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Abstract 
 
The Shafer and Sonnenshein convexity of preferences is a key property in game theory. Previous research has 
shown that, in case of decisions under uncertainty, the compliance with this property (jointly) depends on the 
concavity/convexity of the imprecise probabi- listic model with respect to the decision variable and on the attitudes 
towards imprecision of the decision maker. The present paper deepens the analysis by looking at set-valued 
imprecise probabilistic models that encompass sets of probability distributions and sets of almost desirable 
gambles. Moreover, it is shown that the required Shafer and Sonnenshein convexity property is obtained also in 
case the imprecise probability correspondences satisfy quasi-concavity/convexity with respect to the decision 
variable so that the set of admissible probabilistic models is significantly broadened. It is well known that sets of 
probability distributions and sets of almost desirable gambles are general models of representation of uncertainty 
that are connected to each other; moreover, they are both related to another model known as lower expectation. 
Therefore, the second part of this work explores the links between the (quasi-)concavity/convexity properties 
accross the three different models so as to understand to what extent the Shafer and Sonnenshein convexity 
results hold. 
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1 Introduction

The property of convexity of preferences has always been a key assumption in decision and
game theory; not only it has a clear behavioral interpretation, but, above all, it plays a crucial
role in the existence of equilibria in general economic equilibrium models and in noncooperative
games. The seminal paper by Shafer and Sonnenshein ([25]) shows that existence of economic
equilibria and Nash equilibria can be obtained in case each agent’s preference satisfies a minimal
convexity assumption (with respect to his own action/strategy), sometimes called Shafer and
Sonnenshein convexity, which, roughly speaking, requires that each alternative x cannot be the
convex combination of other two alternatives that are strictly preferred to x. The present paper
looks at decisions and strategic form games under imprecise probabilities and focuses on the
conditions on the representation of uncertainty and on the attitudes towards uncertainty that
are required so as to guarantee that the Shafer and Sonnenshein convexity assumption holds; in
particular, the results in this paper identify (imprecise) probabilistic models and preferences for
imprecision that have a clear and simple interpretation. The present paper considers and extends
the model presented in [8] in which each agent is endowed with an ambiguous belief correspondence
that maps the set of mixed strategy profiles to the set of all subsets of probability distributions
over the outcomes of the game: given a strategy profile chosen by the set of players, the belief
correspondence of player i provides the set of probability distributions that player i perceives to
be feasible and consistent with the strategy profile. This approach follows a strand of literature in
decision theory in which alternatives are compared by looking at the the set of lotteries over
consequences that they induce, (see [1], [21], [23], [26], [27], [6] and references therein), and
turns to be particularly useful to study ambiguity in games as it encompasses classical models
in which agents have multiple priors on a state space (see [16], [4], [3] for incomplete information
under ambiguity, just to quote a few), as well as the so called models of strategic ambiguity (see,
for instance, [11], [19], [17], [12], [20], [18], [22] and [5] and references therein). In [8], games
are studied without requiring completeness and transitivity of preferences1, so as to understand
what is truly needed for the existence of equilibria, regardless of the assumptions that must be
imposed in the representation theorems for preferences. It is shown that the required Shafer and
Sonnenshein convexity property is obtained in case agents have a minimally pessimistic attitude
towards imprecision (therein called imprecision aversion) when it is combined with the property of
convexity of their ambiguous belief correspondences (with respect their own strategies); similarly,
it is also obtained when agents have a (specular) minimally optimistic attitude (imprecision loving)
when it is combined with the concavity property of their belief correspondences. The imprecision
aversion (resp. loving) assumption says that an agent would not prefer a set of probabilities
to another one if the former was a subset of the latter (resp. if the latter was a subset of the
former)2. It turns out that these properties are minimal as every possible attitude (of a decision
maker), towards the inclusion relation between sets of probability distributions, implies either

1Indeed, the game model under ambiguous belief correspondences has been firstly introduced and studied in case
of complete and transitive preferences in [9] and [10].

2These behavioral traits can be reconducted to the idea of aversion (resp. inclination) towards imprecision
presented in [13] and [14]. In those papers, such behevioral traits are used to axiomatize maxmin-like preferences,
in decision models with complete and transitive preferences on uncertain acts under partial information about
possible probability distributions.
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imprecision aversion or imprecision loving3. Convexity (respectively concavity) of the ambiguous
belief correspondences is a generalization to set-valued maps of the classical definition of linearity
for classical (single-valued) valued maps as it requires that the ambiguous belief associated to
the convex combination of two alternatives is contained in (respectively contains) the convex
combination of the ambiguous belief associated to the two alternatives.

The present paper extends [8] in two features. Firstly, it takes into account a more general
framework in which the information available to each player is represented by an imprecise probability
correspondence that maps mixed strategy profiles to (set-valued) imprecise probabilities over the
outcomes of the game. This approach encompasses the ambiguous belief correspondence model
as well as the almost desirable gambles correspondence model. An almost desirable gambles
correspondence maps each alternative to an induced set of almost desirable gambles, where a
gamble Y is said to be almost desirable for the decision maker if he accepts all gambles Y + ε with
ε > 0 (see for instance [28], [29]). In this more general context, the implication that characterize
imprecision aversion (resp. imprecision loving) will be called superset aversion (resp. subset
aversion). In fact, while it clear that a set of probabilities is more imprecise than its subsets,
the information becomes less imprecise as the set of almost desirable gambles enlarges to an half
space. The second, (and more relevant), new feature that is investigated in this paper concerns
the assumptions that are imposed on the imprecise probability correspondences. It is shown in this
paper that they are now allowed to satisfy one of the assumption of quasi-concavity/convexity (see
[24] for a survey) in place of concavity/convexity. This result has different advantages: on the one
hand, it enlarges the family of probabilistic models that can be taken into account; on the other
hand, it allows to skip the assumption of semi-strict convexity on the attitudes towards imprecison
that, instead, is required in case of concave/convex imprecise probability correspondences.

It is well known from the theory of imprecise probabilities that sets of probability distributions
and sets of almost desirable gambles are related concepts as a set of probability distributions
implictly defines, in a natural way, a set of almost desirable gambles and viceversa. Then, it
is relevant to understand to what extent an ambiguous belief (resp. almost desirable gambles)
correspondence derived from an almost desirable gambles (resp. ambiguous belief) correspondence
inherits the (quasi-)concavity/convexity properties of the latter one. This issue is addressed in this
paper; the results show that the (quasi-)concavity (resp. (quasi-)convexity) of the former is related
to the (quasi-)convexity (resp. (quasi-)concavity) of the latter. However, counterexamples show
that there are exceptions that depend also on the fact that (quasi-)convexity and (quasi-)concavity
for set-valued maps are not symmetric concepts.

Finally, there is another representation of uncertainty that plays a relevant role in the theory
of imprecise probabilities, known as lower expectation; this concept specifies the supremum buying
price for each possible gamble. It is well known that a set of probability distributions or a set
of almost desirable gambles implicitly defines a lower expectation and viceversa. As the set of
probability distributions or the set of almost desirable gambles depends, in this paper, on the
alternative chosen by the decision maker; it is clear that, fixed a gamble Y , the lower expectation
of Y is a real-valued function of the alternative. Now, the question is whether the (quasi-
)concavity/convexity of the lower expectations of each gamble, as real-valued maps, is related to
the (quasi-)concavity/convexity of ambiguous belief or almost desirable gambles correspondences.

3A complete analysis of all the possible attitudes towards the inclusion relation and their relations is given in
[8].
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This issue is here addressed and the results show that (quasi-)concavity (resp. (quasi-)convexity)
of lower expectations is related to (quasi-)convexity (resp. (quasi-)concavity) of the ambiguous
belief correspondence and to (quasi-)concavity (resp. (quasi-)convexity) of the almost desirable
gambles correspondence. However, even in this case, counterexamples show that there are different
exceptions.

Summarizing, the paper is organized as follows: Section 2 presents the game model and the
issue of existence of equilibria that provides the main motivation for the problem addressed in this
paper. Then, a precise formulation of the problem of convexity of preferences is provided. Section
3 presents (quasi-)concave/convex set-valued maps and their properties. The attitudes towards
uncertainty are investigated in Section 4. Section 5 builds upon the definitions and the properties
of the previous sections and gives sufficient conditions for the required property of convexity of
preferences. Section 6 studies the relation between (quasi-)concavity (resp. (quasi-) convexity) of
ambiguous belief correspondences and almost desirable gambles correspondences. In Sections 7
and 8, lower expectations are investigated; in particular, the link between (quasi-)concavity (resp.
(quasi-)convexity) of lower expectations and ambiguous belief correspondences is studied in Section
7, while Section 8 addresses to the same analysis between lower expectations and almost desirable
gambles correspondences.

2 Motivation and Problem Formulation

2.1 Games and equilibria

Strategies and outcomes

Consider a game where I = {1, . . . , n} is the set of players. The strategy set of each player is a
nonempty, compact and convex set Xi ⊂ Rki . Each strategy of player i is denoted with xi ∈ Xi

while X =
∏n

j=1Xj denotes the set of strategy profiles4.

The finite set of outcomes of the game is denoted with5 Ω = {ω1, . . . , ωm}. The set of all the
probability distributions over Ω, is

P =

{
% =

(
%(ω1), . . . , %(ωm)

)
∈ Rm

∣∣∣∣∣ i) ∑
ω∈Ω

%(ω) = 1, ii) %(ω) > 0 ∀ω ∈ Ω

}
,

where %(ωh) is the probability of state ωh. Therefore, belief over the outcomes of the game are
represented by subsets of P . belief are unambiguous if they are singletons, they are ambiguous
otherwise.

The the set of gambles over Ω is L = {Y |Y : Ω → R}; with an abuse of notation, each
Y ∈ L is identified by the vector Y =

(
Y (ω1), . . . , Y (ωm)

)
∈ Rm where Y (ωh) is the payoff of the

gamble Y when state ωh ∈ Ω occurs. Finally, E%[Y ] denotes the expectation of Y under %, i.e.
E%[Y ] =

∑
ω∈Ω %(ω)Y (ω).

4The case of mixed strategies over a finite set of pure strategies is obviously included in this framework. In fact,
in this case, if Ψi is the finite strategy set of player i, with |Ψi| = ki, then Xi is the set of mixed strategies of player
i, where each xi ∈ Xi is a vector xi = (xi(ψi))ψi∈Ψi

s.t. i)
∑
ψi∈Ψi

xi(ψi) = 1 and ii) xi(ψi) > 0, ∀ψi ∈ Ψi.
5In previous papers is a subset of Rn so that the i-th component ωi of ω represents the payoff of player i when

outcome ω ∈ Ω is realized. In this paper, Ω does not have necessarily any topological or algebraic structure.
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Strategic games revised

From a different perspective, a classical strategic form game can be regarded as follows:

- Each player i is endowed with a function pi : X → P that provides, to player i, the
information about the possible outcomes of the game. Therefore, pi(x) is the probability
distribution over Ω that is consistent with x in view of player i. In most (but not all) models,
it is assumed that p1 = · · · = pn.

- Each player i is endowed with a preference %i,p over P . In most (but not all) models, it is
assumed that %i,p is represented by a von Neumann-Morgenstern expected utility function.

- %i,p in P induces a preference %i in X in the obvious way:

x %i x
′ ⇐⇒ pi(x) %i,p pi(x

′)

Therefore, the game is Γ = {I; (Xi)i∈I ; (%i)i∈I}.

Introducing Imprecision

The key feature of the models investigated in this paper is that the function pi : X → P is replaced
by imprecise probability correspondences. In particular, the focus is on two well known imprecise
probability representations: i) set of probability distributions, ii) set of almost desirable gambles:

i) The function pi : X → P is replaced by Bi : X  P , called ambiguous belief correspondence
of player i: For every x ∈ X, Bi(x) 6= ∅ is the set of probability distributions over Ω that are
feasible and consistent, in view of player i, with the strategy profile x. In the remainder of
this paper it will not be assumed in general that Bi(x) is a closed and convex subset of P ,
even if it is a classical condition used in many applications6.

In games without ambiguity (or imprecision), Bi is single-valued and gives back the function
pi. Moreover, previous literature shows that multiple models with different sources of
ambiguity have a formulation in terms of belief correspondences, for instance:

a) (Symmetric) Incomplete information games under multiple priors

b) Games under strategic ambiguity, that is games in which players have ambiguous
expectations about opponents’ behavior

ii) The function pi : X → P is replaced by Di : X  L, called almost desirable gambles
correspondence of player i, with Di(x) 6= ∅ for every x ∈ X, where Y ∈ Di(x) means that
agent i accepts all gambles Y + ε with ε > 0. In the remainder of this paper it will not be
required in general that Di(x) is a closed convex cone in Rm containing all the the positive
gambles, even if this is a relevant condition from a theoretical point of view7.

6This condition characterizes coherence of (imprecise) probabilities that does not play, in general, a key role in
this paper.

7This condition characterizes coherence as well.
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Summarizing, the information (about the possible outcomes) available to the decision maker i
is summarized by an exogenous set-valued map Ci : X  T ⊆ Rm, called imprecise probability
correspondence, which gives to the decision maker i and for every strategy profile x ∈ X, the
information8 Ci(x) ⊆ T . In particular we obtain:

Ambiguous belief correspondences when T = P and Ci = Bi

Almost desirable gambles correspondences when T = L and Ci = Di

Preferences and games

Preferences of agent i over strategy profiles are constructed as follows:

Agent i is endowed with a reflexive preference %i,T over the set K(T ) of all subsets of T :

- Given A,B ∈ K(T ) then A %i,T B means that A is at least as good as B for player i

- No completeness or transitivity assumptions are imposed on %i,T

- �i,P and ∼i,P denote respectively the strict preference and the indifference relation
induced by %i,P .

- The strict upper level set correspondence Ui,T : K(T ) K(T ) for %i,P is defined by:

Ui,T (A) = {B ∈ K(T ) |B �i,T A} ∀A ∈ K(T )

The preference relation %i of player i over X, is naturally defined as follows

x %i x
′ ⇐⇒ Ci(x) %i,T Ci(x′)

- x %i y means that the strategy profile x is at least as good as the strategy profile y, for
player i.

- �i and ∼i are induced by %i in the classical way.

- Ui : X  Xi defined by

Ui(xi, x−i) = {x′i ∈ Xi | (x′i, x−i) �i (xi, x−i)} ∀(xi, x−i) ∈ X

is the strict upper level set correspondence for %i.

Therefore, the game is Γ = {I; (Xi)i∈I ; (%i)i∈I}. This is a generalized game9 as defined
by Shafer and Sonnenshein in [25]. Generalized games have a natural equilibrium notion
that, in the framework of the present paper, we call equilibrium under imprecise probability
correspondences.

Definition 2.1: A strategy profile x ∈ X is an equilibrium under imprecise probability correspon-
dences Ci of the game Γ if Ui(x) = ∅ for every i ∈ I.

8In this view, the strategy set X has a double use: first it represents the set of objects of choice of the decision
maker but, at the same time, it stands for the set of variables that parameterize the belief of the decision maker.

9This game can be regarded also as a set-valued game under generalized preferences (see also [15] for set-valued
optimization and games in a more classical framework).
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Remark 2.2: The previous concept is the natural generalization of the concept of Nash equilibrium.
In an equilibrium under imprecise probability correspondences x:

i) The information about the consequences of each strategy x′i is provided to player i by the
imprecise probability Ci(x′i, x−i).

ii) The strategy xi is maximal to player i with respect to his preference %i and the information
available to player i.

Existence of equilibria follows directly from [25]:

Theorem 2.3: Assume that for every i ∈ I,

(1) Ui has an open graph10,

(2) xi /∈ co(Ui(xi, x−i)) for every (xi, x−i) ∈ X.

Then, the game Γ has a least an equilibrium.

Problem 2.4: The purpose of this paper is to find explicit conditions on Ci and %i,T which
guarantee that the assumption (2) of the previous Theorem hold.

2.2 Problem Formulation

To simplify notation we consider the case of a single agent:

- C : X  T is the imprecise probability correspondence of the decision maker.

- %T is the preference over K(T ) of the decision maker and % is the preference over X induced
by %T .

The strict upper level correspondences are respectively:

a) UT : K(T ) K(T ) defined by

UT (A) = {B ∈ K(T ) |B �T A} ∀A ∈ K(T )

b) U : X  X defined by
U(x) = {x′ ∈ X |x′ � x}

- Problem Statement: Find explicit conditions on C and %T which guarantee that:

x /∈ co(U(x)) ∀x ∈ X

- Approach: Different results are proposed. In each of them, the condition imposed on C is one
of the (quasi-)concavity/convexity notions for set-valued maps and the conditions imposed
on %T include superset or subset aversion, depending on the assumption imposed on C.

10That is, the graph of Ui is an open subset of X ×Xi.
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3 Convexity/concavity and quasi-convexity/concavity of

functions and correspondences

This section recalls the basic definitions of (quasi)-convex/concave set-valued maps that play a key
role for the purpose of this paper.

3.1 (Quasi-)convex/concave functions

Firstly, it is useful to recall well known definitions for single-valued maps. Given a convex subset
X of a finite dimensional space and let f : X → R then

Definition 3.1: f is said to be convex if, for every x′, x′ ∈ X and t ∈]0, 1[, it follows that

f(tx′ + (1− t)x′′) 6 tf(x′) + (1− t)f(x′′).

f is said to be concave if −f is convex.

Moreover

Definition 3.2: f is said to be quasi-convex if, for every x′, x′ ∈ X and t ∈]0, 1[, it follows that
one of the following equivalent conditions11 is satisfied:

(i) f(tx′ + (1− t)x′′) 6 max{f(x′), f(x′′)}
(ii) f(tx′ + (1− t)x′′) 6 f(x′) or f(tx′ + (1− t)x′′) 6 f(x′′)

(iii) Sα = {x | f(x) 6 α} is a convex set ∀α ∈ R.

f is said to be quasi-concave if −f is quasi-convex.

3.2 Convex and quasi-convex set valued maps

In this subsection, the definitions of convex/concave and quasi-convex/concave set-valued maps
are given. These latter concepts appear sporadically and extemporaneously in the literature even
if they play a relevant role in optimization theory. In this paper, it is shown that they play a key
role in the problem of existence of equilibria in strategic games.

The recent paper [24] provides a systematization of the definitions of quasi-convex/concave
set-valued maps and of the relations that exist among them. The main concepts and results, that
are useful for our purposes, are presented below; most of the results could be derived from the
more general ones that are presented in [24]. For the sake of completeness, self-contained proofs
of all results and counterexamples are presented in the Appendix.

Quasi-convexity

Definition 3.3: The set valued map C : X  T is said to be:

M1) convex if

C(tx′ + (1− t)x′′) ⊆ tC(x′) + (1− t)C(x′′) ∀ x′, x′′ ∈ X, ∀ t ∈]0, 1[. (1)
11The conditions are obviously equivalent, but they are written explicitly in order to better understand the

differences with the set-valued case.
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M2) quasi-convex if

C(tx′ + (1− t)x′′) ⊆ C(x′) ∪ C(x′′) ∀ x′, x′′ ∈ X, ∀ t ∈]0, 1[. (2)

M3) strongly quasi-convex if

C(tx′ + (1− t)x′′) ⊆ C(x′) or C(tx′ + (1− t)x′′) ⊆ C(x′′) ∀ x′, x′′ ∈ X, ∀ t ∈]0, 1[. (3)

M4) weakly quasi-convex if

C(tx′ + (1− t)x′′) ⊆ co (C(x′) ∪ C(x′′)) ∀ x′, x′′ ∈ X, ∀ t ∈]0, 1[. (4)

Finally, C : X  T is said to have convex images if C(x) is a convex subset of T for every x ∈ X.

It is useful to give the following characterizations. The proofs are given in the Appendix.

Proposition 3.4: The set-valued map C : X  T is quasi-convex if and only if for every A ⊆ T ,
with A 6= ∅, the set

LA = {x | C(x) ⊆ A} (5)

is a convex subset of X.

Proposition 3.5: The set-valued map C : X  T is weakly quasi-convex if and only if for every
convex subset A ⊆ T , with A 6= ∅, the set

LA = {x | C(x) ⊆ A} (6)

is a convex subset of X.

Remark 3.6: Note that quasi-convexity falls into definition u3 in [24], strong quasi-convexity
in definition u4, while, in light of the previous proposition 3.5, weak quasi-concavity falls into
definition u1 .

The next result is derived directly from proposition 3.6 in [24]. A self contained proof is given
in the Appendix.

Proposition 3.7: Given the set valued map C : X  T , then

i) If C is strongly quasi-convex then C is quasi-convex.

ii) If C is quasi-convex then C is weakly quasi-convex.

iii) If C is convex then C is weakly quasi-convex.

The converse statements of the implications i), ii), iii) do not hold as shown by counterexamples
given in the Appendix.
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Concave and quasi-concave set valued maps

Definition 3.8: The set valued map C : X  T is said to be:

N1) concave if

tC(x′) + (1− t)C(x′′) ⊆ C(tx′ + (1− t)x′′) ∀ x′, x′′ ∈ X, ∀ t ∈]0, 1[. (7)

N2) quasi-concave if

C(x′) ∩ C(x′′) ⊆ C(tx′ + (1− t)x′′) ∀ x′, x′′ ∈ X, ∀ t ∈]0, 1[. (8)

N3) strongly quasi-concave if

C(x′) ⊆ C(tx′ + (1− t)x′′) or C(x′′) ⊆ C(tx′ + (1− t)x′′) ∀ x′, x′′ ∈ X, ∀ t ∈]0, 1[. (9)

The next results are derived directly from Proposition 3.4 in [24]. Self contained proofs are
given in the Appendix.

Proposition 3.9: Let C : X  T be a set-valued map with convex images, then C is quasi-concave
if and only if for every convex A ⊆ T , with A 6= ∅, the set

LA = {x |A ⊆ C(x)} (10)

is a convex subset of X.

Proposition 3.10: Given the set valued map C : X  T , then

i) If C is strongly quasi-concave then C is quasi-concave.

ii) If C is concave then C is quasi-concave.

In the Appendix, counterexamples are given showing that the converse statements of the
implications i), ii) do not hold.

Remark 3.11: Note that quasi-concavity falls into definition l3 in [24], strong quasi-concavity in
definition l4. Proposition 3.9 shows that a definition of weakly quasi-concavity would be equivalent
to quasi-concavity. Indeed, even [24] shows that quasi-concavity and quasi convexity are not
symmetric concepts as there exists nine distinct definitions of quasi-convexity and only seven
distinct definitions of quasi concavity.

3.2.1 A particular model

In [8], two well known game models are presented and studied in the framework of ambiguous
belief correspondences: a game model under strategic ambiguity and a game model of incomplete
information in case of multiple priors. Here it is presented a decision model that encompasses both
of them; the analysis of the (quasi-)convexity/concavity properties of the associated ambiguous
belief correspondences is given in order to highlight the applicability of the results presented in
this paper.
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Consider the case in which Ω = Ω1×Ω2. Let P denote the set of probability distributions over
Ω, P1 the set of probability distributions over Ω1 and P2 the set of probability distributions over
Ω2. Note that any pair (%1, %2) ∈ P1 × P2 induces a unique probability distribution % ∈ P in the
obvious way:

%(ω1, ω2) = %1(ω1)%2(ω2) ∀(ω1, ω2) ∈ Ω.

Let h : X → P1 be a linear function and K ⊆ P2. Denote with h(x) = hx, then consider the
correspondence B : X  P defined by

B(x) = {% ∈ P | %(ω1, ω2) = hx(ω1)%2(ω2) ∀(ω1, ω2) ∈ Ω, where %2 ∈ K} (11)

Then

Lemma 3.12: Let B : X  P be the correspondence defined by (11), then:

i) B is convex;

ii) B is quasi-concave.

Proof. i) Let % ∈ B(tx′ + (1− t)x′′), then there exist %2 ∈ K such that

%(ω1, ω2) = htx′+(1−t)x′′(ω1)%2(ω2) ∀(ω1, ω2) ∈ Ω.

Since h is linear, it follows that

= htx′+(1−t)x′′(ω1)%2(ω2) = thx′(ω1)%2(ω2) + (1− t)hx′′(ω1)%2(ω2) ∀(ω1, ω2) ∈ Ω

Given the two probability distributions %′ and %′′ defined for every (ω1, ω2) ∈ Ω by

%′(ω1, ω2) = hx′(ω1)%2(ω2) and %′′(ω1, ω2) = hx′′(ω1)%2(ω2),

then it follows that %′ ∈ B(x′) and %′′ ∈ B(x′′). So

% = t%′ + (1− t)%′′ ∈ tB(x′) + (1− t)B(x′′)

and we get the assertion.

ii) Let % ∈ B(x′) ∩ B(x′′), then there exists %′2 ∈ K and %′′2 ∈ K such that

%(ω1, ω2) = hx′(ω1)%′2(ω2) = hx′′(ω1)%′′2(ω2) ∀(ω1, ω2) ∈ Ω.

So
hx′(ω1) =

∑
ω2∈Ω2

hx′(ω1)%′2(ω2) =
∑
ω2∈Ω2

hx′′(ω1)%′′2(ω2) = hx′′(ω1) ∀ω1 ∈ Ω1.

This immediately implies that %′2 = %′′2 = %2. So

%(ω1, ω2) = [thx′(ω1) + (1− t)hx′′(ω1)] %2(ω2) = htx′+(1−t)x′′(ω1)%2(ω2) ∀(ω1, ω2) ∈ Ω

So % ∈ B(tx′ + (1− t)x′′) and the assertion follows.

Lemma 3.13: Let B : X  P be the correspondence defined by (11):
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i) If the function h is not constant, then B is not quasi-convex;

ii) If the function h is not constant and the cardinality |K| > 1, then B is not concave.

Proof. i) Suppose that B is quasi-convex. Let x′, x′′ ∈ X such that hx′ 6= hx′′ and t ∈]0, 1[. Since
h is linear, it follows that

htx′+(1−t)x′′ 6= hx′ and htx′+(1−t)x′′ 6= hx′′ .

Let % ∈ B(tx′ + (1− t)x′′), then there exists %2 ∈ K such that

%(ω1, ω2) = htx′+(1−t)x′′(ω1)%2(ω2) ∀(ω1, ω2) ∈ Ω.

On the other hand, the quasi-convexity of B implies B(tx′+(1−t)x′′) ⊆ B(x′)∪B(x′′) so %(ω1, ω2) ∈
B(x′) ∪ B(x′′). Without loss of generality, assume that %(ω1, ω2) ∈ B(x′); then there exists %′2 ∈ K
such that

%(ω1, ω2) = hx′(ω1)%′2(ω2) ∀(ω1, ω2) ∈ Ω.

It follows that

%(ω1, ω2) = htx′+(1−t)x′′(ω1)%2(ω2) = hx′(ω1)%′2(ω2) ∀(ω1, ω2) ∈ Ω.

So,

htx′+(1−t)x′′(ω1) =
∑
ω2∈Ω2

htx′+(1−t)x′′(ω1)%2(ω2) =
∑
ω2∈Ω2

hx′(ω1)%′2(ω2) = hx′(ω1) ∀ω1 ∈ Ω1,

but this is impossible because htx′+(1−t)x′′ 6= hx′ . Therefore we get a contradiction and B is not
quasi-convex.

ii) Suppose that B is concave. Let x′, x′′ ∈ X such that hx′ 6= hx′′ and t ∈]0, 1[. Since h is
linear, it follows that

htx′+(1−t)x′′ 6= hx′ and htx′+(1−t)x′′ 6= hx′′ .

Since |K| > 1, let %′2, %
′′
2 ∈ K be such that %′2 6= %′′2. Let % ∈ tB(x′) + (1− t)B(x′′), be such that

%(ω1, ω2) = thx′(ω1)%′2(ω2) + (1− t)hx′′(ω1)%′′2(ω2) ∀(ω1, ω2) ∈ Ω.

Since B is concave then it follows that % ∈ B(tx′ + (1− t)x′′); so, there exists %2 ∈ K such that

%(ω1, ω2) = htx′+(1−t)′′(ω1)%2(ω2) = thx′(ω1)%2(ω2) + (1− t)hx′′(ω1)%2(ω2) ∀(ω1, ω2) ∈ Ω.

So

thx′(ω1)%′2(ω2)+(1− t)hx′′(ω1)%′′2(ω2) = thx′(ω1)%2(ω2)+(1− t)hx′′(ω1)%2(ω2) ∀(ω1, ω2) ∈ Ω (12)

Now, suppose that ω2 is such that %′2(ω2) 6= %2(ω2), from the previous equation (12) it follows that
hx′′(ω1) > 0 for every ω1 and

t

1− t
hx′(ω1)

hx′′(ω1)
=
%2(ω2)− %′′2(ω2)

%′2(ω2)− %2(ω2)
∀ω1 ∈ Ω1

12



Since, hx′ and hx′′ are probability distributions with hx′ 6= hx′′ , then there exist ω∗1 and ω∗∗1 such
that

hx′(ω
∗
1) > hx′′(ω

∗
1) and hx′(ω

∗∗
1 ) < hx′′(ω

∗∗
1 ).

Hence
%2(ω2)− %′′2(ω2)

%′2(ω2)− %2(ω2)
=
hx′(ω

∗
1)

hx′′(ω∗1)
>
hx′(ω

∗∗
1 )

hx′′(ω∗∗1 )
=
%2(ω2)− %′′2(ω2)

%′2(ω2)− %2(ω2)
,

but this is a contradiction. So %2(ω2) = %′2(ω2) for every ω2 ∈ Ω2. Similarly, we get a contradiction
if ω2 is such that %′′2(ω2) 6= %2(ω2); so %2(ω2) = %′′2(ω2) for every ω2 ∈ Ω2.

Since %′2 6= %′′2 we get a contradiction and B is not concave.

4 Attitudes towards uncertainty

In [8], it has been shown that the attitudes of the agents towards the inclusion relation between
sets of probability distributions over outcomes plays a key role in the convexity of preferences. In
particular a minimally pessimistic (resp. optimistic) attitude towards ambiguity is identified: an
agent would not prefer a set of probability distributions to another one if the former is a subset
of the latter (resp. if the latter is a subset of the former). These attitudes are called, respectively,
imprecision aversion and imprecision loving. In this paper, the same approach is taken into account
in the more general context of set-valued imprecise probabilities. In this more general framework,
the implication that characterize imprecision aversion (resp. imprecision loving) will be called
superset aversion (resp. subset aversion). The reason for this change of notation is that, while it
clear that superset of probabilities are more imprecise, when uncertainty is represented by sets of
desirable gambles, the information becomes less imprecise as the set of desirable gambles enlarges
to the half space.

Definition 4.1: The preference relation %T is said to be

a) superset averse if
A ⊆ B =⇒ B �P A;

b) subset averse if
A ⊆ B =⇒ A �P B.

Remark 4.2: It is clear that there are many properties, in terms of the set inclusion relation, that
characterize preferences within subsets of a given set. A detailed analysis is presented in [8], in the
case of sets of probability distributions. However, it can be easily observed that the definitions and
relations among definitions in [8] can be immediately generalized to arbitrary sets. Moreover, every
definition given in [8] implies either imprecision aversion or imprecision loving (superset aversion or
subset aversion). Hence superset aversion and subset aversion can be considered minimal properties
in this sense.

Two further attitudes towards uncertainty, that will be relevant, are given below.

Definition 4.3: The preference relation %T is said to be

u) sup-consistent if
A �T C andB �T C =⇒ A ∪B �T C;
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l) inf-consistent if

A �T C, B �T C andA ∩B = ∅ =⇒ A ∩B �T C.

Moreover, the following convexity assumption for preferences will be relevant:

Definition 4.4: The preference relation %T is said to be

c1) semi-strictly convex if

UT (A) = {B ⊆ T |B �T A} is a convex subset of K(T ), ∀A ⊆ T .

c2) convex if

ST (A) = {B ⊆ T |B %T A} is a convex subset of K(T ), ∀A ⊆ T .

Special cases

Here we present classical models of preferences in case of imprecise probabilities, (see, for instance,
[28],[23] or [27] just to quote a few), such as maximin preferences or maximax preferences (that
are rational preferences) and interval dominance (which is instead not complete). While in [8]
it is shown that all these preferences are imprecision averse/loving (superset/subset averse) and
convex, here the sup/inf-consistency is analyzed. For the sake of completeness, it is shown below
that these preferences are semi-strictly convex12.

We consider the case in which T = P and preferences are binary relations in the set K(P) of
all compact subset of P .

Let f : P → R be a continuous function which gives, to the decision maker, the utility f(%) of
every lottery % ∈ P13. Then

Definition 4.5: For every A ∈ K(P), let F (A) = min%∈A f(%) and G(A) = max%∈A f(%). Then,

Min) The preference %mP , defined for every (A,B) ∈ K(P)×K(P), by

A %mP B ⇐⇒ F (A) > F (B),

is a maximin preference

Max) The preference %MP , defined for every (A,B) ∈ K(P)×K(P), by

A %MP B ⇐⇒ G(A) > G(B),

is a maximax preference.

ID) The preference %IDP , defined for every (A,B) ∈ K(P)×K(P), by

A %IDP B ⇐⇒ F (A) > G(B),

is an interval dominance preference.

12The proofs show that semi-strict convexity is a simple consequence of convexity in this particular case.
13The function f can be the classical expected utility, but it can also be something different as in the variational

preference model.
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Note maximax and maximin preferences are complete and transitive while interval dominance
is not a complete preference, while it is transitive. Now the properties of these preferences are
investigated.

Proposition 4.6: Given f : P → R, let %mP be the corresponding maximin preference. Then,

i) %mP is imprecision averse.

ii) If f is a concave function then %mP is a semi-strictly convex preference.

iii) %mP is sup-consistent and inf-consistent

Proof. i) ii) See Proposition 4.9 in [8].
ii) Let f be a concave function. For every t ∈ [0, 1], F (tA+ (1− t)B) = f(t%A + (1− t)%B) for

some %A ∈ A and %B ∈ B. By definition, it follows that f(%A) > F (A) and f(%B) > F (B). Since
f a concave function, it follows that f(t%A + (1− t)%B) > tf(%A) + (1− t)f(%B). Summarizing:

F (tA+ (1− t)B) = f(t%A + (1− t)%B) > tf(%A) + (1− t)f(%B) > tF (A) + (1− t)F (B).

Now, if A �mP C and B �mP C then F (A) > F (C) and F (B) > F (C). Therefore, F (tA+(1−t)B) >
F (C) and tA+ (1− t)B �mP C. So %mP is semi-strictly convex.

iii) Let A,B,C be subsets of K(P) such that

F (A) = f(%A) > F (C), F (B) = f(%B) > F (C) where %A ∈ A, %B ∈ B

It follows that
F (A ∪B) = min{f(%A), f(%B)} > F (C).

so that %mP is sup-consistent. Moreover, if A and B are also such that A ∩ B 6= ∅ then it follows
since

F (A ∩B) = min
%∈A∩B

f(%) > max

{
min
%∈A

f(%),min
%∈B

f(%)

}
= max {F (A), F (B)} .

Therefore, F (A ∩B) > F (C) and %mP is inf-consistent.

Proposition 4.7: Given f : P → R, let %MP be the corresponding maximax preference. Then,

i) %MP is imprecision loving.

ii) If f is a quasi-concave function then %MP is a semi-strictly convex preference.

iii) %MP is sup-consistent

Proof. i) See Proposition 4.11 in [8].
ii) Let %A ∈ A and %B ∈ B be such that G(A) = g(%A) and G(B) = g(%B). Fix t ∈ [0, 1], then

t%A + (1− t)%B ∈ tA+ (1− t)B which implies that G(tA+ (1− t)B) > f(t%A + (1− t)%B). Since
f is quasi-concave, it follows that

G(tA+ (1− t)B) > f(t%A + (1− t)%B) > min{f(%A), f(%B)} = min{G(A), G(B)}.

Now, if A �MP C andB �MP C thenG(A) > G(C) andG(B) > G(C). Therefore, G(tA+(1−t)B) >
G(C) and tA+ (1− t)B �MP C. So %MP is semi-strictly convex.
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iii) Let A,B,C be subsets of K(P) such that

G(A) = f(%A) > G(C), G(B) = f(%B) > G(C) where %A ∈ A, %B ∈ B

It follows that
G(A ∪B) = max{f(%A), f(%B)} > G(C).

so that %MP is sup-consistent.

Proposition 4.8: Given f : P → R, let %IDP be the corresponding interval dominance preference.
Then,

i) %IDP is imprecision averse and imprecision loving

ii) If f is a concave function, then %IDP is a semi-strictly convex preference.

i) %IDP is sup-consistent and inf-consistent.

Proof. i) See Proposition 4.14 in [8].
ii) Suppose that A �DP C and B �DP C, meaning that F (A), F (B) > G(C). For every t ∈ [0, 1],

F (tA+ (1− t)B) = f(t%A + (1− t)%B) for some %A ∈ A and %B ∈ B. By definition, it follows that
f(%A) > F (A) and f(%B) > F (B). Since f a concave function, it follows that f(t%A + (1− t)%B) >
tf(%A) + (1− t)f(%B). Summarizing:

F (tA+ (1− t)B) = f(t%A + (1− t)%B) > tf(%A) + (1− t)f(%B) > tF (A) + (1− t)F (B) > G(S).

Therefore, tA+ (1− t)B �IDP C. So %IDP is semi-strictly convex.
iii) Let A,B,C be subsets of K(P) such that

F (A) = f(%A) > G(C), F (B) = f(%B) > G(C) where %A ∈ A, %B ∈ B

It follows that
F (A ∪B) = min{f(%A), f(%B)} > G(C).

so that %IDP is sup-consistent. Moreover, if A and B are such that A ∩B 6= ∅ then

F (A ∩B) = min
%∈A∩B

f(%) > max

{
min
%∈A

f(%),min
%∈B

f(%)

}
= max {F (A), F (B)} > G(C)

and F (A ∩B) > G(C) and %IDP is inf-consistent.

5 Convexity of preferences

In this section, the concepts introduced in the previous ones are used in order to guarantee
the Shafer-Sonnenschein relaxed convexity property of the preference relation % over X. In all
the results presented, the assumption of superset aversion (respectively subset aversion) of the
preference %T is combined with a (quasi-)convexity (respectively (quasi-)concavity) assumption
on the imprecise probability correspondence C. In particular, three results involve the superset
aversion assumption and three others involve subset aversion. In the first result (Theorem 5.1),
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superset aversion is combined with the assumption of convexity of %; these two assumptions
alone are not enough as the Shafer-Sonnenschein relaxed convexity of C is obtained by imposing
the additional assumption of semi-strict convexity on %T . This latter assumption is, instead,
completely removed in the second and third result in which the convexity of C is replaced by a
version of quasi-convexity. In particular, in case of strong quasi-convexity of C (Theorem 5.2),
no assumption other than superset aversion is imposed on %T . In case strong quasi-convexity is
(significatively) relaxed by quasi-convexity of C, then the superset aversion assumption is combined
with the sup-consistency assumption on %T (Theorem 5.3). Theorems 5.4, 5.5 and 5.6 involve,
instead, the subset aversion assumption in place of superset aversion. In this case, the Shafer-
Sonnenschein relaxed convexity property of % is obtained by replacing, in Theorems 5.1, 5.2
and 5.3, the assumptions of convexity or (strong) quasi-convexity of C with the assumptions of
concavity or (strong) quasi-concavity of C, respectively, and the assumption of sup-consistency with
the assumption of inf-consistency. However, these latter results are not perfectly symmetric as in
Theorem 5.6 an additional assumption must be imposed; this is not completely surprising because
in section 2 it has already been shown that the notions of quasi-concavity and quasi-convexity
for set-valued maps are not perfectly symmetric. As a final remark, note that Theorems 5.1, 5.4
are a straightforward extension of Propositions 4.3 (2) and 4.4 (2) in [8] to the present model;
nevertheless, a self contained (and slightly different) proof of these results is given below, for the
sake of completeness.

5.1 (Quasi-)convex correspondences and convexity of preferences

Theorem 5.1: Assume that the following conditions hold:
(M1) C is convex
(a) %T is superset averse
(c1) %T is semi− strictly convex

.

Then, x /∈ co(U(x)).

Proof. Suppose that x ∈ co(U(x)), then there exist x′ and x′′ in U(x) and t ∈]0, 1[ such that
x = tx′ + (1 − t)x′′. It follows that C(x′) �T C(x), C(x′′) �T C(x) and C(x) = C(tx′ + (1 − t)x′′).
Denote with S = tC(x′)+(1−t)C(x′′), then assumption (M1) implies that C(x) ⊆ S. So S 6�T C(x)
because of assumption (a). On the other hand, assumption (c) implies that UT (C(x)) is a convex
set so that S ∈ UT (C(x)) and S �T C(x). Therefore, we get a contradiction and x /∈ co(U(x)).

Theorem 5.2: Assume that the following conditions hold:{
(M3) C is strongly quasi− convex
(a) %T is superset averse

Then x /∈ co(U(x)).

Proof. Suppose that x ∈ co(U(x)), then there exist x′ and x′′ in U(x) and t ∈]0, 1[ such that
x = tx′ + (1 − t)x′′. It follows that C(x′) �T C(x), C(x′′) �T C(x) and C(x) = C(tx′ + (1 − t)x′′).
From (M3) it follows that C(tx′ + (1 − t)x′′) ⊆ C(x′) or C(tx′ + (1 − t)x′′) ⊆ C(x′′). If C(x) =
C(tx′+ (1− t)x′′) ⊆ C(x′), then (a) implies that C(x′) 6�T C(x) which is a contradiction. Similarly,
if C(x) = C(tx′ + (1− t)x′′) ⊆ C(x′′), then (a) implies that C(x′′) 6�T C(x) which is a contradiction
as well. Hence, x /∈ co(U(x)).
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Theorem 5.3: Assume that the following conditions hold:
(M2) C is quasi− convex
(a) %T is superset averse
(u) %T is sup− consistent

Then x /∈ co(U(x)).

Proof. Suppose that x ∈ co(U(x)), then there exist x′ and x′′ in U(x) and t ∈]0, 1[ such that
x = tx′ + (1 − t)x′′. It follows that C(x′) �T C(x), C(x′′) �T C(x) and C(x) = C(tx′ + (1 − t)x′′).
Hence, assumption (u) implies that

C(x′) ∪ C(x′′) �T C(x).

On the other hand, assumption (M2) implies that

C(x) = C(tx′ + (1− t)x′′) ⊆ C(x′) ∪ C(x′′).

Therefore, assumption (a) implies that C(x′) ∪ C(x′′) 6�T C(x) which is a contradiction. So x /∈
co(U(x)).

5.2 (Quasi-)concave correspondences and convexity of preferences

Theorem 5.4: Assume that the following conditions hold:
(N1) C is concave
(b) %T is subset averse
(c1) %T is semi− strictly convex

.

Then, x /∈ co(U(x)).

Proof. Suppose that x ∈ co(U(x)), then there exist x′ and x′′ in U(x) and t ∈]0, 1[ such that
x = tx′ + (1 − t)x′′. It follows that C(x′) �T C(x), C(x′′) �T C(x) and C(x) = C(tx′ + (1 − t)x′′).
Denote with S = tC(x′)+(1− t)C(x′′), then assumption (N1) implies that S ⊆ C(x). So S 6�T C(x)
because of assumption (b). On the other hand, assumption (c1) implies that UT (C(x)) is a convex
set so that S ∈ UT (C(x)) and S �T C(x). Therefore, we get a contradiction and x /∈ co(U(x)).

Theorem 5.5: Assume that the following conditions hold:{
(N3) C is strongly quasi− concave.
(b) %T is subset averse

Then x /∈ co(U(x)).

Proof. Suppose that x ∈ co(U(x)), then there exist x′ and x′′ in U(x) and t ∈]0, 1[ such that
x = tx′ + (1 − t)x′′. It follows that C(x′) �T C(x), C(x′′) �T C(x) and C(x) = C(tx′ + (1 − t)x′′).
Assumption (N3) implies that C(x′) ⊆ C(tx′ + (1 − t)x′′) or C(x′′) ⊆ C(tx′ + (1 − t)x′′). If
C(x′) ⊆ C(tx′ + (1 − t)x′′) = C(x), then assumption (b) implies that C(x′) 6�T C(x) which is a
contradiction. Similarly, if C(x′′) ⊆ C(tx′+ (1− t)x′′) = C(x), then (b) implies that C(x′′) 6�T C(x)
which is a contradiction as well. Hence, x /∈ co(U(x)).
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Theorem 5.6: Assume that the following conditions hold:
(N2) C is quasi− concave
(b) %T is subset averse
(l) %T is inf − consistent
(η) C(x′) �T Aand C(x′′) �T Afor someA ⊆ T =⇒ C(x′) ∩ C(x′′) 6= ∅

Then x /∈ co(U(x)).

Proof. Suppose that x ∈ co(U(x)), then there exist x′ and x′′ in U(x) and t ∈]0, 1[ such that
x = tx′ + (1 − t)x′′. It follows that C(x′) �T C(x), C(x′′) �T C(x) and C(x) = C(tx′ + (1 − t)x′′).
Then, assumptions (l) and (η) imply that

C(x′) ∩ C(x′′) �T C(x)

On the other hand, assumption (N2) implies that

C(x′) ∩ C(x′′) ⊆ C(tx′ + (1− t)x′′) = C(x)

Therefore, assumption (b) implies that C(x′) ∩ C(x′′) 6�T C(x) which is a contradiction. So x /∈
co(U(x)).

Remark 5.7: The assumption (η) in the previous theorem is obviously satisfied when⋂
x∈X

C(x) 6= ∅.

However, the previous condition is rather demanding. There are many other examples in which
assumption (η) is satisfied. For instance, given W ∈ K(T ), with W 6= ∅, consider a maxmin
preference %mT corresponding the function fW : K(T )→ R defined by

fW (K) =

{
1 if W ⊆ K
0 otherwise

Now, if C(x′) �T A and C(x′′) �T A for some A ⊆ T , then it follows that fW (C(x′)) = fW (C(x′′)) =
1 > 0 = fW (A). This implies that ∅ 6= W ⊆ C(x′) ∩ C(x′′).

6 Ambiguous belief and Almost Desirable Gambles

It is well known that given a set of probability distributions, one can construct, in an natural way,
a corresponding set of almost desirable gambles and, similarly, given a set of almost desirable
gambles, one can construct a corresponding set of probability distributions (see for instance
[28], [29], [2] or [7] and references therein). Therefore, we get an almost desirable gambles
correspondence from an ambiguous belief correspondence and viceversa. More precisely, given
the set-valued map D : X  L of almost desirable gambles, the induced belief correspondence
BD : X  P is defined by

BD(x) = {% ∈ P |E%[Y ] > 0, ∀Y ∈ D(x)},
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where E%[Y ] =
∑

ω∈Ω %(ω)Y (ω) is the expectation of Y under %.
Conversely, given the ambiguous belief correspondence B : X  P , then the induced almost

desirable gambles correspondence DB : X  L is defined by

DB(x) = {Y ∈ L |E%[Y ] > 0, ∀P ∈ B(x)}.

Aim of this section is to investigate the relation between the (quasi-)convexity/concavity properties
in the two representations.

6.1 Almost desirable gambles correspondences and the induced ambiguous
belief

Proposition 6.1: The following implications hold:

i) If D is convex in X, then BD is quasi-concave in X.

ii) If D is quasi-convex in X, then BD is quasi-concave in X.

iii) If D is strongly quasi-convex in X, then BD is strongly quasi-concave in X.

iv) If D concave in X and 0 ∈ D(x) for every x ∈ X, then BD convex and strongly quasi-convex
in X.

v) If D is strongly quasi-concave in X, then BD is strongly quasi-convex in X.

Proof. i) Given x′, x′′ ∈ X and t ∈]0, 1[, we show that

D(tx′ + (1− t)x′′) ⊆ tD(x′) + (1− t)D(x′′) =⇒ BD(x′) ∩ BD(x′′) ⊆ BD(tx′ + (1− t)x′′)

Assume that D(tx′ + (1− t)x′′) ⊆ tD(x′) + (1− t)D(x′′). Let % ∈ BD(x′) ∩ BD(x′′) then for every
Y ′ ∈ D(x′) and for every Y ′′ ∈ D(x′′) it follows that E%[Y

′] > 0 and E%[Y
′′] > 0 which implies that

E%[tY
′ + (1− t)Y ′′] > 0. (13)

Now, let Y ∈ D(tx′ + (1− t)x′′) then Y ∈ tD(x′) + (1− t)D(x′′) so Y = tY ′ + (1− t)Y ′′ for some
Y ′ ∈ D(x′) and Y ′′ ∈ D(x′′). Hence (13) implies that E%[Y ] > 0. Therefore % ∈ BD(tx′+ (1− t)x′′)
and the assertion follows.

ii) Given x′, x′′ ∈ X and t ∈]0, 1[, we show that

D(tx′ + (1− t)x′′) ⊆ D(x′) ∪ D(x′′) =⇒ BD(x′) ∩ BD(x′′) ⊆ BD(tx′ + (1− t)x′′).

Let % ∈ BD(x′)∩BD(x′′) then it follows that E%[Y ] > 0 for every Y ∈ D(x′)∪D(x′′); so E%[Y ] > 0
for every Y ∈ D(tx′ + (1− t)x′′). and % ∈ BD(tx′ + (1− t)x′′). So the assertion follows.

iii) Given x′, x′′ ∈ X and t ∈]0, 1[, it immediately follows that

D(tx′ + (1− t)x′′) ⊆ D(x′) (respectively D(tx′ + (1− t)x′′) ⊆ D(x′′))
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implies

BD(x′) ⊆ BD(tx′ + (1− t)x′′) (respectively BD(x′′) ⊆ BD(tx′ + (1− t)x′′)) .

and the assertion follows.

iv) Given x′, x′′ ∈ X and t ∈]0, 1[, we show that

tD(x′) + (1− t)D(x′′) ⊆ D(tx′ + (1− t)x′′) =⇒ BD(tx′ + (1− t)x′′) ⊆ BD(x′) ∩ BD(x′′)

Assume that tD(x′)+(1−t)D(x′′) ⊆ D(tx′+(1−t)x′′). Let % ∈ BD(tx′+(1−t)x′′). Then E%[Y ] > 0
for every Y ∈ D(tx′ + (1− t)x′′); since D is concave then it follows that E%[tY

′ + (1− t)tY ′′] > 0
for every Y ′ ∈ D(x′) and every Y ′′ ∈ D(x′′). Hence

tE%[Y
′] + (1− t)E%[Y ′′] > 0, ∀Y ′ ∈ D(x′) and ∀Y ′′ ∈ D(x′′).

Since 0 ∈ D(x′) then it follows that (1−t)E%[Y ′′] > 0 for every Y ′′ ∈ D(x′′). Therefore, % ∈ BD(x′′).
Similarly, % ∈ BD(x′). Hence, BD(tx′ + (1− t)x′′) ⊆ BD(x′) ∩ BD(x′′). It immediately follows that
BD is strongly quasi-convex. Moreover, BD(x′) ∩ BD(x′′) ⊆ tBD(x′) + (1− t)BD(x′′) so that BD is
convex.

v) Given x′, x′′ ∈ X and t ∈]0, 1[, it immediately follows that

D(x′) ⊆ D(tx′ + (1− t)x′′) (respectively D(x′′) ⊆ D(tx′ + (1− t)x′′))

implies

BD(tx′ + (1− t)x′′) ⊆ BD(x′) (respectively BD(tx′ + (1− t)x′′) ⊆ BD(x′′)) .

and the assertion follows.

Counterexamples

Below some counterexamples are given. They show that not every implication of (quasi-)convexity
has a specular counterpart in terms of (quasi-)concavity and viceversa. Moreover, they show that
strong quasi-concavity (quasi-convexity) of D does not imply convexity (concavity) of BD.

Example 6.2: This example shows that if D is quasi-concave then BD is not necessarily quasi-
convex.

Consider Ω = {ω1, ω2}. Given % ∈ P then % = (%1, %2); since %2 = 1 − %1, we identify % with
its first component %1 that, with an abuse of notation, is denoted with %. Now let X = [0, 1] and
D : [0, 1] R2 be defined by

D(x) =


{(y1, y2) | y2 > 0} if x ∈ [0, 1/2[
{(y1, y2) | y1 + y2 > 0} if x = 1/2
{(y1, y2) | y1 > 0} if x ∈]1/2, 1]

.

This correspondence is clearly quasi-concave as for every x′, x′′ ∈ X, with x′ 6= x′′ and t ∈]0, 1[ it
follows that D(x′) ∩D(x′′) ⊆ D(tx′ + (1− t)x′′). Now, the corresponding BD : X  P is given by

BD(x) =


{0} if x ∈ [0, 1/2[
{1/2} if x = 1/2
{1} if x ∈]1/2, 1]

.
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Now, for x′ = 0, x′′ = 1 and t = 1/2 we have:

BD(0) = {0} , BD(1) = {1} , BD(1/2) = {1/2}

It immediately follows that

{1/2} = BD(1/2) 6⊆ BD(0) ∪ BD(1) = {0, 1} .

Example 6.3: This example shows that if D is strongly quasi-concave then BD is not necessarily
convex.

Consider Ω = {ω1, ω2}. Given % ∈ P then % = (%1, %2); since %2 = 1 − %1, we identify % with
its first component %1 that, with an abuse of notation, is denoted with %. Let X = [0, 1] and
D : [0, 1] R2 be defined by

D(x) =

{
{(y1, y2) | (2x)y1 + (1− 2x)y2 > 0 and y2 > 0} if x ∈ [0, 1/2[
{(y1, y2) | y1 > 0 and y2 > 0} if x ∈ [1/2, 1]

.

Clearly, the correspondence D is strongly quasi-concave as for x′ < x′′ and t ∈]0, 1[, it follows that
D(x′′) ⊆ D(tx′ + (1− t)x′′). The associated BD : X  P is given by

BD(x) =

{
[0, 2x] if x ∈ [0, 1/2[
[0, 1] if x ∈ [1/2, 1[

.

Now, for x′ = 0, x′′ = 1 and t = 1/2 we have:

BD(0) = {0} , BD(1) = BD(1/2) = [0, 1]

It immediately follows that

[0, 1] = BD(1/2) 6⊆ 1

2
BD(0) +

1

2
BD(1) = [0, 1/2]

Example 6.4: This example shows that if D is convex or strongly quasi-convex then BD is not
necessarily concave.

Consider Ω = {ω1, ω2}. Given % ∈ P then % = (%1, %2); since %2 = 1 − %1, we identify % with
its first component %1 that, with an abuse of notation, is denoted with %. Now let X = [0, 1] and
D : [0, 1] R2 be defined by

D(x) =

{
{(y1, y2) | y2 > 0} if x ∈ [0, 1[
{(y1, y2) | y1 > 0 and y2 > 0} if x = 1

.

This correspondence is clearly convex. In fact, for every x′, x′′ ∈ X and t ∈]0, 1[ it follows that

tD(x′) + (1− t)D(x′′) = {(y1, y2) | y2 > 0} = D(tx′ + (1− t)x′′)

Moreover it is strongly quasi-convex as for x′ < x′′ and t ∈]0, 1[ it immediately follows that
D(tx′ + (1− t)x′′) ⊆ D(x′).

Now, the corresponding BD : X  P is given by
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BD(x) =

{
{0} if x ∈ [0, 1[
[0, 1] if x = 1

.

Now, for x′ = 0, x′′ = 1 and t = 1/2 we have:

BD(0) = {0} , BD(1) = [0, 1], BD(1/2) = {0}

It immediately follows that

1

2
BD(0) +

1

2
BD(1) = [0, 1/2] 6⊆ {0} = BD(1/2)

6.2 Ambiguous belief correspondences and the induced almost desirable
gambles

Proposition 6.5: The following implications hold:

i) If B is convex in X, then DB is quasi-concave in X.

ii) If B is quasi-convex in X, then DB is quasi-concave in X.

iii) If B is strongly quasi-convex in X, then DB is strongly quasi-concave in X.

iv) If B is concave in X, then DB is quasi-convex and convex in X.

v) If B is strongly quasi-concave in X, then DB is convex and strongly quasi-convex in X.

Proof. i) Given x′, x′′ ∈ X and t ∈]0, 1[, we show that

B(tx′ + (1− t)x′′) ⊆ tB(x′) + (1− t)B(x′′)

implies that
DB(x′) ∩ DB(x′′) ⊆ DB(tx′ + (1− t)x′′). (14)

Let Y ∈ DB(x′) ∩ DB(x′′), then

E%′ [Y ] > 0 ∀%′ ∈ B(x′) and E%′′ [Y ] > 0 ∀%′′ ∈ B(x′′)

Therefore

Et%′+(1−t)%′′ [Y ] = tE%′ [Y ] + (1− t)E%′′ [Y ] > 0 ∀%′ ∈ B(x′),∀%′′ ∈ B(x′′)

Since B is convex then every % ∈ B(tx′ + (1− t)x′′) can be written as % = t%′ + (1− t)%′′ for some
%′ ∈ B(x′) and %′′ ∈ B(x′′), Then,

E%[Y ] > 0 ∀% ∈ B(tx′ + (1− t)x′′)

that implies that Y ∈ DB(tx′ + (1− t)x′′) and (14) holds.

ii) Given x′, x′′ ∈ X and t ∈]0, 1[, we show that

B(tx′ + (1− t)x′′) ⊆ B(x′) ∪ B(x′′)

23



implies
DB(x′) ∩ DB(x′′) ⊆ DB(tx′ + (1− t)x′′). (15)

Let Y ∈ DB(x′) ∩ DB(x′′), then

E%′ [Y ] > 0 ∀%′ ∈ B(x′) and E%′′ [Y ] > 0 ∀%′′ ∈ B(x′′)

Therefore,
E%[Y ] > 0 ∀% ∈ B(x′) ∪ B(x′′).

B is quasi-convex, so
E%[Y ] > 0 ∀% ∈ B(tx′ + (1− t)x′′)

that finally implies
Y ∈ DB(tx′ + (1− t)x′′)

Hence, DB(x′) ∩ DB(x′′) ⊆ DB(tx′ + (1− t)x′′) and the assertion follows.

iii) Given x′, x′′ ∈ X and t ∈]0, 1[, it immediately follows that

B(tx′ + (1− t)x′′) ⊆ B(x′) (respectively B(tx′ + (1− t)x′′) ⊆ B(x′′))

implies

DB(x′) ⊆ DB(tx′ + (1− t)x′′) (respectively DB(x′′) ⊆ DB(tx′ + (1− t)x′′)) .

and the assertion follows.

iv) Given x′, x′′ ∈ X and t ∈]0, 1[, we show that

tB(x′) + (1− t)B(x′′) ⊆ B(tx′ + (1− t)x′′)

implies
DB(tx′ + (1− t)x′′) ⊆ DB(x′) ∪ DB(x′′)

and
DB(tx′ + (1− t)x′′) ⊆ tDB(x′) + (1− t)DB(x′′)

Let Y in DB(tx′ + (1− t)x′′). It follows that

E%[Y ] > 0 ∀% ∈ B(tx′ + (1− t)x′′)

Since B is concave, it follows that

Et%′+(1−t)%′′ [Y ] = tE%′ [Y ] + (1− t)E%′′ > 0 ∀%′ ∈ B(x′), ∀%′′ ∈ B(x′′).

Therefore, if there exists %′′ ∈ B(x′′) such that E%′′ [Y ] < 0 then it must follow that E%′ [Y ] > 0 for
every %′ ∈ B(x′), that is Y ∈ DB(x′) that in particular gives Y ∈ DB(x′) ∪ DB(x′′). Moreover, if
Y ∈ DB(x′) then it is clear that E%′

[
1
t
Y
]
> 0 for every %′ ∈ B(x′), so that 1

t
Y ∈ DB(x′). Since

0 ∈ DB(x′) ∩ DB(x′′), then

Y = t

(
1

t
Y

)
+ (1− t)0 ∈ tDB(x′) + (1− t)DB(x′′).
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Similarly, if there exists %′ ∈ B(x′) such that E%′ [Y ] < 0 then Y ∈ DB(x′′) which implies that
Y ∈ DB(x′)∪DB(x′′) and Y ∈ tDB(x′) + (1− t)DB(x′′) as well. So conditions DB(tx′+ (1− t)x′′) ⊆
DB(x′)∪DB(x′′) and DB(tx′+ (1− t)x′′) ⊆ tDB(x′) + (1− t)DB(x′′) hold and the assertion follows.

v) Given x′, x′′ ∈ X and t ∈]0, 1[, we show that

B(x′) ⊆ B(tx′ + (1− t)x′′) or B(x′′) ⊆ B(tx′ + (1− t)x′′)

implies
DB(tx′ + (1− t)x′′) ⊆ DB(x′) or DB(tx′ + (1− t)x′′) ⊆ DB(x′′)

and
DB(tx′ + (1− t)x′′) ⊆ tDB(x′) + (1− t)DB(x′′)

Let Y in DB(tx′+(1−t)x′′) and suppose that B(x′) ⊆ B(tx′+(1−t)x′′). It follows that E%[Y ] > 0 for
all % ∈ B(x′). Therefore Y ∈ DB(x′). Following the same steps in the proof of iv), it follows that if
Y ∈ DB(x′) then E%′

[
1
t
Y
]
> 0 for every %′ ∈ B(x′), so that 1

t
Y ∈ DB(x′). Since 0 ∈ DB(x′)∩DB(x′′),

then

Y = t

(
1

t
Y

)
+ (1− t)0 ∈ tDB(x′) + (1− t)DB(x′′).

Similar arguments hold when B(x′′) ⊆ B(tx′ + (1− t)x′′) as it follows that Y ∈ DB(x′′) and

Y = t (0) + (1− t)
(

1

1− t
Y

)
∈ tDB(x′) + (1− t)DB(x′′).

So
DB(tx′ + (1− t)x′′) ⊆ DB(x′) or DB(tx′ + (1− t)x′′) ⊆ DB(x′′)

and

DB(tx′ + (1− t)x′′) ⊆ tDB(x′) + (1− t)DB(x′′),

and the assertion follows.

Counterexamples

Similarly as done in subsection 6.1, counterexamples are now given showing that (quasi-)concavity
and (quasi-)convexity are not symmetric concepts even in the previous Proposition.

Example 6.6: This example shows that if B is convex then DB is not necessarily concave.
Consider Ω = {ω1, ω2}. Given % ∈ P then % = (%1, %2); since %2 = 1 − %1, we identify % with

its first component %1 that, with an abuse of notation, is denoted with %. Now let X = [0, 1] and
B : X  P defined by

B(x) = {x} ∀x ∈ [0, 1]

This correspondence is clearly convex.The corresponding correspondenceDB : [0, 1] R2 is defined
by

DB(x) = {(y1, y2) |xy1 + (1− x) y2 > 0} ∀x ∈ [0, 1].

Now, for x′ = 0, x′′ = 1 and t = 1/2 we have:

DB(0) = {(y1, y2) | y2 > 0} , DB(1) = {(y1, y2) | y1 > 0} ,
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DB(1/2) =

{
(y1, y2)

∣∣∣∣ 1

2
y1 +

1

2
y2 > 0

}
.

It immediately follows that

1

2
DB(0) +

1

2
DB(1) = R2 6⊆ DB(1/2).

Example 6.7: This example shows that if B is strongly quasi-convex then DB is not necessarily
concave.

Consider Ω = {ω1, ω2}. Given % ∈ P with % = (%1, %2); since %2 = 1 − %1, we identify % with
its first component %1 that, with an abuse of notation, is denoted with %. Now let X = [0, 1] and
B : X  P defined by

B(x) =

{
[0, 2x] if x ∈ [0, 1/2[
[0, 1] if x ∈ [1/2, 1]

This correspondence is clearly strongly quasi-convex as for every t ∈]0, 1[ and x′ < x′′ it follows
that B(tx′ + (1− t)x′′) ⊆ B(x′′). The induced correspondence DB : [0, 1] R2 is defined by

DB(x) =

{
{(y1, y2) | (2x)y1 + (1− 2x) y2 > 0, y2 > 0} if x ∈ [0, 1/2[
{(y1, y2) | y1 > 0, y2 > 0} if x ∈ [1/2, 1]

.

Now, for x′ = 0, x′′ = 1 and t = 1/2 we have:

DB(0) = {(y1, y2) | y2 > 0} , DB(1) = {(y1, y2) | y1 > 0, y2 > 0} ,

DB(1/2) = {(y1, y2) | y1 > 0, y2 > 0} .
It immediately follows that

(1/2)DB(0) + (1/2)DB(1) = {(y1, y2) | y2 > 0} 6⊆ DB(1/2)

so that DB is not concave.

Example 6.8: This example shows that if B is quasi-concave then DB is not necessarily quasi-
convex.

Consider Ω = {ω1, ω2}. Given % ∈ P with % = (%1, %2); since %2 = 1 − %1, we identify % with
its first component %1 that, with an abuse of notation, is denoted with %. Now let X = [0, 1] and
B : X  P defined by

B(x) =

{
1
4
x if x ∈ [0, 1/2[

15
8
− 7

4
x if x ∈ [1/2, 1]

This (single-valued) correspondence is clearly quasi-concave as the images have only empty
intersection. The corresponding correspondence DB : [0, 1] R2 is defined by

DB(x) =

{ {
(y1, y2) |

(
1
4
x
)
y1 +

(
1− 1

4
x
)
y2 > 0

}
if x ∈ [0, 1/2[{

(y1, y2) |
(

15
8
− 7

4
x
)
y1 +

(
7
4
x− 7

8

)
y2 > 0

}
if x ∈ [1/2, 1]

.

Now, for x′ = 0, x′′ = 1 and t = 1/2 we have:

DB(0) = {(y1, y2) | y2 > 0} , DB(1) =

{
(y1, y2)

∣∣∣∣ 1

8
y1 +

7

8
y2 > 0

}
, DB(1/2) = {(y1, y2) | y1 > 0} .

It immediately follows that
DB(1/2) 6⊆ DB(0) ∪ DB(1)

so that DB is not quasi-convex.
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7 Lower Expectations and Ambiguous Beliefs

One of the most important concepts in the theory of imprecise probabilities is given by lower
expectations (see for instance [28], [29], [2] or [7] and references therein). The theory shows that
the representation of uncertainty in terms of lower expectations induces a representation in terms
of sets of probability distributions and almost desirable gambles and viceversa. In this section,
we study the relation among the (quasi-)convexity/concavity properties of lower expectations
(of gambles Y ∈ L) as real valued functions in the decision variable x ∈ X and the (quasi-
)convexity/concavity properties of the induced ambiguous belief correspondence with respect to
the same decision variable x and viceversa. In the next section, a specular analysis will be presented
involving sets of almost desirable gambles in place of ambiguous beliefs.

Let K ⊆ L, then the function Π : K ×X → R is called lower expectation function if, for every
x ∈ X, Π(·, x) is a lower expectation, that is, Π(Y, x) represents the supremum buying price of the
gamble Y , for every Y ∈ K.

Given the well known relations between sets of probability distributions and lower expectations,
for a given the ambiguous belief correspondence B : X  P , the induced lower expectation function
is defined as follows:

ΠB(Y, x) = inf
%∈B(x)

E%[Y ] ∀Y ∈ K, (16)

Conversely, given a lower expectation function Π, the ambiguous belief correspondence BΠ : X  P
derived form Π is defined by

BΠ(x) = {% ∈ P |E%[Y ] > Π(Y, x) ∀Y ∈ K} ∀x ∈ X, (17)

7.1 Ambiguous belief correspondences and the induced lower expectations

The following results analyze the relation between the properties of (quasi) concavity/convexity of
B with the properties of (quasi) concavity/convexity of ΠB.

Theorem 7.1: The following implications hold

i) If B is quasi-convex in X then, ΠB(Y, ·) is quasi-concave in X for all Y ∈ K.

ii) If B is concave in X, then ΠB(Y, ·) is convex in X for all Y ∈ K.

iii) If B is convex in X, then ΠB(Y, ·) is concave in X for all Y ∈ K.

Proof. i) Let x′, x′′ ∈ X and t ∈]0, 1[, then, from the assumptions, it follows that

B(tx′ + (1− t)x′′) ⊆ B(x′) ∪ B(x′′).

Let (εν)ν∈N be a sequence converging to 0. Fixed Y ∈ K, let (%ν)ν∈N ⊂ B(tx′ + (1 − t)x′′) be a
sequence such that

ΠB(Y, tx′ + (1− t)x′′) 6 E%ν [Y ] 6 ΠB(Y, tx′ + (1− t)x′′) + εν ∀ν ∈ N.

From the assumptions it follows that, for every ν ∈ N, %ν ∈ B(x′) ∪ B(x′′). So

ΠB(Y, x′) 6 E%ν [Y ] or ΠB(Y, x′′) 6 E%ν [Y ]
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then
min{ΠB(Y, x′),ΠB(Y, x′′)} 6 E%ν [Y ]

So
min{ΠB(Y, x′),ΠB(Y, x′′)} 6 ΠB(Y, tx′ + (1− t)x′′) + εν ∀ν ∈ N.

As ν →∞, we get
min{ΠB(Y, x′),ΠB(Y, x′′)} 6 ΠB(Y, tx′ + (1− t)x′′)

and ΠB(Y, ·) is quasi-concave. Since Y is arbitrary, the assertion follows.

ii) Let x′, x′′ ∈ X and t ∈]0, 1[, then, from the assumptions, it follows that

tB(x′) + (1− t)B(x′′) ⊆ B(tx′ + (1− t)x′′)

Fix Y ∈ K and let (εν)ν∈N a sequence of positive numbers converging to 0. Since ΠB(Y, x) is
defined by (16) for every x, then there exist %′ν ∈ B(x′) and %′′ν ∈ B(x′′) such that

ΠB(Y, x′) + εν > E%′ν [Y ], ΠB(Y, x′′) + εν > E%′′ν [Y ].

Since
%ν = t%′ν + (1− t)%′′ν ∈ tB(x′) + (1− t)B(x′′) ⊆ B(tx′ + (1− t)x′′)

It follows that E%ν [Y ] > ΠB(Y, tx′ + (1− t)x′′). So summarizing

tΠB(Y, x′) + (1− t)ΠB(Y, x′′) + εν > tE%′ν [Y ] + (1− t)E%′′ν [Y ] = E%[Y ] > ΠB(Y, tx′ + (1− t)x′′).

In particular,
tΠB(Y, x′) + (1− t)ΠB(Y, x′′) + εν > ΠB(Y, tx′ + (1− t)x′′) (18)

Taking the limit as ν →∞ in (18) we get

tΠB(Y, x′) + (1− t)ΠB(Y, x′′) > ΠB(Y, tx′ + (1− t)x′′).

and the assertion follows.

iv) Let x′, x′′ ∈ X and t ∈]0, 1[, then, from the assumptions, it follows that

B(tx′ + (1− t)x′′) ⊆ tB(x′) + (1− t)Bx′′)

Fix Y ∈ K. Let (εν)ν∈N a sequence of positive numbers converging to 0. Since ΠB(Y, tx′+(1−t)x′′)
is defined by (16) then, for every ν ∈ N there exists %ν ∈ B(tx′ + (1 − t)x′′) such that E%ν [Y ] <
ΠB(Y, tx′ + (1 − t)x′′) + εν . From the assumptions it follows that there exist %′ν ∈ B(x′) and
%′′ν ∈ B(x′′) such that t%′ν + (1− t)%′′ν = %ν . It follows that

ΠB(Y, tx′ + (1− t)x′′) + εν = E%ν [Y ] = tE%′ν [Y ] + (1− t)E%′′ν [Y ] > tΠB(Y, x′) + (1− t)ΠB(Y, x′′).

In particular

ΠB(Y, tx′ + (1− t)x′′) + εν > tΠB(Y, x′) + (1− t)ΠB(Y, x′′). (19)

Taking the limit as ν →∞ in (19) we get

ΠB(Y, tx′ + (1− t)x′′) = E%[Y ] > tΠB(Y, x′) + (1− t)ΠB(Y, x′′),

and the assertion follows.

28



Counterexample

In the next example we show that if B is quasi-concave then ΠB is not necessarily quasi-convex.

Example 7.2: Consider Ω = {ω1, ω2}. Given % ∈ P with % = (%1, %2); since %2 = 1 − %1, we
identify % with its first component %1 that, with an abuse of notation, is denoted with %. Now let
X = [0, 1] and B : X  P defined by

B(x) =


0 if x ∈ [0, 1/2[
1 if x = 1/2
1/2 if x ∈]1/2, 1]

It is easy to check that B is quasi-concave but the intersection B(x′) ∩ B(x′′) might be empty
for some x′ and x′′. Now we prove that the corresponding lower previson function ΠB is not
quasi-convex for some Y ∈ L.

Let Y ∈ L be the gamble defined by (Y (ω1), Y (ω2)) = (1, 0), and let x′ = 0, x′′ = 1 and t = 1/2
then it follows that

1/2 = max{0, 1/2} = max{ΠB(Y, x′),ΠB(Y, x′′} < ΠB(Y, tx′ + (1− t)x′′) = 1

So ΠB(Y, ·) is not quasi-convex in X.

7.2 Lower expectation functions and the induced ambiguous beliefs

In this subsection, it is presented the relation between the properties of (quasi) concavity/convexity
of Π with the properties of (quasi) concavity/convexity of BΠ.

Theorem 7.3: The following implications hold

i) If Π(Y, ·) is quasi-convex in X for all Y ∈ K, then BΠ is quasi-concave in X.

ii) If Π(Y, ·) is convex in X for all Y ∈ K, then BΠ is concave in X.

Proof. i) Let x′, x′′ ∈ X and t ∈]0, 1[, then, from the assumptions, it follows that

Π(Y, tx′ + (1− t)x′′) 6 max{Π(Y, x′),Π(Y, x′′)}, ∀Y ∈ K.

Given Y ∈ K, let % ∈ BΠ(x′)∩BΠ(x′′), then E%[Y ] > Π(Y, x′) and E%[Y ] > Π(Y, x′′). So, it follows
that E%[Y ] > Π(Y, tx′ + (1− t)x′′) for every Y ∈ K and % ∈ BΠ(tx′ + (1− t)x′′).

ii) Let x′, x′′ ∈ X and t ∈]0, 1[, then, from the assumptions, it follows that

tΠ(Y, x′) + (1− t)Π(Y, x′′) > Π(Y, tx′ + (1− t)x′′), ∀Y ∈ K.

Let %′ ∈ BΠ(x′) and %′′ ∈ BΠ(x′′), t ∈]0, 1[ and

% = t%′ + (1− t)%′′ ∈ tBΠ(x′) + (1− t)BΠ(x′′).

Obviously, % ∈ P . For every random variable Y ∈ K, it follows that

E%[Y ] = tE%′ [Y ] + (1− t)E%′′ [Y ] > (20)

tΠ(Y, x′) + (1− t)Π(Y, x′′) > Π(Y, tx′ + (1− t)x′′) (21)
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So, E%[Y ] > Π(Y, tx′ + (1− t)x′′) for every Y ∈ K, which finally implies that

% ∈ BΠ(tx′ + (1− t)x′′).
Hence the assertion follows.

Counterexamples

The two examples below show respectively that, even if the lower expectation function is concave
(hence quasi-concave) for every gamble Y ∈ K:, then the induced ambiguos belief correspondence
is not (1) convex; (2) quasi-convex.

Example 7.4: Consider the case in which X = [0, 1], Ω = {ω1, ω2, ω3}, K = {Y 1, Y 2, Y 3}, where

Y 1(ω1) = Y 1(ω2) = 1, Y 1(ω3) = 0 Π(Y 1, x) = 1− x2 (22)

Y 2(ω1) = Y 2(ω3) = 1, Y 2(ω2) = 0 Π(Y 2, x) = 1− x2 (23)

Y 3(ω1) = 1, Y 3(ω2) = Y 3(ω3) = 0 Π(Y 3, x) = 1/2 (24)

Clearly, Π(Y k, ·) is a concave function for k = 1, 2, 3. However, the associated belief correspondence
BΠ(·) is not a convex correspondence. In fact, BΠ(·) is defined by

BΠ(x) = {(%1, %2, %3) | %1 > 1/2, %2, %3 > 0, %1 + %2 + %3 = 1, %1 + %2 > 1− x2, %1 + %3 > 1− x2}
Consider x′ = 0, x′′ = 1 and t = 1/2; so that x = x′/2 + x′′/2 = 1/2. It follows that
BΠ(x′) = {(1, 0, 0)}. Now, it can be easily checked that (1/2, 1/4, 1/4) ∈ BΠ(x). Suppose that
(1/2, 1/4, 1/4) ∈ (1/2)BΠ(x′) + (1/2)BΠ(x′′) then there exists (%′′1, %

′′
2, %
′′
3) ∈ BΠ(x′′) such that

(1/2, 1/4, 1/4) = 1/2(1, 0, 0) + 1/2(%′′1, %
′′
2, %
′′
3). It follows that

1 + %′′1
2

=
1

2
=⇒ %′′1 = 0

which is a contradiction since %′′1 > 1/2. So (1/2, 1/4, 1/4) /∈ (1/2)BΠ(x′) + (1/2)BΠ(x′′) and BΠ(·)
is not a convex set-valued map.

Example 7.5: Consider a slight modification of the example above in which X = [0, 1], Ω =
{ω1, ω2, ω3}, K = {Y 1, Y 2, Y 3}, where

Y 1(ω1) = Y 1(ω2) = 1, Y 1(ω3) = 0 Π(Y 1, x) = 1− (x− 1)2 (25)

Y 2(ω1) = Y 2(ω3) = 1, Y 2(ω2) = 0 Π(Y 2, x) = 1− x2 (26)

Y 3(ω1) = 1, Y 3(ω2) = Y 3(ω3) = 0 Π(Y 3, x) = 1/2 (27)

Clearly, Π(Y k, ·) is a concave (hence quasi-concave) function for k = 1, 2, 3. However, the
associated belief correspondence BΠ(·) is not a quasi-convex correspondence. In fact, BΠ(·) is
defined by

BΠ(x) = {(%1, %2, %3) | %1 > 1/2, %2, %3 > 0, %1 +%2 +%3 = 1, %1 +%2 > 1−(x−1)2, %1 +%3 > 1−x2}
Consider x′ = 0, x′′ = 1 and t = 1/2; so that x = x′/2 + x′′/2 = 1/2. It can be easily checked

that (1/2, 1/4, 1/4) ∈ BΠ(1/2). Now, (1/2, 1/4, 1/4) /∈ BΠ(0) because %1 + %3 = 1/2 + 1/4 6> 1;
similarly (1/2, 1/4, 1/4) /∈ BΠ(1) because %1 + %2 = 1/2 + 1/4 6> 1. It follows that

BΠ(1/2) 6⊆ BΠ(0) ∪ BΠ(1)

and BΠ is not quasi-convex.
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8 Lower Expectations and Almost Desirable Gambles

Similarly to the previous section, now we study the relation among the (quasi-)convexity/ concavity
properties of lower expectations as real valued functions in the decision variable x ∈ X and the
(quasi-)convexity/concavity properties of the almost desirable gambles correspondence with respect
to the same decision variable x.

Denote with 1 = (1, 1, . . . , 1) ∈ L, given the correspondence D : X  L, the induced lower
expectation function is defined as follows:

ΠD(Y, x) = sup{µ ∈ R |Y − µ1 ∈ D(x)} ∀Y ∈ L, (28)

Conversely, given the lower expectation function Π, the almost desirable gambles correspondence
DΠ : X  L derived form Π is defined by

DΠ(x) = {Y ∈ L |Π(Y, x) > 0} ∀x ∈ X, (29)

8.1 Lower expectation functions and the induced almost desirable
gambles

The following results analyze the relation between the properties of (quasi) concavity/convexity of
Π with the properties of (quasi) concavity/convexity of DΠ .

Theorem 8.1: The following implications hold

i) If Π(Y, ·) is quasi-convex in X for all Y ∈ K, then DΠ is quasi-convex in X.

ii) If Π(Y, ·) is quasi-concave in X for all Y ∈ K, then DΠ is quasi-concave in X.

iii) If (1) Π(Y, ·) is convex in X for all Y ∈ K, (2) Π(cY, x) = cΠ(Y, x) for every x ∈ X, Y ∈ K
and c > 0, then DΠ is quasi-concave in X.

Proof. i) Let x′, x′′ ∈ X, t ∈]0, 1[ and Y ∈ DΠ(tx′ + (1 − t)x′′); by definition it follows that
Π(Y, tx′ + (1− t)x′′) > 0. Since Π(Y, ·) is quasi-convex then

0 6 Π(Y, tx′ + (1− t)x′′) 6 max{Π(Y, x′),Π(Y, x′′)}

It follows that
Π(Y, x′) > 0 or Π(Y, x′′) > 0

Then Y ∈ DΠ(x′) or Y ∈ DΠ(x′′), implying that Y ∈ DΠ(x′) ∪ DΠ(tx′′). So,

DΠ(tx′ + (1− t)x′′) ⊆ DΠ(x′) ∪ DΠ(x′′)

and DΠ is quasi-convex.

ii) Let x′, x′′ ∈ X, t ∈]0, 1[ and Y ∈ DΠ(x′) ∩ DΠ(x′′). Then it follows that Π(Y, x′) > 0 and
Π(Y, x′′) > 0 . Being Π a quasi-concave function then it follows that

Π(Y, tx′ + (1− t)x′′) > min{Π(Y, x′),Π(Y, x′′)} > 0.
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So Y ∈ DΠ(tx′ + (1− t)x′′) and DΠ is quasi-concave in X.

iii) Let x′, x′′ ∈ X and t ∈]0, 1[ and Y ∈ DΠ(tx′ + (1 − t)x′′) then Π(Y, tx′ + (1 − t)x′′) > 0.
Π(Y, ·) is convex in X, so

0 6 Π(Y, tx′ + (1− t)x′′) 6 tΠ(Y, x′) + (1− t)Π(Y, x′′)

Then Π(Y, x′) > 0 or Π(Y, x′′) > 0 (or both). Suppose that Π(Y, x′) > 0, then from the assumption
(2) it follows that

Π

(
1

t
Y, x′

)
> 0 =⇒ 1

t
Y ∈ DΠ(x′).

Moreover assumption (2) implies also that Π(0, x′′) = 0 so that 0 ∈ DΠ(x′′). So

Y = t

(
1

t
Y

)
+ (1− t)0 ∈ tDΠ(x′) + (1− t)DΠ(x′′).

Since, the same result is obtained when Π(Y, x′′) > 0, it follows that

DΠ(tx′ + (1− t)x′′) ⊆ tDΠ(x′) + (1− t)DΠ(x′′)

and DΠ is convex.

Counterexample

In the next example it is shown that the concavity of the lower expectation function does not
necessarily imply that the induced almost desirable gambles correspondence is concave.

Example 8.2: Let Ω = {ω1, ω2} and X = [0, 1]. For each gamble Y ∈ L, denote (Y (ω1), Y (ω2)) =
(y1, y2) and then define, for every x ∈ X,

Π(Y, x) =

{
x(y1 − y2) + y2 if y2 > 0
y2 if y2 < 0

(30)

It immediately follows that Π(Y, ·) is concave in X for every Y ∈ L. Now, by definition, it follows
that

DΠ(x) = {(y1, y2) |xy1 + (1− x)y2 > 0 and y2 > 0}
So

DΠ(0) = {(y1, y2) | y2 > 0} and DΠ(1) = {(y1, y2) | y1 > 0 and y2 > 0}
and

1

2
DΠ(0) +

1

2
DΠ(1) = {(y1, y2) | y2 > 0}

while
DΠ(1/2) = {(y1, y2) | y1 + y2 > 0 and y2 > 0}

So
1

2
DΠ(0) +

1

2
DΠ(1) 6⊆ DΠ(1/2)

and DΠ(·) is not concave in X. As a final remark, note that in this example the function Π satisfies
the assumption (2) in iii) of the previous proposition.
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8.2 Almost desirable gambles correspondences and the induced lower
expectations

In this subsection, it is presented the relation between the properties of (quasi) concavity/convexity
of D with the properties of (quasi) concavity/convexity of ΠD.

Theorem 8.3: Assume that Rm+ ⊆ D(x) for every x ∈ X. Then, the following implications hold:

i) If D is concave in X, then ΠD(Y, ·) is concave in X for every Y ∈ L.

ii) If D is quasi-convex in X, then ΠD(Y, ·) is quasi convex in X for every Y ∈ L.

Proof. Firstly, since Rm+ ⊆ D(x) for every x ∈ X, then it immediately follows that, for every
(Y, x) ∈ L × X , the subset {µ ∈ R |Y − µ1 ∈ D(x)} is not empty. Therefore ΠD(Y, x) ∈ R for
every (Y, x) ∈ L ×X.

i) Let x′, x′′ ∈ X and t ∈]0, 1[, and (εν)ν∈N be a sequence converging to 0. Let µ′ν and µ′′ν be
real numbers such that

µ′ν > ΠD(Y, x′)− εν and Y − µ′ν1 ∈ D(x′)

and
µ′′ν > ΠD(Y, x′′)− εν and Y − µ′′ν1 ∈ D(x′′).

Since D is concave, it follows that

Y − (tµ′ν + (1− t)µ′′ν)1 = t(Y − µ′ν1) + (1− t)(Y − µ′′ν1) ∈ D(tx′ + (1− t)x′′)

then

t(ΠD(Y, x′′)− εν) + (1− t)(ΠD(Y, x′′)− εν) < tµ′ν + (1− t)µ′′ν 6 ΠD(Y, tx′ + (1− t)x′′).

In particular,
tΠD(Y, x′′) + (1− t)ΠD(Y, x′′)− εν < ΠD(Y, tx′ + (1− t)x′′).

As εν → 0,
tΠD(Y, x′′) + (1− t)ΠD(Y, x′′) 6 ΠD(Y, tx′ + (1− t)x′′).

and we get the assertion.
ii) Let x′, x′′ ∈ X and t ∈]0, 1[, and let (εν)ν∈N be a sequence converging to 0. For every ν, let

µν be such that

ΠD(Y, tx′ + (1− t)x′′)− εν < µν 6 ΠD(Y, tx′ + (1− t)x′′) and Y − µν1 ∈ D(tx′ + (1− t)x′′).

D is quasi-convex, so
Y − µν1 ∈ D(x′) ∪ D(x′′).

This implies that

µν 6 ΠD(Y, x′) or µν 6 ΠD(Y, x′′) =⇒ µν 6 max{ΠD(Y, x′),ΠD(Y, x′′)}.

Hence,
ΠD(Y, tx′ + (1− t)x′′)− εν < max{ΠD(Y, x′),ΠD(Y, x′′)}

and, as εν → 0,
ΠD(Y, tx′ + (1− t)x′′) 6 max{ΠD(Y, x′),ΠD(Y, x′′)}

and we get the assertion.
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Counterexamples

The two examples below show that the analogous of i) and ii) in the previous Proposition do not
hold in case D is convex or quasi-concave. More precisely, the first example shows that there exists
a correspondence D that is convex, while the induced ΠD(Y, ·) is not, for some Y . Similarly, in
the second example, the correspondence D is quasi-concave, while the induced ΠD(Y, ·) is not, for
some Y . Note that, even in this case, the coherency of the representation of uncertainty does not
play any role as, in both the examples, the images D are closed and convex cones containing Rm+ .

Example 8.4: Let Ω = (ω1, ω2) and D : [0, 1] L be defined by

D(x) = {(y1, y2) ∈ R2 | y1 + xy2 > 0, y2 > 0}

Since x′ < x′′ implies that D(x′) ⊂ D(x′′) then it immediately follows that D is convex in X. The
corresponding lower expectation function is computed, for every x ∈ X, as the solution µ of the
following equations {

(y1 − µ) + x(y2 − µ) = 0, if y2 > y1

y2 − µ = 0 if y2 < y1

Therefore,

ΠD(Y, x) =

{ y1+xy2
1+x

, if y2 > y1

y2 if y2 < y1

Let x′ = 0, x′′ = 1 and t = 1/2; and Y = (−1, 2), we get ΠD(Y, 1/2) = 0 ΠD(Y, 1) = 1/2 and
ΠD(Y, 0) = −1 that implies that

ΠD(Y, 1/2) 66 (1/2)ΠD(Y, 1) + (1/2)ΠD(Y, 0)

so ΠD is not convex.

Example 8.5: Let Ω = (ω1, ω2) and D : [0, 1] L be defined by

D(x) =

{
{(y1, y2) ∈ R2 | 2xy1 + (1− 2x)y2 > 0, y2 > 0} if x ∈ [0, 1/2]
{(y1, y2) ∈ R2 | (2− 2x)y1 + (2x− 1)y2 > 0, y2 > 0} if x ∈]1/2, 1]

By construction, for every x′ 6= x′′ it follows that D(x′) ⊂ D(x′′) or D(x′′) ⊂ D(x′). So D is quasi-
concave in X. Similarly to the previous example, the corresponding lower expectation function is
computed as the solution µ of the following equations{

2x(y1 − µ) + (1− 2x)(y2 − µ) = 0, if y2 > y1

y2 − µ = 0 if y2 < y1
if;x ∈ [0, 1/2]

or {
(2− 2x)(y1 − µ) + (2x− 1)(y2 − µ) = 0, if y2 > y1

y2 − µ = 0 if y2 < y1
if x ∈]1/2, 1]

Therefore

ΠD(Y, x) =


{

2x(y1 − y2) + y2, if x ∈ [0, 1/2]
(1− 2x)(y1 − y2) + y1, if x ∈]1/2, 1]

if y2,> y1

y2 if y2 < y1
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and it immediately follows that ΠD(Y, ·) is not quasi concave for every Y ∈ L. In fact, consider
for instance Y = (0, 1), then

ΠD(Y, x) =

{
−2x+ 1, if x ∈ [0, 1/2]
2x− 1, if x ∈]1/2, 1]

that is not quasi-concave.

9 Appendix: Proofs of Section 3

Proposition (3.4): The set-valued map C : X  T is quasi-convex if and only if for every
A ⊆ T , with A 6= ∅, the set

LA = {x | C(x) ⊆ A} (31)

is a convex subset of X.

Proof of Proposition 3.4. Assume first that for every subset A ⊆ T , LA is a convex subset of X.
Given x′ and x′′, it immediately follows that x′, x′′ ∈ LC(x′)∪C(x′′) which is a convex set. Then, for
every t ∈]0, 1[, tx′ + (1− t)x′′ ∈ LC(x′)∪C(x′′) implying that

C(tx′ + (1− t)x′′) ⊆ C(x′) ∪ C(x′′),

so C is quasi-convex.
Conversely, assume that C is quasi-convex. Given a subset A ⊆ T , let x′, x′′ ∈ LA. By definition,

C(x′) ⊆ A and C(x′′) ⊆ A, then it follows that

C(tx′ + (1− t)x′′) ⊆ C(x′) ∪ C(x′′) ⊆ A.

So tx′ + (1− t)x′′ ∈ LA an LA is a convex subset of X.

Proposition (3.5): The set-valued map C : X  T is weakly quasi-convex if and only if for every
convex subset A ⊆ T , with A 6= ∅, the set

LA = {x | C(x) ⊆ A} (32)

is a convex subset of X.

Proof of Proposition 3.5. Assume first that for every convex subset A ⊆ T , LA is a convex subset
of X. Given x′ and x′′, it immediately follows that x′, x′′ ∈ Lco(C(x′)∪C(x′′)) which is a convex set.
Then, for every t ∈]0, 1[, tx′ + (1− t)x′′ ∈ Lco(C(x′)∪C(x′′)) implying that

C(tx′ + (1− t)x′′) ⊆ co(C(x′) ∪ C(x′′)),

so C is weakly quasi-convex.
Conversely, assume that C is weakly quasi-convex. Given a convex subset A ⊆ T , let x′, x′′ ∈

LA. By definition, C(x′) ⊆ A and C(x′′) ⊆ A, so C(x′) ∪ C(x′′) ⊆ A. The subset A is convex so
co(C(x′) ∪ C(x′′)) ⊆ A and then, weakly quasi-convexity of C implies that

C(tx′ + (1− t)x′′) ⊆ co(C(x′) ∪ C(x′′)) ⊆ A.

So tx′ + (1− t)x′′ ∈ LA an LA is a convex subset of X.
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Proposition (3.7): Given the set valued map C : X  T , then

i) If C is strongly quasi-convex then C is quasi-convex

ii) If C is quasi-convex then C is weakly quasi-convex

iii) If C is convex then C is weakly quasi-convex

Proof of Proposition 3.7. i) It immediately follows from the definition.
ii) Since C(x′) ∪ C(x′′) ⊆ co(C(x′) ∪ C(x′′)) then the assertion immediately follows from the
definitions.

iii) Assume that C : X  T is convex and let A be a convex subset of T . Let x′, x′′ ∈ LA.
By definition, C(x′) ⊆ A and C(x′′) ⊆ A. Since A is a convex set then tC(x′) + (1− t)C(x′′) ⊆ A.
Being C a convex set valued map, it follows that

C(tx′ + (1− t)x′′) ⊆ tC(x′) + (1− t)C(x′′) ⊆ A

which finally implies that tx′ + (1 − t)x′′ ∈ LA and LA is a convex set. So C is weakly quasi-
convex.

Example 9.1: Here it is shown that a strongly quasi-convex set-valued map is not necessarily
convex. Consider the set-valued map C : [0, 1] [0, 1] defined as follows

C(x) = [0, 1− x2] ∀x ∈ [0, 1].

This set-valued map is obviously strongly quasi-convex (hence quasi-convex and weakly quasi-
convex) as x′ < x′′ =⇒ C(x′) ⊃ C(x′′). Moreover C has convex images. Nevertheless it is not
convex. In fact, for x = 1/2(0) + 1/2(1) = 1/2, it follows that

C(1/2) = [0, 3/4] 6⊆ 1/2C(0) + 1/2C(1) = 1/2[0, 1] + 1/2{0} = [0, 1/2].

Example 9.2: Here it is shown that a convex set-valued map is not necessarily quasi-convex.
Consider the set valued map C : [0, 1/5] [0, 1] defined as follows

C(x) = [4x, 4x+ 1/5] ∀x ∈ [0, 1/5].

This set valued map is obviously convex and has convex images. Nevertheless it is not quasi-
convex nor strongly quasi-convex. In fact for x = 1/2(0) + 1/2(1/5) = 1/10, it follows that
C(1/10) = [4/10, 6/10] while C(0) ∪ C(1/5) = [0, 1/5] ∪ [4/5, 1].

Proposition (3.9): Let C : X  T be a set-valued map with convex images, then C is quasi-
concave if and only if for every convex A ⊆ T , with A 6= ∅, the set

LA = {x |A ⊆ C(x)} (33)

is a convex subset of X.
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Proof of Proposition 3.9. Assume first that for every subset convex A ⊆ T , LA is a convex subset
of X. Given x′ and x′′, it immediately follows that x′, x′′ ∈ Lco(C(x′)∩C(x′′)) which is a convex set.
Then, for every t ∈]0, 1[, tx′ + (1− t)x′′ ∈ Lco(C(x′)∩C(x′′)) implying that

C(x′) ∩ C(x′′) ⊆ co(C(x′) ∩ C(x′′)) ⊆ C(tx′ + (1− t)x′′),

so C is quasi-concave.
Conversely, assume that C is quasi-concave. Given a convex subset A ⊆ T , let x′, x′′ ∈ LA. By

definition, A ⊆ C(x′) and A ⊆ C(x′′), then it follows that

A ⊆ C(x′) ∩ C(x′′) ⊆ C(tx′ + (1− t)x′′).

So tx′ + (1− t)x′′ ∈ LA an LA is a convex subset of X.

Proposition (3.10): Given the set valued map C : X  T , then

i) If C is strongly quasi-concave then C is quasi-concave.

ii) If C is concave then C is quasi-concave

Proof of Proposition 3.10. i) Since C(x′) ⊆ C(tx′ + (1 − t)x′′) or C(x′′) ⊆ C(tx′ + (1 − t)x′′) then
C(x′) ∩ C(x′′) ⊆ C(tx′ + (1− t)x′′). The assertion follows.
ii) Since C(x′) ∩ C(x′′) ⊆ tC(x′) + (1− t)C(x′′) then the assertion immediately follows.

The next counter examples show that there are no links between strong quasi-concavity and
concavity.

Example 9.3: Here it is shown that the a strongly quasi-concave set-valued map is not necessarily
concave. Consider the set valued map C : [0, 1] [0, 1] defined as follows

C(x) = [1− x2, 1] ∀x ∈ [0, 1].

This set valued map is obviously strongly quasi-concave (hence quasi-concave) as x′ < x′′ =⇒
C(x′) ⊂ C(x′′). Moreover C has convex images. Nevertheless it is not concave. In fact for x =
1/2 ∗ 0 + 1/2 ∗ 1 = 1/2, it follows that

1/2C(0) + 1/2C(1) = 1/2{1}+ 1/2[0, 1]+ = [1/2, 1] 6⊆ C(1/2) = [3/4, 1].

Example 9.4: Here it is shown that the a concave set-valued map is not necessarily strongly
quasi-concave. Consider the set valued map C : [0, 1] [0, 1] defined as follows

C(x) = [0, 1− (x− 1/2)2] ∀x ∈ [0, 1].

This set valued map is obviously concave and has convex images. Nevertheless it is not strongly
quasi-concave. In fact for x = 1/2(0) + 1/2(1) = 1/2, it follows that C(1/2) = [0, 1] while
C(0) = C(1) = [0, 3/4].
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