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Abstract 
 
This paper investigates coalitional fairness in pure exchange economies with asymmetric information. We study 
allocations of resources which are immune from envy when comparisons take place between coalitions. The 
model allows negligible and non-negligible traders, only partially informed about the true state of nature at the 
time of consumption, to exchange any number, possibly infinite, of commodities. Our analysis is based on the 
Aubin approach to coalitions and cooperation, i.e. on a notion of cooperation allowing traders to take part in one 
or more coalitions simultaneously employing only shares of their endowments (participation rates). We introduce 
and study in detail the notion of coalition fairness with participation rates (or Aubin c-fairness) and show that 
flexibility in cooperation permits to recover the failure of fairness properties of equilibrium allocations. Our results 
provide applications to several market outcomes (ex-post core, fine core, ex-post competitive equilibria, rational 
expectations equilibria) and emphasize the consequences of the convexification effect due to participation rates 
for models with large traders and infinitely many commodities. 
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1 Introduction

This paper focuses on coalition fairness in exchange economies with uncertainty and
asymmetric information where small, negligible traders coexist with influential, large
agents. We shall refer to such an economy as a differential information mixed economy
(DIME, for short) and, in order to deal with infinite time horizons or commodity dif-
ferentiation, we shall assume that in a DIME both types of traders may exchange any
number, possibly infinite, of commodities. Our aim is to establish conditions for non
envy between coalitions under an allocation of resources, when the economy is far from
being perfectly competitive because of the presence of monopolies or oligopolies (large
traders) and/or because agents are not symmetrically informed about the true state
of nature at the time of consumption. The analysis, based on the Aubin approach to
coalition formation, aims to show that flexibility in cooperation deriving from partic-
ipation rates permits: 1. to solve market imperfections due to the presence of large
traders and asymmetric information; 2. to provide the convexification effect necessary
to deal with coalition net trades of many commodities; 3. to produce, as consequence
of 1. and 2., characterizations of equilibrium allocations in terms of fairness.

In the first part of the paper, we analyze fairness of allocations at the ex-post stage.
This is done requiring that, under a given resource allocation, no coalition envies the
net trade of any other whatever is the realization of uncertainty at the time of con-
sumption. Then, we impose coalition fairness at the interim stage. In this case, we
presume that traders can share their information in a potentially envious (or blocking)
coalition. Consequently, we require that, under a given allocation, no coalition envies
the net trade of any other one, in an event which the members of the coalition can
jointly discern after partial or full communication. We notice that, in both cases, due
to the presence of market imperfections, not only core-like stability properties are no
longer enough to characterize competitive equilibria, but also strong requests of coali-
tion fairness stability do not suffice. Then we examine whether it is possible to enhance
classical results valid for perfectly competitive economies (see [34] and [17]) considering
the contributions of [13] and [14] about ex-post, fine core and rational expectations
equilibria and assuming in the model cooperation by means of participation rates.

Let us recall classical results from the existing literature. The study of coalition
fairness was initiated by [34] and [17] (see also [35] and [33]). In these works various
concepts of fairness are introduced for complete information economies with finitely
many commodities and several versions of the equivalence between fair and competi-
tive allocations are established. In particular, the notion of envy is extended in [34]
from individuals to coalitions, taking into account the possibility that a coalition may
envy the aggregate resources of another one, simply because these resources would
be compatible with a redistribution within the coalition making each of its members
better off. It is proved in [34] that, starting from a symmetric equal sharing of the
initial endowment among traders, the only way to produce coalition fair allocations is
via competitive equilibrium mechanisms. This type of characterization, because of its
intrinsic symmetric requirement, may not be fully satisfactory in the setting of mixed
and differential information economies. Indeed, in these models, agents’ positions in a
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competitive equilibrium may remain asymmetric even though the initial total resources
are equally shared among them. This is due for example to differences in their eco-
nomic weight and/or private information that, in turn, affect their budget sets. By
contrast, the notion of coalition fairness introduced in [17] assesses fairness of alloca-
tions in terms of net trades of coalitions and produces a characterization of competitive
equilibria even when the equal income hypothesis is dropped. Then, as it comes also
from [12], it may be more profitable in our framework.

Following [17], an allocation is said to be coalitionally fair (c-fair) if no coalition
can benefit, after a redistribution among its members, from the aggregate net trade
of some other disjoint coalition. This notion formalizes a request of stability for the
market deriving from the fact that no coalition envies the net trade of any other. It is
an easy consequence of definition that c-fair allocations include competitive allocations
and are included in core allocations. Hence, under perfect competition, as consequence
of the core equivalence theorem, c-fair allocations are the same as core and competitive
allocations, while a counterexample is provided in [17] to show that the inclusions may
be strict when large traders act on the market. This latter remark makes of course the
study of c-fair allocations of specific interest in a model like the one we propose, where,
due to the presence of large traders, there is no guarantee that core allocations can be
decentralized by prices. As a further point of interest for the analysis, we notice that
in mixed markets the absence of envy does not necessarily translate from coalitions to
individuals. Precisely, individual equitability of c-fair allocations may fail due to the
presence of large traders as well as to the exchange of infinitely many commodities1 so
that it may be the case that envy arises at individual level though the allocation of
resources is c-fair.

The key tool introduced in the paper to overcome the above mentioned difficulties is
the possibility that traders may take advantage from Aubin cooperative behavior. Since
the middle of seventies (see [4]), a solid literature2 has established that the investiga-
tion of outcomes of real markets in the light of Aubin approach to cooperation, permits
to extend several results concerning equilibria and optimal allocations to economies
that are not necessarily perfectly competitive and/or that allow for infinitely many
commodities (see [9]). By Aubin cooperative approach (personalized, or differentiated,
participation) it is meant that an economic agent participates in a coalition according
to a personal participation rate. Moreover, the trader’s participation rate may change
coalition by coalition and, as a further element of flexibility, it does not exclude the
simultaneous participation of traders in envious and envied coalitions. The standard
interpretation of such a rate is that it represents the coefficient (not necessarily 0 or 1)
of resources that the agent wishes to invest into the coalition. Considerably, it comes
out that a c-fair notion allowing participation rates permits to state also in the general
case of a DIME a complete characterization of core and competitive allocation in terms
of non-envy between coalitions. Moreover, it may give rise to a non-envy interpretation
of coalition fairness on the individual base. Roughly speaking, from a technical point

1This failure is technically due to the fact that the convexifying effect of Lyapunov’s theorem doesn’t
apply even when we are in the case of a continuum of traders.

2[16], [25], [20] and [22] are just few items along the most recent arc of two decades.
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of view, the participation rates are capable to produce on the set of coalitions and on
the range of net trades a convexification effect sufficient to compensate for both the
presence of atoms and that of many commodities. The use of personalized participation
is shown to be relevant only for large traders.

It should be noticed that, at the level of the analysis provided in the first part of
the paper, the information structure does not affect results since they are formulated
referring to the ex-post stage. This part of the paper produces, as a particular case,
consequences for complete information economies. In the second part of the paper,
c-fairness is studied at the interim stage with reference to (Wilson) fine allocations and
rational expectations equilibria. This means that the information structure enters into
the model and affects fairness and competitive equilibrium notions.

Since in our model uncertainty in resources and in signal in each state do not depend
on agents’ actions, it becomes relevant to reduce as much as possible uncertainty effect
on agents welfare requiring ex-post coalitional (as well as individual) non envy also
in the case in which trades take place at the interim stage. Under the assumption
that agents can share their information in the relevant coalitions (the envious ones
or the blocking ones), we see that the corresponding fine (c-fair or core) allocations
do not necessarily satisfy c-fairness properties at the ex-post stage. This failure may
be determined by the presence of large traders, but also by the presence of many
commodities. This is clear looking at the existing corresponding literature in the case
of the core: in [14] it is proved that the fine core is a subset of the ex-post core, i.e. core
stability is preserved moving from the interim to the ex-post stage. Moreover, assuming
that traders derive the same level of utility in those states that they are not able to
distinguish (i.e. measurability of utilities), one has that the ex-post core coincides with
the set of rational expectations equilibria (see [13]). Then, as consequence, it is obtained
in [14] that every fine core allocation is a rational expectations equilibrium, but also
that every fine core allocation is ex-post c-fair, given the core equivalence theorem valid
in large economies.

We must notice at this point that the economic framework of [14] is that of a
differential information economy with a finite dimensional commodity space and where
only small traders act. In other words, for the validity of the previous results, the role
played by the assumption of an atomless economy is twice pivotal: first, because it is
an atomless space of agents that permits to apply (when the commodity space is finite
dimensional) Vind’s Theorem3; second, because it is only under non-atomicity that an
equivalence theorem between rational expectations equilibria and ex-post coalition fair
allocations can be obtained.

We show that the use of participation rates permits to apply a special form of Vind’s
Theorem, despite the fact that our commodity space is infinite dimensional, in order
to generalize the approach of [14] and to preserve stability of interim choices after the
realization of uncertainty. The main idea is to prove that, by means of a differentiated
participation, each trader may be included in an envious (or in a blocking) coalition.
This makes each envious coalition comparable, in terms of information, to an arbitrary

3The Vind’s Theorem comes out to be necessary in [14] in order to block a non-core allocation by
means of a coalition of arbitrarily big measure and, consequently, to obtain that a fine core allocation
is also an ex-post core allocation.
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large one and then permits to generate from each ex-post improvement a corresponding
fine one.

On the other hand, participation rates permit to extend core equivalence results
ensuring, also in our model, a complete characterization of competitive equilibria (ex-
post or rational expectations) in terms of ex-post c-fair allocations, a result comparable
with the one provided in the classical paper by [17] under perfect competition. We
should notice, however, that this characterization is obtained, in some cases, at the
strong cost of measurability assumptions on utility functions. This is so because, at
the interim stage, the inclusion of rational expectations equilibrium allocations in the
set of ex-post c-fair allocations and, a fortiori, in the set of ex-post c-fair allocations
may fail4.

To sum up, the features of our main results and proofs show that the use of person-
alized participation rates permits to nullify at several instances the presence of large
traders, but also to apply the Lyapunov’s convexity theorem (on which the Vind’s re-
sult is in turn based) in a proper way.

The plan of the paper is as follows. After the presentation of differential information
mixed economies in Section 2, Section 3 introduces Aubin coalitional fairness (à la
Gabszewicz, [17]) in a DIME. This part of the paper covers the investigation of ex-post
coalition fairness5. Thanks to a series of preliminary results (Subsection 3.1), we are
able to introduce a definition, Definition 3.4, which is coherent with the personalized
participation approach since it allows traders to participate in more coalitions, only
subject to not over using their endowment. We note that in the notion of c-fairness
with participation rates, one can always assume that small traders use either all or
nothing of their endowment (standard participation) and we prove the following results:
1. c-fair allocations with participation rates are, under suitable assumptions, individual
envy-free (Subection 3.4); 2. c-fair allocations with participation rates are robust to the
embedding of the original economy into the atomless economy obtained by splitting each
atom over an interval of negligible traders (Subsection 3.5). With Subsection 3.6, we
begin the comparison of coalition fairness with other optimality notions like the ex-post
core. Under suitable assumptions, we provide a direct proof of the equivalence between
ex-post core and c-fair allocations, a proof not related to core equivalence results. This
point is relevant in the case of economies with many commodities since we cover the
case in which the commodity space needs not to be separable and, consequently, the
range of applicability of our result is wider (see the discussion in Remark 3.23).

In Section 4, the investigation of c-fairness is extended considering the fine block-
ing mechanism. In this Section, the relation between the different solution concepts
depends on the structure of information present in a coalition. Fine c-fairness and the
corresponding fine core with participation rates (resulting to be same as fine core for
atomless economies, Theorem 4.6) are analyzed. Theorem 4.3 gives conditions under
which the fine c-fair allocations are also ex-post c-fair. The same conditions ensure the
inclusion of the fine core in the ex-post core, despite the presence of large traders and
infinitely many commodities (Theorem 4.7).

4See [14, Example 4.2], where, in particular, it is pointed out the relevance of measurability of utility
functions in the comparison between the two notions of equilibrium.

5Note that in [12] the interim, finite dimensional, essentially atomless case is studied.
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Section 5 investigates ex-post c-fairness of allocations emerging from competitive
market mechanisms. In this Section, rational expectations equilibrium allocations are
introduced and Theorem 5.6 presents conditions under which c-fairness with participa-
tion rates fully characterizes these allocations, that is the conditions under which it is
still true that only the competitive equilibrium mechanism produces a fair allocation
for each possible realization of uncertainty.

Concluding remarks and a brief discussion of coalition fairness with participation
rates defined in the spirit of [34] are in Section 6. A short appendix concludes.

2 The economy

The framework of this paper is that of a pure exchange mixed economy with asymmetric
information. The set of agents is denoted by T . We assume that the agents may form
coalitions whose economic weight, or influence, on the market is represented by means
of a measure µ defined on a σ-algebra T of eligible coalitions. As it is standard in the
literature, according to the atomless-atomic decomposition of measures, T is partitioned
into an atomless set T0 and a set T1 = T \ T0 which is the union of an at most
countable family {A1, A2, . . . , Ak, . . .} of disjoint µ-atoms. The set T0 is representative
of the uninfluential (or small) traders; the family {A1, A2, . . . , Ak, . . .} represents the
influential or (large) traders. With an abuse of notation, we use the same symbol T1

to denote the collection {A1, A2, . . . , Ak, . . .}, as well.
The assumption that the space of agents is an arbitrary complete finite measure

space (T, T , µ) is helpful to cover simultaneously different situations. Indeed, the
standard case of a finite economy corresponds to the specification of a finite T with
the measure µ equal to the counting measure. The case of a perfectly competitive
economy can be considered by choosing a nonatomic measure space (T, T , µ) of agents
(sometimes, even more specifically, T is the interval [0,1] endowed with the Lebesgue
measure). Finally the case of mixed markets, which allows to analyze market outcomes
resulting from the interaction of “an ocean” of uninfluential agents (the price takers)
with “some” influential ones (the oligopolies), corresponds to the case in which both
sets T0 and T1 have positive µ-measure.

For what concerns the commodity space, we identify physical commodities with
elements in the positive cone IB+ of an ordered Banach space IB. The generality of
IB gives the possibility to take into account different kinds of models. For example
those allowing for infinite variations of the goods’ characteristics, or those considering
an infinite time horizon.

The uncertainty about “nature” at time of consumption (or when the contracts are
implemented) is, as usual, described by a measurable space (Ω,F). By Ω we denote the
set of all possible states of nature. The algebra F represents the family of all possible
events. We assume that F is generated by a partition Π of subsets of Ω. A partition
is assumed to be finite, per se. Due to uncertainty, agents decisions concern random
commodities x ∈ IB+

Ω. Of course, at the time of consumption, if ω is the realized state
of nature, what is physically consumed is x(ω) ∈ IB+.
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Agent t compares consumption under different states by means of a state-dependent
utility function ut representing his preference:

ut : Ω× IB+ −→ IR.

In the sequel, we shall refer to standard continuity, monotonicity, quasi-concavity as-
sumptions dealing with the functions ut(ω, ·) (see for example, [2]). Moreover, the
function ut(·, x) is F-measurable for all t ∈ T and for all x ∈ IB+. Obviously, the
F-measurability just means that ut(·, x) is constant over any single element of Π.

Throughout the paper it is assumed that all state-dependent functions are F-measurable.

Agents do not have the same information regarding the states of the world. First,
different agents t may have different prior beliefs IPt � 0 on (Ω,F). Second, t has
at his own disposal a private information represented by an information algebra Ft

generated by a partition Πt of Ω. Πt consists of elements of F (therefore, the partition
Πt is coarser than Π) and according to the usual interpretation: if the realized state
is ω, then trader t observes Πt(ω), that denotes the unique element of Πt containing
ω; so the only information available to t is that the event Πt(ω) prevails, without any
possibility to distinguish among states belonging to the same element of the partition.
When trading takes place, agent t trades with this information.

The last element to be introduced for a complete description of the economy is the
initial endowment of any agent t. This is the state-dependent function

et : Ω −→ IB+

which is assumed to be Ft-measurable. Moreover, for each ω ∈ Ω, the function
t ∈ T → et(ω) = e(ω, t) ∈ IB+ is assumed to be µ-integrable in the sense of Bochner

and such that the total initial endowment of the economy,
∫

T
et(ω) dµ, is a

strictly positive vector6. We always write integrability to mean Bochner integra-
bility. Finally, as it is standard, we assume the (T ⊗ B)-measurability of the mapping
(t, x) 7→ ut(ω, x) for any ω ∈ Ω, where B is the Borel σ-algebra of IB+.

We denote by E our economy, i.e. the following collection:

E = { (T, T , µ); IB; (Ω,F); (ut, IPt, Ft, et)t∈T }

to which all assumptions described above apply. This model of economy is known in
the literature as differential information economy (DIE, for short). To stress the role of
the interaction of small and large traders, we also refer to E as a differential information
mixed economy (shortened as DIME in this case)

Together with E we shall consider a family of complete information economies
{E(ω) : ω ∈ Ω} obtained by fixing for each state ω the utility functions (ut(ω, ·))t∈T

and the initial endowment e(ω, ·). Such a family plays a certain role in the paper since
we privilege the ex-post approach. The ex-post approach is not affected by the struc-
ture of private information. On the contrary, this structure will be central in Sections
4 and 5, where all the features of our model, in particular the elements Ft and IPt, will
be used.

6See [1] for basic definitions in ordered Banach spaces.
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3 Coalition fairness of allocations: the ex-post stage

In this section we shall study equilibria taking into account personalized participation
of agents in coalitions or, as we can also say after [4], the Aubin approach to coop-
eration (see [16], [25]; several other references are available in [20]). By personalized
participation we mean that for any agent t, a number γt = γ(t) ∈ [0, 1] is given in
order to represent the personal proportion of resources that t wants to invest into the
coalition γ. Following this line of investigation, we shall use here Aubin coalitions in
order to exhibit coalition fairness properties of different classes of allocations emerging
from market mechanisms.

Let E be a differential information economy. We shall call assignment a function
x associating to each agent, in any state of the world, an element of the consumption
set, i.e. a function

x : Ω× T −→ IB+,

such that, for a. e. t ∈ T, the partial function xt := x(·, t) is F-measurable and, for
each ω ∈ Ω, the partial function xω := x(ω, ·) is µ-integrable on T .

A state by state feasible assignment, namely an assignment such that for each
ω ∈ Ω, one has ∫

T
xω dµ ≤

∫
T
eω dµ,

is called an allocation.
We recall that an Aubin coalition7 γ is a µ-measurable function γ : T −→ [0, 1].

For an Aubin coalition γ, its support, i.e. the set {t ∈ T : γ(t) > 0}, is denoted by
S. Throughout the article, γ and S are linked symbols and each inherits
possible indices of the other. We denote by A the set of all Aubin coalitions.

Moreover, we unify integral notation by setting
∫

γ
y(t) dµ(t) :=

∫
S
γ(t)y(t) dµ(t) , for

an integrable function y. We extend the weight µ of ordinary coalitions to A by set-

ting
∼
µ(γ) :=

∫
γ
1 dµ. Clearly γ is non-negligible (i.e.

∼
µ(γ) > 0) if and only if S is not

µ-negligible.

3.1 Preliminary results

For γ1 , γ2 ∈ A, for two assignments x and y and a state of nature ω0, we consider the
following list of properties which will be useful in the sequel:

0 ) γ1 is non-negligible;

0′) µ(S1) = µ(T ), i.e. γ1 is (essentially) of full support;

1 )
∫

γ1

[
y(ω0, t)− e(ω0, t)

]
dµ ≤

∫
γ2

[
x(ω0, t)− e(ω0, t)

]
dµ, (net trade feasibility);

7Generalized or fuzzy in some literature.
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2 ) γ1 + γ2 ≤ 1 µ-a.e. on T, i.e. (γ1, γ2) is an admissible pair;

2′) µ(S1 ∩ S2) = 0, i.e. γ1 and γ2 are (essentially) disjoint8;

3 ) ut(ω0, y(ω0, t)) > ut(ω0, x(ω0, t)) for a.a. t ∈ S1, (envy of S1).

4 ) γi = 1, µ - a.e. on the atomless part Si ∩ T0 of Si, for both i = 1, 2 (full
participation of small agents).

When there is no ambiguity about the fixed state of nature ω0 under consideration, we

shorten conditions 1) and 3), respectively, as
∫

γ1

(
y−e

)
dµ ≤

∫
γ2

(
x−e

)
dµ and y �S1 x.

Prior to the introduction of our ex-post notion of coalition fairness, we show next
that, given a state of nature ω0, the following three sets of allocations

χ1 = {x : γ1 , γ2 ∈ A, and an assignment y exist such that 0), 1) and 3) are fulfilled} ,

χ2 = {x : γ1 , γ2 ∈ A, and an assignment y exist such that 0), 1), 2) and 3) are fulfilled} ,

χ3 = {x : γ1 , γ2 ∈ A, and an assignment y exist such that 0), 1), 2), 3) and 4) are fulfilled} ,

coincide under suitable assumptions. Since the above sets are clearly each a superset
of the subsequent, we study the inclusion χ3⊇ χ1 .

The assumptions in the three results below refer to a given state of nature or, what
is clearly the same, to the case of an economy without uncertainty.

Lemma 3.1. Assume that µ-a.a. the initial endowments et are strictly positive and
the utilities ut are continuous and increasing. Take for x ∈ χ1, the coalitions γ1, γ2 and

the assignment y such that
∫

γ1

(
y − e

)
dµ ≤

∫
γ2

(
x− e

)
dµ, µ(S1) > 0 and y �S1 x.

Then it is possible to find new coalitions
∼
γi and a new assignment

∼
y, such that: the

supports Si are unchanged,
∼
y �S1 x still holds, the assignment

∼
y is strictly positive on

a subset of S1 of positive measure and
∫
∼
γ1

(∼
y − e

)
dµ �

∫
∼
γ2

(
x − e

)
dµ. Moreover, if

γ1 + γ2 ≤ 1, then also
∼
γ1 +

∼
γ2 ≤ 1.

proof: First observe that, clearly, by continuity of preferences, whenever y �A x over
a set A of positive measure, then we can find a subset B of A of positive measure, and
an ε ∈]0, 1[ such that εy �B x.

Due to this remark, let us take a set C ⊆ S1 and ε with εy �C x. Then consider
the following identity:

8The standard fuzzy intersection γ1 ∩ γ2 of the coalitions γi is non-negligible.
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∫
T
γ1(y−e) dµ =

∫
S1\C

γ1y dµ+
∫

C

γ1

ε

[
εy+(1−ε)e

]
dµ−

(∫
S1\C

γ1e dµ+
∫

C

γ1

ε
e dµ

)

that can be written as ∫
T
γ1(y − e) dµ =

∫
S1

γ̂1(ŷ − e) dµ

where γ̂1 and ŷ only differ from γ1 and y on the set C where they take, respectively,
the values

γ1

ε
and εy + (1− ε)e.

By setting
∼
γ1 = εγ̂1 and

∼
γ2 = εγ2, we have ŷ �S1 x, ŷ � 0 over the set C and∫

∼
γ1

(
ŷ − e

)
dµ ≤

∫
∼
γ2

(
x− e

)
dµ.

Finally, again by continuity, take a set B ⊆ C and δ ∈]0, 1[ with δŷ �B x. By
setting

∼
y as equal to ŷ except over B where

∼
y = δŷ, we still have

∼
y �S1 x but now∫

∼
γ1

(∼
y − e

)
dµ �

∫
∼
γ2

(
x− e

)
dµ. Indeed,

∫
∼
γ1

(∼
y−e

)
dµ =

∫
S1\B

∼
γ1(ŷ−e) dµ+

∫
B

∼
γ1(δŷ−e) dµ�

∫
S1

∼
γ1(ŷ−e) ≤

∫
∼
γ2

(
x−e

)
dµ.

2

Proposition 3.2. Let the interior of IB+ be nonempty. Assume further that µ-a.a.
the initial endowments et are strictly positive and the utilities ut are continuous and
increasing. Then: χ1⊆ χ2.

proof: Take x ∈ χ1 . According to Lemma 3.1, we can assume, without loss of gener-
ality, that ∫

S1

γ1

(
y − e

)
dµ �

∫
S2

γ2

(
x− e

)
dµ.

Since γ1 and γ2 can be uniformly approximated by simple functions, we can find

finitely many valued coalitions
∼
γi, with support Si, still satisfying

∫
S1

∼
γ1

(
y − e

)
dµ �∫

S2

∼
γ2

(
x − e

)
dµ. By replacing

∼
γi with

∼
γ i
γ̄ where γ̄ is the maximum of

∼
γ1 +

∼
γ2 we see

that x ∈ χ2 . 2

Proposition 3.3. Let the interior of IB+ be nonempty. Assume further that µ-a.a.
the initial endowments et are strictly positive and the utilities ut are continuous and
increasing. Then: χ2⊆ χ3.
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proof: Take x ∈ χ2 . According to Lemma 3.1, we can directly assume that∫
S1

γ1

(
y − e

)
dµ �

∫
S2

γ2

(
x− e

)
dµ.

Let T0 be the atomless component of T and T1 its complement. Consider a suitable
radius 2ε such that the ball centered at the point[∫

S1

γ1

(
y − e

)
dµ −

∫
S2

γ2

(
x− e

)
dµ

]
is contained in the interior of IB−. By [6, Proposition 2],

co

{∫
C
(y − e) dµ : C ⊆ S1 ∩ T0

}
=
{∫

S1∩T0

γ(y − e) dµ : γ ∈ A, suppγ ⊆ S1 ∩ T0

}
,

co

{∫
C
(x− e) dµ : C ⊆ S2 ∩ T0

}
=
{∫

S2∩T0

γ(x− e) dµ : γ ∈ A, suppγ ⊆ S2 ∩ T0

}
,

and the application of the approximate Lyapunov’s theorem, we find sets Gi ⊆ Si ∩ T0

such that ∥∥∥∥∫
S1∩T0

γ1(y − e) dµ−
∫

G1

(y − e) dµ
∥∥∥∥ < ε

and ∥∥∥∥∫
S2∩T0

γ2(x− e) dµ−
∫

G2

(x− e) dµ
∥∥∥∥ < ε

from which we have

∫
G1

(y − e) dµ+
∫

S1∩T1

γ1

(
y − e

)
dµ �

∫
G2

(x− e) dµ+
∫

S2∩T1

γ2

(
x− e

)
dµ.

In the case the sets Gi are essentially disjoint, we have obtained that x ∈ χ3 . So we
must consider the possibility that the above two sets are not disjoint. For this case, let
ε be such that the ball centered at

1
2

[∫
G1

(y − e) dµ+
∫

S1∩T1

γ1

(
y − e

)
dµ −

∫
G2

(x− e) dµ−
∫

S2∩T1

γ2

(
x− e

)
dµ

]
is included into the interior of IB−. Again by Liapunov’s Theorem, we can consider the
following sets

B1 ⊆ G1 \G2 such that

∥∥∥∥∥
∫

B1

(y − e) dµ− 1
2

∫
G1\G2

(y − e) dµ

∥∥∥∥∥ ≤ ε

4

B2 ⊆ G2 \G1 such that

∥∥∥∥∥
∫

B2

(x− e) dµ− 1
2

∫
G2\G1

(x− e) dµ

∥∥∥∥∥ ≤ ε

4
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B3 ⊆ G1 ∩G2 such that∥∥∥∥∫
B3

(y − e) dµ− 1
2

∫
G1∩G2

(y − e) dµ
∥∥∥∥ ≤ ε

4

and ∥∥∥∥∫
B3

(x− e) dµ− 1
2

∫
G1∩G2

(x− e) dµ
∥∥∥∥ ≤ ε

4

and then set B4 = (G1 ∩G2) \B3, which gives∥∥∥∥∫
B4

(x− e) dµ− 1
2

∫
G1∩G2

(x− e) dµ
∥∥∥∥ =

∥∥∥∥−∫
B3

(x− e) dµ+
1
2

∫
G1∩G2

(x− e) dµ
∥∥∥∥ ≤ ε

4
.

For the disjoint sets
∼
G1 = B1 ∪B3 ⊆ G1 and

∼
G2 = B2 ∪B4 ⊆ G2 we have∫

∼
G1

(y − e) dµ+
1
2

∫
S1∩T1

γ1

(
y − e

)
dµ −

∫
∼
G2

(x− e) dµ− 1
2

∫
S2∩T1

γ2

(
x− e

)
dµ+

−1
2

[∫
G1

(y − e) dµ+
∫

S1∩T1

γ1

(
y − e

)
dµ −

∫
G2

(x− e) dµ−
∫

S2∩T1

γ2

(
x− e

)
dµ

]
=

=
∫

∼
G1

(y − e) dµ−
∫

∼
G2

(
x− e

)
dµ − 1

2

∫
G1

(y − e) dµ+
1
2

∫
G2

(
x− e

)
dµ =

=
∫

B1

(y − e) dµ− 1
2

∫
G1\G2

(y − e) dµ+
∫

B3

(y − e) dµ− 1
2

∫
G1∩G2

(y − e) dµ+

1
2

∫
G2\G1

(x− e) dµ−
∫

B2

(
x− e

)
dµ +

1
2

∫
G1∩G2

(
x− e

)
dµ−

∫
B4

(
x− e

)
dµ,

and therefore we see that∫
∼
G1

(y − e) dµ+
1
2

∫
S1∩T1

γ1

(
y − e

)
dµ �

∫
∼
G2

(x− e) dµ+
1
2

∫
S2∩T1

γ2

(
x− e

)
dµ.

Since the choice of B1 and B3 ensures that µ[
∼
G1 ∪ (S1 ∩ T1)] > 0, the above strict

inequality means that x ∈ χ3 as desired. 2

3.2 The notion of ex-post coalition fair allocation

The previous results show that, under standard assumptions on endowments and util-
ities, the above three sets χi coincide if the positive cone of the commodity space has
nonempty interior. We are now ready to extend to our framework the coalition fairness
concept (c-fairness for short) originally due to [17] .

Definition 3.4. An allocation x is ex-post Aubin coalition fair (c-fair) or c-fair with
participation rates, if there exist no coalitions γ1 , γ2 ∈ A , no state of nature ω0 ∈ Ω
and no assignment y, such that the conditions 0), 1), 2) and 3) are satisfied. The set
of all ex-post Aubin c-fair allocations is denoted by CA−fair(E).
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Clearly, if we exclude, in the above definition, the possibility that agents cooperate
using participation rates, namely if we limit coalitions to be the usual µ-measurable
subsets of T , then we define a larger set of allocations, denoted by Cfair(E). Members of
Cfair(E) are named ex-post c-fair allocations and are defined in the spirit of the original
Gabszewicz’s notion.

It is trivial that in order to define the set Cfair(E) it is indifferent to use property
2′) rather than 2), since in this case traders use standard participation. This is not the
case of CA−fair(E). So, if we consider the set of allocations x for which there do not
exist γ1 , γ2 ∈ A, an assignment y and ω0 ∈ Ω, such that 0), 1), 2′) and 3) hold true
then, obviously, we have a set that lies in between the sets CA−fair(E) and Cfair(E)
(properly, in general). We use the symbol Cw

A−fair(E) to denote this set. Its members
are referred to as weak ex-post Aubin coalition fair allocations.

In general cases, admitting personalized participation in coalitions, the use of con-
dition 2) in Definition 3.4 seems to be the most coherent. When an ex-post Aubin
c-fair allocation x prevails in the economy, then it is impossible, whatever will be the
prevailing state “tomorrow”, to find a non-trivial coalition γ1 envious of the net-trade
of another coalition γ2 in the sense that participants in γ1 by redistributing this net-
trade can be better off. In the framework of Aubin approach to cooperation, an agent
may well participate in both γ1 and γ2. So, rather than requiring that the supports S1

and S2 of γ1 and γ2 are essentially disjoint, only the weaker constraint 2) (agents in
S1∩S2 cannot over use their endowments) is required. So the envious/envied positions
properly refer to the net trade of a coalition as a whole, given that traders may decide
to join, in principle, several coalitions simultaneously. This makes the stability request
defining Aubin c-fair allocations stronger than the one based on ordinary coalitions.

It is relevant to note that, as consequence of Proposition 3.3, in the case of atomless
economies the three previous notions of c-fair allocation coincide. This is stated in the
next Theorem 3.5. At the same time, the implication of Proposition 3.3 in a general
mixed market is that, in the notion of Aubin c-fairness, one can always assume that
small traders use all their endowments9. This property means that the consideration of
a differentiated and flexible participation to coalitions is relevant, in many situations,
only when it is applied to the case of influential traders.

Theorem 3.5. Let the interior of IB+ be nonempty. Assume further that µ-a.a.
the initial endowments et are strictly positive and the utilities ut(ω, ·) are continuous
and increasing for any state. Then, in an atomless economy we have CA−fair(E) =
Cw

A−fair(E) = Cfair(E).

proof: The inclusion Cfair(E) ⊆ CA−fair(E) is a straightforward consequence of Propo-
sition 3.3, i.e. of the fact that for a certain state of nature, the set χ2 is contained in
χ3 . 2

The next proposition says that in order to have that an allocation x is ex-post
Aubin c-fair, it is enough to verify that the coalitions of full support are not envious.

Proposition 3.6. Let the interior of IB+ be nonempty. Assume further that µ-a.a.
the initial endowments et are strictly positive and the utilities ut(ω, ·) are continuous

9The same conclusion holds when we consider the notion of weak Aubin c-fairness.
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and strictly increasing for any state. Then, x ∈ CA−fair(E) if and only if there do not
exist γ1 , γ2 ∈ A, an assignment y and ω0 ∈ Ω, satisfying 0′), 1), 2) and 3).

proof: We show that if in a state of nature there is an envious coalition, then also a
coalition of full support is envious. To this aim, suppose that x /∈ CA−fair(E) and apply
Lemma 3.1 in order to assume that y �S1 x, the assignment y is strictly positive on a

subset B of S1 of positive measure,
∫

γ1

(
y − e

)
dµ �

∫
γ2

(
x− e

)
dµ, and γ1 + γ2 ≤ 1.

If µ(T \ S1) > 0, then for a sufficiently small λ > 0 we have
∫

S1

γ1

(
y − e

)
dµ +

λ

∫
T\S1

(x − e) dµ �
∫

S2

γ2

(
x − e

)
dµ. On the other hand, continuity of preferences

gives ε ∈]0, 1[ and a subset C of B where εy �C x and µ(C) > 0. Let us set

(
∼
y,

∼
γ1) =


(εy, γ1), on C
(y, γ1), on S1 \ C(
x+

1
λµ(T \ S1)

∫
C
γ1(1− ε)y, λ

)
, on T \ S1

Now: the monotonicity gives
∼
y �T x and an easy calculation 10 shows that

∫
T

∼
γ1(

∼
y−

e) dµ �
∫

T
γ2(x− e) dµ and from Proposition 3.2 the conclusion follows. 2

3.3 Existence of c-fair allocations

We shall now discuss the existence of ex-post Aubin coalition fair allocations under
standard assumptions.
Consider first the case of a complete information economy E(ω0).

a) When T is a finite set of agents, [2] states the hypotheses under which the exis-
tence of competitive equilibria is guaranteed (see also [24] for a wider discussion).
Similarly, for the non-atomic case we may refer to [5] for finite dimensional com-
modity spaces, and to [31], [26] and [28] for the infinite dimensional case. In
the general case of mixed models, the existence of competitive equilibria can be
reduced to the case of atomless economies. For finite dimensional commodity
spaces, existence is provided by [10].

10

Z
T

∼
γ1(

∼
y − e) dµ can be written as

Z
C

γ1εy +

Z
S1\C

γ1y +

Z
T\S1

λx +

Z
C

γ1(1− ε)y −
Z

S1

γ1e−
Z

T\S1

λe,

but also

Z
S1

γ1y =

Z
C

γ1εy +

Z
S1\C

γ1y +

Z
C

γ1(1− ε)y, so that

Z
T

∼
γ1(

∼
y − e) dµ =

Z
S1

γ1y +

Z
T\S1

λx−
Z

S1

γ1e−
Z

T\S1

λe.

The latter, by the choice of λ is � than

Z
S2

γ2(x− e) dµ.
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b) On the other hand, if x is a competitive allocation in E(ω0) (write x ∈ W(E(ω0)),
and we assume that x /∈ CA−fair(E(ω0)), then there exist two coalitions γ1 and
γ2 and an assignment y such that the conditions 0), 1), 2) and 3) are satisfied.

Since x ∈ W(E(ω0)), 3) implies that y(t) does not belong to the budget set for
almost all t ∈ S1 and hence∫

γ1

p · y(t) dµ >

∫
γ1

p · e(ω0, t) dµ

So by 1),

p ·
∫

γ2

[x(ω0, t)− e(ω0, t)] dµ ≥ p ·
∫

γ1

[y(t)− e(ω0, t)] dµ > 0

and a contradiction to the fact that x is competitive.

Let’s move now to an arbitrary DIME E . By combining the two above circumstances,
we can promptly get that the set CA−fair(E) is nonempty, under the assumptions on
T, IB, u·(ω, ·) and e·(ω) that guarantee the existence of competitive equilibria in each
E(ω), according to a).

In fact, in this case, let F1, ....., Fm be all the elements of the finite partition Π gener-
ating F and let ωj be a state in Fj . Select, because of a) and b), xj ∈ CA−fair(E(ωj)), for
every j = 1, .....,m and define x : Ω×T → IB+ by x(ω, t) = xj(t) whenever ω ∈ Fj and
t ∈ T . This is a well-defined assignment in E . Furthermore, being e(·, t) and ut(·, x)
F−measurable, we have that E(ω) = E(ωj) for all ω ∈ Fj . Thus, x(ω, ·) = x(ωj , ·)
belongs to CA−fair(E(ω)) for all ω ∈ Ω and CA−fair(E) is non-empty.
It is easy to prove that the inclusion

{x |x is an assignment and x(ω, ·) ∈ CA−fair(E(ω))∀ω ∈ Ω } ⊆ CA−fair(E)

that we have just used, is actually an equality, that is each ex-post c-fair allocation
is a selection of the correspondence associated to the family of complete information
economies. We show this simple result in the next proposition for the sake of complete-
ness.

Proposition 3.7. Let E be a differential information economy. Then

CA−fair(E) = {x |x is an assignment and x(ω, ·) ∈ CA−fair(E(ω))∀ω ∈ Ω }

proof: Let us denote by X the set

{x |x is an assignment and x(ω, ·) ∈ CA−fair(E(ω)),∀ω ∈ Ω }.

From the definition it follows that X ⊆ CA−fair(E), so it is sufficient to prove the
inclusion CA−fair(E) ⊆ X. Take an allocation x ∈ CA−fair(E) and assume by contra-
diction that x /∈ X. This means that for some ω0 ∈ Ω it is x(ω0, ·) /∈ CA−fair(E(ω0)),
so there exist some generalized coalitions γ1, γ2 ∈ A and there exists an assignment
y : T → IB+ such that the conditions 0), 1), 2) and 3) are satisfied. Let us denote by
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F (ω0) the unique element of Π containing ω0. We define the function z : Ω× T → IB+

by setting

z(ω, t) =
{
y(t) if ω ∈ F (ω0)
e(ω, t) if ω /∈ F (ω0)

The function z is an assignment since it is F-measurable (it is, in fact, constant on the
elements of Π). Of course∫

γ1

[z(ω0, t)− e(ω0, t)] dµ =
∫

γ1

[y(t)− e(ω0, t)] dµ ≤
∫

γ2

[x(ω0, t)− e(ω0, t)] dµ

moreover, for a.a. t ∈ γ1, we have

ut(ω0, z(ω0, t)) = ut(ω0, y(t)) > ut(ω0, x(ω0, t)).

The latter relations say that x /∈ CA−fair(E), which is a contradiction. 2

3.4 Individual interpretation

In this section we explore a natural extension to our general model of Varian’s defini-
tion of individual equity (see [34]). We shall see that whenever we can ensure Aubin
c-fairness of an allocation arising from an equal sharing of the total initial endowment,
then the allocation is also individually equitable, i.e. traders do not envy each other.
It is worthwhile to point out that this result is achieved within the framework of mixed
markets, where some traders may have non-negligible initial power. Naturally, it holds
true also in the particular case of complete information economies. This type of inter-
pretation deserves interest in itself for two reasons. It applies to infinite dimensional
economies, with complete or asymmetric information, despite Lyapunov’s Theorem
does not hold: the convexifying effect comes from participation rates. It provides a
response to a usual criticism against notion of fairness based on coalitions. Indeed,
according to some authors (see for example [36]), this type of concept should be more
properly classified as a cooperative notion rather than a notion of equity, since it re-
quires a redistribution of resources among traders. So, it becomes important to show
that c-fairness notions ensure, as consequence of cooperation, also individual non-envy.

Let us fix the attention for the moment on the case of a standard finite economy
with complete information, i.e. there is no uncertainty and µ is the counting measure.
Assume, for simplicity, that all traders have the same initial endowment et = e. Ac-
cording to Varian’s definition, an allocation x is qualified as individually equitable or
envy free if each trader does not prefer some other’s trader commodity bundle to his
own, that is, in terms of utility, it holds true that, for each t, s ∈ T

ut(xt) ≥ ut(xs).

Assume that the allocation x is c-fair (with standard participation), but not individually
equitable, for example because of the pair (t, s) for which it is true that ut(xt) < ut(xs).
Then immediately one has a contradiction choosing as pair of coalitions for which c-
fairness is violated, the coalitions S1 = {t} and S2 = {s}: indeed, the redistribution
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causing envy is possible by means of the assignment y equal to x for each trader,
with the exception of trader t which receives xs instead of xt. In this case, one has
that y �S1 x and the feasibility follows since traders have the same size. This simple
argument doesn’t work as soon as traders t and s are atoms of different size, in particular
when the t’s size is greater than the s’ one. So, a c-fair allocation is not necessarily
individually envy free and the argument above suggests that, in order to restore such
implication, the different weights of atoms should be redistributed between coalitions
S1 and S2 by means of differentiated participation rates.

As we shall see now, in the case of an atomless market with finitely many commodi-
ties, the proof that a c-fair allocation with standard participation is individually envy
free follows a similar reasoning as in the finite case, although it is strongly based on the
validity of the Lyapunov theorem and the separability of the commodity space. The
previous tools permit, when used together, to aggregate envy from individual to coali-
tions and to reach a contradiction determining the coalitions S1 and S2. But again, in a
mixed model, due to the presence of large traders, one needs a redistribution of weights
(i.e. non-standard participation), to obtain a similar conclusion. Notice also that, since
the presence of many commodities implies the use of Liapunov theorem only in its weak
or approximate version, in our results below some interiority like assumptions will be
adopted to overcome this problem.
Let us fix the basic notation. Given an allocation x, an agent t ∈ T and a state of
nature ω ∈ Ω, we define the set At(ω, x) of individuals that t envies at x in state ω:

At(ω, x) = {s ∈ T : ut(ω, xt(ω)) < ut(ω, xs(ω) )}

and the set A(ω, x) of envious agents at x in state ω:

A(ω, x) = {t ∈ T : µ(At(ω, x)) > 0}.

A natural definition of individual equitability follows. It requires that the set of
envious traders has measure zero and includes, as a particular case, Varian’s notion.

Definition 3.8. An allocation x is said to be ex-post (individually) envy-free or equi-
table if µ(A(ω, x)) = 0 for each state ω.

Before proving the main statements of this section, we isolate two simple useful
arguments. In the first lemma, we require that the initial endowment is distributed
over coalitions according to a reference bundle and their size.

Lemma 3.9. Let E be a complete information economy with et = e, for µ-almost t ∈ T .
Given the allocation x, suppose we find two coalitions B,C of positive µ-measure such
that for almost all t ∈ C

ut(z) > ut(xt) where z :=
1

µ(B)

∫
B
x(s)dµ(s).

If we find two essentially disjoint, non-negligible, coalitions Γ1 ⊆ C, Γ2 ⊆ B, such that
the average of x on Γ2 is still z, then x /∈ CA−fair(E).
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proof: Consider the assignment y constantly equal to z over C and the coalitions
γi with support Γi defined as follows: (γ1, γ2) =

(
1, µ(Γ1)

µ(Γ2)

)
in case µ(Γ1) ≤ µ(Γ2),

(γ1, γ2) =
(

µ(Γ2)
µ(Γ1) , 1

)
otherwise. Then clearly∫

γ1

(y − e) dµ =
∫

γ2

(x− e) dµ.

and y �Γ1 x. 2

Lemma 3.10. Let E be a complete information economy. Assume that the commodity
space IB+ is separable and that the functions ut are, for µ-almost each agent t ∈ T ,
continuous. Given the allocation x, let t ∈ T be such that µ(At(x)) > 0, then a coalition
B ⊆ At(x) exists such that

ut(z) > ut(xt) where z :=
1

µ(B)

∫
B
x(s)dµ(s).

proof: Set At := At(x). Without loss of generality, we can assume that ut(xs) >
ut(xt), for each s ∈ At. Consider the set

H =
{

1
µ(B)

∫
B
x(s)dµ(s) : B ⊆ At, µ(B) > 0

}
.

We claim that x(s) ∈ cl H, for µ-almost all s ∈ At (see [36, Lemma 3.3, (ii)] for the
argument in the finite dimensional case). For each h /∈ cl H, it is true that there
exists a ball B(h) centered in h whose intersection with H is empty. Then we can
consider a ball B

′
(h) for which B

′
(h) ⊆ cl B

′
(h) ⊆ B(h) and such that cl B

′
(h) is also

disjoint from H. The set B = {s ∈ At : x(s) ∈ cl B
′
(h)} has measure zero, otherwise

we would have that
1

µ(B)

∫
B
x(s)dµ(s) ∈ cl B′

(h) and a contradiction. Consequently,

µ
({
s ∈ At : x(s) ∈ B′

(h)
})

= 0. From the separability assumption, it follows that for

h in a countable set N , the balls B
′
(h) cover the set IB+ \ cl H. The claim follows from

the inclusion

{s ∈ At : x(s) /∈ cl H} ⊆
⋃

h∈N

{
s ∈ At : x(s) ∈ B′

(h)
}
.

2

We first deal with the case of finitely many commodities.

Theorem 3.11. Let E be a finite dimensional DIME. Assume that for each ω ∈ Ω and
for µ-almost each agent t ∈ T it is true that: et(ω) = e(ω); the functions ut(ω, ·) are
continuous on IB+.

Then, any ex-post Aubin c-fair allocation x is ex-post (individually) envy-free.

proof: By Proposition 3.7, we can reduce the proof to the case of Ω being a singleton
{ω}. Then, we simply skip ω in notations. Let us see that, under the assumption that
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x exhibits envy, i.e. µ(A(x)) > 0, then Aubin c-fairness of x is contradicted. We also
simplify notations by setting

At := At(x) = {s ∈ T : ut(xt) < ut(xs )}; A := A(x) = {t ∈ T : µ(At(x)) > 0}.

We shall distinguish the following two basic cases.
Case 1: the envious agents include some large trader i.e. some point of T1.
Case 2: the envious agents are all in T0.

In case 1, we have µ(A∩T1) > 0 and in particular let t ∈ T1 be a µ−atom belonging
to A. Since by definition the set At = {s ∈ T : ut(xt) < ut(xs)} is of positive measure,
by Lemma 3.10, we can find a subcoalition Bt ⊆ At, of positive measure for which

ut(yt) > ut(xt) where yt :=
1

µ(At)

∫
At

x(s)dµ(s).

Now it is enough to apply Lemma 3.9 where C = {t} and B = Bt to get a contradiction.
So, let us move now the case 2: A ⊆ T0.

Set

∼
A := {t ∈ A : µ(At ∩ T1) > 0}, z(B) :=

1
µ(B)

∫
B
xs dµ(s), B ∈ T , µ(B) > 0.

Consider the sub-case that µ(
∼
A) > 0.

With reference to a dense countable subset Y of the range Z of the set function z over
all subsets B of T1 we have

{t ∈ T : ut(z) > ut(xt) for some z ∈ Z} =
⋃
z∈Y

{t ∈ T : ut(z) > ut(xt)}.

Since for t ∈
∼
A we have µ(At ∩ T1) > 0 and for s ∈ At ∩ T1, ut(xt) < ut(xs), we derive

from Lemma 3.10 that ut(xt) < ut(z(Bt)), with Bt ⊆ At ∩ T1. This means that

∼
A ⊆

⋃
z∈Y

{t ∈ T : ut(z) > ut(xt)},

and permits to find z ∈ Y, z = z(B), B ⊆ T1 such that the set C :=
∼
A ∩ {t ∈ T :

ut(z) > ut(xt)} has positive measure. Now to have a contradiction it is enough to apply
Lemma 3.9 observing that C and B are necessarily disjoint.

Assume now that µ(
∼
A) = 0.

We have, then, that for almost all t ∈ A, the set At ⊆ T0.
Like in the previous sub-case, let Y be a dense countable subset of the range Z of
the set function z over all subsets B of T0. Since for t ∈ A we have µ(At) > 0 and
for s ∈ At, ut(xt) < ut(xs), again by Lemma 3.10, ut(xt) < ut(z(Bt)) for a coalition
Bt ⊆ At. This means that

A ⊆
⋃
z∈Y

{t ∈ T : ut(z) > ut(xt)},

18



and permits to find z ∈ Y, z = z(B), B ⊆ T0 such that the set C := A ∩ {t ∈ T :
ut(z) > ut(xt)} has positive measure.
If the set C \B has positive measure, again Lemma 3.9 applies. Finally, it remains to
analyze what happens when µ(C \B) = 0. In this case simply consider C ⊆ B.

By Lyapunov theorem, take a sequence Bn of subsets of B such that(
µ(Bn),

∫
Bn

x dµ

)
=

1
n

(
µ(B),

∫
B
x dµ

)
.

Since µ(Bn) → 0, for a suitable n the set Γ1 := C \Bn has positive measure and with
Γ2 = Bn Lemma 3.9 applies. 2

While in the previous case, for the concluding argument, a straightforward appli-
cation of Lyapunov’s convexity theorem is sufficient, when the commodity space is
infinite dimensional a more subtle argument is necessary. Moreover, we also need the
assumption that x is an interior allocation.

Theorem 3.12. Let E be a DIME whose commodity space IB is separable and whose
positive cone has non-empty interior. Assume that for each ω ∈ Ω and for µ-almost
each agent t ∈ T it is true that: et(ω) = e(ω); the functions ut(ω, ·) are continuous on
IB+.

Then, for x ∈ CA−fair(E) we have that if xω is µ-a.e. a strictly positive vector, then
µ(A(ω, x)) = 0.

proof: The infinite dimension only influences the last part of the previous proof.
Indeed, we can only use an approximate Lyapunov theorem. Therefore, take any δ ∈
]0, 1[. By Lyapunov theorem, we find (see [15]) a sequence Bn of subsets of B such that

for all n, µ(Bn) = δµ(B), and
∫

Bn

x dµ → δ

∫
B
x dµ.

By continuity of preferences, we get

C = {t ∈ A : ut(z) > ut(xt)} ⊆
⋃

ε∈Q∩]0,1[

{t ∈ A : ut(εz) > ut(xt)}

and therefore for some ε we have that

µ(Aε) > 0, where Aε := {t ∈ A : ut(εz) > ut(xt)}.

This implies that for all integers n we have µ(Aε \Bn) > 0. Consider an assignment y
constantly equal to εz over Aε. Obviously z(Bn)− εz → z − εz � 0 and, since z − εz
belongs to the interior of IB+, for a certain integer n we have z(Bn)− εz � 0.

However,

z(Bn)− εz =
1

µ(Bn)

∫
Bn

x dµ− 1
µ(Aε \Bn)

∫
Aε\Bn

y dµ.

So, if we take the Aubin coalitions γ1 and γ2 with support, respectively, Γ1 = Aε \Bn

and Γ2 = Bn and constant rate of participation of agents, then clearly∫
γ1

(y − e) dµ�
∫

γ2

(x− e) dµ,
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where (γ1, γ2) =
(
1, µ(Γ1)

µ(Γ2)

)
in case µ(Aε \Bn) ≤ µ(Bn), and (γ1, γ2) =

(
µ(Γ2)
µ(Γ1) , 1

)
otherwise. Again we contradict that x is Aubin c-fair. 2

To summarize, the previous results show that, under a c-fair allocation with partic-
ipation rates: large traders cannot be envious, small traders cannot be envious of large
traders and, under an interiority assumption on the allocation in the presence of many
commodities, there are no envious individuals at all, small or large.

Remark 3.13. Notice that, contrary to usual core equivalence assumptions, the quasi-
concavity of utility functions is not required in Theorems 3.11 and 3.12, also in the
presence of atoms (compare with [25]). However, the usual separability assumption on
the commodity space is maintained. On the other hand, a careful look at the proof of
the theorems shows that quasi-concavity of utility functions of all traders in each state
of nature, joint with strict monotonicity, replaces the separability requirement.

Theorem. If in Theorem 3.12 we do not assume separability of the commodity space
but we assume that all utility functions, in any state, are also strictly monotone and
quasi-concave, then its conclusion still holds true.
proof: The proof closely follows the one of Theorems 3.11 and 3.12. As a first step, it
is enough to apply Lemma 7.1 in order to obtain that in the conclusion of Lemma 3.10
it is Bt = At. Then, one can observe that, for a given allocation x violating individual
equitability, the function

t ∈ A→ 1
µ(At)

∫
At

xs dµ(s)

has a separable range (see Lemma 7.2 in the Appendix).
Therefore, replacing in the proof of Theorem 3.11 the set Y with a countable subset,

respectively, of the separable set
{

1
µ(At ∩ T1)

∫
At∩T1

xs dµ(s) : t ∈
∼
A

}
, when µ(

∼
A) > 0

and of the separable set
{

1
µ(At)

∫
At

xs dµ(s) : t ∈ A
}

, when µ(
∼
A) = 0, the conclusion

follows. 2

We also remark that, both in the case of Theorems 3.12 and the previous one, the
conclusion does not follow from the joint use of core equivalence and individual equi-
tability of equal income competitive equilibria, since the required sets of assumptions
are not comparable.

Remark 3.14. Unlike ex-post c-fairness, ex-post individual envy freeness introduced
in this section is a property of allocations that translates into the corresponding ex-
ante one. To see this, let us denote by ht(xt) the standard ex-ante IPt−expected utility
trader t derives from the random consumption xt(ω).

Similarly to Definition 3.8, an ex-ante individually envy-free allocation x is defined
by means of µ(A(x)) = 0, where A(x) = {t ∈ T : µ(At(x)) > 0} (ex-ante envious
agents), and At(x) : = {s ∈ T : ht(xt) < ht(xs)} (agents ex-ante envied by t).

Proposition. If x is ex-post individually envy-free, then it is also ex-ante individ-
ually envy-free
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proof: Assume that the allocation x is ex-post individually envy free, but not ex-
ante. Then the set A(x) of traders that are (ex-ante) envious under x has positive
measure and, for each trader t ∈ A(x) and s ∈ At(x), one can find a state ωs in which
ut(ωs, xt(ωs)) < ut(ωs, xs(ωs)). As consequence, for each fixed trader t which is envious
ex-ante, one has that

At(x) ⊆
⋃
ω∈Ω

{s ∈ T : ut(ω, xt(ω)) < ut(ω, xs(ω))}.

Since the above union is a union of finitely many sets, it has positive measure, because
it includes At(x). This permits to identify a state, ωt, in which t is also ex-post envious.
From the inclusion

A(x) ⊆
⋃
ω∈Ω

{t ∈ T : µ(At(ω, x)) > 0},

whose right hand side is a finite union, it follows that at least one of the sets {t ∈ T :
µ(At(ω, x)) > 0} has positive measure and therefore a contradiction. 2

Notice that the same simple argument may not work in the case of c-fair allocations,
since the feasibility required for the net trade of coalitions S1 and S2 is not necessarily
preserved moving from the ex-post to the ex-ante stage.

3.5 Intrepretation via continuum economies

According to a standard interpretation, one can think that each large trader in a mixed
market model arises from a group of small identical traders that decide to join and to
act on the market only together. As consequence of such agreements, one motivates
the fact that no proper subcoalitions of the group are possible and then the group is
identified with an atom of µ. In this section, we move back splitting the atoms into the
original small traders forming them. Our aim is to show that c-fairness of an allocation,
when considered on the base of participation rates, is robust to variations in traders’
behavior in the sense that the property would be preserved if small traders decide to
break the agreement and to act on the market independently.

Precisely, we show that the embedding of the original mixed economy E into the
auxiliary atomless economy E∗ obtained by splitting each large trader into a continuum
of small traders of the same type, preserves c-fairness and, therefore, gives us the
possibility to interpret Aubin c-fairness as c-fairness in the atomless economy E∗.

In the proof of this type of correspondence, the possibility that a trader may join a
coalition simultaneously (i.e. condition 2) introduced in section 3) will be essential.

Remind that large traders have been denoted by A1, A2, . . . We partition the interval
[µ(T0), µ(T )], that we denote by T ∗1 , as the disjoint union of the intervals A∗

i given by:

A∗
1 =

[
µ(T0), µ(T0)+µ(A1)

[
, ... , A∗

i =
[
µ(T0)+µ{A1, ..., Ai−1}, µ(T0)+µ{A1, ..., Ai}

[
, ...

Now, given the economy

E = { (T, T , µ); IB; (Ω,F); (ut, IPt, Πt, et)t∈T },
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the associated atomless economy

E∗ = {(T ∗, T ∗, µ∗); IB; (Ω,F); (ut, IPt, Πt, et)t∈T ∗}

is defined as follows. The measure space (T ∗, T ∗, µ∗) of agents is the direct sum of
(T0, T0, µ) and the interval T ∗1 is endowed with the Lebesgue measure. The profile
(ut, IPt, Πt, et)t∈T ∗ of agents’ types extends the original profile of members of T by
assuming that for each trader t ∈ A∗

i , it coincides with the one of the large agent Ai.
It is customary to name the interval A∗

i as the split of the atom Ai.
For a function f ∈ L1(µ∗), we denote by fS∗ the average of f over the set S∗. Let

us fix the following notation.
For an allocation x of the economy E , we define over T ∗ the allocation x∗ = ϕ(x)

of the economy E∗ by setting x∗t = xt, if t ∈ T0 and x∗t = xAi , if t ∈ A∗
i .

Reciprocally, given an allocation x∗ of E∗ we define the allocation x = ψ(x∗) of E
by setting xt = x∗t , for t ∈ T0 and xt = x∗A∗

i
, for t = Ai.

Proposition 3.15. Let x be an allocation of the original economy E such that ϕ(x) /∈
Cfair(E∗). Suppose that for any large trader Ai the utility is (in any state) continuous,
quasi-concave and strictly monotone. Then we have that x ∈ χ1.

proof: Since ϕ(x) /∈ Cfair(E∗), we find (with reference to a certain state of nature
that we omit for brevity) two disjoint subsets S∗i of T ∗, an assignment y in the econ-

omy E∗ such that S∗1 has positive measure, y �S∗1
ϕ(x),11 and

∫
S∗1

(y − e∗) dµ∗ ≤∫
S∗2

(x∗ − e∗) dµ∗. Once we set

i ∈ I ⇔ µ∗(S∗1 ∩A∗
i ) > 0 and j ∈ J ⇔ µ∗(S∗2 ∩A∗

j ) > 0,

the latter inequality can be written as follows

(+)
∫

S∗1∩T0

(y − e∗) dµ∗ +
∑
i∈I

µ∗(S∗1 ∩A∗
i ) [yi − e(Ai)] ≤

∫
S∗2∩T0

(x∗ − e∗) dµ∗ +

+
∑
j∈J

µ∗(S∗2 ∩A∗
j ) [x(Aj)− e(Aj)] ,

where yi is the average of y on the set S∗1 ∩A∗
i .

Now we define the subsets S1, S2 of T , as

S1 := (S∗1 ∩ T0) ∪ {Ai : i ∈ I} and S2 := (S∗2 ∩ T0) ∪ {Aj : j ∈ J}

supporting the Aubin coalitions γ1, γ2 defined as

γ1 =

{
1, on S∗1 ∩ T0
µ∗(S∗1∩A∗

i )
µ(Ai)

, on the point Ai, for i ∈ I

11Namely, by definition, for t ∈ S∗
1 ∩ T0, we have y(t) �t x(t) and, for t ∈ S∗

1 ∩A∗
i , y(t) �Ai x(Ai).
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γ2 =

{
1, on S∗2 ∩ T0
µ∗(S∗2∩A∗

j )

µ(Aj)
, on the point Aj , for j ∈ J,

and the assignment y on T as

y(t) =


y(t), for t ∈ T0

yi, on the point t = Ai, for i ∈ I
x(t), elsewhere on T1 \ {Ai : i ∈ I}.

In this way, we see that x ∈ χ1 . Indeed, µ(S1) > 0 since µ∗(S∗1); the inequality∫
S1

γ1(y− e) dµ ≤
∫

S2

γ2(x− e) dµ corresponds to the above inequality (+) and to get

y �S1 x one has only to check that y(Ai) �Ai x(Ai). The latter comes from Lemma
7.1. 2

Corollary 3.16. Assume that µ-a.a. the initial endowments et are strictly positive
and the utilities ut(ω, ·) are continuous and monotone. Also assume that ut(ω, ·) is
quasi-concave and strictly monotone for t ∈ T1. Then,

x ∈ CA−fair(E) ⇒ ϕ(x) ∈ Cfair(E∗).

proof: If we assume ϕ(x) /∈ Cfair(E∗), the previous Proposition and Proposition 3.2
give the assertion. 2

On the converse let us show that if for an allocation x∗ of the continuum economy
E∗ we have that ψ(x∗) /∈ CA−fair(E), then x∗ /∈ Cfair(E∗). For this purpose, the non
emptiness of the interior of the positive cone IB+ plays a role as well as the assumption
of strict monotonicity of preferences.
Let us first notice the following.

Lemma 3.17. Let the interior of IB+ be nonempty. Assume further that µ-a.a. the
initial endowments et are strictly positive and the utilities ut(ω, ·) are continuous and
strictly increasing for any state. Also assume that ut(ω, ·) is quasi-concave, for t ∈ T1 .

Then, for an allocation x∗ ∈ Cfair(E∗) it is true that, for each Ai,

x∗A∗
i
∼Ai x

∗(t), for µ-a.a. t ∈ A∗
i .

proof: The proof follows from [9, Lemma 4.3] (interpreted in the light of [9, Remark
4.8]) since any c-fair allocation is a core allocation. 2

Theorem 3.18. Let the interior of IB+ be nonempty. Assume further that µ-a.a. the
initial endowments et are strictly positive and the utilities ut(ω, ·) are continuous and
strictly increasing for any state. Also assume that ut(ω, ·) is quasi-concave for t ∈ T1.
Then,

x∗ ∈ Cfair(E∗) ⇒ ψ(x∗) ∈ CA−fair(E).

23



proof: Let us suppose that ψ(x∗) /∈ CA−fair(E) although x∗ ∈ Cfair(E∗). By Propo-
sition 3.3, for the allocation x := ψ(x∗) we may assume (in a certain state of nature)
the existence of an assignment y and coalitions γi with supports Si such that

(++)
∫

S1∩T0

(y − e) dµ+
∫

S1∩T1

γ1(y − e) dµ ≤
∫

S2∩T0

(x− e) dµ+
∫

S2∩T1

γ2(x− e) dµ,

γ1 +γ2 ≤ 1, and S1∩ S2∩T0 = ∅. Naturally one also has that S1 is of positive measure
and µ-a.e. on it y is strictly preferred to x.

Now, for every index i ∈ I := {n : An ∈ S1 ∩T1}, we choose a subset B∗
i of A∗

i with

µ∗(B∗
i ) = µ∗(A∗

i )γ1(Ai) = µ(Ai)γ1(Ai)

and then define the subset S∗1 of T ∗ by setting

S∗1 = (S1 ∩ T0) ∪ (∪i∈IB
∗
i ).

Analogously, with reference to J := {n : An ∈ S2 ∩ T1}, we define the set

S∗2 = (S2 ∩ T0) ∪ (∪i∈JH
∗
i )

by choosing the sets H∗
i as follows. For i ∈ J \ I, let H∗

i ⊆ A∗
i be such that µ∗(H∗

i ) =
µ∗(A∗

i )γ2(Ai) = µ(Ai)γ2(Ai) . For the remaining indices i ∈ J ∩ I, let H∗
i ⊆ A∗

i \ B∗
i

be such that µ∗(H∗
i ) = µ∗(A∗

i )γ2(Ai) = µ(Ai)γ2(Ai).12

In the economy E∗ we have the disjoint sets S∗i , the assignment y∗ := ϕ(y) and we
can observe, against the assumption of x∗ ∈ Cfair(E∗), that:
µ∗(S∗1) > 0, since µ(S1) > 0;
y∗ �S∗1

x∗, by the definition of functions y∗ and x and by appealing to the previous
Lemma 3.17,

and finally
∫

S∗1

(y∗ − e∗) dµ∗ ≤
∫

S∗2

(x∗ − e∗) dµ∗, since such inequality coincides with

inequality (++) above.
2

3.6 C-fair allocations and the Ex-post Core

Inherent in the Definition 3.4, we find another form of coalition-proofness satisfied by
ex-post Aubin c-fair allocations. Indeed, assume that, for an allocation x, there exist
a generalized coalition γ1, a state of nature ω0 and an assignment y such that one has,
together with properties 0) and 3), also property

1*)
∫

γ1

yωo dµ ≤
∫

γ1

eω0 dµ .

Then, it is obvious that, by setting γ2 = 0, Definition 3.4 is violated.
According to [11], we say that x is an ex-post Aubin core allocation of E and we

shortly write x ∈ CA(E), if there exist no Aubin coalition γ1, state ωo, assignment y,
12Notice that µ∗(A∗

i \B∗
i ) = µ∗(A∗

i )(1− γ1(Ai)) ≥ µ∗(A∗
i )γ2(Ai).
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such that 0), 1*) and 3) are satisfied. In particular, an ex-post Aubin c-fair allocation
is an ex-post Aubin core allocation.

Limiting, in the above definition of CA(E), our attention to ordinary coalitions, we
have the concept of ex-post core ([13]) that we denote by C(E). The set of allocations
that cannot be blocked ex-post by the grand coalition T is the set of ex-post (weak)
Pareto optimal allocations. Summarizing, we have that

CA−fair(E) ⊆ CA(E) ⊆ C(E)

as well as
Cfair(E) ⊆ C(E).

Remark 3.19. Assume that the interior of IB+ is nonempty. Assume further that
µ-a.a. the vectors et are strictly positive for any state and ut(ω, ·) is continuous and
strictly increasing for any state. Then, in the definition of CA(E) we can be more
demanding replacing condition 0) by 0′). Also, we define the same set CA(E) if we add
in its definition the further condition that the value of γ1 is 1 on the atomless part of
its support.

Consequently, as in the case of c-fair allocations with participation rates, when T
is atomless, then CA(E) = C(E) (for related results see also [9]).

Let us discuss now the situations in which the previous inclusions are indeed equiva-
lences. The argument of the following Lemma follows closely the one of [15, Lemma 1]
(similar arguments are also developed in [8, Lemma 1]).

Lemma 3.20. Let T be atomless, i.e. T1 = ∅. Assume the interior of IB+ is nonempty.
Assume further that µ-a.a. the vectors et are strictly positive for any state and ut(ω, ·)
is continuous for any state. Then, if x /∈ Cfair(E), there exist the coalitions S1 and S2

with µ(S1) > 0, the assignment y and the state ωo such that∫
S1

[
y(ω0, t)− e(ω0, t)

]
dµ �

∫
S2

[
x(ω0, t)− e(ω0, t)

]
dµ;

ut(ω0, y(ω0, t)) > ut(ω0, x(ω0, t)) for a.a. t ∈ S1.

proof: Let x be not ex-post c-fair. Then, there exist two disjoint coalitions S1 and S2

with µ(S1) > 0, an assignment y and a state ωo in which∫
S1

[
y(ω0, t)− e(ω0, t)

]
dµ ≤

∫
S2

[
x(ω0, t)− e(ω0, t)

]
dµ;

ut(ω0, y(ω0, t)) > ut(ω0, x(ω0, t)) for a.a. t ∈ S1.

Consider the state ωo as fixed and then omit it in notations. We can write∫
S1

y dµ ≤
∫

S1

e dµ+
∫

S2

(x− e) dµ.
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Consider an increasing sequence of subcoalitions Sn ⊆ S1 such that limn µ (S1 \ Sn) = 0
and ut

((
1− 1

n

)
y(t)

)
> ut(x(t)) for a.a. t ∈ Sn. These coalitions can be determined

following the first part of [15, Lemma 1]. Define

yn(t) =

{
y(t) for t ∈ S1 \ Sn(
1− 1

n

)
y(t) for t ∈ Sn.

Then we have∫
S1

yn dµ =
∫

S1\Sn

y dµ +
∫

Sn

(
1− 1

n

)
y dµ =

∫
S1\Sn

y dµ −
∫

S1\Sn

(
1− 1

n

)
y dµ+

+
∫

S1\Sn

(
1− 1

n

)
y dµ +

∫
Sn

(
1− 1

n

)
y dµ =

1
n

∫
S1\Sn

y dµ +
∫

S1

(
1− 1

n

)
y dµ ≤

≤ 1
n

∫
S1\Sn

y dµ +
(

1− 1
n

) [∫
S1

e dµ+
∫

S2

(x− e) dµ
]
.

As consequence, we can write∫
S1

(yn − e) dµ −
(

1− 1
n

) ∫
S2

(x− e) dµ ≤ 1
n

[∫
S1\Sn

y dµ −
∫

S1

e dµ

]
.

Since −
∫

S1

e dµ belongs to the interior of the negative cone, by absolute continuity of

the integral we have that, for a sufficiently large n,∫
S1\Sn

y dµ −
∫

S1

e dµ� 0

and, consequently ∫
S1

(yn − e) dµ −
(

1− 1
n

) ∫
S2

(x− e) dµ� 0.

Let us fix now one of this integer, no and the corresponding disk, of radius ε, centered

in
∫

S1

(yno − e) dµ −
(

1− 1
no

) ∫
S2

(x− e) dµ contained in the interior of the negative

cone. By the weak Lyapunov’s convexity theorem, there exists a subcoalition H2 ⊆ S2

such that ∥∥∥∥∫
H2

(x− e) dµ −
(

1− 1
no

) ∫
S2

(x− e) dµ
∥∥∥∥ < ε

from which it follows that∫
S1

(yno − e) dµ −
∫

H2

(x− e) dµ� 0

and the conclusion, when y is replaced by yno and S2 by H2.
2

Let us show now that the ex-post core of an atomless economy coincides with the
set of ex-post c-fair allocation.
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Theorem 3.21. Let T be atomless, i.e. T1 = ∅. Assume the interior of IB+ is
nonempty. Assume further that µ-a.a. the vectors et are strictly positive for any state
and ut(ω, ·) is continuous and strictly increasing for any state. Then

Cfair(E) = C(E).

proof: It is enough to prove the statement for an economy with complete information.
Let x be a core allocation and assume that it is not c-fair. Observe that since x

is a core allocation, the monotonicity gives that the feasibility actually guarantees the

equality
∫

T
xdµ =

∫
T
edµ. Moreover, by Lemma 3.20 there exist the coalitions S1 and

S2 with µ(S1) > 0 and the assignment y such that∫
S1

(y − e) dµ �
∫

S2

(x− e) dµ;

ut(y(t)) > ut(x(t)) for a.a. t ∈ S1.

In particular, we can write

1
2

∫
S1

(x+ y) dµ −
∫

S1

e dµ =
1
2

∫
S1

(x− e) dµ +
1
2

∫
S1

(y − e) dµ� 1
2

∫
S1∪S2

(x− e) dµ.

Let ε > 0 be the radius of a disk centered in
1
2

∫
S1

(x+ y) dµ − 1
2

∫
S1∪S2

(x− e) dµ,

which is contained in the interior of the negative cone.
Since the closure of the set{∫

S1

z dµ : ut(y(t)) > ut(x(t)) for a.a. t ∈ S1

}
is convex, it contains the vector

1
2

∫
S1

(x+ y) dµ. So there exists an assignment z

such that ∥∥∥∥∫
S1

(z − e) dµ −
[
1
2

∫
S1

(x+ y) dµ −
∫

S1

e dµ

]∥∥∥∥ < ε

and, consequently,

−v :=
∫

S1

(z − e) dµ − 1
2

∫
S1∪S2

(x− e) dµ� 0.

Again, let ε > 0 choosen in such a way that the disk centered in v and radius ε is fully
contained into int(IB+).

Now, if the set S1 ∪ S2 exhausts T , i.e. µ (T \ (S1 ∪ S2)) = 0, then the integral∫
S1∪S2

(x− e) dµ is zero and
∫

S1

(z − e) dµ� 0 gives the feasibility of z, namely we

violate that x is in the core. We can therefore assume that the set T \ (S1 ∪ S2) is of
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positive µ-measure. By the relative convexity of the range of the integral function over
T , we find a subcoalition S ⊆ T \ (S1 ∪ S2) with∥∥∥∥∥

∫
S

(x− e) dµ− 1
2

∫
T\(S1∪S2)

(x− e) dµ

∥∥∥∥∥ < ε.

Define the assignment s as

s(t) =

{
z(t) for t ∈ S1

x(t) for t ∈ S.

Then ut(s(t)) ≥ ut(x(t)), a.e. in S1 ∪ S and ut(s(t)) > ut(x(t)), a.e. in S1. Moreover∥∥∥∥∫
S1∪S

(s− e) dµ−
(∫

S1

(z − e) dµ− 1
2

∫
S1∪S2

(x− e) dµ
)∥∥∥∥ =∥∥∥∥∥

∫
S

(x− e) dµ− 1
2

∫
T\(S1∪S2)

(x− e) dµ+
1
2

∫
T

(x− e) dµ)

∥∥∥∥∥ < ε.

It follows that
∫

S1∪S
(s− e) dµ� 0, so we can take a vector w � 0 such that

w +
∫

S1∪S
s dµ =

∫
S1∪S

e dµ.

Finally, with the following modification of s

s(t) =

{
z(t) for t ∈ S1

x(t) + w
µ(S) for t ∈ S.

we violate that x is in the core since the coalition S1∪S blocks x via the new assignment
s. Indeed ut(s(t)) > ut(x(t)), a.e. in S1 ∪ S and∫

S1∪S
s dµ =

∫
S1

z dµ+
∫

S
x dµ+ w =

∫
S1∪S

e dµ.

The contradiction concludes the proof.
2

The case of a general DIME, i.e. the case in which the set T1 of large traders is
non-empty, can be now analyzed.

Theorem 3.22. Let the interior of IB+ be nonempty. Assume further that µ-a.a. the
initial endowments et are strictly positive and the utilities ut(ω, ·) are continuous and
strictly increasing for any state. Also assume that ut(ω, ·) is quasi-concave for t ∈ T1.
Then,

CA−fair(E) = CA(E)

proof: The proof follows from Corollary 3.16, Theorem 3.18 and Theorem 3.21. 2
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Remark 3.23. The equivalence between c-fair and core allocations in a large economy
proved with Theorem 3.21 is not surprising. It has been proved for finite dimensional
economy in [17, Theorem 1] as consequence of the core equivalence theorem. What
is interesting to point out in connection with our Theorem 3.21 is that it provides a
direct proof of this equivalence, not related to core equivalence results. This difference
is relevant in the case of many commodities, since the commodity space needs not to be
separable and, consequently, the range of applicability is wider. It was indeed shown in
[29] and [32], that the class of Banach spaces IB such that, under standard assumptions,
any large economy with the commodity space IB exhibits the core-Walras equivalence
theorem is exactly the class of Banach spaces that are separable. So, examples could
be provided of large economies with many commodities for which the core is exactly
made by c-fair allocations despite core-equivalence, and then perfect competition, fails
(see for example the discussion in [9, Remark 3.9]).

The same remark clearly applies to Theorem 3.22. Notice that Theorem 3.22 simply
confirms that, as proved in section 3.5, the mixed market behaves like a large one in
terms of fairness of allocations provided that the power of large traders is nullified by
means of their convexification.

4 Coalition fairness of allocations: the interim stage

In this section we analyze coalition fairness properties of allocations when traders take
their decisions at the interim stage. If this is the case, then clearly one has to take
into account the possibility that agents form coalitions in order to better redistribute
aggregate resources, but also to take some advantage of their private information by
means of a communication system allowing them to share it partially or in full. This
analysis, that will lead to the so called fine notions, requires a detailed description of
the traders’ asymmetric information structure and communication system, since both
elements affect now the equilibrium allocations.

The finite family II := {Ft : t ∈ T} induces a partition (ΘI)I∈II of the space of
agents made of sets ΘI = {t ∈ T : Ft = I}. We assume that each ΘI belongs to T and
moreover that it is of positive measure. Every agent belonging to ΘI is of information
type I and for a coalition γ of support S, we denote by II(S) the set of information
types present in γ, namely I ∈ II(S) ⇔ µ(S ∩ΘI) > 0.

Let us fix the following notation: F(S) :=
∨
{I : I ∈ II(S)} and assume throughout

the sequel of the section that F(T ) = F . Then clearly F(S) represents the joint
information which is present in a coalition S, that is the finer information available to
the members of S when they share their private information. The condition F(T ) = F
means that F does not contain additional events with respect to which no trader has
information. We assume that the information sharing in a coalition does not necessarily
reduce to the full sharing, but may take place by means of more general information
structures. In the spirit of [37], an information structure for a generalized coalition γ
is a family (Ht)t∈S of subalgebras of F such that the set {t ∈ S : Ht = G} ∈ T , for
any subalgebra G of F . If for any agent we also have that Ht lies in between Ft and
F(S), that is Ht represents an information that may be available in γ and it is finer
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than the private information Ft and coarser than the pooled information F(S), then
we say that (Ht)t∈S is a communication system for γ (see [37]).

A communication system is full when for any t we have Ht = F(S).
An event F ∈ F is common knowledge for γ with respect to a communication system

(Ht)t∈S if it belongs to ∧t∈S Ht, i.e. an event that all the members of S are able to
discern according to the given communication system. As it is usual, a communication
system enlarges the field of events that the members of the coalition can distinguish,
but does not produce new information.

Let us denote by Et(f | G) the IPt-conditional expectation of f given the subalgebra
G of F (i.e. the G-measurable random variable having the same mean of f on the
elements of the partition that generates G).

4.1 The notion of fine coalition fair allocation

We introduce now the notion of (Aubin) fine coalition fair allocations namely allocations
for which the absence of envy among coalitions is robust even with respect to the
possibility of communication. A coalition can be envious only in an event that all
members can distinguish using some of the possible communication system. So a kind
of coordination in order to define joint envy is required. Moreover, the evaluation
criterion of envious traders takes into account the conditional expectation with respect
to the new information deriving from their communication.

Definition 4.1. We say that x is an Aubin fine c-fair allocation, we write x ∈
CA−fine

A−fair(E) for short, if: no Aubin coalitions γ1, γ2, no communication system (Ht)t∈S1,
no common knowledge event F ∈ ∧t∈S1 Ht, and no assignment y can be found such that
the conditions

0) γ1 is non-negligible;

1)
∫

γ1

(yω − eω) dµ ≤
∫

γ2

(xω − eω) dµ, ∀ω ∈ F ;

2 ) γ1 + γ2 ≤ 1 µ - a.e. on T,;

3∗) for almost all t ∈ S1, Et(ut(·, y(·, t)) | Ht) > Et(ut(·, x(·)) | Ht) holds pointwise
on F ;

are all fulfilled.

In the case of ordinary participation, the set of fine c-fair allocations will be denoted
by Cfine

fair. As in the ex-post case, differentiated participation do really matter in the
presence of atoms.

Theorem 4.2. Assume the interior of IB+ is nonempty. Assume further that µ-a.a.
the vectors et are strictly positive for any state and ut(ω, ·) is continuous and strictly
increasing for any state. Then, CA−fine

A−fair(E) = Cfine

fair if T is atomless.

proof: One inclusion is obvious. Let x be a fine c-fair allocation. Assume, by con-
tradiction, that it is not Aubin fine c-fair and therefore take the coalitions γ1, γ2, an
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assignment y, a communication system (Ht)t∈S and a common knowledge event F for
which the conditions 0), 1), 2), 3∗) of Definition 4.1 are all satisfied.
We claim that it is possible to find new coalitions

∼
γi and a new assignment

∼
y, such

that: the supports Si are unchanged, the assignment
∼
y is strictly positive on a subset

of S1 of positive measure and all the previous conditions are satisfied by
∼
γi and

∼
y.

First observe that there exists a subset C, with positive µ−measure, of the support
of the Aubin coalition γ1 such that we can further assume y(ω, t) � 0, ∀(ω, t) ∈ F ×
C, without loss of generality. To prove such claim, by continuity of the expectation
operator, find a part C of the support S1 of γ1 and ε ∈]0, 1[ such that

for almost all t ∈ C, Et(ut(·, εy(·, t)) | Ht) > Et(ut(·, x(·)) | Ht) pointwise on F .

Then consider for each ω ∈ F , the following identity:

∫
T
γ1(yω−eω) dµ =

∫
S1\C

γ1yω dµ+
∫

C

γ1

ε

[
εyω+(1−ε)eω

]
dµ−

(∫
S1\C

γ1eω dµ+
∫

C

γ1

ε
eω dµ

)

that can be written as ∫
T
γ1(yω − eω) dµ =

∫
S1

γ̂1(ŷω − eω) dµ

where γ̂1 and ŷ only differ from γ1 and yω on the set C where they take, respectively,
the values

γ1

ε
and εyω + (1− ε)eω.

By setting
∼
γ1 = γ̂1 and

∼
γ2 = γ2, we have that for almost all t ∈ S1, Et(ut(·, ŷ(·, t)) | Ht) >

Et(ut(·, x(·)) | Ht) holds pointwise on F , ŷ � 0 over the set C and
∫
∼
γ1

(
ŷω − eω

)
dµ ≤∫

∼
γ2

(
xω − eω

)
dµ.

Take now, again by continuity, a set B ⊆ C and δ ∈]0, 1[ with the following property

for almost all t ∈ B, Et(ut(·, δŷ(·, t)) | Ht) > Et(ut(·, x(·)) | Ht) pointwise on F .

By setting
∼
y as equal to ŷ except over B where

∼
y = δŷ, we still have that all the

previous conditions are satisfied, but now
∫
∼
γ1

(∼
yω−eω

)
dµ �

∫
∼
γ2

(
xω−eω

)
dµ. Indeed,∫

∼
γ1

(∼
yω − eω

)
dµ =

∫
S1\B

∼
γ1(ŷω − eω) dµ+

∫
B

∼
γ1(δŷω − eω) dµ�

�
∫

S1

∼
γ1(ŷω − eω) ≤

∫
∼
γ2

(
xω − eω

)
dµ.

Finally, since
∼
γ1 and

∼
γ2 can be uniformly approximated by simple functions, we can

find finitely many valued coalitions still denoted by
∼
γi, with support Si, satisfying∫

S1

∼
γ1

(∼
yω − eω

)
dµ �

∫
S2

∼
γ2

(
xω − eω

)
dµ, pointwise on F . By replacing

∼
γi with

∼
γ i
γ̄

where γ̄ is the maximum of
∼
γ1 +

∼
γ2 we see that condition 2) is also satisfied.
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Now, like in the proof of Proposition 3.3, by means of the weak infinite dimensional
version of the Lyapunov’s theorem, we can find two essentially disjoint subcoalitions

Gi ⊆ Si such that
∫

G1

(∼
yω−eω

)
dµ �

∫
G2

(
xω−eω

)
dµ, holds for each ω ∈ F . Moreover,

for almost all t ∈ G1, Et(ut(·,
∼
y(·, t)) | Ht) > Et(ut(·, x(·)) | Ht) pointwise on F .

Consider now a state ωo ∈ F and the corresponding event F (ωo) in the field
∧t∈G1 Ht. Then clearly F (ωo) ⊆ F and so the previous conditions imply a contra-
diction to the fact that the allocation x is fine c-fair 2

Under a suitable set of assumptions, every allocation which is c-fair at the interim stage
is also c-fair at the ex-post stage. In particular, under the assumptions formulated in
Theorems 3.11 and 3.12, it is also individually equitable for each possible realization of
uncertainty.

Theorem 4.3. Assume the interior of IB+ is nonempty. Assume further that µ-a.a.
the vectors et are strictly positive for any state and ut(ω, ·) is continuous and strictly
increasing for any state. Then, CA−fine

A−fair(E) ⊆ CA−fair(E).

proof: Let x be an Aubin fine c-fair allocation and assume that it is not ex-post Aubin
c-fair. Then, in a certain state of nature ω0, by Proposition 3.6, we can assume that

the envious coalition γ1 has full support and therefore we have:
∫

T
γ1(ȳ − e) dµ ≤∫

S2

γ2(x− e) dµ and ȳ �T x.

Define now the function z : Ω× T → IB+ by setting

z(ω, t) =
{
ȳ(t) if ω ∈ Π(ω0)
e(ω, t) if ω /∈ Π(ω0)

Then any zt is F-measurable and, for ω ∈ F := Π(ω0),
∫

T
γ1(zω−eω) dµ ≤

∫
S2

γ2(xω−

eω) dµ.
Since γ1 has full support, the set F is a common knowledge event for γ1. Also

note that the corresponding pooled information is F because of our assumptions. For
ω ∈ F = Π(ω0) we have:

Et(ut(·, z(·, t)) | Ht)(ω) = ut(ω, z(ω, t)) = ut(ω, ȳ(t)) = ut(ω0, ȳ(t)) >

> ut(ω0, x(ω0, t)) = ut(ω, x(ω, t)) = Et(ut(·, x(·)) | Ht)(ω)

and a contradiction. 2
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4.2 Fine c-fair allocations and the fine core

As in the case of ex-post coalition fairness, Definition 4.1 implicitly detects allocations
of the Aubin fine core as defined below. Indeed, if for an allocation x there exist a
generalized coalition γ1, a communication system (Ht)t∈S1 , a corresponding common
knowledge event F ∈ ∧t∈S1 Ht, and an assignment y such that one has, together with
properties 0) and 3∗), also property

1∗∗)
∫

γ1

yω dµ ≤
∫

γ1

eω dµ, ∀ω ∈ F ;

then, by setting γ2 = 0, Definition 4.1 is violated.

Definition 4.4. We say that an allocation x is an Aubin fine core allocation, shortly
x ∈ CA−fine(E), if there exist no Aubin coalition γ1, a communication system (Ht)t∈S1,
a corresponding common knowledge event F ∈ ∧t∈S1 Ht, and an assignment y such that
0), 1∗∗) and 3 ∗) are satisfied.

The previous onservation says that Aubin fine c-fair allocations form a subset
of the Aubin fine core: CA−fine

A−fair(E) ⊆ CA−fine(E). Moreover, if we exclude in the
definition above the possibility of Aubin cooperative behavior and limit coalitions
to be only the ordinary ones, we obtain the concept of fine core defined accord-
ing to [37], which is trivially a superset of CA−fine(E) that we denote by Cfine(E).
Clearly, for complete information economies, the Aubin fine core is the same as the
Aubin core, i.e. CA−fine(E(ω)) = CA(E(ω)), and the fine core is simply the core, i.e.
Cfine(E(ω)) = C(E(ω)).

Remark 4.5. Assume that the interior of IB+ is nonempty. Assume further that µ-
a.a. the vectors et are strictly positive for any state and ut(ω, ·) is continuous and
strictly increasing for any state. Then, in the definition of CA−fine(E) we can be more
demanding replacing condition 0) by 0′). Also, we define the same set CA−fine(E) if
we add in its definition the further condition that the value of γ1 is 1 on the atomless
part of its support.
Consequently, when T is atomless, then CA−fine(E) = Cfine(E). The proof of this
result, similar to the one given for Theorem 4.2 is presented below for completeness.

Theorem 4.6. Assume that the interior of IB+ is nonempty. Assume further that
µ-a.a. the vectors et are strictly positive for any state and ut(ω, ·) is continuous and
strictly increasing for any state. Then, CA−fine(E) = Cfine(E) if T is atomless.

proof: Let x be a fine core allocation. Assume, by contradiction, that it is not in
the Aubin fine core and therefore take an Aubin coalition γ, an assignment y, a com-
munication system (Ht)t∈S and a common knowledge event F for which the blocking
conditions: µ(S) > 0; for almost all t ∈ S, Et(ut(·, y(·, t)) | Ht) > Et(ut(·, x(·)) | Ht)
holds pointwise on F ;

(+)
∫

γ
yω dµ ≤

∫
γ
eω dµ, ∀ω ∈ F ,
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are satisfied. Then there exists a subset C, with positive µ−measure, of the support
of γ such that we can further assume y(ω, t) � 0, ∀(ω, t) ∈ F × C, without loss of
generality.
To prove such claim, by continuity of the expectation operator, find a part C of the
support S of γ and ε ∈]0, 1[ such that

for almost all t ∈ C, Et(ut(·, εy(·, t)) | Ht) > Et(ut(·, x(·)) | Ht) pointwise on F .

Then, because of condition (+) above, multiplying both terms by ε, for ω ∈ F it is
possible to write that∫

S\C
γ εyω dµ+

∫
C
γ[εyω + (1− ε)eω] dµ ≤

∫
S\C

γεeω dµ+
∫

C
γeω dµ

or, by setting, γ̄ := γε on S\C, γ̄ := γ on C and ȳω := yω on S\C, ȳω := εyω +(1−ε)eω
on C, ∫

γ̄
ȳω dµ ≤

∫
γ̄
eω dµ, with ȳ(ω, t) � 0∀(ω, t) ∈ F × C.

So, certainly we assume also that y(ω, t) � 0∀(ω, t) ∈ F×C with C ⊆ S. By continuity,
we find δ ∈]0, 1[ and D ⊆ C with, for almost all t ∈ D,

Et(ut(·, δy(·, t)) | Ht) > Et(ut(·, x(·)) | Ht) pointwise on F

and defining zω := yω on S \D, zω := δyω on D, we have that for any state in F ,

∫
γ
zω dµ =

∫
D
γδyω dµ+

∫
S\D

γyω dµ �
∫

D
γyω dµ+

∫
S\D

γyω dµ ≤
∫

γ
eω dµ.

This means that, possibly replacing y by z, we can further assume that for the inequal-
ities (+) the strict inequality sign � holds true. Now the weak infinite dimensional
version of the Lyapunov theorem, namely{(∫

S
Λ(yω − eω)

)
ω∈F

: Λ µ−measurable, [0, 1]− valued function
}

=

= cl
{(∫

X
(yω − eω)

)
ω∈F

: X µ−measurable, X ⊆ S

}
,

applies and, with reference to the point
(∫

γ
(yω − eω)

)
ω∈F

of int(IBF
−), there exists a

subset X of S such that (∫
X

(yω − eω)
)

ω∈F

∈ int(IBF
−)

and therefore we get a contradiction to the assumption that x is a fine core allocation.
2
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Going back to the general case of a DIME, we have the following result concerning
fine core notions. In [14, Theorem 3.1], whose setting is that of an atomless measure
space of agents with a finite dimensional space of commodities, it is proved that the
fine core is another subset of the ex-post core C(E). For the validity of the result, the
mentioned setting plays a pivotal role. Indeed, it is the assumption of an atomless
space of agents, as well as the fact that the commodity space is finite dimensional, that
permits to apply Vind’s Theorem in the framework of the deterministic economies E(ω)
to block an allocation not in the core by means of a coalition of arbitrarily big measure;
consequently a fine core allocation will also be an ex-post core allocation.

Dealing with a DIME, and in the same spirit of previous Theorem 4.3, the use of
participation rates allows us to overcome difficulties arising from the presence of atoms
and of infinitely many commodities. In particular, participation rates permit to apply
a special form of Vind’s Theorem consisting in the possibility of including, as we are
going to see, each trader in the blocking coalition γ.

Theorem 4.7. Assume the interior of IB+ is nonempty. Assume further that µ-a.a.
the vectors et are strictly positive for any state and ut(ω, ·) is continuous and strictly
increasing for any state. Then, CA−fine(E) ⊆ CA(E).

proof: Let x be in the Aubin fine core and assume x is not in the Aubin ex-
post core. Then there is a state of nature ω0 for which an Aubin coalition γ and

an assignment exist with µ(S) > 0,
∫

γ
yω0 dµ ≤

∫
γ
eω0 dµ and ut(ω0, y(ω0, t)) >

ut(ω0, x(ω0, t)) for almost all t ∈ S. Since xω0 is not an Aubin core allocation of
the deterministic economy E(ω0), it can be blocked by an Aubin coalition α with full

support13, namely we have µ(α) = µ(T ),
∫

α
ȳ dµ ≤

∫
α
eω0 dµ and ut(ω0, ȳ(t) >

ut(ω0, x(ω0, t)) for almost all t ∈ S.
Define now the function z : Ω× T → IB+ by setting

z(ω, t) =
{
ȳ(t) if ω ∈ Π(ω0)
e(ω, t) if ω /∈ Π(ω0)

Then any zt is F-measurable and
∫

α
zω dµ ≤

∫
α
eω dµ. Moreover, since α is of full

support, note that the corresponding pooled information is F because of our assump-
tions.

Because of the F-measurability of ut, ut(·, x(·)) and ut(·, ȳ(·, t)), at this point we
recognize that z is an Aubin fine improvement of x that it is therefore blocked by α.
Since the communication system is the full one, for ω ∈ F = Π(ω0) we have:

Et(ut(·, z(·, t)) | Ht)(ω) = ut(ω, z(ω, t)) = ut(ω, ȳ(t)) = ut(ω0, ȳ(t)) >

> ut(ω0, x(ω0, t)) = ut(ω, x(ω, t) = Et(ut(·, x(·)) | Ht)(ω).

This is a contradiction. 2

13Such result is proved in [7, Theorem 4.13] for finite economies and in [27, Theorem 3.1] for general
mixed markets with finitely many goods. It can also be extended to our present setting.
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The proof of Theorem 4.7 shows that the ex-post Aubin core of a mixed market
includes also the larger set of allocations that cannot be blocked by coalitions of full
support via their full communication system, the one that actually coincides with the
whole information F .

5 Some consequences for competitive allocations

In this section we present c-fairness properties of competitive outcomes of the economy
E . In particular, we study conditions under which it is still true that the only way
to generate allocations which coalitions perceive as fair, for each possible realization
of uncertainty, is by means of competitive market mechanisms. As in the previous
sections, we shall refer to the ex-post stage as well as to the interim stage. Hence,
we shall focus on the notions of ex-post competitive equilibria and rational expectations
equilibria. As it is known from [13] (see also [11]), under some hypotheses these two
concepts coincide; a circumstance that it is not always true.

First of all, let us state a general equivalence theorem between Walrasian and Aubin
Core allocations of the economy with complete information E(ω0) (compare with [9,
Remark 5.1]).

Theorem 5.1. Assume that IB is separable and the interior of IB+ is nonempty. Let
ω0 ∈ Ω be such that: µ-a.a. et(ω0) � 0; µ-a.a. ut(ω0, ·) are continuous, strictly
increasing; for each t ∈ T1, ut(ω0, ·) are strictly quasi-concave. Then

WE(E(ω0)) = CA(E(ω0)).

Let us introduce the set of ex-post competitive equilibria

W(E) := {x |x is an assignment and x(ω, ·) ∈W (E(ω)), ∀ω ∈ Ω }.

For a general differential information economy, by point b) of subsection 3.3 according
to which

W(E) ⊆ {x : x is an assignment and xω ∈ CA−fair(E(ω)), ∀ω ∈ Ω },

and Proposition 3.7, it is clear that

Proposition 5.2. In any DIME E, it is true that W(E) ⊆ CA−fair(E).

Therefore, from Theorem 5.1 it follows that

Corollary 5.3. Let E be a DIME such that IB is separable and the interior of IB+

is nonempty. Assume that for each state ω: µ-a.a. et(ω) � 0; µ-a.a. ut(ω, ·) are
continuous, strictly increasing; for each t ∈ T1, ut(ω0, ·) are strictly quasi-concave.
Then

W(E) = CA−fair(E) = CA(E)14.

14This equivalence result for the set W could also be provided when quasi-concavity is removed from
large traders’ utilities. In this case, the fairness and core notions should be defined with respect to a
different notion of generalized coalition, allowing for non-convexity (see [19]).
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Let us now recall the notion of rational expectations equilibrium. In this context
agents t restrict their consumption choices to (ex-post) budget sets defined as follows:

Bt(ω, p) = {a ∈ IB+ : p(ω) · a ≤ p(ω) · e(ω, t)},

in the state ω and with respect to a prevailing system of prices p belonging to (IB′
+)Ω

15. Moreover, they evaluate choices through a state by state comparison of the condi-
tional expectation of their utility, taking into account both private information and the
information revealed by prices.

We denote by σ(p) the smallest σ-algebra of F that makes the function pmeasurable
(σ(p) represents the information contained in p).

Definition 5.4. A rational expectations equilibrium is a pair (p, x) where p is a price
system, and x is an allocation such that:

i) x(·, t) is (σ(p) ∨ Ft)-measurable, for µ-a.a. t ∈ T ;

ii) x(ω, t) ∈ Bt(ω, p) for each ω ∈ Ω and for µ-a.a. t ∈ T ;

iii) µ-a.e. in T , if y : Ω → IB+ is (σ(p)∨Ft)-measurable and satisfies y(ω) ∈ Bt(ω, p)
for each ω ∈ Ω, then

Et(ut(·, x(·, t)) | σ(p) ∨ Ft) ≥ Et(ut(·, y(·)) | σ(p) ∨ Ft)

pointwise on Ω.

The set of allocations that are rational expectations equilibria for a suitable price is
denoted by RE(E).

Clearly, when Ω reduces to a singleton, i.e. in a complete information framework, the
previous definition gives back the set of Walrasian allocations; we know from [17] that,
in this case, Walrasian, c-fair and Core allocations coincide for perfectly competitive
economies (T atomless). With asymmetric information we remind that the following
results are known:

• For mixed markets:

- RE(E) may be empty ([23], [3]) even when, according to [13, Theorem 3.1],
C(E) is nonempty;

- RE(E) 6⊆ C(E), according to [13, Example 4.2],

- Cfine(E) 6⊆ C(E), according to [14].

• For atomless markets:

- RE(E) = C(E) according to [13, Theorem 4.5];

- Cfine(E) ⊂ C(E), according to [14, Theorem 3.1];
15Here we use standard notation for the topological dual of IB, its positive cone and the duality

mapping. It is assumed that any contingent price has norm equal to one. We also recall the hypothesis
that all state dependent functions are assumed to be F-measurable.
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- Cfine(E) ⊂ RE(E), according to [14, Corollary 3.4].

The above results hold true, each under its suitable (standard) assumptions concerning
continuity, monotonicity, convexity of preferences, for finite dimensional commodity
spaces. The assumption of measurability with respect to agents private information, in
some of the previous cases, is also required.

The final part of the section is devoted to analyze c-fairness of rational expectations
equilibria, extending some of the mentioned results from atomless to mixed economies
with infinitely many commodities.

Given the inclusions that we have already seen, it is clear that:

RE(E) 6⊆ Cfair(E) , RE(E) 6⊆ CA−fair(E).

This is so because a rational expectations equilibrium allocation, which is not necessar-
ily in the ex-post core, a fortiori is not necessarily fair at the ex-post stage. Moreover,
c-fairness at the ex-post stage cannot be guaranteed for rational expectations equilibria
also in the case in which traders use participation rates. Note that, in interim models,
constrained market equilibria are c-fair ([12]) and, in the ex-ante framework, Walrasian
expectations equilibria are c-fair ([21]). Results of this type are usually driven by the
corresponding inclusions valid for complete information economies. Then, it is a sim-
ple remark that rational expectations equilibria which are fully revealing are ex-post
coalition fair. Indeed, in this case, the price generates full information, i.e. σ(p) = F
and, consequently, the expectations reduces to ex-post utility. A similar reasoning can
be applied assuming that the functions u(·, t) are Ft-measurable, to prove that any
rational expectations allocation is ex-post Aubin coalition fair. This is a consequence
of the inclusion RE(E) ⊆ W(E) proved in [13, Theorem 4.3] and Proposition 5.2.

Proposition 5.5. Under the assumption that µ-a.a. ut(·, x) are Ft-measurable,

RE(E) ⊆ CA−fair(E) .

As noticed in [11, Theorem 13] the inclusion CA(E) ⊆ RE(E) can be obtained
under a suitable set of assumptions. Therefore we get the next result that gives back
the original simple idea proposed by [17] in the case of complete information economy.
The equivalence shows the capability of participation rates to overcome difficulties
related to the presence of large traders as well as to the presence of many commodities.

Theorem 5.6. Let E be a DIME such that IB is separable, the interior of IB+ is
nonempty and µ-a.a. ut(·, b) are Ft-measurable. Assume that for any state ω: µ-a.a.
et(ω) � 0; µ-a.a. ut(ω, ·) are continuous, strictly increasing and strictly quasi-concave.
Then

RE(E) = CA−fair(E) = CA(E).

When T is also atomless, then

RE(E) = Cfair(E) = C(E).

Theorem 5.6, for the complete information case, does not require convexity of prefer-
ences for the negligible agents. However in a DIE, such hypothesis plays a key role
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in justifying the inclusion
(
CA(E) =

)
W(E) ⊆ RE(E), and for this reason it appears

also in Corollary 5.7 as well as in the atomless correspondents of Theorem 5.6 and
Corollary 5.7. Without the strict quasi concavity, an ex-post competitive allocation
can be proved to admit a price under which conditions ii) and iii) of the Definition 5.4
of rational expectations equilibrium are satisfied, but the measurability with respect to
(σ(p)∨Ft) is not necessarily true. The role played by strict concavity is mentioned by
Allen in [3]16 and discussed by Kreps in [23, Section 5].

Finally, combining Theorem 4.7 and Theorem 5.6 we have the following.

Corollary 5.7. Let E be a DIME such that IB is separable, the interior of IB+ is
nonempty and µ-a.a. ut(·, b) are Ft-measurable. Assume that for any state ω: µ-a.a.
et(ω) � 0; µ-a.a. ut(ω, ·) are continuous, strictly increasing and strictly quasi-concave.
Then

CA−fine

A−fair(E) ⊆ CA−fine(E) ⊆ RE(E) = CA−fair(E) = CA(E).

6 Concluding remarks and Varian coalition fairness

We further comment below on the main results of the paper and their assumptions.
Moreover, we introduce and briefly discuss an alternative notion of coalition fairness
given in the spirit of Varian’s definition.

We explictly notice that Theorem 4.7 and Corollary 5.7 extend results in [14] to the
case of mixed markets with infinitely many commodities. It is also worthwhile noting
that, since complete information economies represent a particular case of our model,
Theorem 5.6 provides a new characterization of Walrasian equilibria of mixed (and
finite) exchange economies. In particular, the remarks below, dealing with possible
interpretations and/or weakening of assumptions of Theorem 5.6, also cover the special
case of deterministic models.

The first remark just recall the usual interpretation of Aubin blocking mechanisms
given in terms of replica economies. One can introduce, for each positive integer r, the
set Ar = {γ ∈ A : rγ(t) ∈ {0, . . . r}, ∀t ∈ T}, which is formed by all coalitions of the r-
fold replica of the economy E , in which agents of the same type are considered identical
(cfr [25]) and the set AIQ = {γ ∈ A : γ(t) ∈ [0, 1] ∩ IQ, ∀t ∈ T} of Aubin coalitions
with rational values. Denote respectively by Cr

fair(E) and by CE
fair(E), the set of feasible

allocations that are ex-post c-fair with respect to the class Ar and AIQ. The ex-post core
notion defined by AIQ is denoted by CE(E) and called the Edgeworth ex-post core of
the economy E (see [11]). Then, clearly, the inclusions CA−fair(E) ⊆ CE

fair(E) ⊆ CE(E)
hold true.

It is easy to show that CE
fair(E) =

⋂
r≥1 Cr

fair(E). Hence, the following inclusions

16Strict concavity avoids “the phenomenon that the selection of a consumption vector from an agent’s
demand correspondence may reveal additional information to the agent beyond the agent’s private
information and the information conveyed by prices”. This is exactly the way in which strict concavity
is used in the proof of W(E) ⊆ RE(E) (see [13, Theorem 4.3]), to get a unique selection of demand
correspondence in states ω1, ω2 that are indistinguishable with respect to (σ(p) ∨ Ft).
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hold true (see Proposition 5.2):

W (E) ⊆ CA−fair(E) ⊆ CE
fair(E) =

⋂
r≥1

Cr
fair(E) ⊆ CE(E).

Under the assumptions of Corollary 5.3, in each complete information economy it is
true that CA(E(ω0)) = CE(E(ω0)) (see [25]). Then the previous inclusions are actually
equalities and provide a characterization of ex-post competitive equilibria. Similarly,
under the assumption that µ-a.a. the utilities ut(·, x) are Ft-measurable, one obtains
the inclusions (see Proposition 5.5):

RE(E) ⊆ CA−fair(E) ⊆ CE
fair(E) =

⋂
r≥1

Cr
fair(E) ⊆ CE(E)

and, consequently, a corresponding characterization of rational expectation equilibria
when the stronger assumptions of Theorem 5.6 are satisfied. Therefore, summing up,
Aubin c-fair allocations and rational expectations equilibria, can be interpreted as those
allocations that are c-fair in each r-fold replica of the economy E . This interpretation
is close to the one of c-fair allocations of complete information economies given in ([34,
Theorem 4.2]).

Looking at the assumption of a non-empty interior for the positive cone of the com-
modity space required in our main results, it appears that many spaces usually adopted
in applications do not satisfy this assumption. It is then desirable to relax the hypoth-
esis of non emptiness of the interior of IB+, by making some alternative assumptions on
the economy itself. In [25] the equality between Walrasian allocations and Aubin core
is obtained in a complete information economy with a space of agents not necessarily
nonatomic and a commodity space represented by a separable Banach lattice. This is
done by making use of two assumptions, introduced in [30] for the case of nonatomic
economies: the existence of an extremely desirable commodity and the additivity con-
dition. For the special case of an economy with finitely many agents, it is also possible
to use, as an alternative hypothesis, the uniform properness of the functions ut(ω, ·)
since this is sufficient to establish the Aubin core-Walras equivalence state by state as
shown in [6]. Summing up, we can obtain two alternative formulations of the main
results of the paper, stating the corresponding characterizations in a slightly different
setting.

Our final remarks deal with an alternative notion of c-fair allocation given in the
spirit of Varian’s approach. In Definition 3.4, what coalition γ1 envies to γ2 is the net
trade. If the underlying concept of envy concerns directly the resources of γ2, we fall
in a concept of (ex-post) coalition envy-freeness inspired by Varian [34].

Definition 6.1. An allocation x is ex-post Aubin coalition envy-free (or equitable)
in the sense of Varian if there exist no Aubin coalitions γ1 , γ2 ∈ A , no state of
nature ω0 ∈ Ω and no assignment y, such that the conditions 0),

∼
µ(γ1) ≥

∼
µ(γ2),∫

γ1

yω0 dµ ≤
∫

γ2

xω0 dµ and 3) are satisfied. The set of all ex-post Aubin coalition

envy-free allocations is denoted by CA−V−ef (E).
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Assume that for each ω ∈ Ω it is true that: et(ω) = e(ω), that is the total initial
endowment is equally divided among traders in each state of nature. By applying
Proposition 3.2 we see that CA−fair(E) ⊆ CA−V−ef (E).

Proposition 6.2. Let the interior of IB+ be nonempty. Assume that e(ω) is a strictly
positive vector and that the utilities ut(ω, ·) are continuous and increasing, for each
state ω ∈ Ω. Then: CA−fair(E) ⊆ CA−V−ef (E).

proof: Indeed, any x that does not belong to CA−V−ef (E), for a certain state of
nature, due to the equal income hypothesis, is an allocation that belongs to the set χ1 .
Proposition 3.2 says that x /∈ CA−fair(E). 2

Notice also that while Aubin c-fair allocations are automatically weakly Pareto
optimal, this is not the case for the allocations in CA−V−ef (E). To more adhere to
Varian approach, we should define ex-post Aubin c-fair in the sense of Varian, an
allocation which is both weakly Pareto and coalition envy-free in the sense of Varian.
In other words, we should use the following definition.

Definition 6.3. An allocation x is ex-post Aubin c-fair in the sense of Varian (then
we shortly write x ∈ CA−V−fair(E)) if x ∈ CA−V−ef (E) and it is also ex-post weakly
Pareto optimal.

Given the above definition, Proposition 6.2 says that with constant initial endow-
ment CA−fair(E) ⊆ CA−V−fair(E).

Proposition 6.4. Assume that e(ω) is a strictly positive vector, for each state ω ∈ Ω.
Then: {

x ∈ CA−V−ef (E) :
∫

T
x dµ = eµ(T )

}
⊆ CA(E)

proof: Let us suppose, on the contrary, that for a certain state of nature we have

a generalized coalition γ1 and an assignment y such that
∫

γ1

y ≤
∫

γ1

e =
∼
µ(γ1)e and

y �S1 x. Since the set
{∫

γ
h dµ : γ ∈ A

}
is convex, let h be the function (x, 1) and

select γ2 such that the point
∼
µ(γ1)
µ(T )

(∫
T
x dµ, µ(T )

)
of the set

{∫
γ h dµ : γ ∈ A

}
can

be written as
∫
γ2
h dµ . Observe that

∼
µ(γ1) =

∼
µ(γ2) and that

∫
γ1

y dµ ≤
∫

γ2

x dµ, i.e.

that we violate x ∈ CA−V−ef (E). 2

If preferences are strictly monotone, trivially a weakly Pareto allocation uses all of
the initial resources, so the previous Proposition implies the conclusion

CA−V−fair(E) ⊆ CA(E).

The remark above lead to a natural characterization of equal income ex-post compet-
itive equilibria. An allocation x is an equal-income Walrasian equilibrium allocation

41



of the complete information economy E(ω0), if there exists a price p such that x(t)
maximizes ut(ω0, ·) on the set {x : p · x = p · e}, for µ-almost every t ∈ T . When x is a
competitive allocation with equal income of the complete information economy E(ω0),
then it must lie in CA−V−ef (E(ω0)). For, if not, by taking the generalized coalitions
γ1 and γ2 and the assignment y according to Definition 6.1, equal income assumption,

condition
∼
µ(γ1) ≥

∼
µ(γ2), and

∫
γ1

yω0 dµ ≤
∫

γ2

xω0 dµ allow to replicate the argument

in subsection 3.3 b). Consequently, by means of Aubin core equivalence theorem, we
can get what follows.

Proposition 6.5. Let E be a DIME such that IB is separable and the interior of IB+

is nonempty. Assume that e(ω) is a strictly positive vector and that the utilities ut(ω, ·)
are:
- continuous and strictly monotone in each state ω ∈ Ω,
- quasi-concave for each t ∈ T1 and in each state ω ∈ Ω.
Then:

W(E) = CA−V−fair(E).

7 Appendix

We report in this last section the proof of two useful results. The first Lemma is well
known.

Lemma 7.1. Suppose the utility function u is continuous, quasi-concave and strictly
monotone. Suppose that the function g ≥ 0 is integrable over the set of positive measure
S. Then the following is true:

u(g(t)) > u(x), for a. a. t ∈ S, x ≥ 0 ⇒ u(gS) > u(x)

where gS is the average of g over the set S.

proof: The Diestel Uhl mean value theorem says that gS ∈ co[g(S)]; continuity and
quasi-concavity give the convexity and closedness of the upper contour set {z : u(z) ≥
u(x)}. So, g(S) ⊆ {x : u(x) ≥ u(x)} gives co[g(S)] ⊆ {x : u(x) ≥ u(x)} and then
u(gS) ≥ u(x).

By continuity of the preference, one finds a subset B of S of positive measure and
an ε ∈]0, 1[∩Q such that u(εg(t)) > u(x), for t ∈ B. Then, as before, u(εgB) ≥ u(x)
and u(gS\B) ≥ u(x).

Suppose µ(S \B) > 0, so θ = µ(B)
µ(S) < 1. Trivially

θgB + (1− θ)gS\B = gS .

If gB and gS\B are equal, then gB = gS and the assertion follows from the strict
monotonicity that guarantees gB positive and then that u(gB) > u(εgS\B) ≥ u(x). So
suppose they are different. Then, by quasi-concavity, we have u(θεgB + (1− θ)gS\B) ≥
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min {u(εgB), u(gS\B)} ≥ u(x). On the other hand, by strict monotonicity, we can
write

u(gS) = u(θ(1− ε)gB + θεgB + (1− θ)gS\B) > u(θεgB + (1− θ)gS\B) ≥ u(x)

and the conclusion follows. 2

The second one deals with the separability of the consumption averages evaluated
over envied traders.

Lemma 7.2. Let E be a complete information economy and x be an allocation. Let

At = {s ∈ T : ut(xt) < ut(xs )}.

Then the function

t ∈ A→ 1
µ(At)

∫
At

xs dµ(s)

has a separable range R.

proof: Since the function x is strongly measurable, one can assume that its range
x(T ) is separable and clearly

R ⊆ co(x(T )).

The conclusion then follows from the following claim.

Claim If X ⊆ IB is separable, so is co(X).

proof: Suppose X ⊆ E, where E is countable.
First observe that for a subset E ⊆ IB, we can write

co(E) =
⋃

n∈IN

⋃
λ∈Sn−1

{
b ∈ IB : b =

n∑
i=1

λixi, xi ∈ E

}
.

Denote by coIQ(E) the same set where λ is limited to be in Sn−1 ∩ IQ, i.e.

coIQ(E) =
⋃

n∈IN

⋃
λ∈Sn−1∩IQ

{
b ∈ IB : b =

n∑
i=1

λixi, xi ∈ E

}
.

For each subset E ⊆ IB, we have

co(E) ⊆ coIQ(E).

Indeed, given b =
n∑

i=1

λixi, it is enough to take q ∈ Sn−1 ∩ IQ such that, for any i,

|qi − λi| ≤
ε∑

j ‖xj‖

to have that ‖b− z‖ ≤ ε, with z ∈ coIQ(E), z =
n∑

i=1

qixi.
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Now, to obtain the claim just observe that, if E is countable, then each of the sets{
b ∈ IB : b =

n∑
i=1

λixi, xi ∈ E

}

is countable and then coIQ(E) is countable by definition. On the other hand, by the
previous remarks, we have the inclusions

co(X) ⊆ co(E) ⊆ co(E) ⊆ coIQ(E).

2
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