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player weighted potential games when the strategy sets are not bounded sets of not necessarily finite dimensional 
spaces. Significative examples infinite dimensional spaces are provided, together with an application in infinite 
dimensional ones. 
 
Keywords: Non-cooperative game; weighted potential game; uniqueness of Nash equilibrium; fixed point.  
  
 

 
*  Università di Napoli Federico II. Postal address: Department of Economics, Università di Napoli Federico II, 

Via Cintia (Monte S. Angelo), 80126 Napoli, Italy.  
E-mails: francesco.caruso@unina.it and mariacarmela.ceparano@unina.it 

**  Università di Napoli Federico II and CSEF. Postal address: Department of Economics, Università di Napoli 
Federico II, Via Cintia (Monte S. Angelo), 80126 Napoli, Italy. E-mail: morgan@unina.it 





 Table of contents 

 

 

 

 

1. Introduction 

2. Weighted potential games and best replies properties 

3. Uniqueness result 

4. Bilinear w-potential games and applications 

References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction

The set of Nash equilibria of a (weighted) potential game with (weighted) potential
function P coincides with the set of Nash equilibria of a game in which all the payoff
functions of the players are replaced by the (weighted) potential function P ([14]). Any
maximum point of P is a Nash equilibrium of the (weighted) potential game but the
converse is not true in general: it may exist a Nash equilibrium of the potential game
that is not a maximum point of P . Nevertheless, if we assume that the space X of the
strategy profiles is a convex set and P is bounded and concave on X and continuously
differentiable on the interior of X, then any Nash equilibrium of the potential game is
also a maximum point of P [16, Corollary of Theorem 1]. If, in addition, P is strictly
concave and attains a maximum, then the potential game has one and only one Nash
equilibrium which coincides with the maximum point of P . The last result is implied
by Theorem 2 in [17]: in fact, if the potential function P is strictly concave then the
diagonal strict concavity condition holds. However, the strict concavity of P is a very
strong assumption and, incidentally, it is not sufficient to ensure by itself the existence
of a maximum point of P if the strategy sets are not compact.
In this paper we consider a two-player weighted potential game where the strategy sets
are assumed to be real Hilbert spaces and, having in mind to construct algorithms
in order to approach Nash equilibria, we present a uniqueness result (existence of one
and only one Nash equilibrium) which could be useful when the equilibria cannot be
computed explicitly (see Example 3.2) or when P is not strictly concave.
Being the strategy sets real Hilbert spaces, our uniqueness result has not to be compared
with the results where the strategy sets are required to be (lower and/or upper) bounded
sets, a property which is ruled out by our assumption. See, for example, the results in
[17, 12, 10, 5].
The paper is structured as follows.
In Section 2 the concept and some properties of weighted potential games, together with
the differentiability of the best reply functions and a majorization of their Lipschitz
constant, are recalled. Section 3 contains the main results of the paper illustrated by
examples in finite dimensional spaces. In particular, when no one of the two possible
compositions of the best reply functions is a contraction, uniqueness of Nash equilibrium
is shown to be guaranteed for a non-restrictive class of games (Theorem 3.1). Finally,
in Section 4 the class of bilinear weighted potential functions is considered and an
application to a differential game is provided.

2 Weighted potential games and best replies properties

For i ∈ I := {1, 2}, let Xi be a real Hilbert space. We denote by ( · , · )Xi
the inner

product on Xi and by ‖ · ‖Xi
the norm on Xi. Let Fi be a real-valued function defined
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on X := X1 ×X2.
First, we clarify some notations. For any i ∈ I we denote by −i the player different

from i (i.e., {−i} = I\{i}). So, a strategy profile x = (x1, x2) ∈ X could be denoted also
by (xi, x−i) ∈ Xi ×X−i. Furthermore, if i ∈ I and x−i ∈ X−i, by Fi(·, x−i) we denote
the real-valued function xi → Fi(xi, x−i). Within the paper, let Γ be the two-player
game in strategic form where Xi and Fi are respectively the strategy set and the payoff
function of player i, that is Γ := {2, X1, X2, F1, F2}.

The game Γ is said to be a weighted potential game ([14]) if there exist a vector
w = (w1, w2) ∈ R2

++ := {(w1, w2) ∈ R2 : w1 > 0, w2 > 0} and a real-valued function P
defined on X such that

Fi(xi, x−i)− Fi(x′i, x−i) = wi(P (xi, x−i)− P (x′i, x−i)),

for any xi, x′i ∈ Xi and x−i ∈ X−i, for any i ∈ I. P is called weighted potential (w-
potential in short) of Γ. When w1 = w2 = 1, Γ becomes a potential game and P is a
potential.

A useful characterization of weighted potential games is given by the following propo-
sition.

Proposition 2.1 (Theorem 2.1 [9]). The following conditions are equivalent:

(i) Γ is a weighted potential game with w-potential P and weights (wi)i∈I ;
(ii) there exists (hi)i∈I , where hi : X−i → R, such that

Fi(x) = wiP (x) + hi(x−i), for any x ∈ X and i ∈ I.

Now we recall some notations, following for example [13, 8, 2]. When U and V

are Banach spaces, L(U, V ) denotes the (Banach) space of continuous linear operators
defined on U and valued on V and ‖ · ‖L(U,V ) denotes the operator norm of L(U, V ),
U∗ denotes the space of continuous linear operators defined on U and valued on R,
i.e. U∗ = L(U,R), and 〈 · , · 〉U∗×U denotes the duality operation between U∗ and U .
Furthermore, if f is a twice differentiable function f : U → V , we denote by Df the
Fréchet derivative of f and by D2f the second Fréchet derivative of f . Recall that Df
assigns to any u ∈ U an element of L(U, V ) called the derivative of f at u and D2f

assigns to any u ∈ U an element of L(U,L(U, V )) called the second derivative of f at u.
If g is a twice differentiable function from X to R and j, k ∈ I, we denote by Dxj

g the
partial derivative of g with respect to xj and by Dxk

(Dxj
g) the second partial derivative

of g with respect to xj and xk; when k = j the standard notation D2
xj
g := Dxj

(Dxj
g) is

used. Note that Dxjg(x) ∈ X∗j and Dxk
(Dxjg)(x) ∈ L(Xk, X

∗
j ).

The following result is a direct consequence of Proposition 2.1 and gives a necessary
condition for a game to be a weighted potential game when the payoff functions are
twice-continuously differentiable.
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Corollary 2.1. If Γ is a weighted potential game and the payoff functions are twice
continuously differentiable then there exists αi > 0 such that

Dx−i
(Dxi

Fi) = αiDx−i
(Dxi

F−i).

Let Γ be a weighted potential game with P as a w-potential and i ∈ I. We denote
by Bi the best reply correspondence of player i, that is Bi is the set-valued map defined
on X−i by

Bi(x−i) := Arg max
xi∈Xi

Fi(xi, x−i) ⊆ Xi,

i.e., Bi(x−i) = {xi ∈ Xi : Fi(xi, x−i) ≥ Fi(x
′
i, x−i), for any x′i ∈ Xi}. By Proposi-

tion 2.1, Bi(x−i) = Arg maxxi∈Xi
P (xi, x−i). If Bi is (nonempty) single-valued, the

function bi such that {bi(x−i)} := Bi(x−i) is well-defined and called best reply function
of player i.

From now on we assume that Bi is single-valued, for any i ∈ I.

Remark 2.1 If P is strongly concave in any argument, that is if the function P (·, x−i) :

xi ∈ Xi → P (xi, x−i) is strongly concave for any x−i ∈ X−i and any i ∈ I, then Bi is
single-valued, for any i ∈ I [4, Corollary 11.16]. Clearly a function could be strongly
concave in any argument and, at the same time, it could be not concave on X (take, for
example, P defined on R2 by P (x1, x2) = −x21 − x22 − 5x21x

2
2).

Let i ∈ I. In the following we use:

(Ai)

 P is a twice continuously differentiable function on X and the inverse op-
erator [D2

xi
P(x)]−1 : X∗i → Xi exists and is continuous, for any x ∈ X.

Proposition 2.2. Let i ∈ I and assume (Ai). Then the best reply function bi is
continuously differentiable on X−i. Moreover, if λi ∈ [0,+∞[, where

λi := sup
x∈X
‖[D2

xi
P(x)]−1 ◦Dx−i

(Dxi
P)(x)‖L(X−i,Xi)

then bi is Lipschitz continuous with Lipschitz constant no greater than λi.

Proof. The arguments are similar to those used, for example, in [15], where algorithms
were constructed in order to approach a saddle point of two-player zero-sum games.
Let x−i ∈ X−i. In light of the differentiability of P on X and by Proposition 2.1, the
pair (bi(x−i), x−i) satisfies the equation:

DxiP(bi(x−i), x−i) = 0

(see, e.g., [2, Théorème 1.2 p. 102]). Hence, by the Implicit Function Theorem (see,
e.g., [2, Corollaire 5.2 p. 31]), bi is continuously differentiable on X−i. Furthermore,
Dbi(x−i) ∈ L(X−i, Xi) and

Dbi(x−i) = [D2
xi
P(bi(x−i), x−i)]

−1 ◦ [Dx−i
(Dxi

P)(bi(x−i), x−i)]. (1)
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Thus, supx−i∈X−i
‖Dbi(x−i)‖L(X−i,Xi)

≤ λi. By the Mean Value Inequality (see, e.g.,
[2, Corollaire 1.4 p. 19])

‖bi(x′−i)− bi(x′′−i)‖Xi
≤ sup
t∈[0,1]

‖Dbi(tx′−i + (1− t)x′′−i)‖L(X−i,Xi)
‖x′−i − x′′−i‖X−i

≤ λi‖x′−i − x′′−i‖X−i

for any x′−i, x′′−i ∈ X−i. Therefore, if λi ∈ [0,+∞[, then bi is Lipschitz continuous with
Lipschitz constant no greater that λi.

Let i ∈ I and define the function βi : Xi → Xi by

βi(xi) := (bi ◦ b−i)(xi) = bi(b−i(xi)), for any xi ∈ Xi. (2)

Remark 2.2 A strategy x̄i ∈ Xi is a fixed point of βi on Xi if and only if (x̄i, b−i(x̄i))

is a Nash equilibrium of Γ.

We conclude this section with the following result on the derivative of βi.

Proposition 2.3. Assume (Ai) for any i ∈ I. Then, for any i ∈ I, the function βi =

bi ◦ b−i is continuously differentiable on Xi and, for any xi ∈ Xi, Dβi(xi) ∈ L(Xi, Xi)

is defined by

Dβi(xi) =[D2
xi
P(βi(xi), b−i(xi))]

−1 ◦ [Dx−i
(Dxi

P)(βi(xi), b−i(xi))]

◦ [D2
x−i

P(xi, b−i(xi))]
−1 ◦ [Dxi(Dx−iP)(xi, b−i(xi))].

(3)

Moreover, if λ1, λ2 ∈ [0,+∞[, then βi is Lipschitz continuous with Lipschitz constant
no greater than λ, where

λ := λ1 · λ2. (4)

Proof. By the chain rule (see, e.g., [2, p. 14]), βi is continuously differentiable on Xi,
Dβi(xi) = Dbi(b−i(xi)) ◦Db−i(xi) for any xi ∈ Xi, and equality in (3) follows by (1).
Furthermore, in light of Parapraph 2.4 in [2, p. 122]

sup
xi∈Xi

‖Dβi(xi)‖L(Xi,Xi)
≤ λ1 · λ2 = λ,

which implies, as a consequence of the Mean Value Inequality, that

‖βi(x′i)− βi(x′′i )‖Xi
≤ λ‖x′i − x′′i ‖Xi

, for any x′i, x
′′
i ∈ Xi. (5)

Hence, if λ1, λ2 ∈ [0,+∞[, then βi is Lipschitz continuous with Lipschitz constant no
greater that λ.

3 Uniqueness result

In this section assume:
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(H)


Γ is a weighted potential game where X1 and X2 are real Hilbert spaces,
P (w-potential ) satisfies assumption (Ai) for any i ∈ I, and the best reply
Bi is single-valued, for any i ∈ I.

Let λ be defined as in (4) and βi be defined as in (2), for any i ∈ I. When λ < 1, any
βi, for i ∈ I, is a contraction. Then, a well-known Nash equilibrium uniqueness result
is obtained by using the Contraction Mapping Theorem [1, Theorem 7 p. 244].

Proposition 3.1. Assume (H) and λ ∈ [0, 1[. Then Γ has one and only one Nash
equilibrium.

Remark 3.1 When X1 = X2 = R, the strict diagonal dominance condition (used in
[10] in the case where the strategy spaces are X1 = X2 = [0,+∞[) is equivalent to
require1 |Dxi

(Dxj
P)(x)/D2

xi
P(x)| < 1 for any x ∈ R2 and i ∈ I, which implies λ ≤ 1.

Remark 3.2 If λ = 1 nothing can be said about existence or about uniqueness of Nash
equilibrium. Indeed, consider the two-player games with X1 = X2 = R and:

• F1(x1, x2) = −x21/2 + x1x2 and F2(x1, x2) = −x22/2 + x2 + x1x2. This game is a
potential game with P (x1, x2) = −x21/2−x22/2 +x1x2 +x2 and its best replies are
single valued by Remark 2.1. Furthermore, λ = 1 and the game has no equilibria;

• F1(x1, x2) = −x21/2 + x1x2 and F2(x1, x2) = −x22/2 + x1x2. This game is a
potential game with P (x1, x2) = −x21/2 − x22/2 + x1x2. Furthermore, λ = 1 and
each strategy profile (a, a), with a ∈ R, is a Nash equilibrium;

• F1(x1, x2) = −ex2
1 +x1x2 and F2(x1, x2) = −x22/2+2x1x2. This game is a weighted

potential game with P (x1, x2) = −ex2
1−x22/4+x1x2 and weights (w1, w2) = (1, 2).

Furthermore, λ = 1 and the unique Nash equilibrium of the game is the pair
(x∗1, x

∗
2) = (0, 0).

When λ > 1, βi could be not a contraction but the existence of one and only one Nash
equilibrium of the weighted potential game Γ will be guaranteed adding the following
hypothesis:

(G)


There exist i0 ∈ I and γi0 ∈]1,+∞[ such that, for any ϕ ∈ Xi0 , x

′
i0
, x′′i0 ∈

Xi0 and x−i0 ∈ X−i0 , we have:

(Gi0(x′i0 , x
′′
i0 , x−i0)ϕ,ϕ)Xi0

≥ γi0‖ϕ‖
2
Xi0

;

where Gi(x′i, x′′i , x−i) : Xi → Xi is the operator defined as:

Gi(x
′
i, x
′′
i , x−i) :=[D2

xi
P(x′i, x−i)]

−1 ◦Dx−i(DxiP)(x′i, x−i)

◦ [D2
x−i

P(x′′i , x−i)]
−1 ◦Dxi

(Dx−i
P)(x′′i , x−i),

for any x′i, x′′i ∈ Xi, x−i ∈ X−i and i ∈ I.
1If the strict diagonal dominance holds then D2

xi
P(x) 6= 0 for any x ∈ R2.
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Remark 3.3 When X1 = X2 = R the derivatives D2
xi
P and Dx−i

(Dxi
P) are real-

valued functions defined on R2,
[
D2
xi
P(x)

]−1 exists provided that D2
xi
P(x) 6= 0 and[

D2
xi
P(x)

]−1
= 1/D2

xi
P(x). Then (G) holds if there exist i ∈ I and γi > 1 such that

Gi(x
′
i, x
′′
i , x−i) =

Dx−i(DxiP)(x′i, x−i)Dxi(Dx−iP)(x′′i , x−i)

D2
xi
P(x′i, x−i)D

2
x−i

P(x′′i , x−i)
≥ γi,

for any x′i, x′′i ∈ Xi and x−i ∈ X−i.

Now, we introduce the function gδi : Xi → Xi defined by

gδi (xi) := δxi − (δ − 1)βi(xi), (6)

where δ ∈ R and i ∈ I. When δ > 1 we call such a function δ-inverse convex combinator
since in this case xi is a convex combination of gδi (xi) and βi(xi), for any xi ∈ Xi: this
justifies the use of term “inverse”.

Lemma 3.1. Let δ 6= 1. A point x̄i is a fixed point of gδi on Xi if and only if x̄i is a
fixed point of βi on Xi.

Proof. By definition, x̄i ∈ Xi is a fixed point of gδi on Xi if and only if gδi (x̄i) = x̄i, i.e.,
δx̄i − (δ − 1)βi(x̄i) = x̄i which is equivalent to βi(x̄i) = x̄i being δ 6= 1.

Theorem 3.1. Assume (H), (G) and λ ∈]1,+∞[. Then Γ has one and only one Nash
equilibrium.

Proof. Let λ ∈]1,+∞[ and let i0 ∈ I and γi0 > 1 be such that (G) holds. Let gδi0 be the
δ-inverse convex combinator where

δ =

2, if 1 < λ ≤
√

2γi0 − 1

λ2−γi0
λ2−2γi0+1 , if λ >

√
2γi0 − 1.

(7)

Note that δ > 1 since both λ and γi0 are greater than 1. By Remark 2.2 and Lemma 3.1,
Γ has a unique Nash equilibrium if and only if gδi0 has a unique fixed point on Xi0 . Let
x′i0 , x

′′
i0
∈ Xi0 . Then

‖gδi0(x′i0)−gδi0(x′′i0)‖2Xi0
= ‖δ[x′i0 − x

′′
i0 ]− (δ − 1)[βi0(x′i0)− βi0(x′′i0)]‖2Xi0

=δ2‖x′i0 − x
′′
i0‖

2
Xi0

+ (δ − 1)2‖βi0(x′i0)− βi0(x′′i0)‖2Xi0
(8)

− 2δ(δ − 1)(βi0(x′i0)− βi0(x′′i0), x′i0 − x
′′
i0)Xi0

.

By applying the Mean Value Theorem for real-valued functions to the function ϕ defined
by

ϕ(θ) := (βi0(θx′i0 + (1− θ)x′′i0), x′i0 − x
′′
i0)Xi0

, for any θ ∈ [0, 1],

there exists t ∈]0, 1[ such that

(βi0(x′i0)−βi0(x′′i0), x′i0 − x
′′
i0)Xi0

= (Dβi0(tx′i0 + (1− t)x′′i0)(x′i0 − x
′′
i0), x′i0 − x

′′
i0)Xi0

.
(9)
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Note that Dβi0(xi0) = G(βi0(xi0), xi0 , b−i0(xi0)) by (3). Hence, hypothesis (G) and
condition (9) imply that

(βi0(x′i0)− βi0(x′′i0), x′i0 − x
′′
i0)Xi0

≥ γi0‖x′i0 − x
′′
i0‖

2
Xi0

, (10)

that is βi0 is strongly monotone with constant γi0 . Thus, in light of (8), (10) and (5)
we have

‖gδi0(x′i0)− gδi0(x′′i0)‖2Xi0
≤
[
δ2 + (δ − 1)2λ2 − 2δ(δ − 1)γi0

]
‖x′i0 − x

′′
i0‖

2
Xi0

.

Observe that
[
δ2 + (δ − 1)2λ2 − 2δ(δ − 1)γi0

]
< 1 or, equivalently, that

δ + 1 + (δ − 1)λ2 − 2δγi0 < 0. (11)

Indeed, when 1 < λ ≤
√

2γi0 − 1 we have δ = 2 and then inequality (11) becomes
λ2 − 4γi0 + 3 < 0 that is satisfied since

√
4γi0 − 3 >

√
2γi0 − 1, being γi0 > 1.

Instead, when λ >
√

2γi0 − 1, factoring out δ in inequality (11), we get

δ(λ2 − 2γi0 + 1) < λ2 − 1,

that is satisfied since γi0 > 1.
Thus, gδi0 defined in (6) is a contraction when δ is given by (7) and therefore Γ has one
and only one Nash equilibrium.

Let us note that condition λ ∈]1,+∞] :=]0,+∞[∪{+∞} and hypothesis (G) are
related. Indeed:

Proposition 3.2. If (G) holds, then λ ∈]1,+∞].

Proof. Without loss of generality, suppose that (G) holds with i0 = 1. Let ϕ ∈ X1 \{0},
x′1, x

′′
1 ∈ X1 and x2 ∈ X2. Hypothesis (G) ensures that

(G1(x′1, x
′′
1 , x2)ϕ,ϕ)X1

> ‖ϕ‖2X1
. (12)

In light of the Cauchy-Schwarz inequality and the definition of operator norm

(G1(x′1, x
′′
1 , x2)ϕ,ϕ)X1 ≤ ‖G1(x′1, x

′′
1 , x2)‖L(X1,X1)

‖ϕ‖2X1
. (13)

Define the operators

A(x′1, x2) := [D2
x1
P(x′1, x2)]−1 ◦Dx2

(Dx1
P)(x′1, x2) ∈ L(X2, X1)

B(x′′1 , x2) := [D2
x2
P(x′′1 , x2)]−1 ◦Dx1

(Dx2
P)(x′′1 , x2) ∈ L(X1, X2).

By Parapraph 2.4 in [2, p. 122], Proposition 2.2 and (4)

‖G1(x′1, x
′′
1 , x2)‖L(X1,X1)

≤ ‖A(x′1, x2)‖L(X2,X1)
‖B(x′′1 , x2)‖L(X1,X2)

≤ λ1λ2 = λ.
(14)

Hence, In light of (12)-(14), we have

λ‖ϕ‖2X1
≥ ‖G1(x′1, x

′′
1 , x2)‖L(X1,X1)

‖ϕ‖2X1
> ‖ϕ‖2X1

,

that is λ ∈]1,+∞].
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Remark 3.4 In Theorem 3.1 hypothesis (G) cannot be dropped, as shown in the fol-
lowing example.

Example 3.1 Let X1 = X2 = R, F1(x1, x2) = −ex2
1 + 3x1x2 and F2(x1, x2) = −x22/2 +

3x1x2. This game is a potential game with potential P (x1, x2) = −ex2
1 − x22/2 + 3x1x2.

Moreover, D2
x1
P(x) = −2ex

2
1(1 + 2x21), Dx−i(DxiP)(x) = Dx1(Dx2P)(x) = 3 and

D2
x2
P(x) = −1, for any x ∈ R2. So,

λ = 3 · sup
x1∈R

3

|−2ex
2
1(1 + 2x21)|

=
9

2

and G1(1, x′′1 , x2) = G2(x′2, x
′′
2 , 1) = 9/(6e) < 1 for any x′′1 , x′2, x′′2 ∈ R. Hence, for any

i ∈ I there does not exist γi > 1 such that (G) holds. Such a game has the following
three Nash equilibria: (−a,−3a), (0, 0), (a, 3a), with a =

√
ln 9− ln 2 (the first and the

third are maximum points of P , the second is not).

Remark 3.5 Theorem 3.1 crucially depends on the smoothness of the potential but note
that it is also the case of the results in [16]: see Remarks in [16, p. 226] for examples
where the uniqueness of Nash equilibrium is not guaranteed when P is not smooth even
if strictly concave.

Assume now that X1 = X2 = R. The next Proposition explores how the hypotheses
of Theorem 3.1 are related to the existence of maximum points of the w-potential .

Proposition 3.3. Under the assumptions of Theorem 3.1 with X1 = X2 = R, P does
not admit a maximum point on R2 (and, therefore, the unique Nash equilibrium of Γ is
not a maximum point of the w-potential P ). Moreover P is not strictly concave.

Proof. First, let i0 ∈ I and γi0 > 1 be such that (G) holds and let x = (xi0 , x−i0) ∈ R2.
Choosing x′i0 = x′′i0 = xi0 , by Remark 3.3:

Gi0(xi0 , xi0 , x−i0) =
[Dx−i0

(Dxi0
P)(xi0 , x−i0)]2

D2
xi0
P(xi0 , x−i0)D2

x−i0
P(xi0 , x−i0)

≥ γi0 > 1,

that is

D2
xi0
P(xi0 , x−i0)D2

x−i0
P(xi0 , x−i0)− [Dx−i0

(Dxi0
P)(xi0 , x−i0)]2 < 0,

i.e., the Hessian matrix of P is indefinite at x. As x is arbitrary, we have that P does
not attain a maximum in R2 (see, e.g., [6, Problem 1.5 p. 279]) and P is not strictly
concave on R2. (see, e.g.,[6, Theorem 2.18 p. 260]).

Remark 3.6 The following example illustrates a class of games which satisfies the
assumptions of Theorem 3.1 and where best replies and the Nash equilibria could not
be computed explicitly. However, by applying Theorem 3.1, one can conclude that the
game has one and only one Nash equilibrium.
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Example 3.2 Let Γ be a weighted potential game with X1 = X2 = R and P defined
for any x ∈ R2 by:

P (x) = f1(x1) + f2(x2) + bx1x2, (15)

where b ∈ R \ {0} and fi is twice continuously differentiable for any i ∈ I. Then
D2
xi
P(x) = D2fi(xi) and Dx−i(DxiP)(x) = b.

For any i ∈ I, define Mi := − infxi∈RD
2fi(xi), mi := − supxi∈RD

2fi(xi) and assume:

(i) mi > 0;
(ii) b2

M1M2
> 1.

By (i), D2
xi
P(x) ≤ supxi∈RD

2fi(xi) = −mi < 0; hence P is strongly concave in any
argument and the best replies are single-valued, so (H) is satisfied. Since

λi = sup
x∈R2

∣∣∣∣Dx−i(DxiP)(xi, x−i)

D2
xi
P(xi, x−i)

∣∣∣∣ =
|b|

infx∈R2 |D2
xi
P(xi, x−i)|

=
|b|
mi

,

then λ = λ1λ2 = b2

m1m2
> b2

M1M2
> 1 in light of (ii). Hence λ ∈]1,+∞[. Moreover, by

(ii), for any x′1, x′′1 , x′2, x′′2 ∈ R:

G1(x′1, x
′′
1 , x
′
2) = G2(x′2, x

′′
2 , x
′
1) =

b2

D2f1(x′1)D2f2(x′2)
≥ b2

M1M2
> 1.

Hence, (G) holds. Then, in light of Theorem 3.1, Γ has one and only one Nash equilib-
rium.

In particular, conditions (i)-(ii) are satisfied when we consider (15) with b = −12

and fi(xi) = 1/(1 + x2i )− 4x2i + xi for any xi ∈ R and i ∈ I, that is

P (x1, x2) =
1

1 + x21
+

1

1 + x22
− 4x21 + x1 − 4x22 + x2 − 12x1x2.

Indeed, (i)-(ii) hold since 0 < 15/2 = mi < Mi = 10 for any i ∈ I and b2/(M1M2) =

36/25.

4 Bilinear weighted potential games and applications

Now, we present an application of Theorem 3.1 when Γ is a bilinear weighted potential
game, i.e. when P is defined on X1 ×X2 by

P (x1, x2) = −a1(x1, x1)− a2(x2, x2) + b(x2, x1) + L1(x1) + L2(x2) + c, (16)

where X1 and X2 are real Hilbert spaces, a1 : X1 × X1 → R, a2 : X2 × X2 → R and
b : X2 ×X1 → R are bilinear continuous operators, L1 : X1 → R and L2 : X2 → R are
linear continuous operators and c ∈ R.
Furthermore, for any i ∈ I, assume that ai is symmetric and that there exists αi ∈ R++

such that
ai(xi, xi) ≥ αi‖xi‖2Xi

, for any xi ∈ Xi. (17)
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Operators a1, a2 and b define the linear continuous operators A1 ∈ L(X1, X
∗
1 ), A2 ∈

L(X2, X
∗
2 ) and B ∈ L(X2, X

∗
1 ), respectively, such that

ai(x
′
i, x
′′
i ) = 〈Aix′i, x′′i 〉X∗

i ×Xi
, for any x′i, x

′′
i ∈ Xi and i ∈ I, (18)

b(x2, x1) = 〈Bx2, x1〉X∗
1×X1

, for any x1 ∈ X1 and x2 ∈ X2. (19)

Hence, P is twice continuously differentiable on X and

Dx1
P(x) = −2A1x1 +Bx2 + L1, D2

x1
P(x) = −2A1, Dx2

(Dx1
P)(x) = B

Dx2P(x) = −2A2x2 +Btx1 + L2, D2
x2
P(x) = −2A2, Dx1(Dx2P)(x) = Bt,

where Bt := B∗J and B∗ is the adjoint of B and J is the natural embedding of H
into H∗∗ (see, e.g., VI.2.1 and II.3.18 in [8]). Therefore, the best replies are single-
valued since P is strongly concave. In light of Lax-Milgram Theorem (see, e.g., [4,
Example 26.9]) the operators A1 and A2 are invertible, so (H) is satisfied. Moreover,
λ1 = 1

2‖A
−1
1 ◦B‖L(X2,X1)

< +∞, λ2 = 1
2‖A

−1
2 ◦Bt‖L(X1,X2)

< +∞ and

G1(x′1, x
′′
1 , x2) =

1

4
[A−11 ◦B ◦A

−1
2 ◦Bt], for any x′1, x

′′
1 ∈ X1 and x2 ∈ X2;

G2(x′2, x
′′
2 , x1) =

1

4
[A−12 ◦Bt ◦A

−1
1 ◦B], for any x1 ∈ X1 and x′2, x

′′
2 ∈ X2.

Therefore, hypothesis (G) holds when there exists γ > 1 such that

([A−11 ◦B ◦A
−1
2 ◦Bt]ϕ,ϕ)X1

≥ 4γ‖ϕ‖2X1
, for any ϕ ∈ X1;

or

([A−12 ◦Bt ◦A
−1
1 ◦B]ϕ,ϕ)X2

≥ 4γ‖ϕ‖2X2
, for any ϕ ∈ X2.

When the strategy sets of both players coincide and the operators a1, a2 and b are
linear functions of the inner product of the Hilbert space, (G) becomes easy to prove, as
illustrated in the following proposition.

Proposition 4.1. Let X1 = X2 = H be a real Hilbert space and P defined as in (16)
with

ai(x
′
i, x
′′
i ) = αi · (x′i, x′′i )H , for any x′i, x

′′
i ∈ H and i ∈ I, (20)

b(x2, x1) = ρ · (x2, x1)H , for any x1, x2 ∈ H, (21)

where α1, α2 ∈ R++ and ρ ∈ R.
Assume that ρ2

α1α2
> 4. Then, Γ has one and only one Nash equilibrium.

Proof. Let ϕ ∈ H. Then Btϕ ∈ H∗; moreover in light of the definitions of B∗ and J ,
and by (19) and (21):

〈Btϕ, x2〉H∗×H = 〈B∗Jϕ, x2〉H∗×H = 〈Jϕ,Bx2〉H∗∗×H∗

= 〈Bx2, ϕ〉H∗×H = ρ · (x2, ϕ)H , for any x2 ∈ H.
(22)
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Consider the operator A−12 ∈ L(H∗, H). Then, A−12 (Btϕ) is the unique x2 ∈ H such
that A2x2 = Btϕ, that is 〈A2x2, k〉H∗×H = 〈Btϕ, k〉H∗×H for any k ∈ H. In light of
(18), (20) and (22)

α2 · (x2, k)H = ρ · (k, ϕ)H , for any k ∈ H;

so A−12 (Btϕ) = x2 = ρ
α2
ϕ.

The operator B(A−12 (Btϕ)) ∈ H∗ is defined on H by:

〈B(A−12 (Btϕ)), h〉H∗×H =
ρ2

α2
· (ϕ, h)H , for any h ∈ H. (23)

Finally, consider the operator A−11 ∈ L(H∗, H). Then, A−11 (B(A−12 (Btϕ))) is the unique
x1 ∈ H such that A1x1 = B(A−12 (Btϕ)), i.e. 〈A1x1, h〉H∗×H = 〈B(A−12 (Btϕ)), h〉H∗×H

for any h ∈ H. Therefore, by (23)

α1 · (x1, h)H =

(
ρ2

α2
ϕ, h

)
H

, for any h ∈ H;

so A−11 (B(A−12 (Btϕ))) = x1 = ρ2

α1α2
ϕ. Hence, (G) holds since

([A−11 ◦B ◦A
−1
2 ◦Bt]ϕ,ϕ)H =

ρ2

α1α2
‖ϕ‖2H , for any ϕ ∈ H,

and ρ2

α1α2
> 4. Then, Γ has one and only one equilibrium by Theorem 3.1.

Proposition 4.1 allows to prove the existence of a unique open-loop Nash equilibrium
(see, e.g., [3, 7, 11]) of the following differential game.

Example 4.1 Consider a two-player differential game with state equation given by

ẋ(t) = u1(t) + u2(t)−mx(t), x(0) = x0, (24)

where t ∈ [0, T ], T ∈]0,+∞[, x is continuously differentiable on [0, T ], u1, u2 ∈ U :=

L2([0, T ]), m ∈ R++ and x0 ∈ R++.
Player i, i ∈ I, has an instantaneous profit at time t equal to

πi(x(t), u1(t), u2(t)) = x(t)− αi[ui(t)]2 + ρu1(t)u2(t),

where α1 > 0, α2 > 0 and ρ ∈ R. So, player i’s objective functional is

Ji(x, u1, u2) =

∫ T

0

e−rtπi(x(t), u1(t), u2(t)) dt, (25)

where r ≥ 0 is the common discount rate. The differential game (24)-(25) is similar to
Example 7.1 in [7] which describes a situation where two individuals invest in a public
stock of knowledge (see also Section 9.5 in [7]).
The solution to the first-order differential equation (24) is

x(t) = x0e
−mt + e−mt

∫ t

0

[u1(s) + u2(s)]ems ds. (26)
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Denote by Fi the real-valued function defined on U × U obtained by substituting (26)
in (25), that is

Fi(u1, u2) :=

∫ T

0

e−rt
[
x0e
−mt + e−mt

∫ t

0

[u1(s) + u2(s)]ems ds

]
dt

−
∫ T

0

e−rt{αi[ui(t)]2 − ρu1(t)u2(t)} dt.

The game Γ = {2, U, U, F1, F2} is a potential game with potential

P (u1, u2) = F1(u1, u2)−
∫ T

0

e−rtα2[u2(t)]2 dt.

Such a potential belongs to the class of functions considered in (16), where:

ai(u
′
i, u
′′
i ) = αi

∫ T

0

e−rtu′i(t)u
′′
i (t) dt for any u′i , u

′′
i ∈ U and i ∈ I; (27)

b(u2, u1) = ρ

∫ T

0

e−rtu1(t)u2(t) dt for any u1, u2 ∈ U ; (28)

Li(ui) =

∫ T

0

e−(r+m)t

[∫ t

0

emsui(s) ds

]
dt for any ui ∈ U ;

c =

∫ T

0

x0e
−(r+m)t dt.

Note that the operators ai and b in (27)-(28) are of the same type of (20)-(21) where
H = U and U is endowed with the inner product2 defined by

(u1, u2)U :=

∫ T

0

e−rtu1(t)u2(t) dt, for any u1, u2 ∈ U. (29)

Hence, arguing as in Proposition 4.1 we can conclude that the differential game defined
by (24)-(25) has one and only one open-loop Nash equilibrium if ρ2

α1α2
> 4.
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