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Abstract 

In this paper we compare a mixed logit model (MLM) and a latent class model (LCM) in the context of behavioral 
structural estimation using experimental data. By providing an instrument to deal with the intrinsic unobserved 
heterogeneity that characterizes experimental data, these alternative models have clear advantages compared 
with a multinomial logit model (MNL) typically used in structural estimation of behavioral models. We carry out our 
exercise by using experimental data that allows us estimation of distributional parameters related to risk and 
social preferences. Somehow coherently with the economic theory, the LCM identifies three classes of subjects 
(risk/ineq. lovers, risk/ineq. neutral, risk/ineq. averse). Moreover, estimates from both MLM and LCM somehow 
confirm the findings from a MNL model, that under the veil of ignorance (VOI) subjects’ variance aversion mostly 
reflects risk, rather than distributional concerns. By taking unobserved heterogeneity adequately into account in 
the estimation of our structural behavioral model, also provides new insights into individual behavior on the 
interplay between risk and inequality concerns. For example, we find that there is much more variability in 
individual behavior when subjects face pure inequality than under VOI. Moreover, in the case of pure inequality 
subjects are also more likely to be inequality lovers than under VOI. 
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1 Introduction

Structural estimation of behavioral models using experimental data is becoming a standard in

the analysis of many decision contexts, such as risk and uncertainty (Harrison and Rustrom

[19]), intertemporal decisions (Harrison et al. [1]) or distributional choices (Fisman et al

[13]). This literature has the great advantage of reducing the gap between theoretical and

empirical aspects of behavior in that the experimental evidence is framed directly within

the models that have been proposed to explain it. Powerful maximum-likelihood estimation

packages (now available within every standard statistical software) allow scholars (not only

experienced econometricians) to estimate the parameters of classic models of decision, or

validating new ones.

The most popular exercise of structural estimation consists in framing the (discrete)

choice problem using the multinomial logit model (MNL, see Harrison [17]). More recently,

few papers have corrected some basic drawback of the MNL model by allowing for between-

subjects heterogeneity by way of two alternative techniques. The first technique consists

of estimating individual fixed effects (FE, see, e.g., Cabrales et al. [6] and Frignani and

Ponti [14]), which – essentially – yields the estimation of fixed coefficients for each subject

participating to the experiment. The second technique consists of applying the so-called

mixed logit model (MLM, see, e.g., Bellemare et al. [3], or Conte et al. [8]), which -essentially-

yields the estimation of random coefficients characterized by an individual component drawn

from a (parametrically imposed) common distribution.

These alternative approaches have clear advantages compared with MNL in the con-

text of structural estimation, since they provide an instrument to deal with the intrinsic

unobserved heterogeneity that characterizes experimental data. Moreover, this observation

has prompted the theoretical discussion in Behavioral Economics, by introducing models in

which players are characterized by “behavioral types” - take for instance the partition of so-

cial preferences among “inequity averse”, “status seekers” , “efficiency seekers”, or “egoists”

in Dictator Games (Engelmann and Strobel [9]), or the partition between “un/conditional

cooperators” and “selfish” in he context of (repeated) public good provision (Fischbacher

and Gachter [12]). These models do not treat heterogeneity as associated with individu-

als’ observable characteristics - such as gender, or income - but measure it as preference

parameter realizations revealed by subjects’ actual behavior.

In this paper we compare the MLM technique with an alternative approach, namely the
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latent class model (LCM), in the context of behavioral structural estimation in order to

analyze the sources of the individual heterogeneity. We do so within the realm of a simple

(mean-variance) random utility specification. LCMs have been extremely popular especially

in psychology and marketing. In this approach, each latent class consists of a number

of individuals that are assumed to be homogeneous with respect to their preferences for

alternatives. Latent classes, however, differ in preference, meaning that the taste parameters

differ between latent classes. This model can be very useful to read evidence of many

experiments, where subjects’ behavior is framed within the realm of a specific random utility

model, where the partition in specific subsets of the relevant parameter space has a natural

correspondence with a “behavioral type”, within the realm of the behavioral model under

scrutiny.

To carry out our exercise we will use experimental data from Cabrales et al. [6] (CABRA

hereafter) and Frignani and Ponti [14] (FRIGNO hereafter). In these two papers, distri-

butional preference parameters are estimated by way of a simple Dictator Game in which

subjects repeatedly select their favorite option among a fixed menu of four, which changes

at every round. Each option consists in two monetary prizes, one for them, one for another

(randomly and anonymously matched) subject participating to the experiment. The exercise

carried out there exploits the experimental methodology by designing specific economic envi-

ronments in which, sometimes risk and inequality concerns are isolated, sometimes they are

combined by facing inequality under the veil of ignorance (VOI), checking how these alter-

native decision frames affect the estimates of the same parameter, under the same statistical

model.

The comparison of the estimated parameters across different environments detects how

subjects react to (absolute) difference in payoff. In this respect, FRIGNO’s main result

-namely, positive and significant variance aversion in all environments, and (no) significant

difference comparing the parameter associated with pure inequality aversion (pure risk aver-

sion) compared with the control VOI - yields a natural interpretation: when facing choices

under the VOI, subjects seem to undermine the “inequality” dimension of the problem (which

is, instead significant in absence of risk), and their choices are not distinguishable from those

taken in a simple lottery environment.

Nevertheless, taking unobserved heterogeneity in risk and social preferences adequately

into account turns out to be a critical issue in the estimation of such a structural behavioral
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model. FRIGNO’s empirical conclusions are derived from a MNL model, i.e., without con-

trolling for individual unobserved heterogeneity. First of all, somehow coherently with the

economic theory, the LCM identifies three classes of subjects (risk/ineq. lovers, risk/ineq.

neutral, risk/ineq. averse). Moreover, estimates from both MLM and LCM somehow confirm

the findings in Frignani and Ponti [14], derived from a MNL model, that under VOI subjects’

variance aversion mostly reflects risk, rather than distributional concerns. By taking unob-

served heterogeneity adequately into account in the estimation of our structural behavioral

model also provides new insights into individual behavior about risk and inequality. For

example, we find that there is much more variability in individual behavior when subjects

face pure inequality than under VOI. Moreover, in the case of pure inequality subjects are

also more likely to be inequality lovers than under VOI.

The remainder of this paper is arranged as follows. In Section 2 we briefly describe

the experimental design. Section 3 describes our empirical model of preferences. Section 4

presents our results. Finally, Section 5 offers some conclusions.

2 Experimental design

In what follows, we describe the features of FRIGNO’s experimental environment. Starting

from CABRA, where player position (i.e. the identity of the best paid agent) is constant

across options, and known in advance before subjects have to make their decisions (treatment

T1), FRIGNO complement their evidence with two additional treatments in which subjects

face the same sequence of decisions under VOI, knowing ex-ante that either player position

is equally likely (T2), or the same sequence of decisions is made under a “lottery frame”, in

which player position is unknown (and equally likely), but there is no payoff externality on

others (T3). Here the experimental evidence is read by the way of a simple mean/variance

utility model where, depending on the treatments, the parameter associated with the variance

measures pure inequality aversion (T1), pure risk aversion (T3) or, in the VOI treatment T2,

some combination of the two.

2.1 Sessions

They run 8 sessions under 3 different treatments: 3 sessions for each of the “Dictator Game”

treatments, T1 and T2, 2 sessions for the “Lottery” treatment, T3. All experimental sessions
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were conducted at the Laboratory of Theoretical and Experimental Economics (LaTEx), of

the Universidad de Alicante. A total of 192 students (24 per session) were recruited among

the undergraduate population of the Universidad de Alicante. The experimental sessions

were computerized.1 Instructions were read aloud and we let subjects ask about any doubt

they may have had. In all sessions (but those of the lottery treatment T3), subjects were

divided into two matching groups of 12, with subjects from different matching groups never

interacting with each other throughout the session.2

All treatments share the same basic layout. At the beginning of each round t = 1, . . . , 24,

subjects are informed about the choice set Ct = {akt : k = 1, . . . , 4}, constant across treat-

ments. Each option akt = (a1kt, a
2
kt) assigns a fixed monetary prize, ajkt, to player j = 1, 2,

with a1kt ≥ a2kt, ∀ k. After subjects have selected their favorite options, all payoff relevant

information is revealed and payoffs are distributed.

2.2 Treatments

We now explain the details of our 3 experimental conditions.

T1 : pure inequality (CABRA)

In T1, subjects choose their preferred option after being informed about the outcome of

the iid draw which fixes the player (i.e. their relative) position for that pair and round.

Remember that, since a1kt ≥ a2kt, player 1 (2) looks at the distributional problem implicit

in the option choice from the viewpoint of the (dis)advantaged player. Once choices are

made, we employ a “Random Dictator” protocol (Harrison and McDaniel [18]) to determine

the payoff relevant decision, in that another iid draw fixes the identity of the subject whose

choice determines the monetary rewards for that pair and round.

T2 : VOI

In treatment T2 we modify the control treatment T1 by introducing the VOI. In this case,

subjects only know that the ex-ante probability of being assigned to either player position

1 The experiment was programmed and conducted with the software z-Tree (Fischbacher [11]). The
complete set of instructions, translated into English, can be found in the Appendix.

2 Given this design feature, we shall read the data under the assumption that the history of each matching
group corresponds to an independent observation. Clearly, the same does not apply in case of T3, in that
each subject’s experimental history corresponds to an independent observation.
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equals 1
2
. Everything else is just as in T1, in particular the fact that subjects alternate player

and Dictator positions in a (iid) random fashion.

T3 : pure risk (LOTT)

Our lottery treatment T3 replicates treatment T2 without any payoff externality on others.

In this case, player position is uncertain (and equally likely), but each subject decides in

isolation.

2.3 Financial rewards

All monetary payoffs in the experiment were expressed in Spanish Pesetas (1 euro is approx.

166 ptas.). Subjects received 1.000 ptas. just to show up, to which they summed up all their

cumulative earnings throughout the 24 rounds of the experiment. Average earnings were

about 12 euros, for an experimental session lasting for approximately 45 minutes.

3 An empirical model of preferences

Subject i faces a choice among the alternatives in choice set Ct in each of the 24 choice

situations (rounds). We model the utility that subject i = 1, . . . , n obtains from alternative

k = 1, . . . , 4 in choice occasion t = 1, . . . , 24 as

Vikt = µikt − γisikt,

where µikt is either the monetary payoff assigned to the player in T1 or the average of the

two players’ payoffs otherwise, and sikt is a measure of the distance between the two players’

payoffs. Specifically, we model sikt as the standard deviation of the two players’ payoffs for

option k in choice occasion t. Thus, our model corresponds to a simple mean-variance utility

model.

The unobserved coefficient γi is allowed to vary over subjects and its interpretation

depends on the treatment.3. In treatment T1 subjects are allowed to care about both her

own payoffs and the payoffs of the other player and they are informed about their player

position before they choose. Thus, in this case, we can think of γi as a direct measure of

pure inequality aversion related to a pure distributional concern. For subjects who only care

3 Note that the model can be generalized to allow γi to vary also over rounds, t
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about their own payoff, γi would be zero. In treatment T3 subjects face ordinary binary

lotteries. Therefore, in this case, γi measures pure risk aversion, with γi = 0 indicating

the null hypothesis of risk-neutrality. In T2 subjects chooses among different lotteries, but

this decision has distributional consequences for both players. In this sense, we expect γi to

capture some combination of both effects, one related to risk, the other to inequality.

Perfect optimization would imply that, in choice occasion t, subject i chooses the alter-

native k that maximizes her expected utility Vikt. To allow for suboptimal choices, we add

idiosyncratic error terms λiεikt and we assume that subject i chooses the alternative k that

maximizes

Uikt = Vikt + λiεikt,

where the size of the noise parameter λi drives the likelihood of suboptimal choice. We also

assume that the errors εikt are distributed iid extreme value over subjects, alternatives and

rounds, independent of each other and the other variables in the model. This is equivalent to

assume that the difference of any two εikt across alternatives follows a logistic distribution.

The probability that individual i chooses option j at round t is therefore standard logit

Pijt(γi) =
exp(Vijt/λi)∑4
k=1 exp(Vikt/λi)

.

Let jit denote the alternative that subject i chose at round t. Since εikt are independent over

choice occasions, the probability of subject i’s observed sequence of choices is

Pi(γi) =
24∏
t=1

Pijitt(γi).

Assuming that γi has a distribution G with a known shape, the unconditional probability

for the observed sequence of choices is computed by taking the expectation of Pi(γi) with

respect to γi

Pi =

∫
Pi(γi) dG(γi).

Thus we have a mixture of the logit function evaluated at different γi’s with the density of

γi as the mixing distribution.

Let θ be the model parameters. Given a probabilistic sample of n subjects, each observed

for 24 rounds, a maximum likelihood (ML) estimator of θ is obtained by maximizing the

sample log-likelihood

L(θ) =
n∑

i=1

lnPi(θ). (1)
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The standard MNL is a special case where the mixing distribution is degenerate at fixed

parameters. Moreover, this specification does not exhibit IIA and its restrictive substitution

patterns implied by a standard MNL. In fact, the ratio of any two logit probabilities depends

on all the data, including attributes of other alternatives. The mixing distribution of γi can

be either discrete or continuous. In the former case we have a LCM, while in the latter case

we have a MLM.

3.1 MLM

Under MLM the mixing distribution of γi is assumed to be continuous. In this case, it is as-

sumed that individual specific parameters γi are continuously distributed across individuals,

and they are modeled as

γi = X ′
iβ + σui,

where β and σ are unknown parameters, Xi is a vector consisting of the intercept and

observed individual characteristics, and ui is an unobserved individual effect.

The term ui reflect unobserved heterogeneity and is assumed to be distributed indepen-

dently of the other variables and the error term in the model, with zero mean, unit variance

and a distribution function G with a known shape. Any continuous distribution such as

normal, lognormal, uniform, triangular, gamma, etc. can be actually used. In this case, the

choice probability is

Pikt(γi) =
exp[(µikt − γisikt)/λi]∑4
k=1 exp[(µikt − γisikt)/λi]

.

Let θ denote the vector of parameters to be estimated. The resulting choice probability

is the expectation of the conditional probability Pi|ui with respect to ui

Pi(θ) =

∫
Pi|ui dG(ui).

In this case, exact maximum likelihood estimation is typically not feasible, because this

integral does not generally have a closed form solution. Nonetheless, it can be approximated

by simulation. The simulated probability is the sample average

P̃i(θ) =
1

R

R∑
r=1

Pi|uri , (2)

where {uri : r = 1, . . . , R} are R independent draws from the distribution G.
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Thus, estimating the parameter vector θ by maximum simulated likelihood (MSL) in-

volves maximizing an approximation to L(θ), obtained by replacing the probability Pi(θ)

with simulated probabilities P̃i(θ). For a discussion of simulation-based estimators, see Ha-

jivassiliou and Ruud [16]. The simulated log-likelihood is then

L̃(θ) =
n∑

i=1

ln P̃i(θ).

If the number of draws R increases with the sample size n, MSL provides an estimator of

the parameters θ which is consistent as n→∞, asymptotically normal, and asymptotically

equivalent to the ML estimator (Lee [21], Hajivassiliou and Ruud [16], Gouriéroux and

Monfort [15]).

The elements of the vector uri are independently drawn from the assumed distribution

G. In practice, instead of using pseudo-random draws to obtain uri , we base the simulation

on Halton sequences (Train [25]). Halton sequences generate draws that provide a more

systematic coverage of the domain of integration than independent random draws. They

usually imply a lower integration error and faster convergence rates, and require a smaller

number of draws. Since Halton sequences are deterministic, following Wang and Hickernell

[26] we introduce randomness by using a random start procedure. Specifically, we draw an

integer randomly between 0 and some large K and label the draw N0. Then, we create a

Halton sequence starting at integer N0 in step 1 above.

Using Bayes theorem, we can obtain posterior estimates of the individual-specific param-

eter vector

γ̂i =
1
R

∑R
r=1(P̂i|uri γ̂ri )

1
R

∑R
r=1 P̂i|uri

. (3)

3.2 LCM

Under LCM, it is assumed that individuals are sorted into a set of M classes, but which class

contains any particular individual, whether known or not to that individual, is unknown to

the analyst. In other words, for each subject, γi can take M possible values γ1, . . . , γM with

prior probability Him that subject i is in class m (i.e. γi = γm). In this case, the choice

probability is

Pikt(γm) =
exp[(µikt − γmsikt)/λi]∑4
k=1 exp[(µikt − γmsikt)/λi]

.
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This specification is particularly useful if one believes that there are M segments in the

population, each with its own choice behavior or preferences. Consider, for example, the

population consists of individuals who are risk adverse, risk neutral or risk lovers. The share

of the population in each segment can be estimated within the model.

Given that the class assignment is unknown, we can conveniently model the prior prob-

ability for class m for subject i as

Him =
exp(Z ′

iδm)∑M
m=1 exp(Z ′

iδm)
,

where Zi is a vector consisting of the intercept and a set of observable individual characteris-

tics which enter the model for class membership, and the parameter vector δM is normalized

to zero to secure identification of the model.

Let θ denote the vector of parameters to be estimated (consisting of the M structural

parameter vectors γm and the M−1 latent class parameter vectors δm). The resulting choice

probability is the expectation (over classes) of the class-specific probabilities

Pi(θ) =
M∑

m=1

HimPi|m.

An issue is the choice of the number of classes M . Since M is not a parameter in the interior

of a convex parameter space, one cannot test hypotheses about M directly. One possibility

is hence to use the Bayesian information criterion (BIC) to choose M .

Even in this case, we can obtain posterior estimates of the individual-specific parameter

vector

γ̂i =
M∑

m=1

Ĥm|iγ̂m, (4)

where

Ĥm|i =
P̂i/mĤim∑M

m=1 P̂i/mĤim

is a posterior estimate of the latent class probabilities (conditioned on estimated choice

probabilities). The class associated with the maximum value of Ĥm|i would be a strictly

empirical estimator of the latent class within which the individual is.
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4 Results

In our empirical specification we assume normality of the individual effects ui in the MLM,

and we set the noise parameter λi = 1. Results of a MLM where the unobserved individual

effect ui is assumed to have a symmetric Triangular distribution are reported in Appendix A.

Moreover, MLM parametrizes the mean and the standard deviation of the underlying dis-

tributions to differ among treatments. Three latent classes are selected in the LCM as the

best fit from 2, 3, 4 and 5 classes. The LCM assumes a fixed parameter vector in each class,

with the overall mean in each treatment being a function of how these are mixed by the class

probabilities.

Table 1 shows estimated coefficients of the MNL, MLM and LCM. Note that evaluating

the absolute parameter estimates across models is not informative because of scale differences.

It will be much more meaningful to base any comparison on model predictions such as choice

probabilities, elasticities or simulations. Nevertheless, comparing the absolute parameters

estimates is beyond the aim of these paper. Instead, we are interested here in what different

models can tell us about how estimated parameters differ across treatments.

As Table 1 shows, controlling for between-subject heterogeneity has a critical impact

on the conclusions of the model. Frignani and Ponti’s [14] MNL estimates are reported

in the first column of Table 1. Here we see that, when we neglect heterogeneity, all three

coefficients turn out to be positive and highly significant, indicating high “variance aversion”

in all choice domains. As for their relative comparison, we note that variance aversion in

T1 is significantly smaller than in the control treatment, T2, while we cannot reject the null

that γ in T2 and T3 are equal. FRIGNO interpret this evidence as the predominance of risk

(rather than distributional) concerns under the VOI. Things change when we look at the

MLM estimates (Table 1, second column). Here we see that the estimated coefficient in T1

is the highest, while variance aversion in T3 is smaller than in the other two treatments.

Estimated standard deviation is also higher in T1 (Table 1, second column and second block

of rows), denoting higher variability in the individual-specific parameters.

We now move to the analysis of the LCM estimates (Table 1, last three columns). Here we

find that, for T2 and T3, our three-class partition nicely adapts to the mean-variance economic

interpretation, in that the (left) central [right] class is characterized by a coefficient which is

not significantly different (smaller) [greater] than zero (indicating variance neutrality (loving)

[aversion],respectively). This in not the case for T1, whose estimated coefficients of classes 2
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and 3 are both positive and significant, with Class 3 (the class with the highest coefficient)

characterized by an estimated γ comparatively higher than the corresponding estimates in T2

and T3 (1.312 against .424 and .360, respectively). We also see that T1’s coefficient for Class

1 is also higher (compared with the other 2). In this sense, the entire coefficient distribution

for T1 is shifted on the right, compared to those of T2 and T3.

As for the estimated latent class probabilities (Table 1, last three columns and second

block of rows), in the case of T1 extreme classes have similar probabilities (.153 and .227,

respectively). By contrast, estimated probabilities for T2 and T3 suggest a parameter dis-

tribution positively skewed (since, in both cases, class probabilities are increasing with the

classes).

Table 2 shows posterior estimates of the risk/inequality aversion coefficients for MLM

and LCM. Specifically, to characterize the sample, we average over individuals the poste-

rior estimates of the individual-specific parameters (computed as in Equations (3) and (4)

respectively). To judge their accuracy, posterior estimates are calculated 500 times, for 500

independent draws of the parameters from the estimated asymptotic distribution of their

estimator. We present the median, and the fifth and ninety-fifth percentiles. The latter

two are the bounds of a two sided confidence interval of approximately 90 percent. Here we

see that MLM and LCM estimates of the average risk/inequality individual parameters are

consistent to each other. Specifically, the order of the average risk/inequality parameters

is the same between MLM and LCM, with the coefficient in T3 ranking the lowest and the

coefficient in T1 the highest. The 90% confidence intervals of the parameters in T1 and T3

never overlap, while the confidence intervals of the parameters in T1 and T2 overlap only

in the case of the MLM. Considering both MLM and LCM the average of the γi’s over the

individuals is not significantly different in the case of T2 and T3.

Figures 1 and 2 report a graphic sketch of the distribution of the posterior estimates of

the individual risk/inequality aversion coefficients for MLM and LCM respectively. These

Figures seem to confirm FRIGNO’s finding that behavior in T2 and T3 is remarkably similar,

and that a remarkably lower fraction of the estimated individual γi’s is negative as compared

to T1. To stress this last point, Table 3 shows the partition of subjects pool with respect

to their attitude toward risk/inequality (percentage in parenthesis). Partition is based on

posterior estimates of the individual-specific risk/inequality aversion parameters. Posterior

estimates are calculated 500 times, for 500 independent draws of the parameters from the
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estimated asymptotic distribution of their estimator. From these 500 replications of the

individual-specific parameters a subject is classified as risk/inequality lover if both the 5th

and the 95th percentiles are negative, as risk/inequality averse if both the 5th and the 95th

percentiles are positive, and as risk/inequality neutral otherwise. The percentages in T2 and

T3 are very similar, with a few subjects classified as risk/inequality lover. In T1 there are

very few inequality neutral subjects, while the percentage of inequality lovers is remarkably

higher than in the control treatment T2.

Thus, if we look at the individual-specific risk/inequality parameters γi both MLM and

LCM seem to somehow confirm FRIGNO’s results that there is a predominance of risk,

rather than distributional, concerns under the VOI. Nevertheless, by taking unobserved

heterogeneity adequately into account in the estimation of our structural behavioral model

also provides new insights into individual behavior about risk and inequality. For example,

we find that there is much more variability in individual behavior when subjects face pure

inequality without VOI (T1) than in T2 and T3. Moreover, in the case of pure inequality

subjects are also more likely to be inequality lovers than under VOI.

Finally, appendix A shows results of alternative specifications for the MLM and the LCM.

We report estimates of a MLM where the unobserved individual effect ui is assumed to have

a symmetric Triangular distribution, and a LCM where the coefficients of the second class

are constrained to zero (risk/inequality neutral). In the latter case, a likelihood ratio test

rejects the hypothesis the all the coefficients of the second class are equal to zero (χ2=43.3,

p-value=0.000). This is mainly due to the coefficient in treatment 1. Specifically, we report

estimated coefficients, posterior estimates of risk/inequality aversion, and the partition of

subjects pool with respect to their attitude toward risk/inequality. Estimation of these

models mainly confirms our previous findings.

5 Conclusion

In this paper we compare a mixed logit model and a latent class model in the context of

behavioral structural estimation. These alternative models have clear advantages compared

with a multinomial logit model in the context of structural estimation, since they provide an

instrument to deal with the intrinsic unobserved heterogeneity that characterizes experimen-

tal data. We carry out our exercise within the realm of a simple (mean-variance) random

utility specification by using experimental data from Cabrales et al. [6] and Frignani and
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Ponti [14], where risk and inequality concerns are sometimes isolated, sometimes they are

combined by facing inequality under the veil of ignorance, allowing us to analyze how alter-

native decision frames affect the estimates of the same parameter, under the same statistical

model.

Overall, we find that both the LCM and the MLM represent a remarkable statistical

improvement over the MNL. Hence, based on the empirical evidence herein, we believe that

both LCM and MLM offer attractive specifications to model unobserved heterogeneity in

individual preferences. Which model between LCM and MLM is superior is somehow incon-

clusive. Nonetheless, we believe that this is perhaps an encouraging result, motivating the

researcher to compare different specifications of the choice process. Each model has its own

pros and cons. On the one hand, the LCM has the advantage of being a semiparametric

specification, avoiding possibly strong distributional assumptions about individual hetero-

geneity. On the other hand, the MLM, while fully parametric, can be sufficiently flexible

that it provides wide range of possibilities to specify individual unobserved heterogeneity,

and it is usually more parsimonious than LCM.

Specifically, in our application to risk and social preferences under VOI, somehow co-

herently with the economic theory, the LCM identifies three classes of subjects (risk/ineq.

lovers, risk/ineq. neutral, risk/ineq. averse). Moreover, estimates from both MLM and

LCM somehow confirm the findings in Frignani and Ponti [14], derived from a MNL model,

that under VOI subjects’ variance aversion mostly reflects risk, rather than distributional

concerns. By taking unobserved heterogeneity adequately into account in the estimation of

our structural behavioral model also provides new insights into individual behavior about

risk and inequality. For example, we find that there is much more variability in individual

behavior when subjects face pure inequality than under VOI. Moreover, in the case of pure

inequality subjects are also more likely to be inequality lovers than under VOI.
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Table 1: Estimated coefficients (* significant at 10%, ** significant at 5%, *** significant at
1%).

MNL MLM LCM
Class 1 Class 2 Class 3

T1 0.267 *** 0.288 *** -0.595 *** 0.189 *** 1.312 ***
T2 0.347 *** 0.244 *** -1.107 *** 0.064 0.424 ***
T3 0.316 *** 0.150 * -1.080 *** -0.071 0.360 ***

σ Latent class probability
T1 0.683 *** 0.153 ** 0.620 *** 0.227 ***
T2 0.401 *** 0.032 0.436 *** 0.531 ***
T3 0.327 *** 0.071 * 0.279 ** 0.650 ***

Log-like. -6,369.2 -5,934.4 -5,978.2
BIC 13,087.4 12,377.5 12,492.5

Notes: 192 subjects, 24 rounds, 4 alternatives.

Table 2: Posterior estimates of risk/inequality aversion.

MLM LCM
P5 Median P95 P5 Median P95

T1 0.271 0.277 0.286 0.304 0.325 0.340
T2 0.229 0.251 0.284 0.155 0.214 0.286
T3 0.091 0.148 0.242 0.100 0.141 0.180

Notes: P5: 5th percentile; P95: 95th percentile.

Table 3: Partition of subjects pool with respect to their attitude toward risk/inequality
(percentage in parenthesis).

MLM LCM
Lover Neutral Averse Lover Neutral Averse

T1 23 4 45 10 6 56
(31.9) (5.6) (62.5) (13.9) (8.3) (77.8)

T2 5 21 46 3 24 45
(6.9) (29.2) (63.9) (4.2) (33.3) (62.5)

T3 3 18 27 4 14 30
(6.2) (37.5) (56.2) (8.3) (29.2) (62.5)

Tot 31 43 118 17 44 131
(16.1) (22.4) (61.5) (8.9) (22.9) (68.2)
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Figure 1: Kernel density estimate for γi (MLM).
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Figure 2: Kernel density estimate for γi (LCM).
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Appendix

A Alternative specifications for the MLM and the LCM

This Appendix presents results of alternative specifications for the MLM and the LCM. We

report estimates of a MLM where the unobserved individual effect ui is assumed to have a

symmetric Triangular distribution, and a LCM where the coefficients of the second class are

constrained to zero (risk/inequality neutral).

Estimated coefficients (* significant at 10%, ** significant at 5%, *** significant at 1%).

MLM LCM
Class 1 Class 2 Class 3

T1 0.386 *** -0.644 *** 0.000 1.287 ***
T2 0.278 *** -1.126 *** 0.000 0.420 ***
T3 0.115 -1.064 *** 0.000 0.363 ***

Scale Latent class probability
T1 1.983 *** 0.098 ** 0.648 *** 0.254 ***
T2 1.153 *** 0.031 0.422 *** 0.547 ***
T3 0.774 * 0.074 * 0.297 *** 0.629 ***
Log-like. -5,947.4 -5,999.8
BIC 11,958.0 12,125.9

Posterior estimates of risk/inequality aversion.

MLM LCM
P5 Median P95 P5 Median P95

T1 0.270 0.279 0.285 0.253 0.263 0.272
T2 0.221 0.245 0.280 0.185 0.195 0.205
T3 0.068 0.148 0.312 0.125 0.148 0.176
Notes: P5: 5th percentile; P95: 95th percentile.

Partition of subjects pool with respect to their attitude toward risk/inequality (% in parenthesis).

MLM LCM
Lover Neutral Averse Lover Neutral Averse

T1 24 2 46 41 3 28
(33.3) (2.8) (63.9) (56.9) (4.2) (38.9)

T2 10 17 45 3 9 60
(13.9) (23.6) (62.5) (4.2) (12.5) (83.3)

T3 0 21 27 4 4 40
(0) (43.8) (56.2) (8.3) (8.3) (83.3)

Tot 34 40 118 48 16 128
(17.7) (20.8) (61.5) (25.0) (8.3) (66.7)
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