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1 Introduction

In this paper we suggest a notion of local fairness by obstructing envy only
among linked people. We provide sufficient conditions under which local
absence of envy is enough to ensure global fairness.
Our starting point is the notion of strict fairness introduced by Zhou (1992),
according to which beyond efficiency it is required that each individual
weakly prefers her own bundle to the average bundle of any coalitions. This
notion is more demanding than the classical one due to Foley (1967) and
in large economies it characterizes the set of equal-income Walrasian allo-
cations. Based on the strict envy-freeness, each agent needs to know the
consumption bundles all others receive and to consider the average bundles
of all possible coalitions. This can be considered a strong requirement es-
pecially in large economies or in situations in which agents’ knowledge is
limited for some reasons (Cato (2010), Abebe et al. (2017), Beynier et al.
(2018) among others, see also the concluding remarks of Zhou (1992)). In
addition, empirical works suggest that individuals often exhibit myopia in
the spatial sense, meaning that they are interested only on their immediate
neighbours. Moreover, even a particularly inquiring person who would like
to compare her bundle with the bundle of anybody else, probably cannot
do it, because of her incomplete knowledge about the others. In many sit-
uations it is more reasonable to allow an agent to focus her comparisons
only on those individuals she can relate herself, rather than on the entire
population. For instance, a full professor of a faculty tends to compare him-
self/herself (salary, tasks, CV, etc.) with colleagues with similar position
and to neglect the rest of the staff, like researchers or office workers. A
person applying for an available job focuses on the CV of other candidates,
who are his/her direct competitors, leaving out the rest of people looking for
a different occupation. Similar applications, in which the object of potential
envy is just the person with whom one is directly connected, include inher-
itance and divorce settlements as well as international border agreements.
In this paper we suggest a concept of relationship among people and the
consequent definition of local strict envy-freeness, according to which only
related individuals must not envy each other. It is natural to think that
members of a society can be categorized in several ways, for instance, by
phisical features (height, weight, gender), by occupation, spoken languages,
citizenship and so on. Formally, we consider a countable (finite or infinite)
covering of the set of agents T , that is a family R = {Ci}i∈I⊆IN of possible
coalitions whose union gives back T . Each group Ci of R can be viewed
as a country, a community, a group of co-workers or people with similar
interests, or more generally any possible category of people on the basis of
the attributes used to classify them. Clearly, a partition of T is a particular
case of covering, but we do not impose elements of R to be pairwise disjoint.
Therefore, each individual belongs to at least one group but possibly even to
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several categories. This is the case, for instance, of people with dual citizen-
ship, if any Ci of R is viewed as a country, or bilinguals if we gather people
with respect to spoken languages. If any Ci of R is the editorial board of a
certain journal, it is common that a professor is member of more than one
editiorial board.
Given a covering R = {Ci}i∈I⊆IN of T , we impose absence of envy within
each group Ci of R, disregarding the possibility for an individual to envy
a group of people not similarly situated. Essentially we reduce the number
of coalitions that each agent must look at and we obtain a local version of
strict envy-freeness that we call R-strict envy-freeness. Any global strictly
fair allocation is clearly local R-strictly envy-free for any covering R of T .
The converse is not true in general. Our main goal is to identify a class of
coverings of T for which fairness is ensured in the entire society by imposing
absence of envy just locally. To this end, we construct a one-to-one corre-
spondence between a covering R = {Ci}i∈I⊆IN of T and a network, in which
the nodes are the elements Ci of R and an undirected edge connects two
nodes if and only if the two groups are not disjoint. We define a covering R
connected if it corresponds to a network with no isolated nodes nor isolated
subgraphs. We show that for any connected covering R, any strictly fair
allocation is R-strictly fair and viceversa. This means that if in the society
there is no isolated group, it is enough to obstruct envy locally to get fairness
globally. We obtain this equivalence first in atomless economies and then in
the more general framework of mixed markets, in which the space of agents
may exhibit atoms.
In the case of atomless economies, we show that given any connected covering
R, equal-income Walrasian equilibria are the only R-strictly fair allocations.
Then, from the equivalence due to Zhou (1992) in atomless economies, we
derive that the notions of global and local fairness coincide. For this, effi-
ciency plays a crucial role. Indeed, we show that if we consider only absence
of envy and we leave out the efficiency, then the equivalence fails even with
connected coverings. The intuitive reason lies on the fact that efficiency
involves the entire society, whereas local envy-freeness only a piece of it.
Thus, in a sense, efficiency expands local into global fairness.
The same arguments cannot be applied to mixed markets for two main rea-
sons. First, the Lyapuvon convexity theorem does not hold; and second,
the equivalence between the set of equal-income Walrasian equilibria and
global strictly fair allocations fails. Recently in Donnini and Pesce (2018),
we provide two sufficient conditions on the space of agents, under which such
equivalence is restored. The first imposes the presence of infinitely count-
ably many atoms with the same utility function; the second requires for
each atom the presence of an atomless fringe, that is a coalition of negiglible
traders with the same tastes of the atom. One might guess that these two
conditions are sufficient also for the notion of local fairness. On the con-
trary, we show that even if the covering is connected and the hypotheses of
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Donnini and Pesce (2018) are satisfied, an R-strictly fair allocation may not
be globally strictly envy-free. We then show that, by further strenghtening
the two assumptions on the space of agents, we can restore the equivalence
even in the presence of atoms. Precisely, we assume that, given a connected
covering R = {Ci}i∈I⊆IN of T , if there are infinitely many atoms with the
same utility function, then they must belong to a unique coalition Ci of R.
Alternatevely, if an element Ci of R contains an atom A, it must contain a
non-negligible piece of A’s atomless fringe.
Cato (2010) introduces a notion of local strict fairness based on a very sim-
ilar intuition and he shows in atomless economies the equivalence with the
global strict fairness. We prove that his equivalence result follows from ours,
being his notion a particular case of R-strict fairness.
The paper is organized as follows: in sections 2 and 3 we respectively intro-
duce the notions and we get the equivalence theorem in atomless economies;
in section 4 we make a comparison with the related literature and finally in
section 5 we analysis the more general case of mixed markets.

2 Local fairness notion

In this section we introduce and analyze a notion of local strict fairness
in atomless exchange economies with a continuum of agents and ` private
divisible goods. The space of agents is represented by a complete atomless
measure space (T,Σ, µ), with µ(T ) = 1. As usual, a coalition is a measurable
subset of T with positive measure. The commodity space is IR`++ and each
agent t is endowed with an utility function ut : IR`++ → IR and an initial
endowment ω(t). We assume that ω : T → IR`++ is integrable and we denote
by ω the total initial endowment in the economy, i.e., ω =

∫
T ω(t) dµ. For

any t in T , ut is strictly increasing, differentiable on IR`++ and satisfies the
usual measurability condition1.
An allocation is an integrable function x : T → IR`++ which is said to be
feasible if

∫
T x(t) dµ = ω. A Walrasian equilibrium allocation is a feasible

allocation x for which there exists a price vector p ∈ IR`++ such that, for
almost every agent t in T , x(t) maximizes ut on the budget set Bt(p) =
{y ∈ IR`++ : p · y ≤ p · ω(t)}. If p · ω(t) is agent-independent, x is called
equal-income Walrasian equilibrium allocation2. We denote by Wei(E) the
set of equal-income Walrasian equilibrium allocations.
A feasible allocation x is Pareto optimal (or efficient) if there is no alterna-
tive feasible allocation y such that ut(y(t)) > ut(x(t)) for almost all t in T .
An efficient allocation is fair if it is envy-free, meaning that any agent prefers

1The mapping (t, x) 7→ ut(x) is Σ⊗B(R`
++)−measurable, where B(R`

++) is the σ-field
of Borel subsets of R`

++.
2A special case is when the total initial endowment ω is equally divided among agents

and x is called equal-division Walrasian equilibrium allocation.
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her own bundle rather than the bundle of any other, i.e., for almost every
agents t, s ∈ T , ut(x(t)) > ut(x(s)) (see Foley (1967)). It is known that any
equal-income Walrasian equilibrium allocation is fair, but the converse may
be not true. Zhou (1992) introduces the stronger notion of strict fairness,
according to which, beyond efficiency, each agent compares her own bundle
with the average bundle of any possible coalition.

Definition 2.1. Given an allocation x, an agent t envies a coalition S at x

if ut(x̄(S)) > ut(x(t)), where x̄(S) =
1

µ(S)

∫
S
x(t)dµ ∈ IR`++. An allocation

x is strictly envy-free if almost every agent does not envy any coalition at x;
it is strictly fair if it is strictly envy-free and efficient. We denote by SF (E)
the set of strictly fair allocations.

Zhou (1992) shows that equal-income Walrasian equilibria are the only
strictly fair allocations, i.e., Wei(E) = SF (E).
According to the above definition, an envious trader t envies the possibility
to join a certain coalition S, since she prefers what she would have in average
being a member of S rather than what she gets alone. Notice that, as for
the fairness notion of Foley (1967), utility comparisons are made by a single
individual t who must know only her tastes and the entire allocation, that
is the achievement of everybody in the society. This can be considered a
strong requirement especially in large economies or in situations in which
agents’ knowledge is limited for some reasons.
Motivated by this, we introduce a definition of local fairness by imposing
absence of envy only among people that are “related” or “connected” in some
way. Our first goal is then to formalize the concept of connection among
individuals. We assume that the society is made up of different groups, so
that two individuals are related if they are members of the same coalition.
Formally, we consider a countable (finite or infinite) covering of the set of
agents T , that is a family R = {Ci}i∈I⊆IN of possible coalitions whose union
gives back T , i.e., Ci ∈ Σ, µ(Ci) > 0 for any i ∈ I and

⋃
i∈I Ci = T .

We introduce the following definition of local strict fairness that, given a
covering R of T , obstructs agents to envy only people within the same class
Ci of R.

Definition 2.2. Let R = {Ci}i∈I⊆IN be a covering of T . An allocation x is
said to be R-strictly envy-free if for any Ci in R and for almost all t in Ci,
there does not exist a coalition S ⊆ Ci such that ut(x̄(S)) > ut(x(t)). The
allocation x is R-strictly fair if it is both efficient and R-strictly envy-free.
We denote by RSF (E) the set of R-strictly fair allocations.

Given a covering R = {Ci}i∈I⊆IN , the notion of R-strict fairness imposes
absence of envy in each Ci but allows an individual to envy a group of people
not similarly situated; hence it does not rule out (global) envy. Therefore,
SF (E) ⊆ RSF (E), while the reverse may be not true as shown below.
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Example 2.3. Consider an economy whose consumption set is IR2
++, T =

(0, 1) and the total initial endowment is ω = (1, 1). Agents’ utility functions
are given by

ut(x, y) =

{
xy if t ∈ (0, 1

2 ]
x2y if t ∈ (1

2 , 1).

Consider the covering R = {C1, C2}, where C1 =
(
0, 1

2

]
and C2 =

(
1
2 , 1
)
.

The efficient allocation

(x(t), y(t)) =

{ (
1, 4

3

)
if t ∈ C1(

1, 2
3

)
if t ∈ C2.

is R-strictly envy-free, because for any i ∈ I := {1, 2}, for every t ∈ Ci and
S ⊆ Ci, ut(x(t), y(t)) = ut(x̄(S), ȳ(S)), but it is not (globally) strictly fair
since, for instance, every t in C2 envies any subcoalition of C1. 4

Therefore, in atomless economies, this chain of relationships Wei(E) =
SF (E) $ RSF (E) holds, which guarantees the existence of a (local) R-
strictly fair allocation whenever the set of equal-income Walrasian equilib-
rium allocations is non empty.

Remark 2.4. In Donnini and Pesce (2018), we observe that any strictly fair
allocation is individually rational. The above example shows that this is not
true with the local R-strict fairness notion. Indeed, if we assume in Example
2.3 that the total initial endowment is equally shared among agents, then
ut(x(t), y(t)) = 2

3 < 1 = ut(ω(t)) for any t ∈ C2.

3 Equivalence Theorem and Remarks

We have already shown that an R-strictly fair allocation does not exclude
that someone envies a group of people not similarly situated. In this section,
we identify a class of coverings for which local and global fairness notions
coincide. Borrowing the terminology used in the social network literature,
we can interpret the elements of a certain covering R = {Ci}i∈I⊆IN as nodes
of a network. An undirected edge connects two nodes Ci and Cj if and
only if µ(Ci ∩ Cj) > 0. In this case, Ci and Cj are said to be connected.
Each covering R designs a network and viceversa. A partition of T , for
instance, corresponds to an edgeless graph, that is a graph with isolated
nodes. Viceversa, a network with isolated nodes defines a partition of T .
Our goal is then to find a class of coverings, or equivalently conditions on the
topology of the corresponding networks, ensuring global fairness by imposing
absence of envy only among neighbors, that is only within each node. To
this end, the following definitions are needed.
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Definition 3.1. Given a covering R of T , a path is a sequence of elements
of R that are connected to each other. A covering R is said to be connected
if for every pair of its elements there exists a path linking up them.

A connected covering R designs a network with no isolated nodes nor
isolated subgraphs and viceversa. Clearly a partition of T is not connected,
whereas examples of connected coverings are fully connected networks, cyclic
networks as well as star networks.

We now show that for every connected covering R of T , equal-income Wal-
rasian equilibria are the only R-strictly fair allocations. This, together with
the equivalence proved by Zhou (1992), implies that once the society is struc-
tured in such a way that no group is isolated, it is enough to avoid envy
locally to ensure fairness globally.

Theorem 3.2. For every connected covering R of T , RSF (E) =Wei(E).

The proof of Theorem 3.2 needs Lemma 3.3 of Zhou (1992), stated below,
which consists into two conclusions. The former is an average version of the
Lyapunov convexity theorem since it concerns the set of average integrals of
an integrable function on an atomless measure space. The latter points out
that the bundle of almost every agent can be approximated by a sequence
of average integrals.

Lemma 3.3 in Zhou (1992): Let h be an integrable function from an
atomless measure space (T,Σ, µ) to IR`, in which 0 < µ(T ) <∞. Denote by
H the set of all average integrals of h on measurable sets of positive measure:

H = {x ∈ IR` : x = h̄(S) for someS ∈ Σ, withµ(S) > 0}.

Then, (i) H is convex; and (ii) h(t) ∈ cl(H) almost everywhere in T ,
where cl(H) is the closure of H.

This lemma together with the connectedness of the covering R is cru-
cial to our result, whose proof is organized in the following steps. Take an
arbitrary connected covering R = {Ci}i∈I⊆IN and an arbitrary R-strictly
fair allocation x. Since x is efficient, for the second welfare theorem there
exists a supporting price p. Absence of envy within each element Ci of R
and Lemma 3.3. in Zhou (1992) imply that the value of x is constant on any
Ci. Being R connected, the value of x is actually constant over T . Feasibil-
ity of x concludes the proof, since it ensures that (x, p) is an equal-income
Walrasian equilibrium.

Proof of Theorem 3.2: Fix an arbitrary connected coveringR = {Ci}i∈I⊆IN
of T . Since Wei(E) = SF (E) ⊆ RSF (E), it is sufficient to prove that
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RSF (E) ⊆ Wei(E). Let x an arbitrary R-strictly fair allocation. Since x is
efficient, the second welfare theorem ensures the existence of a price vector
p supporting x. In order to get that x is an equal-income Walrasian equi-
librium allocation, we need to show that p · x(t) = p ·ω for almost all t ∈ T .

Let Ci be an arbitrary element of R, then the set Cpi of agents in Ci for
whom x(t) does not maximize ut on {y ∈ IR`++ : p · y = p · x(t)} has null
measure. On the other hand, since x is R- strictly envy-free, even the set
Cei of agents in Ci envying some subcoalition of Ci has null measure. We
now show that p · x(t) = p · x̄(Ci) for almost all t ∈ Ĉi := Ci \ (Cpi ∪Cei ). To

this end, let C̄i = {t ∈ Ĉi : p · x(t) < p · x̄(Ci)} and assume to the contrary
that µ(C̄i) > 0.
Consider the set Xi := {y ∈ R`++ : y = x̄(S) for someS ⊆ Ci withµ(S) > 0}
and its subset Yi := {y ∈ R`++ : y = x̄(S) for someS ⊆ C̄i withµ(S) > 0}.
Applying Lemma 3.3 (ii) of Zhou (1992) to (C̄i,Σ|C̄i

, µ|C̄i
), we get the exis-

tence of an agent s in C̄i such that x(s) ∈ cl(Yi).

Since s ∈ C̄i ⊆ Ĉi = Ci\(Cpi ∪Cei ), in particular s /∈ Cpi , then x(s) maximizes
the differentiable function us(·) on the set {y ∈ IR`++ : p · y = p · x(s)} and
p · x(s) < p · x̄(Ci). This implies the existence of α ∈ (0, 1) for which

us(x(s)) < us(x(s) + α(x̄(Ci)− x(s))). (1)

Since x(s) ∈ cl(Yi) and Yi ⊆ Xi, there exists a sequence (yk)k∈N in Xi

converging to x(s). Clearly x̄(Ci) belongs to Xi which is convex because of
Lemma 3.3 (i) of Zhou (1992). Then, yk + α(x̄(Ci)− yk) ∈ Xi, for every k.
Since s ∈ C̄i ⊆ Ĉi = Ci\(Cpi ∪Cei ), in particular s /∈ Cei , which means, by the
R-strict envy-freeness of x, that us(x(s)) > us(yk +α(x̄(Ci)− yk)) for every
k. Taking the limit of the sequence, we get us(x(s)) > us(x(s) + α(x̄(Ci)−
x(s))), which contradicts (1). Hence µ(C̄i) = 0, that is p · x(t) ≥ p · x̄(Ci)
for almost all t ∈ Ci. Since

∫
Ci
p · x(t)dµ = p · x̄(Ci)µ(Ci), it follows that

p ·x(t) = p · x̄(Ci) for almost all t ∈ Ci. Therefore, being Ci taken arbitrarily
in R, for all i ∈ I and for almost all t ∈ Ci, x(t) maximizes ut on {y ∈ R`++ :
p · y = p · x̄(Ci)}. Moreover, since R is connected, for any i ∈ I there exists
j ∈ I \ {i} for which µ(Ci ∩ Cj) > 0 and hence p · x̄(Ci) = p · x̄(Cj). This
means that p · x̄(Ci) is constant over I and so is p ·x(t) over T . Feasibility of
x concludes the proof as it ensures that p · x(t) = p ·ω for almost all t ∈ T .

2

Corollary 3.3. RSF (E) = SF (E) for every connected covering R of T .

Remark 3.4. Theorem 3.2 also implies a further characterization of the
core and the set of coalitional fair allocation (see Varian (1974), Gabszewicz
(1975) among others), because they both coincide with the set of Walrasian
equilibrium allocations.
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Remark 3.5. According to Definition 2.2, given a covering R = {Ci}i∈I⊆IN
with µ(Ci∩Cj) > 0 for some i, j ∈ I; any agent in Ci∩Cj must compare her
own bundle separately with the average bundle of any subcoalitions of Ci
and of Cj , and not of all the coalitions in the union Ci∪Cj . This restriction
reduces the number of bundle-comparisons and then induces a weaker notion
of fairness since more allocations pass the envy-freeness test. However, this
constraint is irrelevant under the hypotheses of Theorem 3.2 as it implies
the equivalence between local and global strict fairness (see Corollary 3.3).

Remark 3.6. We want to highlight the role of the hypothesis that the
covering is connected in the equivalence theorem. In Example 2.3 the society
is structured as a partition, because agents have been categorized on the
basis of their type, so that two individuals belong to the same group if they
have the same initial endowment and the same utility function. This is a
natural way to split an atomless economy with a finite number of types.
In Example 2.3, the equivalence RSF (E) = SF (E) fails. This does not
contradict Theorem 3.2 because the covering R is a partition and hence
it is not connected. The same happens if in Example 2.3, we consider a
covering corresponding to a network with isolated subgraphs; for instance,
by considering the covering R = {C1, C2, C3, C4}, with C1 =

(
0, 3

8

)
, C2 =(

1
8 ,

1
2

]
, C3 =

(
1
2 ,

7
8

)
and C4 =

(
5
8 , 1
)
. Note that the pairs {C1, C2} and

{C3, C4} are connected, because µ(C1∩C2) > 0 and µ(C3∩C4) > 0, whereas
all the other possible pairs are not connected. Thus R is not connected and
still the efficient allocation

(x(t), y(t)) =

{ (
1, 4

3

)
if t ∈ C1 ∪ C2(

1, 2
3

)
if t ∈ C3 ∪ C4.

is R-strictly envy-free, but it is not (globally) strictly fair.

The connection of the covering R is therefore crucial. However, it is the
unique condition on the topology of the network needed for the equivalence
theorem. Indeed, other features as the weight of the edge connecting two
nodes Ci and Cj , definable as the non negative number µ(Ci ∩ Cj), or the
degree of a node Ci, definable as the number of elements Cj of R to which
it is connected are irrelevant for our analysis.

Remark 3.7. In what follows, we illustrate an example in which, given
a connected covering R of T , there is an R-strictly envy-free allocation x
which is not (globally) strictly envy-free. This does not contradict Theorem
3.2 because the allocation x is not efficient.

Example 3.8. Consider an atomless economy with T = (0, 1) and two
goods. The total initial endowment is ω =

(
11
8 ,

7
6

)
and agents’ utility func-
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tion are defined as follows

ut(x, y) =


x2y if t ∈

(
0, 1

3

]
x3y if t ∈

(
1
3 ,

2
3

]
xy2 if t ∈

(
2
3 , 1
)
.

Consider the covering R = {C1, C2} with C1 =
(
0, 1

3

]
∪
(

2
3 , 1
)

and C2 =(
1
3 , 1
)
, which is connected since C1 ∩ C2 =

(
2
3 , 1
)
. The allocation

(x(t), y(t)) =



(
13
8 , 1

)
if t ∈

(
0, 1

3

]
⊆ C1(

3
2 , 1
)

if t ∈
(

1
3 ,

2
3

]
⊆ C2(

1, 3
2

)
if t ∈

(
2
3 , 1
)
⊆ C1 ∩ C2

is feasible and, it can be shown that, for any i = 1, 2, t ∈ Ci and S ⊆ Ci,
ut(x(t), y(t)) > ut(x̄(S), ȳ(S)). Hence x is R-strictly envy-free. On the other
hand, x is not (globally) strictly envy-free given that, for instance, any
individual in

(
1
3 ,

2
3

]
envies any subcoalition of

(
0, 1

3

]
. 4

Notice that the above allocation (x, y) is not efficient, as it is Pareto
blocked by the alternative feasible allocation

(x∗(t), y∗(t)) =



(
53
36 ,

11
9

)
if t ∈

(
0, 1

3

]
(

815
504 ,

4
5

)
if t ∈

(
1
3 ,

2
3

]
(

29
28 ,

133
90

)
if t ∈

(
2
3 , 1
)
.

Thus, if we focus only on absence of envy ignoring the efficiency, even though
the covering is connected, local absence of envy cannot be expanded into the
global one. Example 3.8 underlines the role of efficiency for our equivalence
theorem. Intuitively this is because efficiency involves the entire society,
contrary to the notion of R-strict envy-freeness which instead considers only
a piece of it. Roughly speaking, once there is no envy in each element of the
covering and there is no isolated group in the society, efficiency is the glue
that attaches each piece of the covering guaranteeing global fairness.

Remark 3.9. With similar arguments used in Lemma 3.5 of Donnini and
Pesce (2018), it is possible to prove that under a R-strictly envy-free alloca-
tion, members of the same group and with the same strictly quasi-concave
utility function get the same bundle. In other words, we get a local version of
the equal treatment property, because “equals are treated equally” at least
within the same coalition. We now show that this property fails globally
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under a R-strictly envy-free allocation even though R is connected, because
there might exist two agents with the same tastes, belonging to two distinct
elements of R receiving different bundles. To this end, consider a revised
version of Example 3.8 with an atomless economy in which T = (0, 1) and
with two goods. The total initial endowment is ω = (11

8 ,
7
6) and agents’

utility function are given by

ut(x, y) =


x2y if t ∈

(
0, 1

3

)
∪
(

2
3 , 1
)

xy2 if t ∈
[

1
3 ,

2
3

]
Consider the connected covering R = {C1, C2} with C1 =

(
0, 2

3

]
and C2 =[

1
3 , 1
)
. Then, it can be proved that the allocation

(x(t), y(t)) =



(
13
8 , 1

)
if t ∈

(
0, 1

3

)
⊆ C1(

1, 3
2

)
if t ∈

[
1
3 ,

2
3

]
⊆ C1 ∩ C2(

3
2 , 1
)

if t ∈
(

2
3 , 1
)
⊆ C2.

is R-strictly envy-free but agents in
(
0, 1

3

)
and in

(
2
3 , 1
)
, nevertheless with

the same utility, get different bundles being members of different groups. Ac-
cording to Lemma 3.5 of Donnini and Pesce (2018), the allocation (x(t), y(t))
cannot be globally strictly fair. Indeed, agents in

(
2
3 , 1
)

envies any subcoali-
tion in

(
0, 1

3

)
.

4 A comparison with the related literature

The idea of local fairness is not new and has been studied in several contexts,
in particular in social networks (see, for instance, Abebe et al. (2017)) and
in house allocation problems (see, for instance, Beynier et al. (2018)). A
similar idea can be also found in the matching literature. For example,
in marriage matching the society is divided into two disjoint sets, men and
women. A man can only envy another man, that is a person within his same
group and similarly for the women. As far as we know, theoretical models
of economies with divisible goods have tended to focus on global envy. An
exception is Cato (2010), who introduces a local version of strict fairness,
called ε−strict fairness, with a very similar intuition, but which, as we show
below, is a particular case of our notion of R-strict fairness.

In Cato (2010) the set of agents is the interval T = (0, 1) and for any
fixed ε ∈ (0, 1), and any trader t ∈ T , the set of t’s neighbours is the
interval It(ε) = (t− ε, t+ ε)∩T. According to the notion of ε-strict fairness,
each individual has to compare her own bundle with the average bundle of
any coalitions composed by her neighbours. Formally, an allocation x is
ε-strictly envy-free, if for almost every agent t in T , ut(x(t)) > ut(x̄(S)),
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with S subcoalition of It(ε). An allocation x is ε-strictly fair if it is ε-
strictly envy-free and efficient. We now show that our notion of local strict
envy-freeness generalizes the one of Cato (2010).

Proposition 4.1. For any ε ∈ (0, 1) there exists a connected covering Rε of
T such that any ε-strictly envy-free allocation is also Rε-strictly envy-free.
The reverse is not true.

Proof: Given an arbitrary ε in (0, 1), define the finite familyRε = {C1, . . . , Cn}
with Ci :=

(
i−1

2 ε, i+1
2 ε
]

for i ∈ {1, . . . , n − 1} and Cn :=
(
n−1

2 ε, 1
)
, where

n =
⌊

2−ε
ε

⌋
+ 1.3 Note that Rε is a covering of T for which, for any

i ∈ {1, ..., n − 1}, µ(Ci) = ε and µ(Cn) < ε and it is connected. There-
fore, for any i ∈ I := {1, ..., n} and for any t in Ci, each subcoalition S of
Ci is made by neighbours of t, that is S ⊆ (t − ε, t + ε) ∩ T = It(ε). This
implies that any ε- strictly envy-free allocation is Rε-strictly envy-free, and
it concludes the first part of the proposition. To show that the reverse is
not true, consider the economy described in Example 3.8 and notice that
the R-strictly envy-free allocation (x, y) is not ε-strictly envy-free for any
ε ∈ (0, 1). Indeed, given any ε ∈ (0, 1), any individual t in

(
1
3 ,

1
3 + ε

)
∩
(

1
3 ,

2
3

]
strictly envies any coalition S ⊆

(
0, 1

3

]
∩ Iε(t). 2

Remark 4.2. Cato (2010) shows that efficiency expands the local notion
into the global one, in the sense that ε-strict envy-freeness does not guaran-
tee absence of envy globally, but when combined with the efficiency it does.
In the light of Proposition 4.1, the equivalence obtained by Cato (2010)
follows from Theorem 3.2.

5 Local fairness in mixed markets

In this section we extend our analysis to mixed markets, that are large
economies with atoms. We assume, as usual, the set of agents T to be parti-
tioned into two sets T0 and T1 = T \T0. T0 is the atomless part representing
the set of negligible (small) agents, while T1 is the union of at most countably
many atoms, representative of non negligible (large) agents. Since any atom
is treated as a single trader, T1 can be seen as T1 = {A1, A2, ..., An, ...} and
the notation Ai ∈ T1 can be used instead of Ai ⊆ T1. Two agents are said to
be identical or of the same type if they have the same initial endowment and
the same utility function. Zhou (1992) shows that in mixed markets, under
a strictly fair allocation, small traders always get less income than any large
traders. He also illustrates an economy with two identical atoms in which
a strictly fair allocation is not supported by an equilibrium price. In Don-
nini and Pesce (2018) we show that even in an economy with an arbitrary

3We denote by
⌊
2−ε
ε

⌋
the integer part of 2−ε

ε
.
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finite number of atoms of the same type, the equivalence between the set of
equal-income Walrasian equilibria and strictly fair allocations fails. In other
words, the hypotheses used by Shitovitz (1973) to prove the Core-Walras
equivalence theorem, that is all atoms must be identical and at least two, is
not enough for the strict fairness. In Donnini and Pesce (2018) we provide
two stronger assumptions on the space of agents in order to nullify the mar-
ket power of the atoms and restore the equivalence for mixed markets. The
former requires the existence of countable infinitely many identical atoms
and we implicitly impose a condition on the measure of the atoms. The
latter needs, regardless the number and the relations among large traders,
that for each atom there is a coalition of negligible agents of the same type
of the atom (atomless fringe)4.
The next two examples show that the previous two assumptions, sufficient
for the (global) strict fairness, are not enough for the (local)R-strict fairness
even though the covering R is connected.

Example 5.1. Consider a mixed economy whose consumption set is R2
++,

T = T0 ∪ T1 with T0 = [0, 1
4 ] and T1 = {An}n∈N with µ(An) = 3

2n+2 . Notice
that µ(T1) = 3

4 . The total initial endowment is ω = (1, 1). Agents’ utility
function is given by

ut(x, y) =

{
xy if t ∈ T0

x2y if t ∈ T1.

Consider the connected covering R = {C1, C2} of T , where C1 = T0 ∪
{A1, A2} and C2 = T1.

We now show that the following feasible allocation

(x(t), y(t)) =


(

4+2
√

19
15 , 2+2

√
19

9

)
if t ∈ T0(

26−2
√

19
15 , 16−2

√
19

9

)
if t ∈ T1.

is R-strictly fair , but it is not globally strictly fair and a fortiori it is not an
equal-income Walrasian equilibrium allocation.

FACT 1. (x, y) is efficient.
Assume to the contrary that for some feasible allocation (x̃, ỹ), ut(x(t), y(t)) <
ut(x̃(t), ỹ(t)), for almost every t in T . As observed in Remark 3.1 of Don-
nini and Pesce (2018) (see also Lemma in Garćıa-Cutŕın and Hervés-Beloso

4Similar assumptions are used, for different contexts, in Gabszewicz and Mertens
(1971), Shitovitz (1992), Greenberg and Shitovitz (1986) and Basile et al. (2016).
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(1993) and Lemma 7.1 in Basile et al. (2017)) the allocation defined by

(a(t), b(t)) =


(a, b) = 1

µ(T0)

∫
T0

(x̃(t), ỹ(t)) dµ if t ∈ T0

(2− a, 2− b) = 1
µ(T1)

∫
T1

(x̃(t), ỹ(t)) dµ if t ∈ T1.

still improves upon (x, y). Therefore,
ab > 4+2

√
19

15
2+2
√

19
9

(2− a)2(2− b) >
(

26−2
√

19
15

)2
16−2

√
19

9 .

By the first inequality, b > 4
45(7+

√
19), which implies in the second condition

5(2−a)2(90a−4(7+
√

19)) > 16(111−22
√

19)a, that, after algebraic compu-
tation, leads to 225a3−10(97+

√
19)a2 +4(73−54

√
19)a−40(7+

√
19) > 0,

which has no solution in (0, 2). This means that (x, y) is efficient.

FACT 2. (x, y) is R-strictly envy-free.
For every t in C2 and S ⊆ C2, (x(t), y(t)) = (x̄(S), ȳ(S)), therefore (x, y) is

envy-free in C2. For every coalition S in C1 let α = µ(S∩T0)
µ(S) , and 1 − α =

µ(S∩T1)
µ(S) . Then, the average bundle of (x, y) over S is

(x̄(S), ȳ(S)) =

(
2

15
(α(2
√

19− 11) + 13−
√

19),
2

9
(α(2
√

19− 7) + 8−
√

19)

)
.

For every t in T0, ut(x(t), y(t)) > ut(x̄(S), ȳ(S)) is equivalent to

(2 +
√

19)(1 +
√

19) > [α(2
√

19− 11) + 13−
√

19][α(2
√

19− 7) + 8−
√

19],

which, after algebraic computation, leads to (12
√

19−51)(α−1)(3α−2) > 0.
This inequality is always satisfied since for every S in C1, α ∈ [0, 2

3 ] ∪ {1}.
For every t in T1, ut(x(t), y(t)) > ut(x̄(S), ȳ(S)) is equivalent to

(13−
√

19)2(8−
√

19) > [α(2
√

19−11)+13−
√

19]2[α(2
√

19−7)+8−
√

19],

that is, by algebraic computation, 9α[(78
√

19−339)α2 +(862−199
√

19)α+
168
√

19− 734] 6 0. This inequality holds, in particular, for any α in [0, 1].
Therefore there is no envy neither in C1, and hence (x, y) is R-strictly envy-
free.

FACT 3. (x, y) is not (globally) strictly fair.
For every t in T0, consider the coalition S = [0, 3

16 ] ∪ {A3}. Then

(x̄(S), ȳ(S)) =

(
2

45
(17 +

√
19),

2

27
(10 +

√
19)

)
13



and ut(x̄(S), ȳ(S)) = 3ut(x(t), y(t)) > ut(x(t), y(t)). This means that any
small trader t ∈ T0 envies the coalition S. 4

Notice that in the economy described in Example 5.1 there are infinitely
countably many identical atoms and the considered covering is connected.
With slight modifications we now show that even though the economy has
for each atom an atomless fringe of negligible traders of the same type of
the atom, there might exist a connected covering R and a (local) R-strictly
fair allocation which is not an equal-income Walrasian equilibrium.

Example 5.2. Consider a mixed economy whose consumption set is R2
++,

T = T0 ∪ T1 with T = [0, 1
2 ] and T1 = {A1, A2} with µ(An) = 1

4 . The total
initial endowment is ω = (1, 1). Agents’ utility function is given by

ut(x, y) =

{
xy if t ∈ [0, 1

4 ]
x2y if t ∈ (1

4 ,
1
2 ] and t ∈ T1.

Consider the connected covering R = {C1, C2} where C1 = [0, 1
4 ] ∪ T1 and

C2 = (1
4 ,

1
2 ] ∪ T1. With similar computation done in the previous example,

it can be shown that the following feasible allocation

(x(t), y(t)) =


(

4+2
√

19
15 , 2+2

√
19

9

)
if t ∈ T0(

26−2
√

19
15 , 16−2

√
19

9

)
if t ∈ T1.

is R-strictly fair , but it is not (globally) strictly fair and a fortiori it is not
an equal-income Walrasian equilibrium allocation. 4

Examples 5.1 and 5.2 make clear that under a (local) R-strictly fair
allocation, the market power of large traders should be locally crumbled.
We can then restore the equivalences SF (E) = RSF (E) in mixed markets
by further strengthening the two sufficient conditions of Donnini and Pesce
(2018). The former can be reformulated by requiring that if there are in-
finitey many identical large traders, they must belong to the same set Ci
of the covering R. The second can be strengthened by imposing that if a
certain set Ci of R contains an atom A, then it must contain a piece of its
atomless fringe.

Theorem 5.3. Assume that for almost every t in T, ut is strictly quasi-
concave on IR`++. Given a connected covering R = {C1, ..., Cn} of T , if one
of the following statements holds

1. T1 consists in countable infinitely many identical atoms and µ(Cj ∩
T1) > 0, then T1 ⊆ Cj ,
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2. for each atom A there exists a coalition SA of negligible agents identical
to A and A ⊆ Cj, then µ(SA ∩ Cj) > 0,

then the equal-division Walrasian allocations are the only R-strictly fair
allocations, and a fortiori, the only global strictly fair allocations.

Proof. Apply the arguments of the proof of Theorem 3.6 in Donnini and
Pesce (2018) in any set Ci of R. 2
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