).

B.5 Proof of Proposition 2

Consider first this instrumental result:

Claim 6 Suppose that the assumptions of proposition 1 hold and consider the asymmetric

equilibrium. (i.) There is a unique threshold level of k, denoted k̂, such that a?2 > 0 if and

only if k > k̂ and k̂ ∈ (k, k). (ii.) There is a unique threshold level of k denoted k̃ such

that a?1 = a if and only if k ≥ k̃ and k̃ ∈ (k, k). (iii.) k̃ ≤ k̂.

For future reference let:

k := {k ≥ 0 : 1 =
∂φ(0)

∂a
k} (B.24)

k := {k ≥ 0 : 1 =
∂φ(a)

∂a
(1− φ(a))k} (B.25)

k̃ := {k ≥ 0 : 1 =
∂φ(a)

∂a
k} (B.26)

k̂ := {k ≥ 0 : 1 =
∂φ(0)

∂a
(1− φ(a))k} (B.27)
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By strict monotonicity of φ it follows that k̂, k̃ ∈ (k, k) so the above thresholds are well

defined. Consider part (i.) of the claim. If k > k̂ then firm 2 first order condition satisfies

for all a1:

1 <
∂φ(0)

∂a
(1− φ(a1))k (B.28)

which implies that a?2 = 0 cannot be part of an equilibrium. If k ≤ k̂ then by claim 5

there are only 2 equilibrium candidates: (a?1 ≤ a, a?2 = 0) and (a?1 = a, a?2 > 0). To rule

out the latter note that firm 2 first order condition evaluated at a2 = 0 satisfies:

1 ≥ ∂φ(0)

∂a
(1− φ(a))k ⇒ 1 >

∂φ(a2 > 0)

∂a
(1− φ(a))k (B.29)

and so that a?2 = 0, a contradiction. As an asymmetric equilibrium always exists it follows

that for all k ≤ k̂ it must be that a?2 = 0.

Consider part (iii.). To see that k̃ ≤ k̂, suppose that this were not the case and consider

an arbitrary value of k belonging to(k̂, k̃). By (i.), in the unique asymmetric outcome

a?2 > 0. By definition k < k̃ implies 1 > ∂φ(a)
∂a

k > ∂φ(a)
∂a

(1 − φ(a?2))k so station 1 best

response should be below a. However by claim 5 an interior equilibrium cannot exist, so

k̂ < k < k̃ leads to a contradiction.

Finally consider part (ii.). Given a?2 = 0, if k < k̃ then firm 1 first order condition can

be satisfied only if a1 < a so in equilibrium a?1 < a. Now suppose that k ∈ [k̃, k̂]. By

monotonicity 1 <
∂φ(

1
2
a)

∂a
k so a?1 = a. finally if k > k̂ then a?2 > 0 and so by claim 5 it

must be that a?1 = a. �

Proof of proposition 2: Suppose k ≤ k̂. Then a?2 = 0. By claim 4 the solution a?1 is

continuous. Furthermore the difference a?1 − a?2 is constant and equal to 0 if k ∈ (0, k]

since a?1 = a?2 = 0 by definition of k. It is strictly increasing in k ∈ (k, k̃) by claim 4

since a?2 = 0 and a?1 < a and increasing in k. It is constant and equal to a for k ∈
[
k̃, k̂
]
.

Suppose k > k̂. Recall that a?1 = a for all k in this range. a?2 is greater than 0 and lower

than a in this range and hence continuous and strictly increasing in k ∈ (k̂, k) by claim 4

with a?2 = a for k = k and limk→k̃ a
?
2 = a.

B.6 Proof of Proposition 4

If 1−φ(e) is log-concave, according to Claim 3 it is optimal to concentrate all the messages

of an advertisers on either of the two stations, allocating the advertisers in share such that

the total number of messages on the two stations is a = a1 +a2. The monopolist problem

is then (4.3). The objective function is the sum of a linear and a stricty concave function
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in ai and aj. Moreover

∂πm(am1 , a
m
2 , k)

∂ai
= k

∂φ (am1 + am2 )

∂ai
− 1 = 0 (B.30)

∂π2
m(am1 , a

m
2 , k)

∂a2i
=

∂π2
m(am1 , a

m
2 , k)

∂ai∂aj
= k

∂2φ (am1 + am2 )

∂a2i
< 0 (B.31)

for i = 1, 2. Hence, all that matters is the aggregate level of advertising am12, and the

monopolist profits are flat at ai + aj = a. The first order conditions then identify the

optimal level of aggregate advertising am12 that is the optimal allocation of advertising,

and any combination ami a
m
j ≥ 0 with ami + amj = am12 gives the same profits.

B.7 Proof of Proposition 5

Consider the first order conditions in the duopoly and monopoly cases:

∂πi(a
∗
i , a
∗
j , k)

∂ai
= −1 + k

∂φ (a∗i )

∂ei

(
1− φ

(
a∗j
))

= 0 (B.32)

∂π(ami , a
m
j , k)

∂ai
= −1 + k

∂φ(ami + amj )

∂ei
= 0

that imply:

∂φ (a∗i )

∂ai

(
1− φ

(
a∗j
))

=
∂φ
(
a∗j
)

∂ai
(1− φ (a∗i )) =

∂φ
(
ami + amj

)
∂ai

. (B.33)

If in the duopoly equilibrium a∗i > a∗j = 0 from the equality (B.33) we get:

∂φ (a∗i )

∂ai
=
∂φ
(
ami + amj

)
∂ai

. (B.34)

Hence, ami + amj = a∗i . If, instead, a∗i > a∗j > 0 we can have ami + amj = am12 R a∗i + a∗j .

In order to compare in the different cases the subscription and advertising fees in the

duopoly and monopoly equilibria we can proceed as follows. First recall that substi-

tutability implies:

U(1, 1, a1, a2) < u(1, a1) + u(1, a2). (B.35)
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Then:

f ?1 + f ?2 = 2U(1, 1, a∗1, a
∗
2)− u(2, a∗1)− u(2, a∗2) by (3.3) (B.36)

< 2U(1, 1, a∗1, a
∗
2)− u(1, a∗1)− u(1, a∗2) by (love for content) (B.37)

≤ 2U(1, 1, a∗1, a
∗
2)− U(1, 1, a∗1, a

∗
2) by (B.35) (B.38)

= U(1, 1, a∗1, a
∗
2). (B.39)

The total subscription fees of the monopolist, instead, are:

fm12 = U(1, 1, am1 , a
m
2 ) (B.40)

Let:

∆a = am12 − a∗1 + a∗2. (B.41)

Since in the monopoly solution the profits depend on the total quantity of advertising

and not on its allocation in the two stations, it is convenient to select, for a given value

of ∆a, the following monopoly allocation:

am1 = a∗1, am2 = a∗2 + ∆a. (B.42)

Hence, we can write fm12 = U(1, 1, a∗1, a
∗
2 + ∆a). Drawing from the previous inequalities,

then,

f ?1 + f ?2 < U(1, 1, a∗1, a
∗
2) < U(1, 1, a∗1, a

∗
2 + ∆a) = fm12 (B.43)

if ∆a ≤ 0 whereas we cannot sign the inequality if ∆a > 0.

Turning to the advertising fees:

t?1 + t?2 = kφ (a∗1) + kφ (a∗2)− 2kφ (a∗1)φ (a∗2) by (3.6) (B.44)

< kφ (a∗1) + kφ (a∗2)− kφ (a∗1)φ (a∗2) = Φ (a∗1, a
∗
2) (B.45)

< kΦ (a∗1 + a∗2, 0) by log-concavity (B.46)

(B.47)

Since

tm12 = kΦ (am1 + am2 , 0) , (B.48)
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if ∆a = 0 we have

t?1 + t?2 = kΦ (a∗1 + a∗2, 0) = kΦ (am1 + am2 , 0) = tm12. (B.49)

If ∆a > 0 we have

t?1 + t?2 < kΦ (a∗1 + a∗2, 0) < kΦ (am1 + am2 , 0) = tm12 (B.50)

whereas if ∆a < 0 the inequality can go either way.
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