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Abstract 
In one-leader one-follower two-stage games, also called  Stackelberg games, multiplicity of Subgame Perfect 
Nash Equilibria (henceforth SPNE) arises  when the best reply correspondence of the follower is not a single-
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1 Introduction

Throughout the paper, we consider a one-leader one-follower two-stage continuous non-
cooperative game Γ, also called Stackelberg game: the players have a continuum of
actions and one player acting in the second stage makes a choice after having observed
the choice taken by one player acting in the first stage. As usual, we refer to the player
moving in the second stage as the follower and to the player moving in the first stage
as the leader.
We denote by X and L the set of actions and the payoff function of the leader, respec-
tively, and by Y and F the set of actions and the payoff function of the follower, respec-
tively, with L and F real-valued functions defined on X×Y . A strategy for the follower
is a function from X to Y , so the set of follower’s strategies is Y X := {ϕ | ϕ : X → Y }.
The target of each player is to maximize his payoff function.
The solution concept we consider is the subgame perfect Nash equilibrium concept (SPNE
for short), a well-known refinement of the Nash equilibrium widely used in dynamic
games ([39]; see also, for example, [20, 28]).
Multiple SPNEs could come up when the optimal reaction of the follower to any choice
of the leader is not always unique (i.e. the follower’s best reply correspondence is not
single-valued). So, we introduce a constructive method in order to select an SPNE by
using a learning approach with the following features:

(i) on the one hand, it has the advantage of relieving the leader of learning the follower’s
best reply correspondence and it allows to overcome the difficulties deriving from the
possible non single-valuedness of the best reply correspondence of the follower;

(ii) on the other hand, it has a behavioral interpretation that covers various physical,
physiological, psychological, and cognitive aspects of decision making processes.

In fact, we recursively define a sequence (Γn)n of Stackelberg games in which the fol-
lower’s best reply correspondence is single-valued (i.e., a sequence of classical Stackelberg
games, see [43, 4]) and a sequence of strategy profiles (xn, ϕn)n such that (xn, ϕn) ∈
X × Y X is an SPNE of Γn for any n ∈ N: the payoff functions of both players in Γn

are obtained by subtracting to the payoff functions of Γ a quadratic term depending
on the SPNE reached in Γn−1. Consequently (xn, ϕn), SPNE of Γn, is an update of
(xn−1, ϕn−1), SPNE of Γn−1. It will be shown that the limit of such sequence of SPNEs
generates an SPNE of Γ.
The quadratic term represents a physical and behavioral cost to move, embedding the
idea that in real life changing an action or improving the quality of actions has a cost
([3, 2]). The mathematical tools underlying costs to move involve the proximal point
methods, a class of optimization techniques based on the Moreau-Yosida regularization
([29, 27, 36], see also [1] and the references therein). Such methods have already been
used to construct Nash equilibria in one-stage games (see, for example, [18, 17, 32, 2])
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and to define a new Nash equilibrium refinement for one-stage games when there is
uncertainty related to players’ strategies (see [6]).
To the best of our knowledge, a learning method based on costs to move has never
been used before to construct an SPNE in Stackelberg games, whereas a first attempt
to approach an SPNE in a constructive way in Stackelberg games is due to Morgan
and Patrone (2006) where Tikhonov regularization ([41]) has been exploited. Neverthe-
less, although such a regularization allows to generate a sequence of games where the
follower’s best reply correspondence is single-valued, the method used in [31] does not
display a behavioral interpretation.
We emphasize that the idea we propose in order to approach an equilibrium is in the
same spirit of the theory of equilibrium refinements for normal form games based on
perturbations of the data of the game (see, for example, [44, 19, 38, 33, 34, 21, 14]).

The paper is structured as follows. In Section 2 the method used to approach an
SPNE is formulated and further detailed interpretations are provided. Results about the
existence of an SPNE achievable via the above mentioned method are presented in Sec-
tion 3. Connections with the method proposed in [31] and with other solution concepts
for Stackelberg games are provided in Section 4. Finally, in Section 5 conclusions and
possible directions for future research are discussed. An Appendix contains the main
computations of the numerical examples.

2 Constructive procedure and interpretation

Let Γ be a Stackelberg game. We use the notation (X,Y, L, F ) to refer to Γ, in order
to focus on the relevant features of the game, pointing out that (X,Y, L, F ) is not to be
understood as the game given in normal form.
Recall that a strategy profile (x̄, ϕ̄) ∈ X×Y X is an SPNE of Γ if the following conditions
are satisfied:

(SG1) for each choice x of the leader, the follower reacts maximizing his payoff function,
i.e. for any x ∈ X:

F (x, ϕ̄(x)) ≥ F (x, y), for any y ∈ Y, (1)

or, equivalently, ϕ̄(x) ∈ Arg maxy∈Y F (x, y);

(SG2) the leader maximizes his payoff function taking into account his hierarchical ad-
vantage, i.e.

x̄ ∈ Arg max
x∈X

L(x, ϕ̄(x)). (2)

Denoting by M the set-valued map that associates with each x ∈ X the set M(x) of
follower’s best responses to x, that is

M(x) := Arg max
y∈Y

F (x, y), (3)
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condition (SG1) is equivalent to require that ϕ̄(x) ∈M(x) for any x ∈ X. The set-valued
map M is the so-called follower’s best reply correspondence. When M is a single-valued
map, i.e. M(x) = {m(x)} for any x ∈ X, the function m is called follower’s best reply
function.
Before presenting a constructive procedure in order to select an SPNE when the best
reply correspondence M is not known to be single-valued, we define a class of games for
which such an SPNE is achievable through this procedure.

Definition 2.1 A Stackelberg game Γ = (X,Y, L, F ) belongs to the family G if the
following assumptions are satisfied:

(A1) X is a nonempty compact subset of a Euclidean space X with norm ‖·‖X;

(A2) Y is a nonempty convex and compact subset of a Euclidean space Y with norm
‖·‖Y;

(L1) L is upper semicontinuous on X × Y ;

(L2) L(x, ·) is lower semicontinuous on Y , for any x ∈ X;

(F1) F is upper semicontinuous on X × Y ;

(F2) for any (x, y) ∈ X × Y and for any sequence (xk)k ⊆ X converging to x there
exists a sequence (ỹk)k ⊆ Y converging to y such that

lim inf
k→+∞

F (xk, ỹk) ≥ F (x, y);

(F3) F (x, ·) is concave on Y , for any x ∈ X.

Remark 2.1 (on discontinuity) Requiring (F1)-(F3) is weaker than requiring the conti-
nuity of F . Indeed, the function F defined on X×Y , where X = [1, 2] and Y = B((1,0),1)

(i.e. Y is the closed ball in R2 centered in (1, 0) with radius 1), by

F (x, (y1, y2)) =

−
y22
2y1

x, if (y1, y2) 6= (0, 0)

0, if (y1, y2) = (0, 0)

satisfies (F1)-(F3) but F (x, ·) is not lower semicontinuous at (0, 0), for any x ∈ [1, 2],
as shown in the Appendix.

Remark 2.2 (on variational convergences) Assumptions (F1)-(F2) have implications
in term of Γ-convergence or epiconvergence (see, for example, [1, 13]). Indeed, let x ∈ X
and let (xk)k ⊆ X be a sequence converging to x and consider the following real-valued
functions defined on Y by

Wk(y) = F (xk, y), for any k ∈ N,

W (y) = F (x, y).
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Then the sequence of functions (Wk)k Γ+-converges toW (that is, (−Wk)k epiconverges
to −W ).

In the following remark some properties of the family G are stated. The proofs
can be obtained by using Γ-convergence results (see, for example, Proposition 6.16 and
Proposition 6.21 in [13]).

Remark 2.3 (on properties of G) Assume (X,Y, U, V ) ∈ G and (X,Y,W,Z) ∈ G.

(i) The game (X,Y, hU, kV ) ∈ G for any h, k ≥ 0.

(ii) If Ψ and Φ are real-valued functions defined on R with Ψ continuous and Φ increasing
and concave, then the game (X,Y, (Ψ ◦ U), (Φ ◦ V )) ∈ G.

(iii) If Z is continuous, then the game (X,Y, (U +W ), (V + Z)) ∈ G.

The Costs to Move Procedure (CM) defined below illustrates the learning method
that we use to construct recursively a sequence of games (Γn)n and a sequence of strategy
profiles (x̄n, ϕn)n.

Procedure (CM)

Fix an initial point (x̄0, ȳ0) ∈ X × Y and define for any n ∈ N

(Sn)


Γn = (X,Y, Ln, Fn)

{ϕn(x)} = Arg maxy∈Y Fn(x, y), for any x ∈ X

x̄n ∈ Arg maxx∈X Ln(x, ϕn(x))

where for any (x, y) ∈ X × Y
Fn(x, y) := F (x, y)− 1

2γn−1
‖y − ϕn−1(x)‖2Y

Ln(x, y) := L(x, y)− 1
2βn−1

‖x− x̄n−1‖2X,

with (γn)n∈N∪{0} ⊆]0,+∞[ and limn→+∞ γn = +∞,
(βn)n∈N∪{0} ⊆]0,+∞[ and limn→+∞ βn = +∞,

and ϕ0(x) := ȳ0 for any x ∈ X.

Procedure (CM) is well-defined when Fn(x, ·) has a unique maximizer on Y , for any
x ∈ X and for any n ∈ N, and when Ln(·, ϕn(·)) admits a maximizer on X, for any
n ∈ N. For the class of games introduced in Definition 2.1 such properties are satisfied,
as it is proved in the next proposition.

Proposition 2.1. Assume that Γ ∈ G. Then, Procedure (CM) is well-defined and ϕn
is a continuous function on X, for any n ∈ N.

Proof. We prove the result by induction on n. Let n = 1. By Remark 2.3(iii), Γ1 ∈ G.
Moreover F1(x, ·) is strictly concave for any x ∈ X, therefore ϕ1(x) is well-defined
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and the follower’s best reply correspondence in Γ1 is single-valued. Since Γ1 ∈ G, in
particular

(a1) F1 is upper semicontinuous on X × Y ,

(b1) for any (x, y) ∈ X × Y and for any sequence (xk)k ⊆ X converging to x, there
exists a sequence (ỹk)k ⊆ Y converging to y such that

lim inf
k→+∞

F1(xk, ỹk) ≥ F1(x, y).

Conditions (a1) and (b1) are sufficient to guarantee that limk→+∞ ϕ1(xk) = ϕ1(x) for
any sequence (xk)k converging to x, i.e. that ϕ1 is continuous (see, for example, Propo-
sition 5.1 in [30]). This fact and the upper semicontinuity of L1 ensure that x̄1 is
well-defined. Hence, the base case is proved.
Assume that the result holds for n > 1, so the strategy profile (x̄n, ϕn) is well-defined
and ϕn is a continuous function. In light of Remark 2.3(iii), Γn+1 ∈ G since ϕn is
continuous. Furthermore Fn+1(x, ·) is strictly concave for any x ∈ X, so ϕn+1(x) is
well-defined and ϕn+1 is the follower’s best reply function in Γn+1. As Γn+1 ∈ G, then

(an+1) Fn+1 is upper semicontinuous on X × Y ,

(bn+1) for any (x, y) ∈ X × Y and for any sequence (xk)k ⊆ X converging to x, there
exists a sequence (ỹk)k ⊆ Y converging to y such that

lim inf
k→+∞

Fn+1(xk, ỹk) ≥ Fn+1(x, y).

By (an+1) and (bn+1) it follows that ϕn+1 is continuous (again in light of, for example,
Proposition 5.1 in [30]). Hence x̄n+1 is well-defined, since Ln+1 is upper semicontinuous.
So the inductive step is proved and the proof is complete.

Note that assumption (L2) in the definition of the family G is unnecessary in the
proof of Proposition 2.1. We assumed Γ ∈ G in the proposition only for simplicity of
exposition.

Interpretation of the procedure At the generic step (Sn) of the procedure, the
follower chooses his strategy ϕn taking into account his previous strategy ϕn−1. In
making such a choice, he finds an action that compromises between maximizing F (x, ·)
and being near to ϕn−1(x), for any x ∈ X. The latter purpose is motivated according
to an anchoring effect :

“agents have a (local) vision of their environment which depends on their current

actions. Each action is anchored to the preceding one, which means that the

perception the agents have of the quality of their subsequent actions depends on

the current ones. In economics and management, one may think of actions as

routines, ways of doing, while costs to change reflect the difficulty of quitting a

routine or entering another one or reacting quickly.” ([2, p.1066])
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Such an anchoring effect is formulated by subtracting a quadratic cost to move that
reflects the difficulty of changing the previous action. The coefficient γn−1 is linked
to the per unit of distance cost to move of the follower and it is related to the trade-
off parameter between maximizing F (x, ·) and minimizing the distance from ϕn−1(x).
Since the same arguments apply for the preceding steps until going up to step (S1), it
follows that ϕn(x) as well as the limit of ϕn(x) embed the willingness of being near to
ȳ0. Analogous observations hold also for the leader, who chooses an action having in
mind to be near to his previous choices.
The use of proximal point methods, underlying costs to move, has also the advantage to
regularize even in situations where the functions are possibly non-smooth and extended
real-valued (for a more detailed discussion on proximal point methods and their inter-
pretations, see [35]).

In the proof of Proposition 2.1 we showed that the follower’s best reply correspon-
dence in Γn is single-valued, i.e., Γn is a classical Stackelberg game. Moreover, the
follower’s best reply function ϕn in Γn is continuous and the strategy profile (x̄n, ϕn) is
an SPNE of Γn, for any n ∈ N. Hence, Procedure (CM) allows to define a perturbation
of the game Γ consisting of the sequence of classical Stackelberg games (Γn)n and to
construct a sequence of SPNEs related to such a perturbation.

In the next proposition, we prove that the limit of the sequence (ϕn)n is a selection of
the follower’s best reply correspondence. The pointwise convergence of (ϕn)n is obtained
by adapting to a parametric optimization context a classical result about the convergence
of proximal point methods. Before showing the result, we state the following lemma.

Lemma 2.1 (on parametric proximal point methods). Let G be a real-valued function
defined on X × Y and Ḡ be the extended real-valued function defined on X × Y by

Ḡ(x, y) =

G(x, y), if y ∈ Y

−∞, if y /∈ Y.
(4)

Let x ∈ X. If the function G(x, ·) is upper semicontinuous and concave on Y , then

(i) the function Ḡ(x, ·) is upper semicontinuous and concave on Y;

(ii) Arg maxy∈Y G(x, y) = Arg maxy∈Y Ḡ(x, y);

(iii) Arg maxy∈Y G(x, y)− 1
2λ‖y−v‖

2
Y = Arg maxy∈Y Ḡ(x, y)− 1

2λ‖y−v‖
2
Y, for any λ > 0

and v ∈ Y.

(iv) ϕ∗(x) ∈ Arg maxy∈Y G(x, y) ⇐⇒ {ϕ∗(x)} = prox λ,G(x,·)(ϕ
∗(x)), for any λ > 0,

where prox λ,G(x,·)(v) := Arg maxy∈Y G(x, y)− 1
2λ‖y − v‖

2
Y, for any v ∈ Y.

Proof. Claims (i)-(iii) are immediate, the proof of claim (iv) is analogous to the one,
for example, in [35, Section 2.3], taking into account claims (i)-(iii).
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Proposition 2.2. Assume that (A2), (F1) and (F3) hold. Then the sequence (ϕn)n

pointwise converges to a function ϕ ∈ Y X and ϕ(x) ∈ M(x) for any x ∈ X, where
M(x) = Arg maxy∈Y F (x, y).

Proof. Let x ∈ X. By assumptions (F1) and (F3) and Lemma 2.1(i), the function
−F̄ (x, ·), where F̄ is defined on X × Y by

F̄ (x, y) =

F (x, y), if y ∈ Y

−∞, if y /∈ Y,

is lower semicontinuous and convex, is not identically +∞ and does not assume the
value −∞ (i.e. −F̄ (x, ·) is a proper lower semicontinuous convex function). Moreover,
in light of Lemma 2.1(ii), the compactness of Y and assumption (F1),

Arg min
y∈Y

−F̄ (x, y) = Arg max
y∈Y

F̄ (x, y) 6= ∅.

Given the above, and since limn→+∞ γn = +∞ with (γn)n ⊆]0,+∞[, the function
−F̄ (x, ·) satisfies the hypotheses for the convergence of proximal point methods stated
in [5, Theorem 27.1]. Then, the sequence (zn)n defined by

{zn} := Arg min
y∈Y

−F̄ (x, y) +
1

2γn−1
‖y − zn−1‖2Y for any n ∈ N,

where z0 := ȳ0, converges to a point in Arg miny∈Y−F̄ (x, y) by Theorem 27.1 in [5]. So,
equivalently,

{zn} = Arg max
y∈Y

F̄ (x, y)− 1

2γn−1
‖y − zn−1‖2Y for any n ∈ N,

and (zn)n converges to a point in Arg maxy∈Y F̄ (x, y). Since the unique maximizer of
F̄ (x, ·)− 1

2γn−1
‖ · −ϕn−1(x)‖2Y over Y coincides with the unique maximizer of F (x, ·)−

1
2γn−1

‖ · −ϕn−1(x)‖2Y over Y in light of Lemma 2.1(iii), then zn = ϕn(x) for any n ∈ N.
Furthermore, since the set of maximizers of F̄ (x, ·) over Y coincides with the set of
maximizers of F̄ (x, ·) over Y in light of Lemma 2.1(ii), sequence (ϕn(x))n converges to
a maximizer of F (x, ·) over Y . Hence, the function ϕ that associates with each x ∈ X the
point ϕ(x) := limn→+∞ ϕn(x) ∈ Y is well-defined and ϕ(x) ∈M(x) for any x ∈ X.

3 SPNE existence result

The next theorem provides an existence result of an SPNE achievable via Procedure
(CM) for Γ = (X,Y, L, F ) ∈ G. Recall that (x̄n, ϕn)n is the sequence of strategy profiles
generated by Procedure (CM), which is well-defined in light of Proposition 2.1.

Theorem 3.1. Assume that Γ ∈ G and that the sequence of action profiles (x̄n, ϕn(x̄n))n ⊆
X × Y converges to (x̄, ȳ) ∈ X × Y . Then the strategy profile (x̄, ϕ̄) ∈ X × Y X , where

ϕ̄(x) :=

ȳ, if x = x̄

limn→+∞ ϕn(x), if x 6= x̄,
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is a subgame perfect Nash equilibrium of Γ.

Proof. We start to prove (SG1). Let x ∈ X and ϕ(x) = limn→+∞ ϕn(x), as defined in
Proposition 2.2. If x 6= x̄, Proposition 2.2 ensures that ϕ̄(x) = ϕ(x) ∈ M(x). If x = x̄,
pick y ∈ Y . By assumption (F2), there exists a sequence (ỹn)n converging to y such
that

lim inf
n→+∞

F (x̄n, ỹn) ≥ F (x̄, y). (5)

By (F1) we have:

F (x̄, ȳ) ≥ lim sup
n→+∞

F (x̄n, ϕn(x̄n))

= lim sup
n→+∞

[
F (x̄n, ϕn(x̄n))− 1

2γn−1
‖ϕn(x̄n)− ϕn−1(x̄n)‖2Y

]
= lim sup

n→+∞
Fn(x̄n, ϕn(x̄n)),

(6)

where the first equality holds since the second addend in the lim sup converges to 0

being (γn)n a divergent sequence of positive real numbers and Y a compact set, and the
second equality comes from the definition of Fn in Procedure (CM). By the definition
of ϕn(x̄n) we get

lim sup
n→+∞

Fn(x̄n, ϕn(x̄n)) ≥ lim sup
n→+∞

Fn(x̄n, ỹn)

= lim sup
n→+∞

[
F (x̄n, ỹn)− 1

2γn−1
‖ỹn − ϕn−1(x̄n)‖2Y

]
.

(7)

Recalling the properties of (γn)n and the compactness of Y , by (5)-(7) we have

F (x̄, ȳ) ≥ lim sup
n→+∞

[
F (x̄n, ỹn)− 1

2γn−1
‖ỹn − ϕn−1(x̄n)‖2Y

]
= lim sup

n→+∞
F (x̄n, ỹn) ≥ lim inf

n→+∞
F (x̄n, ỹn) ≥ F (x̄, y).

Hence, ȳ ∈M(x̄) and (SG1) is satisfied.
In order to prove condition (SG2), we have to show that L(x̄, ȳ) ≥ L(x, ϕ̄(x)) for any
x ∈ X. So, let x ∈ X \ {x̄}. In light of (L1) we get

L(x̄, ȳ) ≥ lim sup
n→+∞

L(x̄n, ϕn(x̄n))

= lim sup
n→+∞

[
L(x̄n, ϕn(x̄n))− 1

2βn−1
‖x̄n − x̄n−1‖2X

]
≥ lim sup

n→+∞

[
L(x, ϕn(x))− 1

2βn−1
‖x− x̄n−1‖2X

]
≥ lim inf

n→+∞

[
L(x, ϕn(x))− 1

2βn−1
‖x− x̄n−1‖2X

]
= lim inf

n→+∞
L(x, ϕn(x)) ≥ L(x, ϕ(x))

where the first (resp. second) equality holds since the second addend in the lim sup (resp.
lim inf) converges to 0 being (βn)n a divergent sequence of positive real numbers and X
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a compact set, the second inequality comes from the definition of x̄n in Procedure (CM),
and the last inequality follows by (L2). As x ∈ X \ {x̄}, then L(x, ϕ(x)) = L(x, ϕ̄(x))

and, therefore, L(x̄, ȳ) ≥ L(x, ϕ̄(x)). Hence (SG2) holds, and the proof is complete.

Remark 3.1 (on the dependence on (x̄0, ȳ0)) The SPNE selected according to Theo-
rem 3.1 is affected, in general, by the choice of the initial point (x̄0, ȳ0) in Procedure
(CM): in fact, such an SPNE reflects both the leader’s willingness of being near to x̄0

and the follower’s willingness of being near to ȳ0, as discussed in the interpretation of
the procedure in Section 2.
The next trivial example, whose main computations are provided in the Appendix,
emphasizes this dependence especially from the follower’s perspective, whereas in Ex-
ample 3.2 and Example 3.3 these insights are more evident also from the leader’s point
of view.

Example 3.1 Let Γ = (X,Y, L, F ) where X = Y = [−1, 1] and

L(x, y) = x, F (x, y) = −xy.

The follower’s best reply correspondence M is defined on [−1, 1] by

M(x) =


{1}, if x ∈ [−1, 0[

[−1, 1], if x = 0

{−1}, if x ∈]0, 1].

(8)

Let (x̄0, ȳ0) ∈ [−1, 1]× [−1, 1] be the initial point of the procedure and let βn = γn = 2n

for any n ∈ N ∪ {0}. Then Procedure (CM) generates the following sequence (x̄n, ϕn)n

of strategy profiles:

x̄n =

min{1 + x̄0, 1}, if n = 1

1, if n ≥ 2,
ϕn(x) =


1, if x ∈

[
−1, ȳ0−1

an

[
ȳ0 − anx, if x ∈

[
ȳ0−1
an

, ȳ0+1
an

]
−1, if x ∈

]
ȳ0+1
an

, 1
]
,

(9)

where the sequence (an)n is recursively defined bya1 = 1

an+1 = an + 2n for any n ≥ 1.

The SPNE of Γ selected according to Theorem 3.1 is (x̄, ϕ̄), where

x̄ = 1, ϕ̄(x) =


1, if x ∈ [−1, 0[

ȳ0, if x = 0

−1, if x ∈]0, 1].

(10)

Let us note that all the SPNEs of Γ are obtained when varying ȳ0 ∈ [−1, 1] in (10).
Hence ϕ̄ is, among all the follower’s strategies being part of an SPNE, the follower’s
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strategy such that ϕ̄(x) minimizes the distance from the follower’s initial point ȳ0, for
any x ∈ [−1, 1]. Therefore the SPNE constructed by our method is the nearest SPNE
to the initial point (x̄0, ȳ0) in the sense illustrated in Section 2, Interpretation of the
procedure.

Remark 3.2 (on the pointwise limit of (ϕn)n) The follower’s strategy ϕ̄ in the SPNE
defined according to Theorem 3.1 differs from the pointwise limit ϕ of sequence (ϕn)n

at most in one point. In fact if the two limits

lim
n→+∞

ϕn(x̄n) and lim
n→+∞

ϕn(x̄), (11)

where x̄ = limn→+∞ x̄n, coincide, then ϕ̄(x) = ϕ(x) for any x ∈ X and the strategy
profile (x̄, ϕ) is an SPNE of Γ in light of Theorem 3.1. Instead, if the two limits in (11)
do not coincide, then ϕ̄(x̄) 6= ϕ(x̄) and the strategy profile (x̄, ϕ) could be not an SPNE
of Γ, hence we need the follower’s strategy ϕ̄ as in statement of Theorem 3.1 in order
to get an SPNE. The following two examples illustrate the two cases described above:
in the first one the two limits in (11) are equal, whereas, in the second one the two
limits in (11) are different. The main computations of both examples are provided in
the Appendix.

Example 3.2 Let Γ = (X,Y, L, F ) where X = Y = [−1, 1] and

L(x, y) = y, F (x, y) = −xy.

The follower’s best reply correspondence M is defined on [−1, 1] by

M(x) =


{1}, if x ∈ [−1, 0[

[−1, 1], if x = 0

{−1}, if x ∈]0, 1].

(12)

Let (x̄0, ȳ0) = (1, 1) be the initial point of the procedure and let βn = γn = 2n for
any n ∈ N ∪ {0}. Then Procedure (CM) generates the following sequence (x̄n, ϕn)n of
strategy profiles:

x̄n = 0, ϕn(x) =


1, if x ∈ [−1, 0[

1− anx, if x ∈ [0, 2/an]

−1, if x ∈ ]2/an, 1] ,

(13)

where the sequence (an)n is recursively defined bya1 = 1

an+1 = an + 2n for any n ≥ 1.

10



Hence, the SPNE of Γ selected according to Theorem 3.1 is (x̄, ϕ̄), where

x̄ = 0, ϕ̄(x) =

1, if x ∈ [−1, 0]

−1, if x ∈]0, 1].

In this case, ϕ̄ coincides with the pointwise limit of (ϕn)n since limn ϕn(x̄n) = 1 =

limn ϕn(limn x̄n).
Let us note that Γ has infinitely many SPNEs. In fact, denoted with ϕ̂α the function
defined on [−1, 1] by

ϕ̂α(x) :=


1, if x ∈ [−1, 0[

α, if x = 0

−1, if x ∈]0, 1],

the set of SPNEs of Γ is {(x̂, ϕ̂α) | x̂ ∈ [−1, 0[, α ∈ [−1, 1]}∪{(0, ϕ̂1)}, only one of which
is obtained via our method.
Hence, the selection method defined by means of Procedure (CM) is effective.

Example 3.3 Let Γ = (X,Y, L, F ) where X = [1/2, 2], Y = [−1, 1] and

L(x, y) = −x− y, F (x, y) =

0, if x ∈ [1/2, 1]

(1− x)y, if x ∈]1, 2].

The follower’s best reply correspondence M is given by

M(x) = Arg max
y∈[−1,1]

F (x, y) =

[−1, 1], if x ∈ [1/2, 1]

{−1}, if x ∈]1, 2].
(14)

Let (x̄0, ȳ0) = (1, 1) and βn = γn = n + 1 for any n ∈ N ∪ {0}. Then Procedure (CM)
generates the following sequence (x̄n, ϕn)n of strategy profiles:

x̄n =

1/2, if n = 1

1 + 2/an, if n ≥ 2,
ϕn(x) =


1, if x ∈ [1/2, 1]

an + 1− anx, if x ∈ ]1, 1 + 2/an]

−1, if x ∈ ]1 + 2/an, 2] ,

(15)

where the sequence (an)n is recursively defined bya1 = 1

an+1 = an + n+ 1 for any n ≥ 1.

Hence, the SPNE of Γ selected according to Theorem 3.1 is (x̄, ϕ̄), where

x̄ = 1, ϕ̄(x) =

1, if x ∈ [1/2, 1[

−1, if x ∈ [1, 2].
(16)
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As mentioned in Remark 3.2, in this case

lim
n
ϕn(x̄n) = −1 6= 1 = lim

n
ϕn(lim

n
x̄n)

and, furthermore, the strategy profile (1, ϕ), where ϕ is the pointwise limit of (ϕn)n, is
not an SPNE of Γ since Arg maxx∈[1/2,2] L(x, ϕ(x)) = ∅.

Remark 3.3 (on the implementation of the method) The method based on Procedure
(CM) could be clearly implemented in any finite game in mixed strategies and for
any game where the players have a continuum of actions and the functions ϕn can be
analytically determined for any n ∈ N.

Remark 3.4 (on lower semicontinuity of the correspondence M) If the sequence
(x̄n, ϕn(x̄n))n in the statement of Theorem 3.1 does not converge, the thesis of Theo-
rem 3.1 still holds replacing (x̄, ȳ) with the limit of a convergent subsequence
(x̄nk

, ϕnk
(x̄nk

))k ⊆ (x̄n, ϕn(x̄n))n, whose existence is guaranteed by the compactness
of X and Y . Therefore, assumption Γ ∈ G ensures the existence of SPNEs regardless
of the lower semicontinuity of the follower’s best reply correspondence. Indeed, in the
examples above, the follower’s best reply correspondences in (12) and (14) are not lower
semicontinuous set-valued maps.

Remark 3.5 (on leader’s costs to move) An existence result for SPNEs analogous to
Theorem 3.1 can be obtained if the leader’s payoff function is not modified in Procedure
(CM), that is if the learning approach via costs to move only concerns the follower stage
(i.e., Ln = L, for any n ∈ N).

The definition of (ϕn)n in Procedure (CM) is based on a parametric proximal point
method. Since proximal point methods require that an initial point has to be fixed, we
have taken in Procedure (CM) the constant function ϕ0 ∈ Y X defined by ϕ0(x) = ȳ0

as the follower’s initial point. However, Procedure (CM) could be also defined choosing
any continuous function ϕ0 ∈ Y X as follower’s initial point and all the results of Sec-
tions 2 and 3 would be still valid (in particular, Proposition 2.1, Proposition 2.2 and
Theorem 3.1).
The next two propositions state some further properties of our constructive method
when in Procedure (CM) the initial constant function defined by ȳ0 is replaced with a
continuous function ϕ0 ∈ Y X . For the sake of simplicity, we continue to refer to (ϕn)n

as the sequence generated by this modified procedure.

Proposition 3.1. Let Γ ∈ G and let the follower’s initial point ϕ0 ∈ Y X be a continuous
function. Assume that ϕ0(x) ∈ M(x) for any x ∈ X. Then ϕn = ϕ0 for any n ∈ N.
Moreover, ϕ0 is the strategy chosen by the follower in the SPNE selected according to
Theorem 3.1.
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Proof. We prove the first part of the result by induction. Firstly, note that the function
F satisfies the assumptions of Lemma 2.1 as Γ ∈ G.
Let n = 1. Since ϕ0(x) ∈ M(x) for any x ∈ X, in light of Lemma 2.1(iv) and the
definition of ϕ1, we have

{ϕ0(x)} = Arg max
y∈Y

F (x, y)− 1

2γ0
‖y − ϕ0(x)‖2Y = {ϕ1(x)}, for any x ∈ X,

so, the base case is satisfied. Let n > 1 and suppose that ϕn = ϕ0. Then ϕn(x) ∈M(x)

for any x ∈ X and, by Lemma 2.1(iv) and definition of ϕn+1, we get

{ϕn(x)} = Arg max
y∈Y

F (x, y)− 1

2γn
‖y − ϕn(x)‖2Y = {ϕn+1(x)}, for any x ∈ X,

thus, the inductive step is proved. Hence, ϕn = ϕ0 for any n ∈ N and the first part of
the proof is complete.
Since ϕn = ϕ0 for any n ∈ N and ϕ0 is continuous, then, for any sequence (xn)n ⊆ X

converging to x ∈ X, the sequence ϕn(xn) converges to ϕ0(x). So, ϕ0 is the follower’s
strategy in the SPNE selected according to Theorem 3.1.

Proposition 3.2. Let Γ ∈ G and let the follower’s initial point ϕ0 ∈ Y X be a continuous
function. Assume that there exists ν ∈ N such that ϕν = ϕν−1. Then ϕν(x) ∈ M(x)

for any x ∈ X and ϕn = ϕν for any n > ν. Moreover, ϕν is the strategy chosen by the
follower in the SPNE selected according to Theorem 3.1.

Proof. By the definition of ϕν and since ϕν = ϕν−1, we have

{ϕν(x)} = Arg max
y∈Y

F (x, y)− 1

2γν−1
‖y − ϕν−1(x)‖2Y

= Arg max
y∈Y

F (x, y)− 1

2γν−1
‖y − ϕν(x)‖2Y, for any x ∈ X.

Then, in light of Lemma 2.1(iv) we get ϕν(x) ∈M(x) for any x ∈ X.
Consider the new constructive procedure whose follower’s initial point is the continuous
function ϕν and with (γν+n)n∈N∪{0} instead of (γn)n∈N∪{0} (such a procedure is nothing
but the original procedure taken away the first ν − 1 steps). Applying Proposition 3.1
we have ϕn = ϕν for any n > ν. Given the above and by the continuity of ϕν , arguing as
in the last part of the proof of Proposition 3.1, it follows that ϕν is the strategy chosen
by the follower in the SPNE selected according to Theorem 3.1.

4 Connections with another constructive method and other solution con-

cepts

In this section, firstly we analyze the relation between our learning method based on
costs to move and the method proposed in Morgan and Patrone (2006), then we compare
the SPNE achievable via Theorem 3.1 with the SPNEs obtainable through the weak
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Stackelberg equilibrium and the strong Stackelberg equilibrium. We just investigate the
connections with the above mentioned three methods since, to our knowledge, only these
ones provide the construction of an SPNE in games of perfect information where the
players have a continuum of actions and, hence, also in Stackelberg games.

4.1 Connections with Morgan and Patrone (2006)

In [31] a constructive method based on Tikhonov regularization is used in order to
approach an SPNE in Stackelberg games. More precisely, the authors consider the
following regularized second-level problem

Pαn
(x) : min

y∈Y
F (x, y) + αn‖y‖2,

where x ∈ X and (αn)n is a decreasing sequence of positive real numbers such that
limn→+∞ αn = 0. Denoted by ρ̄n(x) the unique solution to Pαn

(x) and by ρ̂(x) the
unique minimum norm solution to the problem

P (x) : min
y∈Y

F (x, y),

classical results on Tikhonov regularization ([41]) ensure that the sequence (ρ̄n(x))n

converges to ρ̂(x). Let x̄n be a solution to the regularized problem

Sαn
: min

x∈X
L(x, ρ̄n(x))

and assume that the sequence (x̄n, ρ̄n(x̄n))n converges to (x̄, ȳ), then, under suitable
assumptions, the strategy profile (x̄, ρ̃) ∈ X × Y X where

ρ̃(x) =

ȳ, if x = x̄

ρ̂(x), if x 6= x̄,

is an SPNE of the initial game (see [31, Theorem 3.1]).
We note that the way in which the SPNE is constructed via the method described

above does not involve any task of learning step by step. Indeed, Pαn(x) is not recursively
defined and therefore, at a given step n, neither the follower’s strategy ρ̄n is an updating
of his previous strategy ρ̄n−1 nor x̄n is an updating of x̄n−1. Hence, the anchoring effects
arising in Procedure (CM) do not appear in this framework, as well as other kinds of
behavioral motivation. As a matter of fact, in general, Procedure (CM) and procedure
in [31] (adapted to maximization frameworks) do not generate the same SPNE, as shown
in the next example.

Example 4.1 Let Γ be the game defined in Example 3.3. The SPNE constructed by
using the approach in [31] is (1, ρ̃), where

ρ̃(x) =

0, if x ∈ [1/2, 1[

−1, if x ∈ [1, 2];

that does not coincide with the SPNE found out in (16).
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4.2 Connections with Weak and Strong Stackelberg equilibria

In Stackelberg games where the follower’s best reply correspondence is not always single-
valued, two extreme behaviors of the leader could arise regarding his beliefs about how
the follower chooses inside his own set of optimal actions in response to each action
chosen by the leader. In the first case, the leader is optimistic and believes that the
follower chooses the best action for the leader; whereas in the second one, the leader is
pessimistic and believes that the follower could choose the worst action for the leader.
These behaviors lead to two widely investigated problems (originally named generalized
Stackelberg problems, see [22]): the strong Stackelberg, also called optimistic Stackelberg
(see, for example, [8, 42, 24, 15, 12], and references therein), and the weak Stackel-
berg, also called pessimistic Stackelberg (see, for example, [30, 25, 26, 45, 16, 23], and
references therein) problems, respectively, described below.

(s-S)

maxx∈X maxy∈M(x) L(x, y)

where M(x) is defined in (3),
(w-S)

maxx∈X miny∈M(x) L(x, y)

where M(x) is defined in (3).

An action profile (x∗, y∗) ∈ X × Y is said to be

(i) strong Stackelberg equilibrium (or optimistic equilibrium) if

x∗ ∈ Arg max
x∈X

max
y∈M(x)

L(x, y) and y∗ ∈ Arg max
y∈M(x∗)

L(x∗, y),

(ii) weak Stackelberg equilibrium (or pessimistic equilibrium) if

x∗ ∈ Arg max
x∈X

min
y∈M(x)

L(x, y) and y∗ ∈M(x∗).

Starting from a strong or a weak Stackelberg equilibrium one could derive an SPNE
according to the two different behaviors of the leader. In fact:

(i) if the action profile (x∗, y∗) is a strong Stackelberg equilibrium, then the strategy
profile (x∗, ϕ∗) is an SPNE when ϕ∗(x) ∈ Arg maxy∈M(x) L(x, y) for any x ∈ X;

(ii) if the action profile (x∗, y∗) is a weak Stackelberg equilibrium, then the strategy
profile (x∗, ϕ∗) is an SPNE when ϕ∗(x) ∈ Arg miny∈M(x) L(x, y) for any x ∈ X.

Nevertheless, in the optimistic (resp. pessimistic) situation, the computation of strong
(resp. weak) Stackelberg equilibria, and related SPNEs, would require the leader to know
the best reply correspondence of the follower. Instead, an SPNE obtainable through the
learning approach with costs to move described in Procedure (CM) relieves the leader of
knowing the follower’s best reply correspondence. Moreover, let us note that the SPNE
obtained via Procedure (CM) does not coincide, in general, with the SPNEs associated
with optimistic or pessimistic equilibria. To show this fact, it is sufficient to check if the
limit (x̄, ȳ) of the sequence of actions (x̄n, ϕn(x̄n))n obtained through Procedure (CM)
is a strong or a weak Stackelberg equilibrium. This lack of connection is exhibited in
the following example.
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Example 4.2 Let Γ be the game defined in Example 3.3. The follower’s best reply
correspondence M is given in (14). Since for any x ∈ [1/2, 2]

max
y∈M(x)

L(x, y) = −x+ 1, min
y∈M(x)

L(x, y) =

−x− 1, if x ∈ [1/2, 1]

−x+ 1, if x ∈]1, 2],

then
Arg max
x∈[1/2,2]

max
y∈M(x)

L(x, y) = {1/2}, Arg max
x∈[1/2,2]

min
y∈M(x)

L(x, y) = ∅.

Hence, the strong Stackelberg equilibrium is the action profile (1/2,−1) as {−1} =

Arg maxy∈M(1/2) L(1/2, y). Instead, the weak Stackelberg equilibrium does not exist.
Procedure (CM) generates the sequence (x̄n, ϕn)n defined in (15). The sequence of
actions (x̄n, ϕn(x̄n))n≥2 = (1 + 2/an, 1)n≥2 converges to (1,−1), which is neither a
strong nor a weak Stackelberg equilibrium.

5 Conclusion

In this paper we presented a theoretical method to construct a Subgame Perfect Nash
Equilibrium of a one-leader one-follower two-stage game by using a learning approach
via costs to move. The method is based on a procedure that allows to overcome the
difficulties occurring when the follower’s best reply correspondence is not single-valued.
In fact, we constructed recursively a sequence of SPNEs of classical Stackelberg games
whose payoff functions are obtained by subtracting to the payoff functions of the initial
game a cost to move term depending on the SPNE reached at the previous step. Hence,
we showed the existence of an SPNE achievable via this learning method under mild
assumptions on the data of the game.

The analysis for one-leader two-follower two-stage games is presently in progress. In
this case, the nonuniqueness of the parametric Nash equilibria obtained as the optimal
reaction of the followers, will be possibly overcome by applying a learning method based
on costs to move and known results about uniqueness of Nash equilibria as [37], [10], or
[9].

Another direction for future research is the extension of our learning method to
Stackelberg differential games. In fact, starting from Chen and Cruz ([11]) and Simaan
and Cruz ([40]), the literature on Stackelberg differential games has dealt essentially
with situations where, for any control path chosen by the leader, the follower’s optimal
control path is unique. Using a generalization of the proposed constructive procedure
with costs to move, we aim to approach an SPNE even in Stackelberg differential games
whose follower’s optimal control path is not uniquely determined.

Furthermore, we purpose to adapt the method presented in this paper to semivecto-
rial bilevel optimal control problems ([7]), that are differential games with hierarchical
play where one leader in the first stage faces a scalar optimal control problem and more
followers in the second stage solve a cooperative differential game. In fact, our learning
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approach via costs to move could be useful to construct SPNEs when the followers’
Pareto control paths is not unique requiring only convexity assumptions, whereas in [7]
the non single-valuedness of the followers’ best reply correspondence is overcome in the
optimistic and the pessimistic situations associated with the problem by means of some
strict convexity assumptions.

Appendix

Main computations of Remark 2.1 Firstly, we show that the function F defined
in Remark 2.1 satisfies (F1)-(F3).

(i) Proof of (F1):
We need to show the upper semicontinuity of F only at (x, (0, 0)), as F is continuous
for any (x, (y1, y2)) ∈ X×(Y \{(0, 0)}). Let x ∈ X and let (xk, (y1,k, y2,k))k ⊆ X×Y
be a sequence converging to (x, (0, 0)). Since F (x, (y1, y2)) ≤ 0 for any (x, (y1, y2)) ∈
X × Y and F (x, (0, 0)) = 0, then

lim sup
k→+∞

F (xk, (y1,k, y2,k)) ≤ F (x, (0, 0)).

Therefore (F1) holds.

(ii) Proof of (F2):
We need to show (F2) only at (x, (0, 0)), as F is continuous for any (x, (y1, y2)) ∈
X × (Y \ {(0, 0)}). Let x ∈ X and let (xk)k ⊆ X be a sequence converging to x.
Define (ỹ1,k, ỹ2,k) := (1/k, 0) ∈ Y for any k ∈ N. Since F (xk, (ỹ1,k, ỹ2,k)) = 0 for
any k ∈ N and F (x, (0, 0)) = 0, then

lim inf
k→+∞

F (xk, (ỹ1,k, ỹ2,k)) = F (x, (0, 0)).

Therefore (F2) holds.

(iii) Proof of (F3):
Let x ∈ X. In order to prove the concavity of F (x, (·, ·)) on Y \{(0, 0)}, we consider
the twice-continuously differentiable function g : ]0,+∞[×R→ R defined by

g(y1, y2) := − y2
2

2y1
x.

The Hessian matrix of g at (y1, y2) is

Hg(y1, y2) =

 −y
2
2

y31
x y2

y21
x

y2
y21
x − 1

y1
x

 .

Since Hg(y1, y2) is negative semi-definite for any (y1, y2) ∈]0,+∞[×R (being x ∈
[1, 2]), then g is concave on ]0,+∞[×R. Therefore, F (x, (·, ·)) is concave on Y \
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{(0, 0)}, as F (x, (y1, y2)) = g(y1, y2) for any (y1, y2) ∈ Y \ {(0, 0)}. The concavity
of F (x, (·, ·)) on Y follows by the equality

F (x, t(0, 0) + (1− t)(y1, y2)) = tF (x, (0, 0)) + (1− t)F (x, (y1, y2)),

that holds for any t ∈ [0, 1] and (y1, y2) ∈ Y . Hence (F3) is satisfied.

Let x ∈ X. We show that the function F (x, (·, ·)) is not lower semicontinuous at (0, 0).
In fact, let (ȳ1,k, ȳ2,k) := (1/k, 1/

√
k) ∈ Y for any k ∈ N. Since F (x, (ȳ1,k, ȳ2,k)) =

−x/2 ∈ [−1/2,−1] and F (x, (0, 0)) = 0, then

lim inf
k→+∞

F (x, (ȳ1,k, ȳ2,k)) � F (x, (0, 0)).

Main computations of Example 3.1 Firstly, note that Γ ∈ G. We prove (9) by
induction on n. Let n = 1, then

{ϕ1(x)} = Arg max
y∈Y

F1(x, y) = Arg max
y∈[−1,1]

−xy− (y − ȳ0)2

2
=


1, if x ∈ [−1, ȳ0 − 1[

ȳ0 − x, if x ∈ [ȳ0 − 1, ȳ0 + 1]

−1, if x ∈]ȳ0 + 1, 1].

and

{x̄1} = Arg max
x∈X

L1(x, ϕ1(x)) = Arg max
x∈[−1,1]

x− (x− x̄0)2

2
=

1 + x̄0, if x̄0 ∈ [−1, 0]

1, if x̄0 ∈]0, 1].

As a1 = 1, the base case is fulfilled. Assume that (9) holds for n > 1. So

Fn+1(x, y) =


P1(x, y) = − y2

2n+1 −
(
x− 1

2n

)
y − 1

2n+1 , if x ∈
[
−1, ȳ0−1

an

[
P2(x, y) = − y2

2n+1 −
(
x+ anx−ȳ0

2n

)
y − (ȳ0−anx)2

2n+1 , if x ∈
[
ȳ0−1
an

, ȳ0+1
an

]
P3(x, y) = − y2

2n+1 −
(
x+ 1

2n

)
y − 1

2n+1 , if x ∈
]
ȳ0+1
an

, 1
]
,

and
Ln+1(x, y) = − x2

2n+1
+

(
1 +

1

2n

)
x− 1

2n+1
.

If x ∈ [−1, (ȳ0−1)/an[, then the unique maximizer of P1(x, ·) on Y = [−1, 1] is 1 since the
abscissa of the vertex of the parabola P1 := {(y, z) ∈ R2 | z = P1(x, y)} is 1−2nx > 1. If
x ∈ [(ȳ0−1)/an, (ȳ0−1)/(2n+an)[, then the unique maximizer of P2(x, ·) on Y = [−1, 1]

is 1 since the abscissa of the vertex of the parabola P2 := {(y, z) ∈ R2 | z = P2(x, y)}
is ȳ0 − (2n + an)x > 1. If x ∈ [(ȳ0 − 1)/(2n + an), (ȳ0 + 1)/(2n + an)], then the unique
maximizer of P2(x, ·) on Y = [−1, 1] is ȳ0 − (2n + an)x since the abscissa of the vertex
of the parabola P2 is ȳ0 − (2n + an)x ∈ [−1, 1]. If x ∈](ȳ0 + 1)/(2n + an), (ȳ0 + 1)/an],
then the unique maximizer of P2(x, ·) on Y = [−1, 1] is −1 since the abscissa of the
vertex of the parabola P2 is ȳ0 − (2n + an)x < −1. If x ∈ [(ȳ0 + 1)/an, 1[, then the
unique maximizer of P3(x, ·) on Y = [−1, 1] is −1 since the abscissa of the vertex of the
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parabola P3 := {(y, z) ∈ R2 | z = P3(x, y)} is −(2nx+ 1) < −1.
Given the above, since 2n + an = an+1,

{ϕn+1(x)} = Arg max
y∈Y

Fn+1(x, y) =


1, if x ∈

[
−1, ȳ0−1

an+1

[
ȳ0 − an+1x, if x ∈

[
ȳ0−1
an+1

, ȳ0+1
an+1

]
−1, if x ∈

]
ȳ0+1
an+1

, 1
]
,

(17)

for any x ∈ [−1, 1]. Since Ln+1(x, ϕn+1(x)) = Ln+1(x, y) for any (x, y) ∈ X × Y and
the abscissa of the vertex of the parabola T = {(x, z) ∈ R2 | z = Ln+1(x, ϕn+1(x))} is
2n + 1 > 1, then

{x̄n+1} = Arg max
x∈[−1,1]

Ln+1(x, ϕn+1(x)) = {1}. (18)

Equalities (17)-(18) prove the inductive step, so (9) holds.
As limn→+∞ an = +∞, we get

x̄ = lim
n→+∞

x̄n = 1, ϕ(x) = lim
n→+∞

ϕn(x) =


1, if x ∈ [−1, 0[

ȳ0, if x = 0

−1, if x ∈]0, 1].

Since limn→+∞ ϕn(x̄n) = 1, then the SPNE constructed according to Theorem 3.1 is
(1, ϕ̄) = (1, ϕ).

Main computations of Example 3.2 Firstly, note that Γ ∈ G. We prove (13) by
induction on n. Let n = 1, then

{ϕ1(x)} = Arg max
y∈Y

F1(x, y) = Arg max
y∈[−1,1]

−xy − (y − 1)2

2
=

1, if x ∈ [−1, 0[

1− x, if x ∈ [0, 1].

and

{x̄1} = Arg max
x∈X

L1(x, ϕ1(x)) where L1(x, ϕ1(x)) =

−x
2−2x−1

2 if x ∈ [−1, 0[

−x
2−1
2 , if x ∈ [0, 1],

that is x̄1 = 0. As a1 = 1, the base case is fulfilled. Assume that (13) holds for n > 1.
So

Fn+1(x, y) =


P1(x, y) = − y2

2n+1 −
(
x− 1

2n

)
y − 1

2n+1 , if x ∈ [−1, 0[

P2(x, y) = − y2

2n+1 −
(
x+ anx−1

2n

)
y − (1−anx)2

2n+1 , if x ∈
[
0, 2

an

]
P3(x, y) = − y2

2n+1 −
(
x+ 1

2n

)
y − 1

2n+1 , if x ∈
]

2
an
, 1
]
,

and
Ln+1(x, y) = − x2

2n+1
+ y. (19)
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If x ∈ [−1, 0[, then the unique maximizer of P1(x, ·) on Y = [−1, 1] is 1 since the
abscissa of the vertex of the parabola P1 := {(y, z) ∈ R2 | z = P1(x, y)} is 1−2nx > 1. If
x ∈ [0, 2/(2n+an)], then the unique maximizer of P2(x, ·) on Y = [−1, 1] is 1−(2n+an)x

since the abscissa of the vertex of the parabola P2 := {(y, z) ∈ R2 | z = P2(x, y)} is
1 − (2n + an)x ∈ [−1, 1]. If x ∈]2/(2n + an), 2/an], then the unique maximizer of
P2(x, ·) on Y = [−1, 1] is −1 since the abscissa of the vertex of the parabola P2 is
1−(2n+an)x < −1. If x ∈]2/an, 1], then the unique maximizer of P3(x, ·) on Y = [−1, 1]

is −1 since the abscissa of the vertex of the parabola P3 := {(y, z) ∈ R2 | z = P3(x, y)}
is −(2nx+ 1) < −1.
Given the above, since 2n + an = an+1,

{ϕn+1(x)} = Arg max
y∈Y

Fn+1(x, y) =


1, if x ∈ [−1, 0[

1− an+1x, if x ∈
[
0, 2

an+1

]
−1, if x ∈

]
2

an+1
, 1
]
,

(20)

for any x ∈ [−1, 1]. Evaluating the function Ln+1 given in (19) at (x, ϕn+1(x)), we get

Ln+1(x, ϕn+1(x)) =


T1(x) = − x2

2n+1 + 1, if x ∈ [−1, 0[

T2(x) = − x2

2n+1 − an+1x+ 1, if x ∈
[
0, 2

an+1

]
T3(x) = − x2

2n+1 − 1, if x ∈
]

2
an+1

, 1
]
,

Since

(i) the abscissa of the vertexes of the parabolas T1 = {(x, z) ∈ R2 | z = T1(x)} and
T3 = {(x, z) ∈ R2 | z = T3(x)} is 0;

(ii) the abscissa of the vertex of the parabola T2 = {(x, z) ∈ R2 | z = T2(x)} is
−2nan+1 < 0;

(iii) Ln+1(·, ϕn+1(·)) is continuous on [−1, 1],

then
{x̄n+1} = Arg max

x∈[−1,1]

Ln+1(x, ϕn+1(x)) = {0}. (21)

Equalities (20)-(21) prove the inductive step, so (13) holds.
As limn→+∞ an = +∞, we get

x̄ = lim
n→+∞

x̄n = 0, ϕ(x) = lim
n→+∞

ϕn(x) =

1, if x ∈ [−1, 0]

−1, if x ∈]0, 1].

Since limn→+∞ ϕn(x̄n) = 1, then the SPNE constructed according to Theorem 3.1 is
(0, ϕ̄) = (0, ϕ).
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Main computations of Example 3.3 Firstly, note that Γ ∈ G. We prove (15) by
induction on n. Let n = 1, then

{ϕ1(x)} = Arg max
y∈Y

F1(x, y) where F1(x, y) =

−
(y−1)2

2 if x ∈
[

1
2 , 1
]

−y
2

2 + (2− x)y − 1
2 , if x ∈]1, 2],

that is

ϕ1(x) =

1 if x ∈
[

1
2 , 1
]

2− x, if x ∈]1, 2]

Moreover

{x̄1} = Arg max
x∈X

L1(x, ϕ1(x)) where L1(x, ϕ1(x)) =

−x
2+3
2 if x ∈

[
1
2 , 1
]

−x
2−2x+5

2 , if x ∈]1, 2],

that is x̄1 = 1
2 . As a1 = 1, the base case is fulfilled. Assume that (15) holds for n > 1.

So

Fn+1(x, y) =


P1(x, y), if x ∈

[
1
2 , 1
]

P2(x, y), if x ∈
]
1, 1 + 2

an

]
P3(x, y), if x ∈

]
1 + 2

an
, 2
]
,

where

P1(x, y) = − (y − 1)2

2(n+ 1)
,

P2(x, y) = − y2

2(n+ 1)
+

(
1− x+

an + 1− anx
n+ 1

)
y − (an + 1− anx)2

2(n+ 1)
,

P3(x, y) = − y2

2(n+ 1)
+

(
1− x− 1

n+ 1

)
y − 1

2(n+ 1)
,

and
Ln+1(x, y) = − x2

2(n+ 1)
−
(

1− an + 2

(n+ 1)an

)
x− (an + 2)2

2(n+ 1)a2
n

− y. (22)

If x ∈
[

1
2 , 1
]
, then the unique maximizer of P1(x, ·) on Y = [−1, 1] is 1 since the

abscissa of the vertex of the parabola P1 := {(y, z) ∈ R2 | z = P1(x, y)} is 1. If
x ∈

]
1, 1 + 2

an+n+1

]
, then the unique maximizer of P2(x, ·) on Y = [−1, 1] is an + n +

2 − (n + 1 + an)x since the abscissa of the vertex of the parabola P2 := {(y, z) ∈ R2 |
z = P2(x, y)} is an + n+ 2− (n+ 1 + an)x ∈ [−1, 1]. If x ∈

]
1 + 2

an+n+1 , 1 + 2
an

]
, then

the unique maximizer of P2(x, ·) on Y = [−1, 1] is −1 since the abscissa of the vertex
of the parabola P2 is an + n + 2 − (n + 1 + an)x < −1. If x ∈

]
1 + 2

an
, 2
]
, then the

unique maximizer of P3(x, ·) on Y = [−1, 1] is −1 since the abscissa of the vertex of the
parabola P3 := {(y, z) ∈ R2 | z = P3(x, y)} is n− (n+ 1)x < −1.
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Given the above, since n+ 1 + an = an+1,

{ϕn+1(x)} = Arg max
y∈Y

Fn+1(x, y) =


1, if x ∈

[
1
2 , 1
]

an+1 + 1− (an+1)x, if x ∈
]
1, 1 + 2

an+1

]
−1, if x ∈

]
1 + 2

an+1
, 2
]
,

(23)

for any x ∈
[

1
2 , 2
]
. Evaluating the function Ln+1 given in (22) at (x, ϕn+1(x)), we get

Ln+1(x, ϕn+1(x)) =


T1(x), if x ∈

[
1
2 , 1
]

T2(x), if x ∈
]
1, 1 + 2

an+1

]
T3(x), if x ∈

]
1 + 2

an+1
, 2
]
,

where

T1(x) = − x2

2(n+ 1)
−
(

1− an + 2

(n+ 1)an

)
x− (an + 2)2

2(n+ 1)a2
n

− 1,

T2(x) = − x2

2(n+ 1)
−
(

1− an+1 −
an + 2

(n+ 1)an

)
x− (an + 2)2

2(n+ 1)a2
n

− an+1 − 1,

T3(x) = − x2

2(n+ 1)
−
(

1− an + 2

(n+ 1)an

)
x− (an + 2)2

2(n+ 1)a2
n

+ 1.

Since

(i) the abscissa of the vertexes of the parabolas T1 = {(x, z) ∈ R2 | z = T1(x)} and
T3 = {(x, z) ∈ R2 | z = T3(x)} is 2

an
− n < 1

2 ;

(ii) the abscissa of the vertex of the parabola T2 = {(x, z) ∈ R2 | z = T2(x)} is (n +

1)an+1 − n+ 2
an

> 1 + 2
an

> 1 + 2
an+1

;

(iii) T1

(
1
2

)
< T3(2);

(iv) Ln+1(·, ϕn+1(·)) is continuous on
[

1
2 , 2
]
,

then
{x̄n+1} = Arg max

x∈[−1,1]

Ln+1(x, ϕn+1(x)) =

{
1 +

2

an+1

}
. (24)

Equalities (23)-(24) prove the inductive step, so (15) holds.
As limn→+∞ an = +∞, we get

x̄ = lim
n→+∞

x̄n = 1, ϕ(x) = lim
n→+∞

ϕn(x) =

1, if x ∈
[

1
2 , 1
]

−1, if x ∈]1, 2].

Since limn→+∞ ϕn(x̄n) = −1, then the SPNE constructed according to Theorem 3.1 is
(0, ϕ̄), where

ϕ̄(x) =

1, if x ∈
[

1
2 , 1
[

−1, if x ∈ [1, 2].
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