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Abstract 
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interbank exposures and the implications in the analysis of the stability of the financial system seems to be a 
relevant problem. In particular, previous literature has shown that fuzzy data arise naturally in this framework and 
turn to be sufficiently friendly to handle from the computational point of view. The present paper generalizes the 
well known˙fictitious default algorithm to the fuzzy setting, providing an existence result for the corresponding 
fuzzy fixed points, the convergence of the algorithm to fixed points, an implementation of the algorithm in 
MATLAB and numerical simulations. 
 
Keywords: Financial networks, fuzzy financial data, fictitious default, fixed point. 
    
 
Acknowledgements. The authors acknowledge the financial support provided by the project entitled Risk 
Management  funded by the University of Naples Parthenope. The authors thank Professor Vincenzo Aversa for 
helpful comments and suggestions. 
 
 
 

 

*   Università di Napoli Parthenope and CSEF. Corresponding author: Dipartimento di Studi Aziendali e 
Quantitativi, Università di Napoli Parthenope, Via Generale Parisi 13, Napoli 80132, Italy. E-mail: 
demarco@uniparthenope.it 

**  Università di Napoli Parthenope. 





Table of contents 

 

 

1.  Introduction 

2.  Fuzzy Numbers 

3. Networks of Banks and Financial Contagion 

4. Fuzzy Contagion 

5. Existence of Market Clearing Proportions 

5.1 Tarski fixed point theorem  

5.2 The lattice structure of Ns 

5.3 Existence of fixed points of Φ 

6. Convergence of the Fuzzy Fictitious Default Algorithm  

7. Implementation and Simulation 

References  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction

The recent theoretical and empirical literature on financial contagion has investigated the re-
lationships between the interbank exposure network and the financial stability of the banking
system (see for instance Glasserman and Young (2016) or Hurd (2016) for recent surveys): the
financial network has been recognized to be a source of financial crisis as shocks, which initially
affect only few institutions, propagate through the entire banking system producing a contagion
cascade. Aim of the present paper is to study the issue of financial contagion under uncertainty
in the particular case in which financial obligations are represented by fuzzy numbers.

As pointed out in De Marco et al. (2018), only few papers have explored the issue of the
lack of precise information about the overall interbank exposures and the implications in the
analysis of the stability of the banking system. Nevertheless, this seems to be a relevant problem
as banks’ balance sheets are made public only few times each year. Furfine (2003) gives a first
attempt to study the system’s stability according to more realistic interbank exposure data based
on daily observations along a two months period. As the recovery of precise and exhaustive
interbank exposure data turns to be problematic, Furfine (2003) deduces interbank exposures
by looking at the transaction data in the Federal Reserve’s large-value system (Fedwire). Banks
are then classified into four groups according to the volume of funds traded and the exposure of
a bank from one group in another bank from another group is expressed by the minimum, the
maximum and the average value of transactions between the two groups observed in the sample
period. In De Marco et al. (2018), it has been shown that Furfine’s data can be regarded as
triangular fuzzy numbers where the minimum and the maximum are clearly the infimum and
the supremum of the support of the fuzzy number and the average is simply the maximum point
for the membership function. This interpretation has been the main motivation of the analysis
of financial contagion in a fuzzy environment as it shows that fuzzy data appear in a natural
way when we look at financial networks. Moreover, Furfine’s work provides a data set of fuzzy
interbank exposures that can be used to run simulations.

Many papers have studied the dynamics of contagion in the classical crisp case: Eisen-
berg and Noe (2001) is recognized as a pioneering contribution; it shows that the existence of
payment vectors that clear the obligations in the market can be solved by using fixed points
arguments. Then, Eisenberg and Noe (2001) develops an algorithm (known as the fictitious
default algorithm) that converges to a clearing payment vector and, at the same time, gives
information about the systemic risk faced by the banks in the network3. The present paper is a
direct generalization of the Eisenberg and Noe (2001) analysis: interbank exposures and every
other quantity in banks’ balance sheets are allowed to be fuzzy numbers. As a consequence, we
characterize fuzzy clearing vectors as fixed points of the fuzzy mappings that, in turn, define
the fuzzy version of the fictitious default algorithm. So we provide an analogous of the fixed
point theorem in Eisenberg and Noe (2001) for the fuzzy environment and show that the cor-
responding fuzzy fictitious default algorithm converges to a fixed point. In order to support
our theoretical analysis we propose also some numerical results. The fuzzy fictitious default
algorithm has been written and fully implemented in MATLAB, and tested numerically on a
real financial date set. Finally, the present paper differs significatively from De Marco et al.
(2018) which does not focus on the original fictitious default algorithm but rather investigates
a variation based on the zero recovery assumption, as studied in Gai and Kapadia (2010) for

3Gai and Kapadia (2010), Gai et al. (2011), Lee (2013), Glasserman and Young (2015), among others, provide
some further significative contributions from slightly different perspectives.
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the crisp case, whose underlying idea is the following: since in the immediate aftermath of a
default, the recovery rate and the timing of recovery are highly uncertain then it is likely to
assume the pessimistic scenario in which each bank in the network is supposed to loose all its
interbank deposits on a failed bank, regardless of the real net worth of such failed bank.

The paper is organized as follows: Section 2 recalls basic notions from fuzzy set theory.
Section 3 introduces the basic elements of the Eisenberg and Noe (2001) model. Section 4
introduces the fuzzy financial network, the fuzzy fixed point problem and the fuzzy fictitious
default algorithm. Section 5 provides the existence of fixed point while, the convergence of the
fuzzy fictitious default algorithm is studied in Section 6. The implementation of the algorithm
and results of the simulation are described in the final Section 7.

2 Fuzzy Numbers

In this section we recall some key notions and results from the theory of fuzzy numbers that are
required in our model (see, for example, Buckley and Eslami (2002), Klir (1995), Zadeh (1995)
and Zimmermann (2001) for extensive surveys and references).

Given a universal set X, a fuzzy subset A of X is a function, called membership function,
which associates with each point in X a real number in the interval [0, 1].
Following Goetschel and Voxman (1986) (see also Chai and Zhang (2016)) a fuzzy number n is a
particular fuzzy subset of R, with membership function denoted by µn, satisfying the following
conditions:

1. µn is normal, i.e., there is a real number x0 such that µn(x0) = 1;

2. µn is compactly supported, i.e., the closure of the support of n is bounded (we remind
that supp(n) = {x ∈ R |µn(x) > 0} and we denote by supp(n) its closure);

3. µn is quasi-concave, i.e., x 6 y 6 z implies min{µn(x), µn(z)} 6 µn(y) for all x, y, z ∈ R;

4. µn is upper semi-continuous, i.e., for each α ∈]0, 1], the α-cut, {x ∈ R |µn(x) > α}, is
closed.

Defining

n[α] =


{x ∈ R |µn(x) > α}, if 0 < α 6 1;

supp(n), if α = 0;
(1)

it is easy to show that n is a fuzzy number if and only if

1. n[α] is a closed and bounded interval for each α in [0, 1];

2. n[1] ̸= ∅.

Using this characterization, a fuzzy number, n, can be determined by the endpoints of the inter-
vals n[α], therefore we can identify n with the parameterized representation {(n[α], n[α]) |α ∈
[0, 1]}, where n[α] and n[α] denote respectively the left hand endpoint and the right hand end-
point of n[α].4

4In the remainder of the paper we will use equivalently n or n[0] for inf supp(n) and n or n[0] for sup supp(n).
Moreover, with abuse of notation, for every α in [0, 1], we will call n[α] α-cut.
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A fuzzy number n is said to have single peak if the core is a singleton, i.e., co(n) = {n̂}. We
remind that, by definition, the core of a fuzzy number n is co(n) = {x ∈ R |µn(x) = 1} and it
coincides with n[1]. We denote by F the set of fuzzy numbers having single peak5, with F+ =
{n ∈ F : n[0] ⊆ [0,+∞[} and with F s the s-Cartesian product F s = {(n1, n2, . . . , ns) |nk ∈
F for every k ∈ {1, 2, . . . , s}}.
Remark 2.1: Using the parameterized representation of fuzzy numbers, we have that, given
n,m, l ∈ F and c ∈ R,

1. n+m− l = {(n[α] +m[α]− l[α], n[α] +m[α]− l[α]) |α ∈ [0, 1]}

2. n·m = {(a[α], b[α]) |α ∈ [0, 1]}, where a[α] = min{n[α]m[α], n[α]m[α], n[α]m[α], n[α]m[α]}
and b[α] = max{n[α]m[α], n[α]m[α], n[α]m[α], n[α]m[α]}

3.
n

m
=

{(
n[α]

m[α]
,
n[α]

m[α]

)
|α ∈ [0, 1]

}
, if, for each α in [0, 1], 0 does not belong to m[α],

4. cn =


{(cn[α], cn[α]) |α ∈ [0, 1]}, if c > 0;

{(cn[α], cn[α]) |α ∈ [0, 1]}, if c < 0;

0, if c = 0.

Note that given n,m, l ∈ F and a ∈ R, n+m− l, n ·m,
n

m
and an are still in F .

Given two fuzzy numbers n and m in F , we denote by p and q respectively their maximum
and minimum, i.e., p = MAX{n,m} and q = MIN{n,m}, where the membership functions of
p and q are defined as follows (see for instance Buckley and Eslami (2002)):

µp(z) = sup {min{µm(x), µn(y)} | max{x, y} = z}

and
µq(z) = sup {min{µm(x), µn(y)} | min{x, y} = z}

Moreover, as proved in Hong and Kim (2006) (see also Chiu and Wang (2002)), it can be shown
that each α-cut is given by

p[α] = [max{n[α],m[α]},max{n[α],m[α]}] or p[α] = max{n[α],m[α]}, p[α] = max{n[α],m[α]}

and

q[α] = [min{n[α],m[α]},min{n[α],m[α]}] or q[α] = min{n[α],m[α]}, q[α] = min{n[α],m[α]};
5We remark that the set R of real numbers is canonically embedded in the set of fuzzy numbers, identifying

each real number r with the “crisp” fuzzy number with membership equal to

µn(x) =

 1, if x = r;

0, otherwise;

so, in particular, each real number can be seen as a fuzzy number having single peak.
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so that p and q have the following representations

p = {(max{n[α],m[α]},max{n[α],m[α]}) |α ∈ [0, 1]}

and
q = {(min{n[α],m[α]},min{n[α],m[α]}) |α ∈ [0, 1]}.

It immediately follows that

Proposition 2.2: Given n,m, l ∈ F and the fuzzy number r defined by

r = MIN{n,MAX{m, l}},

then, for every α ∈ [0, 1], the α-cut of r is

r[α] = [r[α], r[α]] with r[α] = min{n[α],max{m[α], l[α]}}, r[α] = min{n[α],max{m[α], l[α]}}.

Moreover r ∈ F .

Proof. Consider p = MAX{m, l}. Then, using the parameterized representation,

p = {(max{m[α], l[α]},max{m[α], l[α]}) |α ∈ [0, 1]}

and
r = MIN{n, p} = {(min{n[α], p[α]},min{n[α], p[α]}) |α ∈ [0, 1]} =

{(minn[α], {max{m[α], l[α]}},min{n[α],max{m[α], l[α]}}) |α ∈ [0, 1]}.

Hence, for every α ∈ [0, 1], the α-cut of r is

r[α] =
[
min{n[α],max{m[α], l[α]}},min{n[α],max{m[α], l[α]}}

]
.

Moreover, since n[1], m[1] and l[1] are singleton, then r have a single peak, that is r ∈ F .

Finally, we say that a fuzzy number n is positive, whenever n[0] = inf supp(n) > 0 (or, equiv-
alently, supp(n) ⊆ R+), while n is negative whenever n[0] = sup supp(n) < 0 (or, equivalently,
if supp(n) ⊆ R−). We can remark that there are fuzzy numbers that are not positive neither
negative. With abuse of notation, in the following, we will indicate that n is positive (negative)
with n > 0 (n < 0).

3 Networks of Banks and Financial Contagion

Banks and financial Networks

Firstly, we introduce the market that is substantially the same of Eisenberg and Noe (2001).
We consider a market composed by a set of banks I = {1, 2, . . . , s}. Each bank is characterized
by its balance sheet consisting on assets and liabilities, including, respectively, bank’s claims
and obligations to non-financial and financial entities.

The bank’s assets are:

i) Outside assets ci representing the aggregate claims of bank i on nonfinancial entities;
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ii) In-network assets pki, for each k ̸= i. Each number pki is the claim of bank i on bank
k, that is, it consists in a payment obligation of bank k to bank i; in other words, pki
represents the aggregate exposure of bank i in the bank k.

The bank’s liabilities include:

i) Obligations bi to nonfinancial entities;

ii) Obligations pik, for each k ̸= i, to the bank k.

In the literature, the matrix (pik)
s
i,k=1 is the adjacency matrix of a directed network, called

financial network. Each node is a bank, and a directed edge runs from node i to node k if
bank i has a payment obligation pik > 0 to node k. In this case, we say that bank i is directly
connected to bank k.

The market clearing condition

The key element of the model in Eisenberg and Noe (2001) is given by a vector η = (η1, . . . , ηs),
where ηk is the proportion of debt that bank k is able to repay to its creditors in the financial
networks.
Therefore, the asset side of i’s balance sheet is given by

ci +
∑
k ̸=i

ηkpki,

while the liability side by

bi +
∑
k ̸=i

pik.

The node’s net worth is

wi = ci +
∑
k ̸=i

ηkpki − bi −
∑
k ̸=i

pik.

This latter equation implies that the net worth of each bank i depends on the proportion of
the exposures that the bank receives back from the others. On the other hand, the proportion
of debt that bank i it is able to give back to the others is a function of its net worth: ηi = 1
if bank i is able to honor all of its obligations, ηi = 0 if bank i is unable to honor each of its
obligations and ηi ∈]0, 1[ in case bank i is only able to partially repay its obligations. In the
model introduced by Eisenberg and Noe (2001) each ηi is the maximal proportion of debt that
the bank i is able to repay to the others, given the repayments of the other banks ηk with k ̸= i.
More precisely, each ηi is implicitly computed as the solution ξi of the market clearing equation

ci +
∑
k ̸=i

ηkpki = bi +
∑
k ̸=i

ξipik. (2)

in case

ξi =
1∑

k ̸=i

pik

(
ci +

∑
k ̸=i

ηkpki − bi

)
∈]0, 1[,
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while, ηi = 1 in case ξi > 1 and ηi = 0 in case ξi 6 0.
Hence,

ηi = Φi

(
(ηk)k ̸=i

)
= min

1,max


1∑

k ̸=i

pik

(
ci +

∑
k ̸=i

ηkpki − bi

)
, 0


 . (3)

Therefore, denote with Φ : [0, 1]s → 0, 1]s the function defined by

Φ(η) =
(
Φ1

(
(ηk)k ̸=1

)
, . . . ,Φs

(
(ηk)k ̸=s

))
∀η = (η1, ..., ηs) ∈ [0, 1]s (4)

then a vector of market clearing proportions is a fixed point of the function Φ. If some of the
components of this vector is different from 1 then it means that the corresponding bank has
failed and the financial system is unstable.

Eisenberg and Noe (2001) introduce a fictitious default algorithm in order to study the
dynamics of contagion. Starting from any initial condition η0 = (η01, η

0
2, ..., η

0
s), the contagion is

regulated by the (so called) fictitious default algorithm:

ην+1 = Φ(ην) ν = 0, 1, . . .

They show that:

i) There exist at least a fixed point for Φ.

ii) A sequence (ην)ν∈N regulated by the fictitious default algorithm converges to a fixed point.

In the next sections, these results will be extended to the fuzzy setting.

4 Fuzzy Contagion

In this section we consider the generalization of the model presented in the previous one to the
fuzzy setting. For each i and j, the quantities ci, bi, pij and pji belong to F+ and, for technical
reasons, we assume that

σi = inf supp

(∑
k ̸=i

pik

)
> 0.

In the present framework, the proportion of debt that bank k is able to repay to its creditors
in the financial networks is allowed to be a fuzzy number ηk such that ηk[0] ⊆ [0, 1]. Therefore,
denote with N the subset of fuzzy numbers contained in F having the closure of the support
entirely contained in [0, 1], i.e.

N = {n ∈ F |n[0] ⊆ [0, 1]} ,

then ηk must belong to N . Moreover, we fix fuzzy numbers z and u in N such that z[1] = {0}
and u[1] = {1} and call them respectively fuzzy zero and fuzzy unity. It immediately follows
from Proposition 2.2 that

Corollary 4.1: Let l be any fuzzy number in F then the fuzzy number r = MIN{u,MAX{l, z}}
belongs to N .
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Proof. From Proposition 2.2, r has single peak. Moreover

r[0] =
[
min{u[0],max{z[0], l[0]}},min{u[0],max{z[0], l[0]}}

]
.

Now, by construction z[0], u[0] ∈ [0, 1]; so, whatever is l ∈ F , it follows that max{z[0], l[0]} > 0,
then r = min{u[0],max{z[0], l[0]}} ∈ [0, 1]. It follows that max{z[0], l[0]} > 0; as u[0] ∈ [0, 1],
then r = min{u[0],max{z[0], l[0]}} ∈ [0, 1]. Hence r[0] ⊆ [0, 1] and r ∈ N .

Given the set of fuzzy numbers N , define the s-Cartesian product N s of N as:

N s = {(n1, n2, . . . , ns) |nk ∈ N for every k ∈ {1, 2, . . . , s}}.

For each η = (η1, . . . ηs) ∈ N s, with an abuse of notation denote

Φi

(
(ηk)k ̸=i

)
= MIN

u,MAX


1∑

k ̸=i

pik

(
ci +

∑
k ̸=i

ηkpki − bi

)
, z


 ∀i ∈ {1, . . . , s}. (5)

We get:

Lemma 4.2: Let η ∈ N s and α ∈ [0, 1] then, for every i ∈ {1, . . . , s}, the α-cut of the fuzzy

number Φi

(
(ηk)k ̸=i

)
, defined in (5), is

Φi

(
(ηk)k ̸=i

)
[α] =

[
Φi

(
(ηk)k ̸=i

)
[α],Φi

(
(ηk)k ̸=i

)
[α]
]

where

Φi

(
(ηk)k ̸=i

)
[α] = min

u[α],max


1∑

k ̸=i

pik[α]

(
ci[α] +

∑
k ̸=i

η
k
[α]p

ki
[α]− bi[α]

)
, z[α]




and

Φi

(
(ηk)k ̸=i

)
[α] = min

u[α],max


1∑

k ̸=i

p
ik
[α]

(
ci[α] +

∑
k ̸=i

ηk[α]pki[α]− bi[α]

)
, z[α]




Proof. Firstly, note that the fuzzy number

ξi :=
1∑

k ̸=i

pik

(
ci +

∑
k ̸=i

ηkpki − bi

)

is well defined as σi > 0. Moreover, from the algebra of fuzzy numbers reported in Remark 2.1,
it follows that ξi belongs to F .
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Since, for each k and i, ηk[0] ⊆ [0, 1] and pki[0] ⊆ [0,+∞[, then, for each α in [0, 1], it follows
that

ηk[α]pki[α] = [η
k
[α]p

ki
[α], ηk[α]pki[α]].

Therefore, from Remark 2.1, it follows that ξi[α] =
[
ξ
i
[α], ξi[α]

]
, where

ξ
i
[α] =

1∑
k ̸=i

pik[α]

(
ci[α] +

∑
k ̸=i

η
k
[α]p

ki
[α]− bi[α]

)

and

ξi[α] =
1∑

k ̸=i

p
ik
[α]

(
ci[α] +

∑
k ̸=i

ηk[α]pki[α]− bi[α]

)

for each α in [0, 1].

Since Φi

(
(ηk)k ̸=i

)
= MIN{u,MAX{ξi, z}} then the assertion follows from Proposition 2.2.

Problem Statement

With an abuse of notation, let Φ : N s → N s be the function defined by

Φ(η) =
(
Φ1

(
(ηk)k ̸=1

)
, . . . ,Φn

(
(ηk)k ̸=s

))
∀η ∈ N s (6)

then

Definition 4.3: A vector η = (η1, . . . , ηs) ∈ N s is a vector of market clearing proportions if it
is a fixed point of the map Φ, that is, η = Φ(η).

The problems that we study in the next sections are

i) Existence of fixed points of Φ.

ii) Convergence of the fuzzy fictitious default algorithm to a vector of market clearing pro-
portions: given a sequence (ηh)h∈N ⊂ N s governed by the rule

ηh+1 = Φ(ηh) for every h ∈ N,

the question is to study whether (ηh)h∈N converges to a fixed point of Φ.

5 Existence of market clearing proportions

In this section we prove the existence of fixed points for the function Φ. To this purpose, we
firstly recall the Tarski fixed point Theorem (see Tarski (1955)).
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5.1 Tarski fixed point theorem

Recall that

Definition 5.1: Given a set A and a binary relation % on A then the pair (A,%) is said to be
a lattice if % is a partial order, that is a reflexive, antisymmetric and transitive binary relation,
and for every a, b ∈ A there exist a least upper bound (supremum) a ∨ b and a greatest lower
bound (infimum) a ∧ b.

A lattice is said to be complete if for every subset B ⊆ A there exist a least upper bound
∨B and a least lower bound ∧B

and

Definition 5.2: A function f : A → A is said to be increasing with respect to the partial order
% if, for every a, b ∈ A,

a % b =⇒ f(a) % f(b).

Then

Theorem 5.3 (Tarski (1955)): If (A,%) is a complete lattice and f : A → A is increasing with
respect to the partial order % then the set of fixed points P of f is not empty and (P,%) is a
complete lattice.

5.2 The lattice structure of N s

Definition 5.4: Let %R be the binary relation on N defined by

n %R m ⇐⇒
{

i) n[α] > m[α],
ii) n[α] > m[α].

∀α ∈ [0, 1]

We say that n is R-related to m if n %R m.

Definition 5.5: Let %NW be the binary relation on N s defined by

(n1, . . . , ns) %NW (m1, . . . ,ms) ⇐⇒ nk %R mk ∀k ∈ {1, . . . , s}

We say that (n1, . . . , ns) is NW -related to (m1, . . . ,ms) if (n1, . . . , ns) %NW (m1, . . . ,ms).

Then, it follows that

Proposition 5.6: The pair (N s,%NW ) is a complete lattice.

Proof. The binary relation %R is a partial order as it is reflexive (∀n ∈ N , n %R n ), antisym-
metric (∀n,m ∈ N , n %R m and m %R n imply that n = m) and transitive (∀n,m, l ∈ N , n %R

m and m %R l imply n %R l). Then, it immediately follows that %NW is a partial order as well.
Consider a subset B ⊆ N s and let w = (w1, . . . , ws) be defined as follows: for every i ∈

{1, . . . , s}, wi is a fuzzy number whose representation is

wi = {(wi[α], wi[α]) |α ∈ [0, 1]}

where
wi[α] = inf

b∈B
bi[α], wi[α] = inf

b∈B
bi[α] ∀α ∈ [0, 1].

10



Since b ∈ N s, then each bi has a single peak; so

wi[1] = inf
b∈B

bi[1] = inf
b∈B

bi[1] = wi[1]

and wi has a single peak. Moreover b ∈ N s implies that, for every i, bi[0] ∈ [0, 1] . Hence
wi[0] ∈ [0, 1] as well, so wi ∈ N . Now, consider w = (w1, . . . , ws); by construction; it follows
that b %NW w for every b ∈ B, so w is a lower bound for B in N s; moreover, let n ∈ N s be
such that b %NW n for every b ∈ B, then it follows that for every α ∈ [0, 1]

ni[α] 6 inf
b∈B

bi[α] = wi[α] and ni[α] 6 inf
b∈B

bi[α] = wi[α]

so w %NW n and w is the greatest lower bound for B, that is w = ∧B.
Let y = (y1, . . . , ys), where each yi is a fuzzy number whose representation is

yi = {(yi[α], yi[α]) |α ∈ [0, 1]}

with
yi[α] = sup

b∈B
bi[α], yi[α] = sup

b∈B
bi[α] ∀α ∈ [0, 1].

Then, following the same steps of the previous part, we get that y is the least upper bound for
B in N , that is y = ∨B, and (N s,%NW ) is a complete lattice.

5.3 Existence of fixed points of Φ

Definition 5.7: We say that a function F : N s → N s is NW -increasing if and only if

(n1, . . . , ns) %NW (m1, . . . ,ms) =⇒ F (n1, . . . , ns) %NW F (m1, . . . ,ms). (7)

Proposition 5.8: The function Φ : N s → N s defined in (6) is NW -increasing.

Proof. Let η′ and η′′ be vectors in N s such that η′ %NW η′′ then, for every k = 1, . . . , s it follows
that η′k %R η′′k . Then for each α in [0, 1]

i) η′
k
[α] > η′′

k
[α],

ii) η′k[α] > η′′k[α].

Now, i) implies that η′
k
[α]p

ki
[α] > η′′

k
[α]p

ki
[α] and so∑

k ̸=i

η′
k
[α]p

ki
[α] >

∑
k ̸=i

η′′
k
[α]p

ki
[α].

Therefore

ξ′
i
[α] =

1∑
k ̸=i

pik[α]

(
ci[α] +

∑
k ̸=i

η′
k
[α]p

ki
[α]− bi[α]

)
>

1∑
k ̸=i

pik[α]

(
ci[α] +

∑
k ̸=i

η′′
k
[α]p

ki
[α]− bi[α]

)
= ξ′′

i
[α].

11



Moreover
ξ′
i
[α] > ξ′′

i
[α] =⇒ max{z[α], ξ′

i
[α]} > max{z[α], ξ′′

i
[α]}.

Finally, it follows that

Φi

(
(η′k)k ̸=i

)
[α] = min{u[α],max{z[α], ξ′

i
[α]} > min{u[α],max{z[α], ξ′′

i
[α]} = Φi

(
(η′′k)k ̸=i

)
[α]

In similar way, ii) implies that

Φi

(
(η′k)k ̸=i

)
[α] = min{u[α],max{z[α], ξ′i[α]}} > min{u[α],max{z[α], ξ′′i [α]}} = Φi

(
(η′′k)k ̸=i

)
[α].

Therefore

Φi

(
(η′k)k ̸=i

)
[α] > Φi

(
(η′′k)k ̸=i

)
[α], Φi

(
(η′k)k ̸=i

)
[α] > Φi

(
(η′′k)k ̸=i

)
[α],

but α is arbitrary, then it follows that

Φi

(
(η′k)k ̸=i

)
%R Φi

(
(η′′k)k ̸=i

)
.

Since the previous relation holds for every i ∈ {1, 2, . . . , s}, it finally follows that

Φ(η′) %NW Φ(η′′).

Finally, we get

Theorem 5.9: The function Φ : N s → N s defined in (6) has at least a fixed point.

Proof. From Proposition 5.6, (N s,%NW ) is a complete lattice. From the previous Proposition
5.8, Φ is NW -increasing. Then, a direct application of Theorem 5.3. gives the assertion.

6 Convergence of the fuzzy fictitious default algorithm

In this section we study the convergence of sequences (ηh)h∈N ∈ N s, with ηh = (ηh1 , η
h
2 , . . . , η

h
s ),

governed by the rule
ηh+1 = Φ(ηh)

starting from an initial condition η0 = (η01, η
0
2, . . . , η

0
s) ∈ N s. The vector η0 represents the fuzzy

vector of market clearing proportions before an exogenous shock. For numerical purposes, it
could useful to fix η0 = (1, . . . , 1). The exogenous shock is implicitly included in the capital
bi− ci. Therefore it could be possible to study the financial contagion for every choice of capital
bi − ci. The only assumption that we need is that the choice bi − ci gives rise to a contagion
cascade. In particular, the only assumption that we need is that η0 %NW η1 which perfect sense
as market clearing proportions do not increase after a shock6. More precisely,

6From a theoretical point of view, this assumption may include the case that η0 is a fixed point.
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Definition 6.1: Given an initial fuzzy vector of market clearing proportions η0 = (η01, η
0
2, . . . , η

0
s) ∈

N s then the sequence (ηh)h∈N ⊂ N s is a contagion dynamics if,

ηh+1 = Φ(ηh) for every h = 0, 1, 2, . . . (8)

and
η0 %NW η1. (9)

Proposition 6.2: Let
(
ηh
)
h∈N ⊂ N s be a contagion dynamics, that is, a sequence satisfying

(8) and (9) in Definition 6.1. Then,
(
ηh
)
h∈N ⊂ N s is NW -decreasing, that is

ηh %NW ηh+1 ∀h = 0, 1, . . . (10)

Proof. We prove the property by induction. By construction, (9) holds, that is η0 %NW η1.
Fixed h ∈ N, we show that

ηh−1 %NW ηh =⇒ ηh %NW ηh+1.

Firstly, recall that

ξh
i
[α] =

1∑
k ̸=i

pik[α]

(
ci[α] +

∑
k ̸=i

ηh
k
[α]p

ki
[α]− bi[α]

)

and

ξ
h

i [α] =
1∑

k ̸=i

p
ik
[α]

(
ci[α] +

∑
k ̸=i

ηhk[α]pki[α]− bi[α]

)
.

If ηh−1 %NW ηh then ηh−1
i %R ηhi for every i = 1, 2, . . . , s; then, for every i = 1, 2, . . . , s and for

every α ∈ [0, 1], it follows that

ηh−1

i
[α] > ηh

i
[α] and ηh−1

i [α] > ηhi [α] ∀i ∈ {1, . . . , s}.

Hence,

ξh−1

i
[α] > ξh

i
[α] and ξ

h−1

i [α] > ξ
h

i [α] ∀i ∈ {1, . . . , s}, ∀α ∈ [0, 1].

It follows that

ηh
i
[α] = min{u[α],max{z[α], ξh−1

i
[α]}} > min{u[α],max{z[α], ξh

i
[α]}} = ηh+1

i
[α]

and

ηhi [α] = min{u[α],max{z[α], ξh−1

i [α]}} > min{u[α],max{z[α], ξh−1

i [α]}} = ηh+1
i [α]

for every i = 1, 2, . . . , s and for every α ∈ [0, 1]. Therefore,

ηhi %R ηh+1
i ∀i ∈ {1, ..., s}

and
ηh %NW ηh+1.

By induction, it follows that ηh %NW ηh+1 for every h ∈ N and the assertion follows.
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We give the following definition

Definition 6.3: Given a sequence
(
nh
)
h∈N ⊂ N then it N -converges to n ∈ N if, for every

α ∈ [0, 1], the sequence
(
nh[α]

)
h∈N ⊂ R converges to n[α] and

(
nh[α]

)
h∈N ⊂ R converges to n[α].

Given a sequence
(
(nh

1 , n
h
2 , . . . , n

h
s )
)
h∈N ⊂ N s then it N s-converges to (n1, n2, . . . , ns) ∈ N s if,

for every j ∈ {1, 2, . . . , s} the sequence
(
nh
j

)
h∈N N -converges to nj.

Then,

Proposition 6.4: Let
(
ηh
)
h∈N ⊂ N s be a contagion dynamics, that is, a sequence satisfying

(8) and (9) in Definition 6.1. Then, the sequence
(
ηh
)
h∈N N s-converges to a fixed point for the

function Φ.

Proof. Let
(
ηh
)
h∈N ⊂ N s be a contagion dynamics; from the previous proposition it follows

that it is NW -decreasing, implying that for every α in [0, 1] and every i = 1, ..., s, (ηh
i
[α])h∈N

and (ηhi [α])h∈N are non increasing sequences in [0, 1]. So they converge respectively to η∗
i
[α] and

η∗i [α] belonging to [0, 1]. Now we show that the vector of fuzzy numbers η∗ = (η∗1, . . . , η
∗
s), such

that each η∗i is the fuzzy number defined by

η∗i =
{[

η∗
i
[α], η∗i [α]

]
|α ∈ [0, 1]

}
,

is a fixed point for Φ.
In fact, from the assumptions it follows that

ηh+1

i
[α] = Φi

((
ηhk
)
k ̸=i

)
[α] =

min

u[α],max


1∑

k ̸=i

pik[α]

(
ci[α] +

∑
k ̸=i

ηh
k
[α]p

ki
[α]− bi[α]

)
, z[α]


 .

From the continuity of the min{·, ·} and max{·, ·} operators it follows that

η∗
i
[α] = lim

h→∞
ηh+1

i
[α] = lim

h→∞
Φi

((
ηhk
)
k ̸=i

)
[α] =

lim
h→∞

min

u[α],max


1∑

k ̸=i

pik[α]

(
ci[α] +

∑
k ̸=i

ηh
k
[α]p

ki
[α]− bi[α]

)
, z[α]



 =

min

u[α],max


1∑

k ̸=i

pik[α]

(
ci[α] +

∑
k ̸=i

η∗
k
[α]p

ki
[α]− bi[α]

)
, z[α]


 = Φi

(
(η∗k)k ̸=i

)
[α].

Hence
η∗
i
[α] = Φi

(
(η∗k)k ̸=i

)
[α].
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Following the same steps, we get

η∗i [α] = Φi

(
(η∗k)k ̸=i

)
[α].

Since α is arbitrary, then

η∗i = Φi

(
(η∗k)k ̸=i

)
The previous condition holds for every i ∈ {0, . . . , s}, then

η∗ = Φ(η∗)

and the assertion follows.

7 Implementation and simulation

This section contains some numerical results which support our theoretical analysis. With this
aim, the fuzzy fictitious default algorithm has been written, fully implemented in MATLAB,
and tested numerically on a real financial date set.

The algorithm is versatile inasmuch the user, as input:

1. choose the fuzzy numbers z and u to be used as fuzzy zero and fuzzy unit;

2. choose which banks will be shocked;

3. set the intensity of the shock;

4. choose the maximum number of steps to be computed.

The algorithm

The fuzzy fictitious default algorithm starts with a “stability” initial condition under which each
bank is able, with certainty, to honor all its debts. It means that the initial vector of market
clearing proportions η0 = (η01, ..., η

0
s) ∈ N s coincides with the “crisp” fuzzy vector (1, ..., 1).

Then the following steps are accomplished.

- At the first step (h = 1) an exogenous shock hits some bank in the network, causing a fuzzy
default of some of them. Hence the vector of fuzzy net worth w1 = (w1

1, ..., w
1
s) ∈ F s and

the vector of market clearing proportions η1 = (η11, ..., η
1
s) = Φ(η0) ∈ N s are computed.

- At the second step (h = 2), starting from w1 and η1, the vectors w2 = (w2
1, ..., w

2
s) ∈ F s

and η2 = (η21, ..., η
2
s) = Φ(η1) ∈ N s are computed. If η1 = η2, the exogenous default does

not propagate and the process stops. Otherwise a new step is taken.

- At step h (h > 2), starting from wh−1 = (wh−1
1 , ..., wh−1

s ) and ηh−1 = (ηh−1
1 , ..., ηh−1

s ) the
vectors wh = (wh

1 , ..., w
h
s ) ∈ F s and ηh = (ηh1 , ..., η

h
s ) = Φ(ηh−1) ∈ N s are computed. If

ηh = ηh−1 the fuzzy contagion stops, else the process continues until the maximum number
of steps has been reached.
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Details on computing approach
To extend the fictitious default algorithm to a fuzzy framework it has been necessary to imple-
ment an algebra over the set of fuzzy numbers and a method for computing MIN/MAX{n,m}
for n and m fuzzy numbers. It is known that, in many practical applications when handling
with fuzzy numbers, it is necessary to have a permanent switch from a fuzzy representation to a
numerical one. This transformation is usually carried out by the defuzzification process which,
however, may cause loss of information. On the other hand, as observed in Section 1, a fuzzy
number n can be identified with the representation {(n[α], n[α]) |α ∈ [0, 1]}, where n[α] and n[α]
are the end points of the interval n[α]. Hence, fuzzy numbers may be combined one to another
without any defuzzification method, but making use of the interval algebra instruments, without
loosing any information. For this reasons, in this paper, operations between fuzzy numbers are
implemented on a computer by means of interval arithmetic on n[α]. The intervals n[α] are uni-
vocally determined computing left/right side membership inverse. Thus, the algorithm makes
use of the Symbolic Package of Matlab 7 in order to handle n[α] as a symbolic object described
by two different functions of α: the α-Lower bounds and the α-Upper bounds, for each α ∈ [0, 1].
The implemented code has in input fuzzy triangular data assigned by three-dimensional vectors
of real numbers8. In order to handle fuzzy numbers as symbolic objects to be combined by the
interval algebra instruments, the sets n[α] of each input fuzzy number are determined computing
left/right side membership inverse. Once the input data have been transformed into symbolic
triangular functions of α, the process starts with step h = 1, as described before. At each step
h, the computation of the vector of the fuzzy market clearing proportions (5) involves also the
computation of MIN/MAX between two fuzzy numbers which, as it is known, may produce a
piecewise function9. Using the Symbolic Package of Matlab, piecewise functions are handled as
symbolic objects, hence they are defined, combined and plotted without any loop. Thus, at the
end of each step h, it is obtained a symbolic vector ηh = (Φ(ηh−1

1 ), . . . ,Φ(ηh−1
s )) composed by

symbolic functions of α.
The algorithm for computing p = MAX{n,m} and q = MIN{n,m} has been implemented
considering n as a triangular fuzzy number and m as fuzzy number having a single peak and it is
structured in order to involve p and q in equation (5) using their parameterized representations
p = {(p[α], p[α]) |α ∈ [0, 1]}, q = {(q[α], q[α]) |α ∈ [0, 1]}.

The MIN/MAX algorithm.

7Symbolic Math Toolbox enables you to perform symbolic computations by defining a special data type: the
symbolic object. It provides functions for solving, plotting, and manipulating symbolic math equations.

8We remind that, given a triangular fuzzy number n, denoting by n̂ the unique element contained in the
core and by n = n[0] and n = n[0], n can be identified by n = (n, n̂, n). For completeness we remind that the
membership function of the triangular fuzzy number n is defined as follows

µn(x) =



x− n

n̂− n
, if n 6 x 6 n̂;

x− n

n̂− n
, if n̂ < x 6 n;

0, otherwise.

9That is a function defined by multiple sub functions, each one applying to a certain interval of the main
function’s domain.
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Given a triangular fuzzy number n and a fuzzy number m having a single peak, let us
describe how the algorithm computes p[α] and q[α], for 0 6 α 6 1 (the computation of p[α] and
q[α] is equivalent).

• Step 1. Compute n[α] and m[α] for 0 ≤ α ≤ 1.

• Step 2. Solve equation n[α] = m[α] (for α real in [0, 1]), to compute the intersections
between α-lowers bound of n and m.

If no intersection exist:

• Step 3. the relation between n[α] and m[α], for each 0 6 α 6 1, is determined by the
relation existing between n[0] and m[0] as follows:

n[0] < m[0] ⇒


q[α] = n[α]

p[α] = m[α]

m[0] < n[0] ⇒


q[α] = m[α]

p[α] = n[α]

The process stops with p[α] and q[α], for each 0 6 α 6 1, as output.

Else, if some intersection exists, the computation of p[α] and q[α] is constructed piecewise
on a partition of the interval [0,1] opportunely generated at the following step.

• Step 4. The solutions of the equation n[α] = m[α] (for α real in [0, 1]) are computed: sol =
[sol1, sol2, · · · , solr], and a vector of nodes nod = [nod1, nod2, · · · , nodk] s opportunely set
in order to create a partition of the interval [0, 1] by the elements of sol. Note that r = k
if and only if {0, 1} are elements of sol.

• Step 5. Indicating with p
i
[α]= {p[α], nodi 6 α 6 nodi+1} and q

i
[α]= {q[α], nodi 6 α 6

nodi+1}, p[α] and q[α] are constructed piecewise on the partition of [0, 1] as follows.

Two indicators n , m , initialized by:

n = n[nod1],m = m[nod1]

are created. If n = m, nod1 is substituted by a point in the interval [nod1, nod2] in order
to have n ̸= m.

for i = 1 : k − 1

n < m ⇒


q
i
[α] = n[α]

for nodi 6 α 6 nodi+1;

p
i
[α] = m[α]
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m < n ⇒


q
i
[α] = m[α]

for nodi 6 α 6 nodi+1;

p
i
[α] = n[α]

New indicators n, m are computed for the next step of the for loop.
endfor

• Step 6. p[α], q[α] are finally computed defining symbolic Matlab piecewise functions com-
posed by sub functions p

i
[α] and q

i
[α] respectively, for i = 1 : k − 1.

Simulation results

The real financial data we refer as been derived by De Marco et al. (2018). Using Furfine
(2003) data set, De Marco et al. (2018) construct a system of 719 commercial banks trading on
Federwire System, classified into seven groups (called A, B, C, D4, D3, D2, D1) according to the
volume of funds traded. The exposures of a bank from one group in another bank from another
group are defined as triangular fuzzy numbers for which the infimum and the supremum of the
support and the core coincide with the minimum, the maximum and the average value of the
transactions between the two groups, taken over the sample period. (See De Marco et al. (2018)
for a detailed description of the construction of the data set). Since the fuzzy fictitious default
algorithm involves symbolic calculus, it has an high computational cost. For this reason it has
been opportunely constructed a subset of 50 of the 719 banks. Then the algorithm was run on
this data set, inflicting a fixed shock x on a different type of bank, for each simulation10.

10Following the classical approach, the exogenous shock is assumed to be a vector x = (x1, . . . , xn) where each
component, xi, is a triangular fuzzy number representing the exogenous shock which affects the (ante-shock)
capital of bank i, moreover it is characterized by the difference bi − ci.
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A B C D4 D3 D2 D1

A
KA = 1000000000

K̂A = 3260000000

KA = 10000000000

32464297
47235030
60805315

2147385
3653538
6143909

730707
2557476
4853986

9333
24864
51446

9333
24864
51446

9333
24864
51446

9333
24864
51446

B
KB = 1000000000

K̂B = 3260000000

KB = 10000000000

17046189
24552768
45151178

3485197
5842173
10790707

878001
2379317
4135320

18889
43627
78433

18889
43627
78433

18889
43627
78433

18889
43627
78433

C
KC = 1000000000

K̂C = 3260000000

KC = 10000000000

830422
1898107
4401237

106768
366063
955832

55361
257035
818558

4633
8197
16598

4633
8197
16598

4633
8197
16598

4633
8197
16598

D4
KD4 = 1000000000

K̂D4 = 3260000000

KD4 = 10000000000

6514003
9512080
14240866

3440001
5168762
7031853

2060496
2841359
3863431

76552
100098
117728

76552
100098
117728

76552
100098
117728

76552
100098
117728

D3
KD3 = 100000000

K̂D3 = 269230769, 2

KD3 = 1000000000

1398712
2042471
3057854

738650
1109857
1509907

442437
610107
829571

16437
21493
25279

16437
21493
25279

16437
21493
25279

16437
21493
25279

D2
KD2 = 10000000

K̂D2 = 23684210, 53

KD2 = 100000000

719337
1050413
1572610

379877
570783
776523

227539
313769
426636

8453
11053
13000

8453
11053
13000

8453
11053
13000

8453
11053
13000

D1
KD1 = 1000000

K̂D1 = 5284552, 846

KD1 = 10000000

519521
758632
1135774

274355
412232
560822

164334
226611
308126

6105
7983
9389

6105
7983
9389

6105
7983
9389

6105
7983
9389

Table: Data set

With this data set, h = 50 has been set to be the maximum number of steps to be computed.
We get that the fixed point is never reached. However, focusing on the first four digits, it is
possible to deduce that, if the initial exogenous shock hints a bank in D1 causing its default,
the equality ηh−1 = ηh is reached for h = 2, while, if the initial exogenous shock hints banks
in any other group, the equality ηh−1[0] = ηh[0] is reached for h = 5. Moreover, when banks in
D1 fail, the contagion does not propagate in the financial network. When the exogenous shock
causes a fuzzy default of banks on a group different to D1, the contagion propagates only within
the small banks belonging to D1.
We get that each simulation gives ηi = ηH for every i in a group of banks H; so the output can
be summarized by a set of graphs representing the fuzzy numbers ηH in the plane (α, η), by the
plots of the α-lower bounds, η

H
[α], and the α-upper bounds, ηH [α], for 0 6 α 6 1.

The graphs obtained by simulating that the shock hits banks in group C are shown below11.

11Since for computational reasons the input data have to be triangular, for the simulations, z and u are chosen
to be the triangular fuzzy numbers defined respectively by z = (0, 0.1, 0.2) and and u = (0.9, 1, 1.1).
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Figure 1: ηD1.
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Figure 2: ηC .
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Figure 3: ηH for H different from C and D1.
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