
 

 

 

WORKING PAPER NO.  510

 

Blocking Coalitions and Fairness in Asset 

Markets and Asymmetric Information Economies 

 

Anuj Bhowmik and Maria Gabriella Graziano 

 
 
 
 

September 2018  

 

 
 

 

University of Naples Federico II 

 

University of Salerno 
 

Bocconi University, Milan 

CSEF - Centre for Studies in Economics and Finance  

DEPARTMENT OF ECONOMICS – UNIVERSITY OF NAPLES 

80126  NAPLES - ITALY 

Tel. and fax +39 081 675372 – e-mail: csef@unisa.it 

ISSN: 2240-9696 





 
 
 

 

WORKING PAPER NO.  510

 
 

 

Blocking Coalitions and Fairness in Asset Markets 

and Asymmetric Information Economies 

 

Anuj Bhowmik* and Maria Gabriella Graziano**  

 

 

 
Abstract 
 
This paper analyses two properties of the core in a two-period exchange economy under uncertainty: the veto 
power of arbitrary sized coalitions; and coalitional fairness of core allocations. We study these properties in 
relation to classical (static) and sequential (dynamic) core notions and apply our results to asset markets 
and asymmetric information models. We develop a formal setting where consumption sets have no lower bound 
and impose a series of general restrictions on the first period trades of each agent. All our results are applications 
of the same lemma about improvements to an allocation that is either non-core or non-coalitionally fair. Roughly 
speaking, the lemma states that if all the members of a coalition achieve a better allocation in some way (for 
instance, by blocking the status quo allocation or because they envy the net trade of other coalitions)  then an 
alternative improvement can be obtained through a perturbation  of the initial improvement. 
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1 Introduction

This paper analyses the core of a two-period exchange economy under uncertainty.

The study focuses on two properties: the robustness of core allocations with respect

to the restrictions imposed on the size of the blocking coalitions; and the coalitional

fairness of the core allocations. Both properties have been studied in the context of

asymmetric information economy models, but not for the core of asset markets. Our

analysis includes both scenarios, in a general frame that allows for consumption sets

with no lower bound and for restrictions on the first period trades of agents. We study

the above mentioned properties in the context of classical (static) and sequential (dy-

namic) core notions and all the main results are applications of the same lemma on

allocation improvements. The resulting characterizations of the core are new for asset

market models and, also, provide improvements to the results for asymmetric informa-

tion economies.

In a pure exchange economy with uncertainty, agents subscribe contracts at time

τ = 0 (ex-ante) that are contingent on the realization of an uncertain state of nature at

time τ = 1 (ex-post), using a decision process based on maximizing the expected utility.

Two notions of core have been investigated for such an economy: ex-ante and sequen-

tial. According to the “classical” ex-ante notion, an allocation in the core is assigned

to each agent in each state of nature which can be realized tomorrow, in the form of

a bundle of goods with the property that no coalition can improve it ex-ante. The ex-

ante core includes special features that facilitate analysis of general equilibrium models

with uncertainty. For instance, the core may enable analysis of competitive price equi-

librium concepts and, also, may constitute a useful alternative to them. Sequential

core notions modify the ex-ante core and take account of forms of incompleteness that

can arise from a contracting process over two states of nature. In defining the classical

core, it is generally assumed that agents in a coalition coordinate over a set of actions

which are enforceable, and that all commitments are binding. The latter assumption

may be questionable in frameworks characterized by uncertainty and which are implic-

itly dynamic in nature. In fact, agents can reconsider their distribution of resources

after the uncertainty is resolved and coalitions might be able to improve the allocation

at the ex-post stage, even if this allocation is ex-ante stable with respect to coalition

improvements. Consequently, in a context of sequential trades, the classical core notion

can be modified in several directions in order to guarantee that an allocation is stable

not only at the ex-ante stage, but also in the face of coalition improvements when the
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state of nature is realized1.

The notions of ex-ante and sequential core satisfy interesting properties in two spe-

cific models with uncertainty which are relevant to our study. The first is the asset

markets case. Here, a competitive equilibrium allocation exists in a generic sense (Duffie

and Shafer, 1985), but there are exceptional cases when the competitive equilibrium

fails to exist. This is the case in Hart (1975), who proposes a situation where the core

can be proved to be non-empty. The proof of core existence is given by Koutsougeras

(1998), which captures the case of arbitrary short sales through consumption sets with

no lower bounds. The second model is economies with asymmetric information. In

this case, the core allows analysis of the cooperative behaviour of agents, coordinating

their contingent plans at time τ = 0, under the assumption that they will receive par-

tial information about the the true state of nature at time τ = 1. Typically, private

information is introduced into the Arrow-Debreu state contingent model with the fur-

ther assumption that the agent’s allocation is compatible with private information2.

The corresponding ex-ante and sequential private core outcomes are shown to exist

and to be incentive compatible (see Yannelis, 1991, Koutsougeras, 1998). Notice, also,

that both these examples share the feature that an agent’s trades at time τ = 0 are

restricted. This is due either to the incomplete market or to informational constraints.

In asset markets, it is possible that not every consumption bundle can be implemented

at the ex-ante stage via existing assets; in models with asymmetric information, agents

can exchange only consumption bundles which they are able to verify according to their

private information3.

In this paper, we consider a general model to study core properties under the forms

of market and/or contract incompleteness described above. Specifically, we consider a

two-period exchange economy, in which the set of agents includes some large agents

and a continuum of small agents (oligopolistic market). This representation of the

1This is the perspective adopted by several authors including Gale (1978), Repullo (1988), Kout-
sougeras (1998), Predtetchinski et al. (2002), Predtetchinski et al. (2006), who introduce sequential
core notions by requiring that the allocation is not blocked at time τ = 0 and in any possible state at
time τ = 1. In all of these papers, the different types of blocking mechanisms proposed at τ = 0 lead
to the notions such as a two-stage core, a strong sequential core and a weak sequential core, among
the others.

2i.e. measurable with respect to the agent’s information partition.
3Daher et al. (2007) studied the existence of an equilibrium in a complete asset market framework

assuming that agents may have different information. To this end, they considered an economy with
finitely many agents and an arbitrary space of states of nature, and introduced the assumption of
coalitional independence property.
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agents’ space allows simoultaneous consideration of the case of a finite economy, an

atomless economy, and an economy with atoms4 (mixed market models). In such an

economy, each agent is characterized by a state-dependent utility function, a random

initial endowment and a prior belief. We follow the approach in Koutsougeras (1998),

where consumption sets may have no lower bound and a series of general restrictions

is introduced and applied in the first period trades of each agent. The corresponding

notions of core are defined for both the static and the sequential cases and the following

questions are investigated: 1. Given an atomless economy, is it possible to consider

only coalitions of a fixed size in order to find all the core allocations? 2. In a mixed

economy, is a core allocation always coalitionally fair?

In relation to the first question, a positive response for atomless economies without

uncertainty is provided in the literature in the so-called Vind’s theorem (see Vind,

1972, Schmeidler, 1972). The Vind’s theorem states that whenever a pure exchange

economy allocation does not belong to the core of the economy, then for any mea-

sure ε less than the measure of the whole set of agents, there is a coalition S whose

measure is exactly equal to ε such that the allocation is improved by S. Applications

of this result cover several different problems of interest to a study of the core. The

immediate implications include the fact that a core allocation can be implemented only

through the formation of small coalitions. Further implications are normative: since,

as consequence of Vind’s theorem, arbitrary large sized coalitions are entitled to block

each allocation outside the core, the core can be seen as a solution supported by an

arbitrary large majority of agents5. In the case of the ex-ante core and the sequential

core (Definition 4.2), we formulate versions of Vind’s theorem adapted to our frame-

work (Theorem 3.4 and Theorem 4.4) and show that any allocation not in the core

can be blocked by a coalition of any given measure, but smaller than the size of the

grand coalition. Applications are provided for asset markets and asymmetric informa-

tion economies, while a counter-example shows that the result does not hold for the

two-stage core notion in Koutsougeras (1998) (Definition 4.3).

The second question refers to the coalitional fairness of allocations, a property of

4Atoms are usually identified with individual agents with an initially large (compared to the total
market endowment) ownership of some commodities. Also, in the case where the initial endowment
is spread over a continuum of small agents, atoms can arise if agents combine in non negligible large
coalitions (see Gabszewicz and Shitovitz, 1992).

5Compare Evren and Hüsseinov (2008); related papers include Hervés-Beloso et al. (2000), Hervés-
Beloso et al. (2005), Pesce (2010), Bhowmik and Cao (2012), Bhowmik (2015), Bhowmik and Graziano
(2015).
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equity in which bundle comparisons are allowed between groups of agents according

to the concept of coalitional envy6. An allocation is coalitionally fair (briefly c-fair), if

there is no coalition envy related to the net trade of another coalition, under the given

distribution of resources. We show that any ex-ante core allocation is coalitionally

fair in the sense that no coalition in the atomless sector envies the net trade of any

other coalition comprising atoms, and vice versa (Theorem 3.15). So, large agents,

despite their privileged initial position, can not enforce a core allocation because this

would render the allocation unfair towards some atomless coalitions, and vice versa.

Again our results refer to both models: an asset market with the possibility of ar-

bitrary short-selling, and an asymmetric information economy where agents contract

over contingenties in the first period. Note that, the coalitional fairness of core allo-

cations follows easily from the core-Walras equivalence theorem in a standard model

of an atomless economy. However, this does not apply to our framework since the

choice of an appropriate Walrasian equilibrium concept is problematic for both models

considered7. Our main result for the coalitional fairness of ex-ante core allocations can

be extended to the sequential core (Theorem 4.11) while a counter-example shows that

it does not hold for the two-stage core.

It is worth noting that the results described so far are new and have no counterpart

in models where the consumption sets are not lower bounded. Moreover, in the context

of applications, there are no counterparts in the incomplete asset markets literature,

which, instead, mostly addresses issues related to competitive equilibria. Our analysis

goes further to provide a deeper understanding of the cooperative solutions in such a

framework and shows that the core not only exists as proved in Koutsougeras (1998),

but also fulfills additional relevant properties. Finally, our results provide a first con-

tribution to equilibrium analysis in incomplete markets with small and large agents.

Similar remarks apply to sequential core notions where questions related to measure

of blocking coalitions and fairness have yet to be investigated.

The remainder of the paper is organized as follows: section 2 presents the model and

its specifications in the case of asset markets economies and asymmetric information

economies. Section 3 focuses on the ex-ante core: we prove Vind’s theorem and the

6This idea was proposed by Varian (1974), (see also Schmeidler and Vind, 1972) and, although on
a slightly different basis, by Gabszewicz (1975) and was developed in Bhowmik (2015).

7An attempt to obtain two-stage core equivalence results with a measure space of agents and
an incomplete asset markets, is proposed in Koutsougeras (1996). The Core equivalence is proved
for the notion of a sequential core that is adapted to account for externalities deriving from the
interdependency between trade at the ex-ante and ex-post stage.
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coalitional fairness of ex-ante core allocations, assuming consumption sets with no

lower bound and imposing general restrictions on the first period trades of each agent.

Section 4 discusses these properties in relation to the sequential core. Applications

are presented in section 5 and the main proofs are provided in appendix A. Finally,

appendix B specifies some additional elements required for applications to asset markets

which are not necessarily complete. The paper’s key result is a technical lemma (Lemma

6.1), which states that if all the members of a coalition prefer what they obtain from

some allocation h rather than what they obtain from a given allocation f , then there

is an alternative allocation y, which is a perturbation of h, such that all members of

the coalition prefer what they obtain from y to what they obtain from f .

2 Description of the model

We consider a standard pure exchange economy extending over two time periods, τ = 0

and τ = 1, with uncertainty in the second period. The space of economic agents is

described by a probability measure space (T,T , µ) where µ is a complete, finite and

positive measure. Since µ(T ) < ∞, the set T of agents can be decomposed in the

disjoint union of two parts: the set T0 of small or negligible agents which coincides with

the atomless part of T ; the set T1 of large or non-negligible agents, which coincides

with the countable union of atoms of µ. This general representation permits to cover

simultaneously the case of an economy with a finite set of agents (when T0 is empty

and T1 is finite), the case of an atomless economy (when T1 is empty), the case of

mixed markets in which an ocean of small agents coexists with few influential agents

(when both T0 and T1 have positive measure). Moving from this representation, in the

σ-algebra of coalitions of agents T we can identify two relevant subfamilies by defining

T0 := {S ∈ T : S ⊆ T0} and T1 := {S ∈ T : T1 ⊆ S}.

Thus, T0 is the subfamily of T formed by all coalitions of negligible agents, while T1

is formed by coalitions containing all large agents. Finally, we denote by

T2 := T0 ∪T1 = {S ∈ T : S ∈ T0 or S ∈ T1}

the subfamily of T formed by coalitions containing either no large agents or all of them.

The exogenous uncertainty is described by a measurable space (Ω,F ), where Ω is

a finite set denoting all possible states of nature at time τ = 1 and the σ-algebra F

denotes all events. The commodity space is the `-dimensional Euclidean space R`. The
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order on R` is denoted by ≤, and R`
+ := {x ∈ R` : x ≥ 0} denotes the positive cone

of R`. The symbol x � 0 is employed to mean that x is an interior point of R`
+, and

the notation R`
++ := {x ∈ R`

+ : x � 0} is used for the interior of the positive cone.

Suppose that (R`)Ω is endowed with the point-wise algebraic operations, the point-wise

order and the product norm. An element y ∈ (R`)Ω can be identified with the function

y : Ω → R` and vice versa.

We assume that agents engage in a sequential trade where renegotiation is allowed

ex-post, i.e. after the resolution of uncertainty. At time τ = 0 (ex-ante stage) there

is uncertainty about the state of nature that will be realized at time τ = 1 (ex-post

stage). At the ex-ante stage, agents arrange future delivery of commodities that will

be carried out at time τ = 1. When the state of nature is realized, agents carry out

their trades and with this new initial position they can (possibly) exchange again8.

The economy is defined as the pair {E ,G } with E := {(Xt, ut, e(t, ·),Pt) : t ∈ T}
and the following specifications:

(i) Xt : Ω ⇒ R` denotes the (state-contingent) consumption set of agent t ∈ T and

Xt(ω) its projection on the coordinate ω9;

(ii) ut : Ω× R` → R is the state-dependent utility function of agent t;

(iii) e(t, ·) : Ω → R` is the random initial endowment of agent t;

(iv) Pt : Ω → [0, 1] is the prior of agent t;

the set

G := {Gi ⊆ (R`)Ω : i ∈ K},

where K is either a finite set or a countably infinite set, denotes the ex-ante choice

space of agents, i.e. a collection of restrictions that may apply in the trades of each

agent at the ex-ante stage. Define the set Ii := {t ∈ T : Gt = Gi}, where Gt is a

Borel measurable subset of (R`)Ω denoting the restriction imposed to agent t’s trades

at τ = 0. We assume that Ii is a member of T and that T =
⋃
{Ii : i ∈ K}. So

{Ii : i ∈ K} represents a measurable partition of the set of agents into types, where

each type is defined by a possible trade restriction at the ex-ante stage. The ex-ante

8For simplicity, we assume that there are no endowments and thus no consumption at τ = 0.
Hence, agents are only concerned with allocating their second period (τ = 1) endowments.

9Notice that we do not impose non-negative constraints on consumption sets. Thus, short sales
are allowed.
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consumption bundles available for t ∈ T under the restrictions defined by G , are given

by

At =
{
x ∈ (R`)Ω : x(ω) ∈ Xt(ω) for all ω ∈ Ω and x− e(t, ·) ∈ Gt

}
,

where x − e(t, ·) represents the state contingent net trade of t. For any x : Ω → R`,

define the ex ante expected utility of agent t by the usual formula

Vt(x) =
∑
ω∈Ω

ut(ω, x(ω))Pt(ω).

The next step is the statement of the main assumptions to be used throughout the

paper. We assume that:

(A1) For all (t, ω) ∈ T × Ω, Xt(ω) is a closed convex cone.

(A2) The correspondence Y : T × Ω ⇒ R`, defined by Y (t, ω) := Xt(ω), is such that

Y (·, ω) is T -measurable for all ω ∈ Ω.

(A3) The mapping e(·, ω) : T → R` is T -measurable for all ω ∈ Ω and e(t, ω) is an

interior point of Xt(ω) for all ω ∈ Ω.

(A4) The mapping ϕ : T → [0, 1]Ω, defined by ϕ(t) = Pt, is T -measurable.

(A5) For all (t, ω) ∈ T1 × Ω, ut(ω, ·) is concave.

(A6) For all (t, ω) ∈ T × Ω, ut(ω, ·) is continuous and for all x ∈ R`, t 7→ ut(ω, x) is

T -measurable.

(A7) For all (t, ω) ∈ T × Ω, ut(ω, y) > ut(ω, x) for all x, y ∈ Xt(ω) with y ≥ x and

x 6= y.

(A8) For all (t, ω) ∈ T ×Ω, x ∈ At and ε > 0, there is an y ∈
⋂
{εGi : i ∈ K}∩B(0, ε)Ω

such that x+ y ∈ Xt and ut(ω, x(ω) + y(ω)) > ut(ω, x(ω))10.

(A9) Gi is a convex cone containing 0 and −Gi ⊆ Gi for all i ∈ K.

In the next two subsections, following Koutsougeras (1998), we present two natural

environments for the applications of our results. We do so by specifying restrictions to

ex-ante trades assigned by means of the general collection

G := {Gi ⊆ (R`)Ω : i ∈ K}.

Applications refer to the asset market and the asymmetric information frameworks.

Notice that, compared to Koutsougeras (1998), our model allows the simultaneous

presence of small and large agents in both contexts.

10B(0, ε) denotes the ball centered at 0 and radius ε in R`.
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2.1 Asset markets economies

In asset market economies, ex-ante contracts take the form of asset trades. At time

τ = 0, agents trade assets and trading is described by a choice of portfolio of assets.

At time τ = 1, the state of nature is realized and observable to all the agents. Asset

contracts are signed and result in allocations of commodity bundles. To allow the

possibility that agents can go arbitrarily short in asset trading, the consumption set is

assumed to be lower unbounded. This is because some agents may promise to deliver

large quantities of commodities in some states and then plan to retrieve some quantity

if one of these states occurs. In particular, we assume that Xt = (R`)Ω, for all t ∈ T .

Given the structure of trades, the ex-ante choice space G of individuals is specified

in terms of portfolio of assets.

We view a (real) asset as a title to receive a commodity in amounts that may

depend on which state of nature occurs. Assume that there are J assets, denoted

by S1, · · · , SJ , with Sj ∈ (R`)Ω, for each j = 1, . . . , J and Sj(ω) interpreted as the

amount of each of the l-commodities given by the asset Sj if the state ω occurs. At

the beginning of the first period, agent t’s ex-ante contract is determined by a portfolio

of assets θ(t) ∈ RJ , where θj(t) specifies the number of the jth asset that consumer t

holds. Here, θj(t) > 0 denotes the consumer t demands of the jth asset and θj(t) < 0

denotes the consumer t supplies of the jth asset. Moreover,
∑J

j=1 θ
j(t) · Sj(ω) is the

result of the ex-ante trade of agent t if he chooses the portfolio θ(t). The restriction

on ex-ante contracts is thus given, for each agent t ∈ T , by

Gt =

{
J∑

j=1

θj(t) · Sj : θ(t) ∈ RJ

}
.

Upon the realization of the state of nature ω, agent t holding a portfolio θt commands

the commodity bundle given by

e(t, ω) +
J∑

j=1

θj(t) · Sj(ω)

for all ω ∈ Ω. The utility Wt(θ(t)) of agent t for a portfolio θ(t) is given by

Wt(θ(t)) = Vt

(
e(t, ·) +

J∑
j=1

θ(t)j · Sj(·)

)
.

2.2 Asymmetric information economies

An alternative situation that our general model captures is the model of economies

with asymmetric information. In such an economy, each economic agent trades state-
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contingent commodity vectors in the first period, where, for each physical commodity

l = 1, · · · , ` and state ω ∈ Ω, a unit of state-contingent commodity lω is a title to receive

a unit of the physical good l if and only if ω occurs. Moreover, ex-ante (net) trades of

each agent are compatible with the private information Ft
11 of the corresponding agent

about the state of nature which will be realized at time τ = 1. It is assumed that at

time τ = 0 agents have imperfect information about the true state of the nature. Let

Ft(ω0) be the event in the partition generating Ft containing the state ω0. If ω0 ∈ Ω

occurs at τ = 1, the agent t only knows that the realized state belongs to Ft(ω0), that

is, the agent knows that one of the states in Ft(ω0) is the realized state, but does not

know the true state unless Ft(ω0) contains only one element. Since Ω is a finite set,

only finitely many different private information sets are possible, which are denoted by

the collection {Fi : 1 ≤ i ≤ m}. Define

Ji = {t ∈ T : Ft = Fi}

and

Gi = {x : Ω → R`
+ : x is Fi-measurable}.

Note that, Gi is a Borel measurability subset of (R`)Ω, for every 1 ≤ i ≤ m. We

assume that Ji is a member of T and T =
⋃
{Ji : 1 ≤ i ≤ m}. Restrictions in trades

at the ex-ante stage are asymmetric and defined by the requirement that each agent

only subscribes those contracts that he is able to distinguish according to his private

information. Thus, for each agent t ∈ T , we set Gt = Gi if t ∈ Ji.

3 The ex-ante core

In this section, we introduce the classical ex-ante core for a two period exchange econ-

omy with uncertainty, and study its properties. In line with the classical core concept,

it is assumed implicitly that trades take place at time τ = 0 and that contracts are

binding: they are carried out after the resolution of uncertainty and there is no possi-

bility of their renegotiation. When compared to the literature in this area, our notion

does not assume that consumption sets are lower bounded. Also, there may be addi-

tional restrictions imposed on ex-ante trades. Therefore, general definitions of resources

assignments and allocations can be formulated as follows.

An assignment is a function f : T ×Ω → R` such that f(t, ω) ∈ Xt(ω) µ-a.e. on T

and for all ω ∈ Ω. Define a sub-restriction H of the restriction G as a set

H := {Hi ⊆ Gi : i ∈ K}.
11Ft is a σ-algebra of sets generated by a partition of the set Ω.
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Let Ht = Hi if t ∈ Ii and i ∈ K. As assignment f is called H -allocation if f(t, ·) −
e(t, ·) ∈ Ht µ-a.e. on T . Every G -allocation is simply termed as an allocation. We

denote by A H the set of all H -allocations and by A the set of all allocations. An

assignment f is feasible if

∫
T

f(·, ω)dµ =

∫
T

e(·, ω)dµ, for all ω ∈ Ω. A coalition is a

member of T whose measure is non-zero. Furthermore, a sub-coalition S ′ of a coalition

S is a coalition S ′ such that S ′ ⊆ S. For any coalition S, define Si = S ∩ Ii for i ∈ K
and let

ΛS := {i ∈ K : µ(Si) > 0} and aS := inf{µ(Si) : i ∈ ΛS}.

It follows that the set ΛS is finite if aS > 0 and infinite if aS = 0.

Definition 3.1. An assignment f is ex ante blocked by a coalition S via an assignment

h if µ-a.e. on S and for all ω ∈ Ω:

(i) Vt(h(t, ·)) > Vt(f(t, ·));

(ii)

∫
S

h(·, ω)dµ =

∫
S

e(·, ω) dµ.

The ex ante core is the set of feasible allocations that are not ex ante blocked by any

coalition via some allocation and it is denoted by C (E ).

Remark 3.2. The existence of ex-ante core allocations with arbitrary short sales is

proved in Koutsougeras (1998). The proof is for a finite economy (i.e. when T0 is

empty and T1 is finite) with unbounded consumption sets. Assumptions are imposed on

preferences, which are close to the generally adopted non-arbitrage conditions to show

the existence of competitive equilibria (see e.g. Page, 1987). In the case of an atomless

economy (i.e., the case where T1 is empty), sufficient (non-arbitrage) conditions for the

existence of competitive equilibria in line with Page (1987) are formulated in Le Van

and Magnien (2005). Hence, adopting an approach similar to that in Koutsougeras

(1998), it can be shown that the ex-ante core in our model is non-empty when the

measure space of agents is atomless. The proceed towards the existence of ex-ante

core allocations in general mixed markets, we build on the atomless case. Following

Bhowmik and Graziano (2015), the mixed economy E can be associated to an atomless

economy E ∗. Broadly speaking, this new economy arises by “splitting” each large agent

into a continuum of small agents, whose characteristics are the same as those of the large

agent. Therefore, a natural correspondence can be constructed between allocations in

the two markets (compare Bhowmik and Graziano, 2015, Lemma 4.3, Proposition 4.4).
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3.1 The ex-ante core and the size of blocking coalitions

The main result of this section is the extension of Vind’s theorem (Vind, 1972) to the

ex-ante core. The Vind’s theorem states that whenever there exists a coalition that

improves a given allocation f , then, for any measure ε ∈ (0, µ(T )), there is a coalition

R whose measure is exactly equal to ε and is such that f is blocked by R. The proof

requires the assumption that the space is atomless and depends on the validity of

Lyapunov’s convexity theorem for the range of a finite dimensional vector measure.

We now make two assumptions related to a sub-restriction H on the ex-ante choice

set which is helpful to obtain our main results.

(A′
8) For any (t, ω) ∈ T × Ω, x ∈ Xt with x − e(t, ·) ∈ Ht and ε > 0, there is an

y ∈
⋂
{εHi : i ∈ K} ∩ B(0, ε)Ω such that x + y ∈ Xt and ut(ω, x(ω) + y(ω)) >

ut(ω, x(ω)).

(A′
9) Hi is a convex set with 0 ∈ Hi and −Hi ⊆ Hi for all i ∈ K.

Remark 3.3. If Hi = Gi for all i ∈ K, then (A′
8) and (A′

9) are satisfied under (A8)

and (A9), respectively.

We proceed with a general formulation of the Vind’s result. The first theorem takes

a form which allows us the aforementioned application to asset market models.

Theorem 3.4. Assume that the economy E is atomless and consider a sub-restriction

H that satisfies (A′
8) and (A′

9). Let f be a feasible H -allocation ex ante blocked by a

coalition S via some H -allocation h. Under (A1)-(A7), for any given 0 < ε < µ(T ),

there is a coalition R and an assignment y such that µ(R) = ε and f is ex ante blocked

by R via y and y(t, ·)− e(t, ·) ∈ 4Ht µ-a.e. on T .

The second formulation follows from Theorem 3.4 and Remark 3.3

Corollary 3.5. Assume that the economy E is atomless. Let f be a feasible allocation

not in the ex-ante core. Under (A1)-(A9), for any given 0 < ε < µ(T ), there is a

coalition R such that µ(R) = ε and f is ex ante blocked by R via some allocation.

As consequence, the ex-ante core is equal to the set of allocations that are neither

blocked by arbitrary small coalitions nor by arbitrary large coalitions. In particular,

whenever the formation of coalitions implies costs proportional to their size µ, natural

interpretations arise.
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Remark 3.6. We note that, when the commodity space is infinite dimensional, the

conclusion of Vind’s theorem is not confirmed in the absence of some additional as-

sumptions. The case of infinitely many commodities is of interest since it permits,

for example, treatment of the allocation problems over an infinite time horizon and

study of economies with commodity differentiation. In these cases, Lyapunov’s con-

vexity theorem does not hold or holds only in “weak forms”. Moreover, in markets

with infinitely many commodities, it may be true, also, that the positive cone of the

commodity space lacks interior points. Their absence has been shown to cause fur-

ther technical problems in reproducing the classical proof of Vind’s result (see the

discussion in Bhowmik and Graziano, 2015). Recent extensions of Vind’s theorem to

infinite dimensional commodity spaces include Hervés-Beloso et al. (2000), Evren and

Hüsseinov (2008), Bhowmik and Cao (2012), Bhowmik and Cao (2013), Bhowmik and

Graziano (2015). In particular, results provided in Evren and Hüsseinov (2008) take

account of consumption sets that are not lower bounded, in an ordered Banach space

whose positive cone has interior points. It is worth mentioning that, compared to our

Theorem 3.4 and Corollary 3.5, their extension of Vind’s theorem cannot be applied

to asset markets case.

Remark 3.7. Lyapunov’s theorem also does not hold for the case of an agent space

which may include atoms. In Bhowmik and Graziano (2015), the classical theorem

on the size of blocking coalitions is extended to the case of atoms by considering the

general class of Aubin coalitions. Results for the size of ordinary blocking coalitions in

mixed market are provided in Evren and Hüsseinov (2008), while the support of Aubin

blocking coalitions is studied by Pesce (2014).

3.2 Coalitional fairness of ex-ante core allocations

In this section we study the fairness properties of ex-ante core allocations, that is,

the extent to which net trades which are stable with respect to ex-ante coalition im-

provements are also equitable. The model described in the above sections, rules out

consideration of classical individual notions of envy-freeness and fairness such as those

proposed by Foley (1967) and Varian (1974). Indeed, with individual fairness, each

individual evaluates a given allocation by making utility comparisons between the com-

modity bundle he receives and the commodity bundles received by the other agents.

So, it might be that agents are expected to compare bundles that are not compatible

with restrictions imposed ex-ante on their trades through G . Consequently, we address

the equity properties of ex-ante core allocations by adopting the notion of coalitional

fairness.
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Starting from the idea of fair net trades for coalitions, proposed for mixed economies

by Gabszewicz (1975), in this section we define the notion of coalitional fairness for

allocations in a two-period exchange economy. An allocation is considered coalitionally

fair (c-fair) if no coalition can redistribute among its members the net trade of any

other coalition, in such a way that each of them is better off. For an atomless economy

without uncertainty, competitive equilibria are c-fair, and c-fair allocations are in the

core. Hence, as a consequence of the core equivalence result, coalitional fairness turns

out to be equivalent to the core property. In our model with consumption sets not lower

bounded and restrictions imposed on ex-ante trade, there are no simple results that

hold true. Indeed, as mentioned before, it is unclear both whether the core equivalence

theorem holds and which competitive equilibrium notion should be adopted. Additional

difficulties arise due to the presence of atoms, the case where the set of c-fair allocations

is strictly smaller than the core (see Gabszewicz, 1975).

The following theorems ensure weaker versions of the result. Under a suitable set of

assumptions, each ex-ante core allocation of a mixed economy is such that no coalition

of small agents can benefit from achieving the net trade of any other coalition comprised

of all the large agents, letting each member exchange according to restrictions on trades,

and vice versa.

The first notion of fairness requires that no coalition of small agents envies the net

trade of a disjoint coalition comprised of all large agents.

Definition 3.8. A feasible allocation f is called ex-ante C(T0,T1)(E )-fair if there do

not exist two disjoint elements S1 ∈ T0, S2 ∈ T1 and an allocation h such that µ-a.e.

on S1 and for each ω ∈ Ω:

(i) Vt(h(t, ·)) > Vt(f(t, ·));

(ii)

∫
S1

(h(·, ω)− e(·, ω))dµ =

∫
S2

(f(·, ω)− e(·, ω))dµ.

Ex-ante core allocations satisfy coalitional fairness with respect to T0 and T1. Like in

the previous section, we provide two formulations of our main results.

Theorem 3.9. Consider a sub-restriction H that satisfies (A′
8) and (A′

9). Let f and

h be two H -allocations. Assume further that there exist two disjoint elements S1 ∈ T0

and S2 ∈ T1 such that µ-a.e. on S1 and for each ω ∈ Ω:

(i) Vt(h(t, ·)) > Vt(f(t, ·));

(ii)

∫
S1

(h(·, ω)− e(·, ω))dµ =

∫
S2

(f(·, ω)− e(·, ω))dµ.
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Under (A1)-(A7), there is a coalition R and an assignment y such that f is ex ante

blocked by R via y; and y(t, ·)− e(t, ·) ∈ 4Ht µ-a.e. on T .

Corollary 3.10. Let (A1)-(A9) be satisfied. Then any ex-ante core allocation is ex-

ante C(T0,T1)(E )-fair.

In the next notion of fairness the role of coalitions is exchanged. The fair criterion

requires that no coalition containing all large agents envies a disjoint coalition of small

agents because its net trade would make its members better off.

Definition 3.11. A feasible allocation f is called ex-ante C(T1,T0)(E )-fair if there do

not exist two disjoint elements S1 ∈ T1, S2 ∈ T0 and an allocation h such that µ-a.e.

on S1 and for each ω ∈ Ω:

(i) Vt(h(t, ·)) > Vt(f(t, ·));

(ii)

∫
S1

(h(·, ω)− e(·, ω))dµ =

∫
S2

(f(·, ω)− e(·, ω))dµ.

The following fairness property of ex-ante core allocations holds true.

Theorem 3.12. Consider a sub-restriction H that satisfies (A′
8) and (A′

9). Let f

and h be two H -allocations. Assume further that there exist two disjoint elements

S1 ∈ T1 and S2 ∈ T0 such that µ-a.e. on S1 and for each ω ∈ Ω:

(i) Vt(h(t, ·)) > Vt(f(t, ·));

(ii)

∫
S1

(h(·, ω)− e(·, ω))dµ =

∫
S2

(f(·, ω)− e(·, ω))dµ.

Under (A1)-(A7), there is a coalition R and an assignment y such that f is ex ante

blocked by R via y; and y(t, ·) − e(t, ·) ∈ 4Ht µ-a.e. on T , provided any one of the

following two conditions is satisfied:

(a) aS1 > 0.

(b) aS1 = 0 and there is an ε > 0 such that e(t, ω) + B(0, ε) ⊆ Xt(ω) for all (t, ω) ∈
T ×Ω, there are some i0 ∈ ΛS1 and δ > 0 such that for any measurable subset D

of S1 with µ(D) < δ,
2

µ(Si0)

∫
D

(h− e)dµ ∈ Hi0 .

Corollary 3.13. Let (A1)-(A9) be satisfied and aS > 0, for any coalition S. Then

any ex-ante core allocation is ex-ante C(T1,T0)(E )-fair.
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Our final fairness requirement states that no coalition of small agents envies the net

trade of a disjoint coalition containing all large agents and vice versa.

Definition 3.14. A feasible allocation f is called ex-ante C{T0,T1}(E )-fair if it is ex-

ante C(T0,T1)(E )-fair and ex-ante C(T1,T0)(E )-fair.

As consequences of Corollaries 3.10 and 3.13, we obtain the following property of ex-

ante core allocations.

Theorem 3.15. Let (A1)-(A9) be satisfied and aS > 0, for any coalition S. Then any

ex-ante core allocation is ex-ante C{T0,T1}(E )-fair.

Remark 3.16. The study of c-fair allocations in mixed markets with asymmetric infor-

mation is not new. For example, positive results in the presence of atoms are provided

in Donnini et al. (2014) and Bhowmik (2015), among others. To our knowledge, the

fairness of ex-ante core allocations has not been studied in relation to asset market

economies. The consequences for this specification of our model are discussed in sec-

tion 5. Notice, also, that if the economy is atomless, choosing the empty coalition

as coalition S2 in Definition 3.11, shows that each ex-ante C{T0,T1}(E )-fair allocation

is a core allocation. Consequently, Theorem 3.15 implies that the ex-ante core of an

atomless economy coincides with the set of ex-ante C{T0,T1}(E )-fair allocations.

4 The sequential core

This section considers sequential core notions to analyze both the Vind’s theorem and

coalitional fairness.

In our definition of core allocation, we discard the usual premise that agents in a

coalition coordinate over a set of actions, which are enforceable, and that all commit-

ments are binding. Hence, agents are allowed to reconsider their positions after the

resolution of uncertainty and coalitions may be able, at the ex-post stage, to improve

upon the allocation received. Based on these assumptions about the nature of sequen-

tial trades, the classical core notion can be modified to guarantee that an allocation is

both stable at the ex-ante stage and stable to coalition improvements when the state

of nature is realized. In other words, in this perspective, a core allocation is unblocked

not only at time τ = 0, but also in any possible state at time τ = 1.

Analysis of the literature shows that differences in the blocking mechanism proposed

at τ = 0, lead to different existing sequential core notions. This applies, for example,

to the cases of a two-stage core, a strong sequential core and a weak sequential core,

among others.
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In what follows, a sequential core allocation is typically formed by a pair (f, g): g

is the assignment of the bundles to be consumed after re-contracting at τ = 1; f is

the allocation of resources chosen by agents at τ = 0 according to their constrained

consumption sets and which makes g an admissible choice for the agents at τ = 1. To

make g admissible, it is enough that, with the initial resources at τ = 1 given by f ,

agents have no incentive to deviate from g. At the same time, g must be robust to

deviations at τ = 0.

Here, we consider two notions of core: the sequential core in which the component

f of sequential trade is required to belong to the ex-ante core; and the weaker two

stage core (see Koutsougeras, 1998). We extend Vind’s theorem and study coalitional

fairness in relation to the sequential core. We compare our results for the sequential

core notion with those for the two-stage core. A similar comparison can be conducted

for the other sequential core notions. For completeness, an overview of these notions

and their relationships is provided at the end of the section.

Given an assignment f , define E (f) to be the economy which is the same as E

except for the initial endowment assignment which is replaced by f . A two-period

trading plan (f, g) is a combination of an allocation f and an assignment g in E (f).

For the formal introduction of sequential core notions, we need to consider the family

of economies {E (f ;ω)}ω∈Ω, one for each possible state of nature ω ∈ Ω following the

resolution of uncertainty. The economy E (f ;ω) has the following specification

E (f ;ω) := {(Xt(ω), ut(ω, ·), f(t, ω)) : t ∈ T}.

Definition 4.1. Given an assignment f , let C (E ; f) denote the set of assignments g

in E (f) such that

(i)

∫
T

g(·, ω)dµ =

∫
T

f(·, ω)dµ, for all ω ∈ Ω;

(ii) there are no state ω0, coalition S and assignment h in E (ω0) such that

1. ut(ω0, h(t)) > ut(ω0, g(t, ω0)) µ-a.e. on S, and

2.

∫
S

hdµ =

∫
S

f(·, ω0)dµ.

Notice that the set C (E ; f) introduced with Definition 4.1, can be identified with the

ex-post core of the economy E (f) and the relative blocking mechanism with the ex-

post blocking mechanism. This implies, in particular, that each g ∈ C (E ; f) is ex-post

individually rational.
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The following definition introduces formally the sequential core.

Definition 4.2. A two-period trading plan (f, g) is in the sequential core if f ∈ C (E )

and g ∈ C (E ; f).

The notion of two-stage core is due to Koutsougeras (1998).

Definition 4.3. A two-period trading plan (f, g) is in the two-stage core if the following

are satisfied:

(i)

∫
T

f(·, ω)dµ =

∫
T

e(·, ω)dµ for all ω ∈ Ω and g ∈ C (E ; f);

(ii) there are no coalition S and assignment h such that

1. h(t, ·) ∈ At and Vt(h(t, ·)) > Vt(g(t, ·)), µ-a.e. on S;

2.

∫
S

h(·, ω)dµ =

∫
S

e(·, ω)dµ, for all ω ∈ Ω.

Let us denote by SC(E ) and TSC(E ), respectively, the sequential core and the two-

stage core of the economy E . Notice that the blocking mechanism introduced with

point (ii) of Definition 4.3 makes no use of allocation f at all. The only role played

by f is to make g an admissible choice at τ = 1. Improvements at time τ = 0

must be compatible with restrictions on trades for the members of a blocking coalition

and no exchange is expected within the coalition after the resolution of uncertainty.

Therefore, Definition 4.3 requires a comparison of ex-ante utilities in assignments h and

g, where h is compatible with ex-ante restrictions on trade while g is not. This technical

asymmetry between properties of h and g makes the results valid in the standard case

non immediately applicable.

Consider now a two-period trading plan (f, g) in the sequential core SC(E ). Since

the allocation g in the trading plan (f, g) of SC(E ) is ex-post individually rational in

the economy E (f), it is true that ut(ω, g(t, ω)) ≥ ut(ω, f(t, ω)), µ-a.e. on T and for

each ω ∈ Ω. So, condition 1. in (ii) of Definition 4.3, when formulated for (f, g), would

imply also that Vt(h(t, ·)) > Vt(f(t, ·)), µ-a.e. on S, contradicting the fact that f is

an ex-ante core allocation. Consequently, one has the inclusion SC(E ) ⊆ TSC(E ). In

fact, the sequential core SC(E ) has been used to show that the two-stage core of a

finite economy is non-empty in Koutsougeras (1998).

4.1 The sequential core and the size of blocking coalitions

Now we formulate a version of the theorem on the blocking power of small and big

coalitions for the sequential core. Its proof follows from the corresponding Theorem

3.4 proved in Subsection 3.1 for the ex-ante core and is given in Appendix A.
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Theorem 4.4. Assume that the economy E is atomless and f is an assignment such

that f(t, ω) is an interior point of Xt(ω) for all (t, ω) ∈ T × Ω. Let g be a feasible

assignment in E (f) not belonging to the ex post core of E (f). Under (A1)-(A8), for

any given 0 < ε < µ(T ), there is a coalition R and an assignment y such that µ(R) = ε

and g is ex post blocked by R via y in E (f).

Corollary 4.5. Let (f, g) be a two-period trading plan not in the sequential core. Sup-

pose further that f(t, ω) is an interior point of Xt(ω) for all (t, ω) ∈ T × Ω. Under

(A1)-(A9), for any given 0 < ε < µ(T ), there is a coalition R with µ(R) = ε such that

either one of the following is satisfied: (i) f is ex ante blocked by R via some allocation

in E ; or (ii) g is ex post blocked by R via some assignment in E (f).

The following example shows that a result similar to Corollary 4.5 is not valid for

the dominance relation defining the two-stage core although all the conditions listed

in Corollary 4.5 are satisfied. The example is formulated within the special case of

asymmetric information economies.

Example 4.6. Consider an asymmetric information economy whose space of agents

is the probability measure space (T,T , µ), where T = [0, 1] is endowed with the Borel

σ-algebra T and the Lebesgue probability measure µ. The exogenous uncertainty is

described by a measurable space (Ω,F ), where Ω = {a, b} and F is the power set of

Ω. The commodity space is R2. Let Xt(ω) = R2
+ and Pt(ω) = 1

2
for all (t, ω) ∈ T × Ω.

Let Ft = F for all t ∈ T . Put,

e(t, ω) :=


(6, 2), if (t, ω) ∈ [0, 1

4
)× Ω;

(2, 6), if (t, ω) ∈ [1
4
, 1

2
)× Ω;

(8, 8), if (t, ω) ∈ [1
2
, 1]× Ω,

and

ut(ω, x) :=


x11a(ω) + x21b(ω), if (t, ω) ∈ [0, 1

4
)× Ω;

x21a(ω) + x11b(ω), if (t, ω) ∈ [1
4
, 1

2
)× Ω;

x1 + x2, if (t, ω) ∈ [1
2
, 1]× Ω,

where 1ω0(ω) = 1 if ω0 = ω; and 1ω0(ω) = 0, otherwise. Note that the aggregate

endowment in each state is (6, 6). Define a feasible allocation f by

f(t, ω) :=

{
(11, 11), if (t, ω) ∈ [0, 1

2
)× Ω;

(1, 1), if (t, ω) ∈ [1
2
, 1]× Ω.
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Let g be a feasible assignment such that

g(t, ω) :=


(22, 0)1a + (0, 22)1b, if t ∈ [0, 1

4
);

(0, 22)1a + (22, 0)1b, if t ∈ [1
4
, 1

2
);

(1, 1), if t ∈ [1
2
, 1].

Note that g ∈ C (E ; f). It can be easily verified that g can be blocked in the sense

of (ii) of Definition 4.3 by any sub-coalition of [1
2
, 1]. However, the same cannot be

done by a coalition whose measure is close to 1. Notice also that, since the allocation

(f, g) does not belong to the two-stage core, then a fortiori it does not belong to the

sequential core. Consequently, the conclusion of Theorem 4.4 for this allocation holds

true.

4.2 Coalitional fairness of sequential core allocations

The following definitions formalize coalitional fairness properties of allocations at the

ex-post stage. When paired with the corresponding ex-ante notions, they allow us to

formulate sequential fairness properties of allocations.

Definition 4.7. Given an assignment f , an assignment g is ex post C(T0,T1)(E ; f)-

fair if there do not exist a state ω0, two disjoint elements S1 ∈ T0, S2 ∈ T1 and an

assignment h in E (f ;ω0) such that ut(ω0, h(t)) > ut(ω0, g(t, ω0)) µ-a.e. on S1, and∫
S1

(h− f(·, ω0))dµ =

∫
S2

(g(·, ω0)− f(·, ω0))dµ.

Also in the ex post case, symmetric definitions can be formulated by interchanging the

role of T1 and T0.

Definition 4.8. Given an assignment f , an assignment g is ex post C(T1,T0)(E ; f)-

fair if there do not exist a state ω0, two disjoint elements S1 ∈ T1, S2 ∈ T0 and an

assignment h in E (f ;ω0) such that ut(ω0, h(t)) > ut(ω0, g(t, ω0)) µ-a.e. on S1, and∫
S1

(h− f(·, ω0))dµ =

∫
S2

(g(·, ω0)− f(·, ω0))dµ.

The joint use of conditions contained in Definitions 4.7 and 4.8 gives us a notion

of coalitional fairness of allocations under which coalitions of small agents and those

containing all large agents are immune from reciprocal envy at time τ = 1.

Definition 4.9. Given an assignment f , an assignment g is ex post C{T1,T0}(E ; f)-fair

if it is ex post C(T0,T1)(E ; f)-fair as well as ex post C(T1,T0)(E ; f)-fair.
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Finally, a two-period trading plan (f, g) which is sequential C{T0,T1}-fair ensures

that coalitions of small agents do not envy coalitions containing all large agents and

vice versa when the state of nature is unknown as well as when it has been revealed.

Definition 4.10. A two-period trading plan (f, g) is called sequential C{T0,T1}-fair if

it is ex ante C{T0,T1}-fair and ex post C{T0,T1}-fair.

Our main results show that sequential core allocations of the mixed market satisfy

sequential coalitional fairness.

Theorem 4.11. Assume that f is an assignment such that f(t, ω) is an interior point

of Xt(ω) for all (t, ω) ∈ T × Ω, and g ∈ C (E ; f). Under (A1)-(A8), g is ex post

C{T0,T1}-fair.

Corollary 4.12. Let (f, g) be in the sequential core. Suppose further that f(t, ω) is

an interior point of Xt(ω) for all (t, ω) ∈ T ×Ω. Under (A1)-(A9), (f, g) is sequential

C{T0,T1}-fair.

Analogous properties of coalitional fairness can be formulated assuming that the

dominance relation inducing envy between coalitions is consistent with the dominance

relation introduced in Definition 4.3 to define the two-stage core.

Definition 4.13. A two-period trading plan (f, g) is called two-stage C(T0,T1)-fair if

the following are satisfied:

(i)

∫
T

f(·, ω)dµ =

∫
T

e(·, ω)dµ for all ω ∈ Ω and g is ex post C(T0,T1)(E ; f)-fair;

(ii) there do not exist two disjoint elements S1 ∈ T0, S2 ∈ T1 and an assignment h

such that

1. h(t, ·) ∈ At and Vt(h(t, ·)) > Vt(g(t, ·)) µ-a.e. on S1;

2.

∫
S1

(h(·, ω)− e(·, ω))dµ =

∫
S2

(f(·, ω)− e(·, ω))dµ, for each ω ∈ Ω.

Definition 4.14. A two-period trading plan (f, g) is called two-stage C(T1,T0)-fair if

the following conditions hold:

(i)

∫
T

f(·, ω)dµ =

∫
T

e(·, ω)dµ for all ω ∈ Ω and g is expost C(T1,T0)(E ; f)-fair; and

(ii) there do not exist two disjoint elements S1 ∈ T1, S2 ∈ T0 and an assignment h

such that
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1. h(t, ·) ∈ At and Vt(h(t, ·)) > Vt(g(t, ·)) µ-a.e. on S1;

2.

∫
S1

(h(·, ω)− e(·, ω))dµ =

∫
S2

(f(·, ω)− e(·, ω))dµ, for each ω ∈ Ω.

Definition 4.15. A two-period trading plan (f, g) is called two-stage C{T0,T1}-fair if

it is two-stage C(T0,T1)-fair and two-stage C(T1,T0)-fair.

However, the following example shows that a result similar to Corollary 4.12 cannot

be stated for the two-stage core of the mixed market. Again, we make use of the

specification given by asymmetric information.

Example 4.16. Consider an asymmetric information economy whose space of agents

is the probability measure space (T,T , µ), where T = [0, 1
2
] ∪ {1}. It is assumed

that [0, 1
2
] is endowed with the Borel σ-algebra B([0, 1

2
]) and the Lebesgue measure ν;

T = B([0, 1
2
])⊗{1} and the Lebesgue probability measure µ is defined by µ(A) = ν(A)

if A ∈ B([0, 1
2
]) and µ(A) = ν(A∩ [0, 1

2
])+ 1

2
, otherwise. It particular, µ({1}) = 1

2
. The

exogenous uncertainty is described by a measurable space (Ω,F ), where Ω = {a, b}
and F is the power set of Ω. The commodity space is R2. Let Xt(ω) = R2

+ and

Pt(ω) = 1
2

for all (t, ω) ∈ T × Ω. Let Ft = F for all t ∈ T . Put,

e(t, ω) :=


(6, 2), if (t, ω) ∈ [0, 1

4
)× Ω;

(2, 6), if (t, ω) ∈ [1
4
, 1

2
]× Ω;

(4, 4), if (t, ω) ∈ {1} × Ω,

and

ut(ω, x) :=


x11a(ω) + x21b(ω), if (t, ω) ∈ [0, 1

4
)× Ω;

x21a(ω) + x11b(ω), if (t, ω) ∈ [1
4
, 1

2
]× Ω;

x1 + x2, if (t, ω) ∈ {1} × Ω,

where 1ω0(ω) = 1 if ω0 = ω; and 1ω0(ω) = 0, otherwise. Note that the aggregate

endowment in each state is (4, 4). Define a feasible allocation f by

f(t, ω) :=

{
(2, 2), if (t, ω) ∈ [0, 1

2
)× Ω;

(6, 6), if (t, ω) ∈ {1} × Ω,

Let g be a feasible assignment such that

g(t, ω) :=


(4, 0)1a + (0, 4)1b, if t ∈ [0, 1

4
);

(0, 4)1a + (4, 0)1b, if t ∈ [1
4
, 1

2
];

(6, 6), if t = 1.
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It can be easily verified that (f, g) is in the two-stage core. To show that it is not

two-stage C{T0.T1}-fair, define

h(t, ω) :=


(8, 4), if (t, ω) ∈ [0, 1

4
)× Ω;

(4, 8), if (t, ω) ∈ [1
4
, 1

2
]× Ω;

(4, 4), if (t, ω) ∈ {1} × Ω,

Let S1 = [0, 1
2
] and S2 = {1}. It is clear that h(t, ·) ∈ At and Vt(h(t, ·)) > Vt(g(t, ·))

µ-a.e. on S1, and∫
S1

(h(·, ω)− e(·, ω))dµ = (1, 1) =

∫
S2

(f(·, ω)− e(·, ω))dµ

for all ω ∈ Ω. So, the two-period trading plan (f, g) is not two-stage C{T0.T1}-fair.

Notice that the example shows also that the sequential core is a proper subset of the

two-stage core.

4.3 A comparison with other sequential core notions

Suppose that the Definition 4.3 is reformulated with no requirement for the allocation

h improving g to be consistent with the constraints imposed on ex-ante trade, that is

removing the condition h(t, ·) ∈ At, µ-a.e. on S. The corresponding core notion is the

idea of a strong sequential core proposed by Predtetchinski et al. (2002).

The strong sequential core, denoted by SSC(E ), is included in the two-stage core.

Both definitions of strong sequential core and two-stage core, and the notion of sequen-

tial core, coincide in the requirement that g is robust to deviations when the state of

nature is realized. In all cases, the dominance relation employed is the standard one.

This part of the definition is the same for the notion of weak sequential core proposed

by Herings et al (2006). Weak sequential core is defined based on the Definition 4.3

when the requirement h(t, ·) ∈ At, µ-a.e. on S is replaced by the requirement that

h ∈ C (E ;S; y), where y(t, ·) ∈ At, µ-a.e. on S, and C (E ;S; y) denotes the ex-post

core of the economy with initial endowment y and the set of agents S. Therefore,

the weak sequential core, denoted WSC(E ), is defined by requiring that the deviation

h of a coalition S from g at time τ = 0 is credible in the sense that h cannot be

counterblocked by some subcoalition of S when the state of nature is realized.

It is easy to show the inclusion WSC(E ) ⊆ TSC(E ): for a two-period trading plan

(f, g) which belongs to the weak sequential core and not to the two-stage core, it can be

assumed that g is improved by S via h at time t = 0, as in Definition 4.3, (ii). Then,

any allocation y in the ex-post core C (E ;S;h) defined by h is individually rational
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and allows a credible deviation from g. Thus, under the standard assumptions which

render the ex-post core non-empty, we have that SSC(E ) ⊆ WSC(E ) ⊆ TSC(E ),

while SSC(E ) and SC(E ) may be distinct subsets of TSC(E ).

Also, it is clear that, if we remove the ex-ante trade restrictions defined by the

correspondence Gt, the strong sequential core and the two-stage core coincide, so that

SSC(E ) = WSC(E ) = TSC(E ).

The notions of coalitional fairness formulated in this section could be applied to the

strong and weak sequential core, leading to sets of strong sequential C{T0,T1}(E )-fair

and weak sequential C{T0,T1}(E )-fair allocations. An analysis similar to that applied

to the two-stage core would follow.

5 Applications to asset markets and asymmetric in-

formation economies

We close the paper with the specific applications of our results. We start from the case

of asset markets. Since, in the first period, individuals choose portfolio rather than

choosing actual bundles for different states, we now propose a new definition of the ex

ante core in this setting.

Definition 5.1. An asset trading plan is a Lebesgue integrable function θ : T → RJ

and it is called feasible if

∫
T

θdµ = 0. An asset trading plan θ is ex ante blocked by a

coalition S if there is an asset trading plan ϕ such that

∫
S

ϕdµ = 0 and Wt(ϕ(t)) >

Wt(θ(t)) µ-a.e. on S. The ex ante core in the asset market economy {E , (Sj)J
j=1} is

the set of feasible asset trading plans that are not ex ante blocked by any coalition.

We denote by Ξ[θ] the allocation generated by the asset trading plan θ, where Ξ[θ] is

defined by

Ξ[θ](t, ω) = e(t, ω) +
J∑

j=1

θj(t) · Sj(ω).

Conversely, for any coalition S and an assignment g with g(t, ·)− e(t, ·) ∈ Gt µ-a.e. on

S, there is some ϕ = Φ[g] : S → RJ such that

g(t, ω) = e(t, ω) +
J∑

j=1

ϕj(t) · Sj(ω).
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Note that ϕ is not necessarily Lebesgue integrable, and for any asset trading plan θ

with

∫
S

θdµ = 0, we must have that the allocation Ξ[θ] is feasible.

Consider now an asset market economy {E , (Sj)J
j=1} and let {E ,G } be the economy

that is generated by {E , (Sj)J
j=1}, that is, Gt =

{∑J
j=1 θ

j
t · Sj : θt ∈ RJ

}
for all t ∈ T .

Clearly, (A1) and (A2) are satisfied; (A8) follows from (A7) and the structure of Gt for

all t ∈ T while (A9) is trivially satisfied. In the light of (A4)-(A7), one can derive the

following facts:

(B1) For all t ∈ T , Wt is continuous and for all θ ∈ RJ , t 7→ Wt(θ) is T -measurable.

(B2) For all t ∈ T , Wt is monotone in the sense thatWt(θ+ϕ) > Wt(θ) for all θ, ϕ ∈ RJ

with ϕ ≥ 0 with ϕ 6= 0.

(B3) For all t ∈ T1, Wt is concave.

An asset market economy {E , (Sj)J
j=1} is said to be complete if

∑J
j=1 θ

j ·Sj(ω) = 0 for

all ω ∈ Ω implies θj = 0 for all j ∈ J .

For simplicity, we formulate our main results in the case of complete asset markets.

The general case is discussed in Remark 5.13

Lemma 5.2. Suppose that the asset market economy {E , (Sj)J
j=1} is complete and

θ is a trading plan. Let θ̃0 : T → RJ
+ be a Lebesgue integrable function such that

θ(t) ∈ B(t) = {ψ ∈ RJ : −θ̃0(t) ≤ ψ ≤ θ̃0(t)} µ-a.e. on T . Under (A3)-(A7), if

Ξ[θ] is ex ante blocked by some coalition S via some assignment h in {E ,G } such that

ϕ(t) = Φ[h](t) ∈ B(t) µ-a.e. on S then θ must be ex ante blocked by S in {E , (Sj)J
j=1}.

Proof. Define a correspondence F : S ⇒ RJ by letting

F (t) =

{
ψ ∈ RJ :

J∑
j=1

ψjSj = h(t, ·)− e(t, ·)

}
∩B(t).

Since ϕ(t) ∈ F (t), one has F (t) 6= ∅ µ-a.e. on S. It is easy to show that F has

measurable graph. By the measurable projection theorem, F has a Lebesgue inte-

grable selection ξ. By the completeness of the asset market economy and the fact that∫
S

h(·, ω)dµ =

∫
S

e(·, ω)dµ for all ω ∈ Ω, one concludes θ is ex ante blocked by S via

ξ.

The following theorem is an immediate consequence of Theorem 3.4.
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Theorem 5.3. Suppose that the asset market economy {E , (Sj)J
j=1} is complete, atom-

less and θ is a feasible asset trading plan not beloging to the ex ante core. Under (A3)-

(A7), for any given 0 < ε < µ(T ), there is a coalition R with µ(R) = ε such that θ is

ex ante blocked by R.

Proof. Suppose that θ is a feasible asset trading plan not belonging to the ex ante core

of {E , (Sj)J
j=1}. It follows that there is a coalition D and an asset trading plan ϕ such

that θ is ex ante blocked by D via ϕ. Then there is a countable valued integrable

function θ̃ : T → RJ
+ such that −θ̃ � θ, ϕ � θ̃ . Let {Ti : i ≥ 1} be collection of a

measurable subsets of T such that the values of θ̃ are constant on Ti for i ≥ 1. Let

θ̃(t) = xi if t ∈ Ti. Define the set Bi by letting

Bi =
{
ψ ∈ RJ : −xi ≤ ψ ≤ xi

}
.

Let

Hi =

{
J∑

j=1

ψj · Sj : ψ ∈ Bi

}
for all i ≥ 1 and Ht = Hi if t ∈ Ti. Thus, Hi, f := Ξ[θ] and h := Ξ[ϕ] satisfy

all the hypothesis listed in the statement of Theorem 3.4. By Theorem 3.4, for any

0 < ε < µ(T ), there is a coalition R such that Ξ[θ] is ex ante blocked by R via some

assignment g with g(t, ·)− e(t, ·) ∈ 4Ht µ-a.e. on T in {E ,G }. Hence, by Lemma 5.2,

θ is ex ante blocked by R in {E , (Sj)J
j=1}.

We now introduce the concept of coalitional fairness in the framework of asset

markets. As in the general case, with the first notion, we require that no coalition of

small agents envies a disjoint coalition containing all large agents because aggregate

portfolio choosen by the second coalition would make members of the first coalition

better off.

Definition 5.4. A feasible asset trading plan θ is called ex-ante C(T0,T1)(E )-fair if

there do not exist two disjoint elements S1 ∈ T0, S2 ∈ T1 and an asset trading plan ϕ

such that µ-a.e. on S1:

(i) Wt(ϕ(t)) > Wt(θ(t));

(ii)

∫
S1

ϕdµ =

∫
S2

θdµ.

In the next notion, the role of coalitions is exchanged. The fair criterion requires that

no coalition containing all large agents envies portfolios choosen by a disjoint coalition

of small agents.
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Definition 5.5. A feasible asset trading plan θ is called ex-ante C(T1,T0)(E )-fair if

there do not exist two disjoint elements S1 ∈ T1, S2 ∈ T0 and an asset trading plan ϕ

such that µ-a.e. on S1:

(i) Wt(ϕ(t)) > Wt(θ(t));

(ii)

∫
S1

ϕdµ =

∫
S2

θdµ.

Our final fairness requirement states that no coalition of small agents envies the aggre-

gate portfolio of a disjoint coalition containing all large agents and vice versa.

Definition 5.6. A feasible allocation f is called ex-ante C{T0,T1}(E )-fair if it is ex-ante

C(T0,T1)(E )-fair and ex-ante C(T1,T0)(E )-fair.

The following theorem is simply obtained as a corollary of Theorem 3.15.

Theorem 5.7. Let (A3)-(A7) be satisfied. Then any asset trading plan in the ex-ante

core of the asset market economy {E , (Sj)J
j=1} is ex-ante C{T0,T1}(E )-fair.

Proof. Let θ be an asset trading plan belonging to the ex ante core of the asset mar-

ket economy {E , (Sj)J
j=1}. Assume for contradiction θ is not ex-ante C{T0,T1}(E )-fair.

Without loss of generality, we assume that θ is not ex-ante C(T0,T1)(E )-fair. Hence,

there exist two disjoint elements S1 ∈ T0, S2 ∈ T1 and an asset trading plan ϕ such

that µ-a.e. on S1:

(i) Wt(ϕ(t)) > Wt(θ(t));

(ii)

∫
S1

ϕdµ =

∫
S2

θdµ.

Then there is a countable valued integrable function θ̃ : T → RJ
+ such that −θ̃ �

θ, ϕ � θ̃ . Let {Ti : i ≥ 1} be collection of a measurable subsets of T such that the

values of θ̃ are constant on Ti for i ≥ 1. Let θ̃(t) = xi if t ∈ Ti. Define the set Bi by

letting

Bi =
{
ψ ∈ RJ : −xi ≤ ψ ≤ xi

}
.

Let

Hi =

{
J∑

j=1

ψj · Sj : ψ ∈ Bi

}

26



for all i ≥ 1 and Ht = Hi if t ∈ Ti. Moreover, it follows from (ii) that

J∑
j=1

∫
S1

ϕj · Sj(ω) =
J∑

j=1

∫
S2

θj · Sj(ω),

which further yields∫
S1

(Ξ[ϕ](·, ω)− e(·, ω))dµ =

∫
S1

(Ξ[θ](·, ω)− e(·, ω))dµ.

On the other hand, it follows from (i) that Vt(Ξ[ϕ](t, ·)) > Vt(Ξ[θ](t, ·)) µ-a.e. Thus, Ht,

f := Ξ[θ] and h := Ξ[ϕ] satisfy all the hypothesis listed in the statement of Theorem

3.9. So, by Theorem 3.9, there is a coalition R such that Ξ[θ] is ex ante blocked by R

via some assignment g with g(t, ·) − e(t, ·) ∈ 4Ht µ-a.e. on T in {E ,G }. Hence, by

Lemma 5.2, θ is ex ante blocked by R via some asset trading plan in {E , (Sj)J
j=1}.

Finally, we extend our results on Vind’s theorem and fairness to the sequential core

of asset markets.

Definition 5.8. A two-period trading plan (θ, g) is in the sequential core of the asset

market economy {E , (Sj)J
j=1} if θ is in the ex ante core and g ∈ C (E ; Ξ[θ]).

The proof of the following theorem is now immediate.

Theorem 5.9. Let (θ, g) be a two-period trading plan not in the sequential core. Sup-

pose further that Ξ[θ](t, ω) is an interior point of Xt(ω) for all (t, ω) ∈ T × Ω. Under

(A3)-(A7), for any given 0 < ε < µ(T ), there is a coalition R with µ(R) = ε such that

either of the following is satisfied: (i) θ is ex ante blocked by R in {E , (Sj)J
j=1}; or (ii)

g is ex post blocked by R in E (f).

Definition 5.10. Given an asset trading plan θ, an assignment g is ex post C(T0,T1)(E ; θ)-

fair if there do not exist a state ω0, two disjoint elements S1 ∈ T0, S2 ∈ T1 and an

assignment h in E (ω0) such that ut(ω0, h(t)) > ut(ω0, g(t, ω0)) µ-a.e. on S1, and∫
S1

(h− Ξ[θ](·, ω0))dµ =

∫
S2

(g(·, ω0)− Ξ[θ](·, ω0))dµ.

Definition 5.11. Given an asset trading plan θ, an assignment g is ex post C(T1,T0)(E ; θ)-

fair if there do not exist a state ω0, two disjoint elements S1 ∈ T1, S2 ∈ T0 and an

assignment h in E (ω0) such that ut(ω0, h(t)) > ut(ω0, g(t, ω0)) µ-a.e. on S1, and∫
S1

(h− Ξ[θ](·, ω0))dµ =

∫
S2

(g(·, ω0)− Ξ[θ](·, ω0))dµ.
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As before we can define the sequential C{T0,T1}-fairness of a two-period trading plan and

in the light of Theorem 4.11 and Theorem 5.7, formulate the following easy consequence.

Theorem 5.12. Let (θ, g) be in the sequential core. Suppose further that Ξ[θ](t, ω) is

an interior point of Xt(ω) for all (t, ω) ∈ T ×Ω. Under (A3)-(A7), (θ, g) is sequential

C{T0,T1}-fair.

Remark 5.13. Notice that we can also also guarantee that our results hold true for a

general asset market economy by specifying the linear restriction introduced in section

7. More precisely, we choose in this case m = J and π(ω, θ) =
∑J

j=1 θ
j · Sj(ω) for all

θ ∈ RJ . Details are given in section 7.

We close this section with few remarks about applications to asymmetric information

economies. For these models, restrictions in trades at the ex-ante stage are asymmetric

and defined by the requirement that each agent only subscribes those contract that he

is able to distinguish according to his private information. Thus, for each agent t ∈ T ,

we set Gt = Gi if t ∈ Ji and 1 ≤ i ≤ m, where Gi and Ji are defined in Subsection 2.2.

This leads to the concept of private core (see Yannelis, 1991), privately fair allocation

(refer to Bhowmik, 2015), sequential core, two-stage core, sequentially C{T0,T1}(E )-fair

allocations under the private information setting. Thus, our main results (Corollary

3.5, Theorem 3.15, Theorem 4.4, Corollary 4.12) extend the existing results for the

private core in the literature to the general model including the case of sequential

notions.

Remark 5.14. An appropriate modification of the definition of Gt, may allow the

ex-ante restriction for agent t’s trade to vary with the coalition that agent t joins.

This model, also known as model with information sharing rule, permits to include in

our analysis the concepts of coarse core, fine core, weak fine core. For more detailed

discussion of these core notions, we refer to Bhowmik (2015).

6 Appendix A

Suppose that H is a sub-restriction of G , and f and h are two H -allocations such that

Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on some coalition S. We say that (f, h, S,H ) satisfies

the property (P) if the following is true:

There exist some 0 < λ < 1 and some 0 < η < 1 such that for all

z ∈
⋂
{ηHi : i ≥ 1} ∩ B(0, η)Ω,
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there is an assignment yz such that yz(t, ·) − e(t, ·) ∈ 4Ht, Vt(y
z(t, ·)) > Vt(f(t, ·))

µ-a.e. on S, and ∫
S

(yz − e)dµ+ z = (1− λ)

∫
S

(h− e)dµ.

Analogously, we say that (f, h, S,H ) satisfies the property (Q) if the following is true:

There exist some 0 < η < 1 and a sub-coalition R of S such that for all

z ∈
⋂
{ηHi : i ≥ 1} ∩ B(0, η)Ω,

there is an assignment ξz such that ξz(t, ·)− e(t, ·) ∈ 4Ht and Vt(ξ
z(t, ·)) > Vt(f(t, ·))

µ-a.e. on R, and ∫
R

(ξz − e)dµ+ z =
1

2

∫
S

(h− e)dµ.

Lemma 6.1. Let H be a sub-restriction of G and (A′
9) be satisfied for H . Sup-

pose also that (A1)-(A4), (A6) and (A7) hold true. Assume that f and h are two

H -allocations such that Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on some coalition S. Then

(f, h, S,H ) satisfies the property “(P)” if either of the following two conditions is

satisfied:

(i) aS > 0.

(ii) aS = 0, there is an ε > 0 such that e(t, ω)+B(0, ε) ⊆ Xt(ω) for all (t, ω) ∈ T×Ω,

and, moreover, there are some i0 ∈ ΛS and δ > 0 such that

2

µ(Si0)

∫
D

(h− e)dµ ∈ Hi0

for any measurable subset D of S with µ(D) < δ.

Proof. Let {δm : m ≥ 1} ⊆ (0, 1) be a decreasing sequence converging to 0. For all

i ∈ ΛS and r ≥ 1, define the set

Sr
i :=

{
t ∈ Si : e(t, ω) + B

(
0,

1

r

)
⊆ Xt(ω) for all ω ∈ Ω

}
.

Consider the function ψ : S × Ω → R, defined by ψ(t, ω) := dist
(
e(t, ω),R` \Xt(ω)

)
.

Since ψ(·, ω) is T -measurable for all ω ∈ Ω, the set

Sr
i =

{
t ∈ Si : ψ(t, ω) ≥ 1

r
for all ω ∈ Ω

}
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is T -measurable. Moreover, {Sr
i : r ≥ 1} is increasing and Si ∼

⋃
{Sr

i : r ≥ 1} for all

i ∈ ΛS12. If ΛS is finite, choose an integer r′ ≥ 1 with µ(Sr′
i ) > 2µ(Si)

3
for all i ∈ ΛS.

Define κ to be 1
r′ if (i) is satisfied; and ε, otherwise. Let

d ∈ R`
++ ∩ B

(
0,
κ

3

)
.

Choose some ζ < κ
3

such that d−B(0, ζ) ⊆ R`
++. In case (ii) holds, pick a finite subset

Θ of ΛS such that i0 ∈ Θ,
∑

i∈ΛS\Θ µ(Si) < δ and

2

µ(Si0)

∫
S
{Si:i∈ΛS\Θ}

(h− e)dµ ∈ B(0, ζ)Ω.

Define Ψ := ΛS if (i) is satisfied; and Θ, if (ii) is satisfied. Let E :=
⋃
{Sr′

i : i ∈ Ψ} if

(i) is satisfied; and S, otherwise. For all m ≥ 1, define the function hm : S × Ω → R`

by letting

hm(t, ω) :=

{
(1− δm)h(t, ω) + δm(e(t, ω)− 3d), if (t, ω) ∈ E × Ω;

(1− δm)h(t, ω) + δme(t, ω), otherwise.

Put,

Rm :=
{
t ∈ S : Vt(h

k(t, ·)) > Vt(f(t, ·)) for all k ≥ m
}
.

By (A4) and (A6), the mapping ξk : S → R, defined by

ξk(t) := Vt(h
k(t, ·))− Vt(f(t, ·)),

is T -measurable and so is Rm. It is obvious that {Rm : m ≥ 1} is increasing and

S ∼
⋃
{Rm : m ≥ 1}. It follows from the absolute continuity of Lebesgue integral that

there is some γ > 0 such that

2

b

∫
D

(h− e)dµ ∈ B (0, ζ)Ω

for any measurable subset D of S with µ(D) < γ, where b := min{µ(Si) | i ∈ Ψ}. For

each i ∈ Ψ, define Gi := Sr′
i if (i) is satisfied; and Si, if (ii) is satisfied. Choose some

m′ such that µ(S \Rm′
) < min{γ, c

4
}, where c := min{µ(Gi) | i ∈ Ψ}. Hence,

µ(Gi ∩Rm′
) >

3µ(Gi)

4
>
µ(Si)

2
≥ b

2

12We denote by A ∼ B the fact that B ⊆ A and µ(A \B) = 0.
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and
2

b

∫
Si\Rm′

(h− e)dµ ∈ B (0, ζ)Ω

for all i ∈ Ψ. Thus, one obtains

1

µ(Gi ∩Rm′)

∫
Si\Rm′

(h− e)dµ ∈ B (0, ζ)Ω

for all i ∈ Ψ. Put, λ := δm′ and

η := min
{
λζµ(Gi ∩Rm′

) : i ∈ Ψ
}
.

Let z ∈
⋂
{ηHi : i ∈ K} ∩ B (0, η)Ω and define

ẑi :=
1

λ|Ψ|µ(Gi ∩Rm′)
z,

where |Ψ| denotes the number of elements in Ψ. Assuming z = ηz′ for some z′ ∈⋂
{Hi : i ∈ K}, one obtains

ẑi =
αiζz

′

|Ψ|
for some 0 < αi ≤ 1 and for all i ∈ Ψ. Since Hi is convex and 0 ∈ Hi, one obtains

ẑi ∈ Hi for all i ∈ Ψ. On the other hand, z(ω) ∈ B(0, η) implies ẑi(ω) ∈ B(0, ζ) for all

i ∈ Ψ. By Lemma 5 in Shitovitz (1973), one has

1

µ(Si \Rm′)

∫
Si\Rm′

(h− e)dµ ∈ Hi

for all i ∈ Ψ. Since µ(Si \ Rm′
) < µ(Gi ∩ Rm′

), the above together with the fact that

Hi is convex and 0 ∈ Hi further yield

1

µ(Gi ∩Rm′)

∫
Si\Rm′

(h− e)dµ ∈ Hi ∩ B (0, ζ)Ω

for all i ∈ Ψ. Define

czi := ẑi +
1

µ(Gi ∩Rm′)

∫
Si\Rm′

(h− e)dµ

for all i ∈ Ψ \ {i0}; and

czi0 := ẑi0 +
1

µ(Gi0 ∩Rm′)

[∫
Si0

\Rm′
(h− e)dµ+

∫
S
{Si:i∈ΛS\Θ}

(h− e)dµ

]
,
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if (ii) is satisfied. Obviously, czi ∈ 3Hi∩B (0, κ)Ω for all i ∈ Ψ. Thus, e(t, ω)−czi ∈ Xt(ω)

for all (t, ω) ∈ Gi×Ω and i ∈ Ψ. For all i ∈ Ψ, consider an assignment gz
i : Si×Ω → R+

defined by

gz
i (t, ω) :=


(1− λ)h(t, ω) + λ(e(t, ω)− czi (ω)), if (t, ω) ∈ (Gi ∩Rm′

)× Ω;

(1− λ)h(t, ω) + λe(t, ω), if (t, ω) ∈ ((Si ∩Rm′
) \Gi)× Ω;

h(t, ω), otherwise.

It is easy to verify that gz
i (t, ω) ∈ Xt(ω) for all (t, ω) ∈ Si × Ω. Since −czi ∈ 3Hi, one

must have gz
i (t, ·) − e(t, ·) ∈ 4Hi for all t ∈ Gi ∩ Rm′

. Likewise, it can be shown that

gz
i (t, ·)− e(t, ·) ∈ 4Hi for all t ∈ Si. Moreover, gz

i (t, ω) � hm′
(t, ω) for all t ∈ Gi∩Rm′

.

It follows that

Vt(g
z
i (t, ·)) > Vt(h

m′
(t, ·)) > Vt(f(t, ·))

for all t ∈ Gi ∩ Rm′
. Hence, Vt(g

z
i (t, ·)) > Vt(f(t, ·)) for all t ∈ Si. It can be checked

that ∫
Si

(gz
i − e)dµ+

z

|Ψ|
= (1− λ)

∫
Si

(h− e)dµ.

for all i ∈ Ψ \ {i0}; and∫
Si0

(gz
i0
− e)dµ+

z

|Ψ|
= (1− λ)

∫
Si0

(h− e)dµ− λ

∫
S
{Si:i∈ΛS\Θ}

(h− e)dµ,

if (ii) is satisfied. Define the assignment yz : T × Ω → R` by letting

yz(t, ω) :=

{
gz

i (t, ω), if (t, ω) ∈ Si × Ω, i ∈ Ψ;

h(t, ω), otherwise.

It can be simply checked that yz satisfies the required condition.

Proposition 6.2. Suppose that H is a sub-restriction of G that satisfies (A′
9). As-

sume further that f and h are two H -allocations such that Vt(h(t, ·)) > Vt(f(t, ·))
µ-a.e. on some coalition S ∈ T0. Then (f, h, S,H ) satisfies the property (Q).

Proof. Choose an i0 ∈ K such that µ(S ∩ Ii0) > 0. By Lemma 6.1, (f, h, S ∩ Ii0 ,H )

satisfies the property (P). Then there exist some 0 < λ < 1 and some 0 < η < 1 such

that for all

z ∈
⋂
{ηHi : i ≥ 1} ∩ B(0, η)Ω,

there is an assignment yz such that yz(t, ·)− e(t, ·) ∈ 4Ht and Vt(y
z(t, ·)) > Vt(f(t, ·))

µ-a.e. on S ∩ Ii0 and∫
S∩Ii0

(yz − e)dµ+ z = (1− λ)

∫
S∩Ii0

(h− e)dµ.
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Let η0 = η
2

and take any z ∈
⋂
{η0Hi : i ≥ 1} ∩ B(0, η0)

Ω. Then ẑ = 2z ∈
⋂
{ηHi :

i ≥ 1} ∩ B(0, η)Ω. So, there is an assignment yẑ such that yẑ(t, ·) − e(t, ·) ∈ 4Ht and

Vt(y
ẑ(t, ·)) > Vt(f(t, ·)) µ-a.e. on S ∩ Ii0 and∫

S∩Ii0

(yẑ − e)dµ+ ẑ = (1− λ)

∫
S∩Ii0

(h− e)dµ.

By the Lyapunov convexity theorem, there is a coalition R1 ⊆ S ∩ Ii0 such that∫
R1

(h− e)dµ = λ

∫
S∩Ii0

(h− e)dµ.

Define the correspondence Γf : R1 ⇒ (R`)Ω by letting

Γf (t) := {z ∈ Xt : z − e(t, ·) ∈ 4Ht and Vt(z) > Vt(f(t, ·))} .

Clearly,

∫
R1

yẑdµ ∈
∫

R1

Γfdµ and

∫
R1

hdµ ∈
∫

R1

Γfdµ. Since

∫
R1

Γfdµ is convex, one

obtains
1

2

∫
R1

yẑdµ+
1

2

∫
R1

hdµ ∈
∫

R1

Γfdµ.

So, there is an assignment ϕẑ such that
∫

R1
ϕẑdµ ∈

∫
R1

Γfdµ and∫
R1

ϕẑdµ =
1

2

∫
R1

yẑdµ+
1

2

∫
R1

hdµ.

This implies that∫
R1

(ϕẑ − e)dµ =
1

2

∫
R1

(yẑ − e)dµ+
1

2

∫
R1

(h− e)dµ.

Again, by the Lyapunov convexity theorem, there are coalitions R2 ⊆ (S ∩ Ii0) \ R1

and R3 ⊆ S \ Ii0 such that∫
R2

(yẑ − e)dµ =
1

2

∫
(S∩Ii0

)\R1

(yẑ − e)dµ

and ∫
R3

(h− e)dµ =
1

2

∫
S\Ii0

(h− e)dµ.

Let R := R1 ∪R2 ∪R3 and define an assignment ξz : T × Ω → R` such that

ξz(t, ω) :=


ϕẑ(t, ω), if (t, ω) ∈ R1 × Ω;

yẑ(t, ω), if (t, ω) ∈ R2 × Ω;

h(t, ω), otherwise.
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Thus, ξz(t, ·)− e(t, ·) ∈ 4Ht and Vt(ξ
z(t, ·)) > Vt(f(t, ·)) µ-a.e. on R, and∫

R

(ξz − e)dµ+ z =
1

2

∫
S

(h− e)dµ.

Proof of Theorem 3.4 Choose an ε ∈ (0, µ(S)). Let α ∈ (0, 1) be such that ε =

αµ(S). It follows from the Lyapunov convexity theorem that there exists a coalition

E such that µ(E) = αµ(S) and

∫
E

(h− e)dµ = α

∫
S

(h− e)dµ = 0. Thus, there is a

coalition E with µ(E) = ε and

∫
E

(h− e)dµ = 0. If µ(S) = µ(T ) then nothing is

remaining to prove. So, assume that µ(S) < ε < µ(T ). By Proposition 6.2, there exist

an η > 0 and a sub-coalition R of S such that for all z ∈
⋂
{ηHi : 1 ≤ i ≤ n}∩B (0, η)Ω,

there is an assignment yz such that yz(t, ·)− e(t, ·) ∈ 4Ht and Vt(y
z(t, ·)) > Vt(f(t, ·))

µ-a.e. on R, and ∫
R

(yz − e)dµ+ z =
1

2

∫
S

(h− e)dµ. (6.1)

Let

β := 1− ε− µ(R)

µ(T \R)
.

By the Lyapunov convexity theorem, there is a coalition B ⊆ T \R such that µ(B) =

(1− β)µ(T \R) and ∫
B

(f − e)dµ = (1− β)

∫
T\R

(f − e)dµ.

Let

D :=
⋂
{βηHi : 1 ≤ i ≤ n} ∩ B (0, βη)Ω ,

and define g : T ×D → R by

g(t, z) := Vt(f(t, ·) + z)− Vt(f(t, ·)).

Since g(·, z) is T -measurable for all z ∈ D and g(t, ·) is continuous with respect to the

subspace topology of the usual topology on D for all t ∈ T , g is T ⊗B(D)-measurable.

Define the correspondence Λf : T ⇒ D by letting

Λf (t) := {z ∈ D : g(t, z) > 0} .
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By our assumption, Λf (t) 6= ∅ for all t ∈ T . Moreover, GrΛf
is T ⊗B(D)-measurable.

Consider the correspondence Φf : T ⇒ D defined by

Φf (t) := {z ∈ D : f(t, ω) + z(ω) ∈ Xt(ω) for all ω ∈ Ω} .

As Xt(ω) is closed, Φf (t) can be equivalently expressed as

Φf (t) = {z ∈ D : dist(f(t, ω) + z(ω), Xt(ω)) = 0 for all ω ∈ Ω} .

Since 0 ∈ D, Φf (t) 6= ∅ for all t ∈ T . As before, one can show that GrΦf
is T ⊗B(D)-

measurable. Let Ψf : T ⇒ D be a correspondence defined by Ψf (t) := Λf (t) ∩ Φf (t)

for all t ∈ T . By our assumptions, Ψf (t) 6= ∅ for all t ∈ T . Moreover, GrΨf
is

T ⊗ B(D)-measurable. By the Aumann-Saint-Beuve measurable selection theorem,

there is a T -measurable selection ξ of Ψf such that g(t, ξ(t)) > 0 for all t ∈ T . Define

d :=
1

µ(B)

∫
B

ξdµ.

By Lemma 5 in Shitovitz (1973), one has

d ∈
⋂
{βηHi : 1 ≤ i ≤ n} ∩ B (0, βη)Ω .

So,

c := dµ(B) ∈
⋂
{βηHi : 1 ≤ i ≤ n} ∩ B (0, βη)Ω

and

c0 :=
c

β
∈
⋂
{ηHi : 1 ≤ i ≤ n} ∩ B (0, η)Ω .

Thus, by Equation (6.1), there is an assignment yc0 such that yc0(t, ·) − e(t, ·) ∈ 4Ht

and Vt(y
c0(t, ·)) > Vt(f(t, ·)) µ-a.e. on R, and∫

R

(yc0 − e)dµ+ c0 =
1

2

∫
S

(h− e)dµ = 0.

As in the proof of Proposition 6.2, one can show that there is an assignment ϕ such

that ϕ(t, ·)− e(t, ·) ∈ 4Ht and Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on R, and∫
R

(ϕ− e)dµ = β

∫
R

(yc0 − e)dµ+ (1− β)

∫
R

(f − e)dµ.

Let E := R ∪B. Consider an assignment ψ : T × Ω → R` defined by13

ψ(t, ω) :=

{
ϕ(t, ω), if (t, ω) ∈ R× Ω;

f(t, ω) + ξ(t, ω), otherwise.

13ξ(t, ω) denotes the ωth-coordinate of ξ(t).
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Obviously, ψ is an assignment with ψ(t, ·) − e(t, ·) ∈ 4Ht µ-a.e. on T and µ(E) =

ε. Furthermore, Vt(ψ(t, ·)) > Vt(f(t, ·)) µ-a.e. on E. It can be easily verified that∫
E
(ψ − e)dµ = 0. This completes the proof.

Proof of Theorem 3.9 Suppose that the hypothesis of the theorem is satisfied. The

rest of the proof is decomposed into two cases:

Case 1. µ(S1 ∪ S2) = µ(T ). It is not difficult to show that there is an assignement

ϕ such that ϕ(t, ·)− e(t, ·) ∈ Ht and Vt(ϕ(t, ·)) > Vt(f(t, ·)) µ-a.e. on S1, and∫
S1

(ϕ− e)dµ =
1

2

∫
S1

(h− e)dµ+
1

2

∫
S1

(f − e)dµ.

This implies that ∫
S1

(ϕ− e)dµ =
1

2

∫
S1∪S2

(f − e)dµ = 0.

This is a contradiction to that fact that f is in the ex ante core.

Case 2. µ(S1∪S2) < µ(T ). By the Lyapunov convexity theorem, there is a coalition

B ⊆ T \ S2 such that µ(B) = 1
2
µ(T \ S2) and∫

B

(f − e)dµ =
1

2

∫
T\S2

(f − e)dµ.

By Proposition 6.2, there exist an η > 0 and a sub-coalition R of S such that for all

z ∈
⋂
{ηHi : 1 ≤ i ≤ n}∩B (0, η)Ω, there is an assignment yz such that yz(t, ·)−e(t, ·) ∈

4Ht and Vt(y
z(t, ·)) > Vt(f(t, ·)) µ-a.e. on R, and∫

R

(yz − e)dµ+ z =
1

2

∫
S1

(h− e)dµ. (6.2)

Applying an argument similar to that in the proof of Theorem 3.4, one can show that

there exists an element

c ∈
⋂
{ηHi : 1 ≤ i ≤ n} ∩ B (0, η)Ω

such that c =

∫
B

ξdµ, where

(i) ξ(t) ∈
⋂
{ηHi : 1 ≤ i ≤ n} ∩ B (0, η)Ω;

(ii) f(t, ·) + ξ(t) ∈ Xt; and

(iii) Vt(f(t, ·) + ξ(t)) > Vt(f(t, ·))
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for all t ∈ B. Thus, by Equation (6.2), there exists an assignment yc such that

yc(t, ·)− e(t, ·) ∈ 4Ht and Vt(y
c(t, ·)) > Vt(f(t, ·)) µ-a.e. on R, and∫

R

(yc − e)dµ+ c =
1

2

∫
S1

(h− e)dµ =
1

2

∫
S2

(f − e)dµ.

Thus, ∫
R

(yc − e)dµ+

∫
B

(f − e)dµ+ c = 0,

which further implies ∫
R

(yc − e)dµ+

∫
B

(f + ξ − e)dµ = 0.

Define the assignment ψ : T × Ω → R` by letting

ψ(t, ω) :=


yc(t, ω), if (t, ω) ∈ R× Ω;

f(t, ω) + ξ(t, ω), if (t, ω) ∈ (B \R)× Ω;

f(t, ω), otherwise.

Note that ψ(t, ·)− e(t, ·) ∈ 4Ht µ-a.e. on T . If µ(R∩B) = 0 then f is ex ante blocked

by R ∪ B via ψ, which is a contradiction. So, assume that µ(R ∩ B) > 0 and rewrite

the above equality as

1

2

∫
R\B

(ψ − e)dµ+

∫
R∩B

(ψ − e)dµ+
1

2

∫
B\R

(ψ − e)dµ = 0.

Thus, there exist R1, R2 ∈ T such that R1 ⊆ R \B and R2 ⊆ B \R such that∫
R1

(ψ − e)dµ+

∫
R∩B

(ψ − e)dµ+

∫
R2

(ψ − e)dµ = 0.

Thus, the coalition E := R1 ∪ (R ∩ B) ∪ R2 ex ante blocks f via ψ, which is a

contradiction.

Proof of Theorem 3.12 Suppose that the hypothesis of the theorem is true. The

rest of the proof is completed by considering the following two cases:

Case 1. µ(S1∪S2) = µ(T ). This case can be done analogous to Case 1 in the proof

of Theorem 3.9.

Case 2. µ(S1 ∪ S2) < µ(T ). By Lemma 6.1, there exist a λ ∈ (0, 1) and an η > 0

such that for all z ∈
⋂
{ηGi : 1 ≤ i ≤ n} ∩ B (0, η)Ω, there is an assignment yz such

that yz(t, ·)− e(t, ·) ∈ 4Ht and Vt(y
z(t, ·)) > Vt(f(t, ·)) µ-a.e. on S1, and∫

S1

(yz − e)dµ+ z = (1− λ)

∫
S1

(h− e)dµ. (6.3)
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By the Lyapunov convexity theorem, there are coalitions B1 ⊆ S2 and B2 ⊆ T \(S1∪S2)

such that ∫
B1

(f − e)dµ =
λ

2

∫
S2

(f − e)dµ

and ∫
B2

(f − e)dµ =
1

2

∫
T\(S1∪S2)

(f − e)dµ.

Let B := B1 ∪B2. Applying an argument similar to that in the proof of Theorem 3.4,

one can show that there exists an element

c ∈
⋂{η

2
Hi : 1 ≤ i ≤ n

}
∩ B

(
0,
η

2

)Ω

such that c =
∫

B
ξdµ, where

(i) ξ(t) ∈
⋂{η

2
Hi : 1 ≤ i ≤ n

}
∩ B

(
0, η

2

)Ω
;

(ii) f(t, ·) + ξ(t) ∈ Xt; and

(iii) Vt(f(t, ·) + ξ(t)) > Vt(f(t, ·))

for all t ∈ B. Define

c0 := 2c ∈
⋂
{ηHi : 1 ≤ i ≤ n} ∩ B (0, η)Ω .

Thus, by Equation (6.3), there exists an assignment yc0 such that yc0(t, ·)−e(t, ·) ∈ 4Ht

and Vt(y
c0(t, ·)) > Vt(f(t, ·)) µ-a.e. on S1, and∫

S1

(yc0 − e)dµ+ c0 = (1− λ)

∫
S1

(h− e)dµ = (1− λ)

∫
S2

(f − e)dµ.

Thus, one has∫
S1

(yc0 − e)dµ+ λ

∫
S2

(f − e)dµ+

∫
T\S2

(f − e)dµ+ c0 = 0.

Hence, one can find an assignment ϕ such that ϕ(t, ·)− e(t, ·) ∈ 4Ht and Vt(ϕ(t, ·)) >
Vt(f(t, ·)) µ-a.e. on S1, and∫

S1

(ϕ− e)dµ =
1

2

∫
S1

(yc0 − e)dµ+
1

2

∫
S1

(f − e)dµ.

As a result, one obtains ∫
S1

(ϕ− e)dµ+

∫
B

(f − e)dµ+ c = 0,

38



which is equivalent to ∫
S1

(ϕ− e)dµ+

∫
B

(f + ξ − e)dµ = 0,

Thus, the coalition R := S1 ∪B ex ante blocks f via ψ, defined by

ψ(t, ω) :=


ϕ(t, ω), if (t, ω) ∈ S1 × Ω;

f(t, ω) + ξ(t, ·), if (t, ω) ∈ B × Ω;

f(t, ω), otherwise.

Since ψ(t, ·)− e(t, ·) ∈ 4Ht µ-a.e. on T , one arrives at a contradiction.

Proof of Theorem 4.4 Suppose that g is a feasible assignment in E (f) not belonging

to the ex post core of E (f). Then there are some state ω0, coalition S and assignment

h in E (f ;ω0) such that ut(ω0, h(t)) > ut(ω0, g(t, ω0)) µ-a.e. on S, and∫
S

hdµ =

∫
S

f(·, ω0)dµ.

Since Corollary 3.5 is valid when Ω = {ω0} and Gt = R` for all t ∈ T , we can conclude

the following: for any 0 < ε < µ(T ), there must exist some coalition R and assignment

y in E (f ;ω0) such that ut(ω0, y(t)) > ut(ω0, g(t, ω0)) µ-a.e. on R, and∫
R

ydµ =

∫
R

f(·, ω0)dµ.

This completes the proof.

Proof of Theorem 4.11 Suppose that g ∈ C (E ; f). Without loss of generality,

suppose that g is not ex post C(T0,T1)(E ; f)-fair. Thus, there exist a state ω0, two

disjoint elements S1 ∈ T0, S2 ∈ T1 and an assignment h in E (f ;ω0) such that

ut(ω0, h(t)) > ut(ω0, g(t, ω0)) µ-a.e. on S1, and∫
S1

(h− f(·, ω0))dµ =

∫
S2

(g(·, ω0)− f(·, ω0))dµ.

Since Corollary 3.5 is valid when Ω = {ω0} and Gt = R` for all t ∈ T , we can conclude

that g is not in the core of E (f ;ω0), which is is a contradiction. This completes the

proof.

39



7 Appendix B

The additional material contained in this appendix allows us to apply our main results

to asset markets which are not necessarily complete. The proofs reproduce those of

previous theorems and are omitted.

Assume that Xt(ω) = R` for all (t, ω) ∈ T × Ω. Thus, (A1) and (A2) are satisfied

trivially. Let π : Ω×Rm → R` be a function such that π(ω, ·) is linear, π(ω, x) ∈ R`
+\{0}

for all x ∈ Rm
++, and π(ω, 0) = 0. Define

Ht = Gt = {(π(ω, x(ω)) : ω ∈ Ω) : x(ω) ∈ Rm for all ω ∈ Ω}

for all t ∈ T . It is evident that (A8) and (A9) are satisfied. Let a : T × Ω → Rm and

b : T × Ω → Rm be such that a(·, ω) and b(·, ω) are Lebesgue integrable for all ω ∈ Ω,

f(t, ω)− e(t, ω) = π(ω, a(t, ω)) and h(t, ω)− e(t, ω) = π(ω, b(t, ω)).

The following fact is a consequence of the construction of the assignment yz in the

proof of Lemma 6.1: there are some 0 < λ < 1 and 0 < η < 1 such that for all d ∈
Rm

++∩S(0, η)14, there is some cd : T ×Ω → Rm such that cd(·, ω) is Lebesgue integrable

function for all ω ∈ Ω and yz(t, ω)− e(t, ω) = π(ω, cd(t, ω)) for all (t, ω) ∈ T × Ω, and∫
S

cd(·, ω)dµ+ d = (1− λ)

∫
S

b(·, ω)dµ (7.1)

for all ω ∈ Ω. On the other hand, defining in the proof of Proposition 6.2 the corre-

spondence Γf : R1 ⇒ (R`)Ω as

Γf (t) :=
{
x ∈ (Rm)Ω : Vt(π(·, x(·)) + e(t, ·)) > Vt(f(t, ·))

}
and applying similar arguments, one can find some sub-coalition R of S and 0 < η < 1

such that for all d ∈ Rm
++ ∩ S(0, η), there exists a function ξd : T × Ω → Rm such

that ξd(·, ω) is Lebesgue integrable function for all ω ∈ Ω and ξz(t, ω) − e(t, ω) =

π(ω, ξd(t, ω)) for all (t, ω) ∈ T × Ω, and∫
R

ξd(·, ω)dµ+ d(ω) =
1

2

∫
S

b(·, ω)dµ (7.2)

for all ω ∈ Ω.

In the light of above remarks and equations, one can obtain the following results.

14S(0, η) denoted the open ball centered at 0 and radius η.
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Theorem 7.1. Assume that the economy E is atomless (that is, T1 = ∅). Let a :

T × Ω → Rm and b : T × Ω → Rm be such that a(·, ω) and b(·, ω) are Lebesgue

integrable for all ω ∈ Ω,

f(t, ω)− e(t, ω) = π(ω, a(t, ω)) and h(t, ω)− e(t, ω) = π(ω, b(t, ω)).

Suppose further that there is a coalition S such that Vt(h(t, ·)) > Vt(f(t, ·)) µ-a.e. on

S,

∫
T

a(·, ω)dµ = 0 and

∫
S

b(·, ω)dµ = 0 for all ω ∈ Ω. Suppose that f is not in the

ex ante core. Under (A3)-(A7), for any given 0 < ε < µ(T ), there is a coalition R, a

function c : T × Ω → Rm and an assignment y such that µ(R) = ε and f is ex ante

blocked by R via y; and y(t, ·)− e(t, ·) = π(ω, c(t, ω)) for all (t, ω) ∈ T ×Ω. Moreover,

if a(t, ·) : Ω → Rm and b(t, ·) : Ω → Rm are constant µ-a.e. on T then c(t, ·) : Ω → Rm

can be chosen to be constant µ-a.e. on T , and
∫

R
c(·, ω)dµ = 0.

Theorem 7.2. Suppose that a : T ×Ω → Rm is a function such that a(t, ·) is constant

µ-a.e. on T ,

∫
T

a(·, ω)dµ = 0 for all ω ∈ Ω, and

f(t, ω)− e(t, ω) = π(ω, a(t, ω)).

Let there be no coalition S and function b : T × Ω → Rm such that b(t, ·) is constant

µ-a.e. on T ,

∫
S

b(·, ω)dµ = 0 for all ω ∈ Ω and

Vt(e(t, ·) + π(ω, b(t, ω))) > Vt(f(t, ·))

µ-a.e. on S. Under (A3)-(A7), there do not exist two disjoint elements S1 ∈ T0 and

S2 ∈ T1, and a function c : T × Ω → Rm such that µ-a.e. on S1 and for each ω ∈ Ω:

(i) c(t, ·) is constant;

(ii) Vt(e(t, ·) + π(ω, c(t, ω))) > Vt(f(t, ·));

(iii)

∫
S1

c(·, ω)dµ =

∫
S2

a(·, ω)dµ.

Theorem 7.3. Suppose that a : T ×Ω → Rm is a function such that a(t, ·) is constant

µ-a.e. on T ,

∫
T

a(·, ω)dµ = 0 for all ω ∈ Ω, and

f(t, ω)− e(t, ω) = π(ω, a(t, ω)).
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Let there be no coalition S and function b : T × Ω → Rm such that b(t, ·) is constant

µ-a.e. on T ,

∫
S

b(·, ω)dµ = 0 for all ω ∈ Ω and

Vt(e(t, ·) + π(ω, b(t, ω))) > Vt(f(t, ·))

µ-a.e. on S. Under (A3)-(A7), there do not exist two disjoint elements S1 ∈ T1 and

S2 ∈ T0, and a function c : T × Ω → Rm such that µ-a.e. on S1 and for each ω ∈ Ω:

(i) c(t, ·) is constant;

(ii) Vt(e(t, ·) + π(ω, c(t, ω))) > Vt(f(t, ·));

(iii)

∫
S1

c(·, ω)dµ =

∫
S2

a(·, ω)dµ.
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