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Abstract 
We study commodity taxation in markets where firms, such as Internet Service Providers, energy suppliers and 
payment card platforms, adopt multi-part tariffs. We show that ad valorem taxes can correct underprovision and 
hence increase welfare, provided the government applies differentiated tax rates to the usage and access parts of 
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1 Introduction

Multi-part tariffs are common among telephone and Internet connection providers, energy
distributors (electricity and gas), payment card platforms and parking operators. These firms
often charge consumers a fee for access in addition to a payment that depends on the amount
or duration of usage. These markets are generally characterized by significant concentration on
the supply side, which is likely to result in underprovision.1 Governments often apply indirect
taxation (e.g., VAT and excise taxes) to the above industries and, given their importance in
modern economies, the question arises of whether and how to design taxes without seriously
distorting provision and reducing growth. As we argue shortly below, this question is part of
an ongoing policy debate regarding the reform of indirect taxes applying to essential services.
However, quite surprisingly, existing research has devoted little attention to the design of
taxation in presence of multi-part tariffs.

Motivated by the above considerations, we study taxation of goods and services when
providers charge multi-part tariffs. We explore a relevant dimension along which taxes can
be designed to reduce their distortionary impact: the parts of the tariff to which they apply.
This dimension has so far been ignored by the literature, although there are several examples
of such differentiation in reality.2 We show that by applying different ad valorem tax rates
to each part of these tariffs, the government can correct underprovision, and hence increase
welfare, with a positive ad valorem tax on usage or access.

Our findings hinge on a simple observation. In markets where suppliers adopt linear prices,
the latter are the result of a trade-off between the revenue gain from inframarginal units and
the net loss from marginal ones. In equilibrium, therefore, suppliers operate on the elastic
part of the demand curve. Thus, if the government introduces a commodity tax (either
unit or ad valorem), the suppliers’ optimal response is to reduce provision. Consequently, if
the good or service is underprovided (as it is usually the case with imperfect competition),
taxation aggravates the distortion (Auerbach and Hines, 2002). However, when the suppliers
adopt multi-part tariffs, the trade-off governing their choice of prices is different. Typically,

1For example, the main U.S. cable operators hold de facto monopolies for high-speed services in several
local markets. The Federal Communications Commission (FCC) reported that about 20% of households
have access to a single broadband provider for a service of up to 4Mbits/s. This share rises to 30%
and 55% for speeds up to 10Mbit/s and 25Mbits/s, respectively (see https://www.fcc.gov/document/
chairman-remarks-facts-and-future-broadband-competition).

2For instance, excise taxes on either access or usage exist in the telecom sector. In several U.S. states,
subscribers to wireless telecommunication services pay a separate per-line tax on top of VAT and other state-
level taxes. Other examples include taxes on SMS, calls, handsets and SIM cards, applied by countries such
as Argentina, Brazil, Mexico, Greece, Turkey, Ukraine and Pakistan (Katz, 2015; Matheson and Petit, 2017).
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suppliers design the usage fees to induce the level of usage that maximizes the net surplus
from consumption, which they can capture via the access fees (Oi, 1971). As we show, this
logic implies that taxation can have counterintuitive effects: ad valorem taxes can increase
output, provided that different tax rates are set on the “usage” and “access” part of the tariff.
Thus, differentiated ad valorem taxes can produce a double dividend, by correcting distortions
due to market power while raising revenue for the government. In contrast, we do not find
efficiency-enhancing effects for unit or uniform ad valorem taxes.

In Section 3, we introduce an ad-hoc model to convey the basic mechanism of our analysis.
We then provide foundations to this model, exploring several settings where underprovision
takes place in presence of multi-part tariffs. First, we consider a model with identical
consumers and a monopolist providing access to a piece of infrastructure which is essential to
consume some final goods (Section 4.1). Examples include Internet Service Providers enabling
consumers to reach online content (e.g., movies, music, games, apps) and payment card systems
that consumers use for purchases. Although the infrastructure supplier can recover consumer
surplus via the access fee, consumers are charged a usage fee higher than marginal cost in
equilibrium. As shown by Economides and Hermalin (2015), restricting consumption at the
margin allows the infrastructure supplier to capture part of the surplus that would otherwise
accrue to the sellers of final goods. The combination of this fee with the mark-up set by final
good suppliers implies that there is underprovision. We show that the government can correct
this distortion with a positive ad valorem tax on usage, as long as the marginal cost is not
exceedingly large. If this condition holds, the equilibrium quantity lies on the inelastic part
of consumer demand, implying that the supplier’s optimal response to the tax is to decrease
the usage fee and increase provision. We extend this model in Section 5 where we consider a
duopoly of infrastructure providers, showing that our main results continue to hold.

Second, we consider taxation when the infrastructure provider offers a menu of tariffs to
screen different consumer types (Section 4.2). We assume perfect competition in the final goods
market, thereby abstracting from the distortion analyzed in the preceding setup. Therefore,
this setup also applies to situations where the infrastructure is not used to reach final good
providers, as in the case of parking at a garage or consuming energy for heating and operating
domestic appliances. In this context, the distortion is due to the provider’s seeking to reduce
the information rent left to the heavy users, which implies underproviding the light users
(Maskin and Riley, 1984). We find that an ad valorem tax on usage increases welfare as
long as the supplier’s gains from restricting the consumption of light users (to reduce the
information rent) and its marginal cost are sufficiently low. When these conditions hold, the
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usage fees are such that consumers’ demand is inelastic in equilibrium. Furthermore, taxing
access can also increase efficiency in this context. Indeed, the access tax weakens the supplier’s
incentive to distort the consumption of light users, because the revenue collected with access
fees is partly taxed away. As a result, when restricting consumption of light users has a strong
effect on the information rent, the supplier responds to the access tax by reducing their usage
fee and thus alleviating the underprovision.

Our findings provide useful insights for the design of fiscal instruments applied to network
services. In most countries, these industries are subject to VAT, sales or excise taxes, but
such levies typically apply uniformly to all parts of the tariffs. Our results suggest that such
an implementation may worsen market distortions, so governments may consider adopting
differentiated tax rates on separate tariff parts. More generally, our findings contribute
to a lively policy debate on the restructuring of commodity taxation applying to essential
services. A prime example is Internet access, which has attracted attention in light of the rapid
digitization of economic activity (European Commission, 2014). The U.S. Congress recently
passed the Permanent Internet Tax Freedom Act, which restricts taxation of Internet access
services. One of the main arguments in favor of the ban was that taxes would discourage
consumers from using Internet services, sapping their growth. In contrast, France has
reportedly considered taxing Internet connections and downloaded data, to replace declining
sources of revenue.3 Our results show that, when appropriately designed, taxation need not
result in reduced consumption.

2 Related literature

Our study relates to the longstanding literature that compares ad valorem to specific tax rates.
These taxes are equivalent under perfect competition, but not under imperfect competition
(Suits and Musgrave, 1955). Generally, the welfare dominance of either instrument depends
on market conditions, such as the degree of concentration and whether one considers Cournot
or Bertrand equilibrium (Delipalla and Keen, 1992; Skeath and Trandel, 1994; Anderson et
al., 2001; Wang et al., 2018).4 Recently, Peitz and Reisinger (2014) show that it is more

3The Permanent Internet Tax Freedom Act prohibits federal, state and local governments from taxing
Internet access, although some states have retained the right to impose preexisting taxes. See https:
//www.congress.gov/bill/114th-congress/house-bill/235. The French government proposed in 2008
“an infinitesimal sales tax on Internet access and mobile telephony” (see http://content.time.com/time/
world/article/0,8599,1702223,00.html) and, more recently, a “new tax on the use of bandwidth by large
operators”.

4See Auerbach and Hines (2002) for an overview of commodity taxation in imperfectly competitive markets.
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efficient to levy an ad valorem tax in the downstream than in the upstream market.5 Wang
and Wright (2017) show that ad valorem taxes allow efficient price discrimination across goods
with different costs and values, unlike unit taxes. Differently from our paper, this literature
focuses on firms that are restricted to linear pricing. Furthermore, the comparison between
tax instruments is generally about which instrument produces the smaller distortion. Instead,
in our paper, (differentiated) ad valorem taxes dominate because they reduce the distortions
linked to the structure of the multi-part tariff.

Few papers on commodity taxation have considered multi-part tariffs. To our knowledge,
none allows for different tax rates on different parts of the tariff, which is our key contribution.6

Laffont (1987) studies taxation of a monopolist that discriminates consumers using non-linear
tariffs. He shows that, when the government uses specific taxes, the welfare-optimal policy is a
subsidy to increase production. Cheung (1998) shows that the dominance of ad valorem taxes
established by Skeath and Trandel (1994) remains intact under a nonlinear pricing monopolist.
Jensen and Schjelderup (2011) show that these results remain valid even if some consumers
are excluded. They also find that ad valorem or specific taxation increases the usage fee for
all consumers, but most likely reduces the access fee.7

An important finding of our paper is that taxation can increase total surplus. Efficiency-
enhancing effects of taxation have been shown in other papers, although the underlying
mechanisms are different from ours. Hamilton (2009) considers multi-product transactions in
retail markets, finding that excise ad valorem taxes decrease equilibrium output per product in
the short-run, but increase it in the long-run (with endogenous entry). Carbonnier (2014) finds
that nonlinear and price-dependent tax schedules can result in lower prices and thus higher
welfare. Cremer and Thisse (1994) show, in a framework with endogenous vertical product
differentiation, that a small uniform ad valorem tax lowers consumer prices and increases
welfare.8

5A recent literature has pointed out an analogy between the effects of prices set by upstream firms and
taxation on other firms in the supply chain (see Economides and Hermalin, 2015; Johnson, 2017; Gaudin and
White, 2014). We contribute to this literature by studying the effect of fiscal policy on upstream firms.

6Some studies have explicitly considered differentiated taxation, though not in presence of nonlinear pricing.
Cremer et al. (2001) prove that differentiated commodity tax rates are a relevant policy instrument besides
income taxes for optimal tax policies, contrary to the well-known finding by Atkinson and Stiglitz (1976).
Cremer and Thisse (1994) show that differentiating commodity tax rates according to the quality of the
product possibly increases welfare.

7Some authors (e.g., De Borger, 2000) have also analyzed the design of two-part tariffs by public bodies,
but not the effects of taxation on firms that adopt nonlinear pricing.

8The result that taxation can reduce the consumer price is referred to in the tax incidence literature as
“undershifting”. This phenomenon is what Edgeworth (1925) called the “Taxation Paradox”. Hotelling (1932)
illustrates that this result can hold with imperfect competition. Recently, Agrawal and Hoyt (2019) show
in a multi-product setting that undershifting can occur when products are complements and with perfectly
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The paper also relates to the literature on taxation in two-sided markets. As pointed out
by Rochet and Tirole (2006), in such markets “the volume of transactions [...] depends on
the structure and not only on the overall level of the fees charged by the platform”. Taxing
one or both sides of the market (at different rates) can thus have counterintuitive effects, by
affecting the structure of fees. Kind et al. (2008), show that the supply of goods provided
by a two-sided platform may increase under ad valorem taxation. More recently, Bourreau et
al. (2018) find that an ad valorem tax on subscriptions or on advertising may raise welfare.
Belleflamme and Toulemonde (2018) show that taxation may either increase or decrease the
profits of competing two-sided platforms. Tremblay (2018) distinguishes taxation at the access
and the transaction level, and finds that either tax may increase welfare because of network
effects. Bloch and Demange (2018) find that taxing access and data revenues at different
rates is the most effective way to reduce a platform’s incentive to collect data. We connect to
this literature because, in our model, differentiated taxes correct distortions by altering the
structure of fees as well. However, our findings do not hinge on two-sided effects.

3 A bare-bones model

In this section, we provide a stylized model of taxation in a market with multi-part tariffs, to
convey the main message of our analysis. We provide foundations for this ad-hoc model in
Section 4.

Consider a monopolist firm, I, providing access to a piece of infrastructure. There are
Θ different types of consumers, indexed by i = {1, ..., Θ} and each group is of unit size.
We assume I can observe the quantity consumed by each individual and is therefore able to
charge a two-part tariff Ai+piq, where Ai is the access fee, pi the usage fee charged to a type-i
consumer and q the quantity consumed. Firm I could be an Internet Service Provider (ISP),
a distributor of natural gas or electricity, a payment card platform or a parking operator.
Accordingly, the quantity q can represent Gigabytes of data, cubic meters of gas, kilowatts
of electricity, card transactions or the duration of parking, respectively.9 The monopolist’s
marginal cost is c ≥ 0.

Let ui (q) be the utility a type-i consumer derives from consuming q units, which is

competitive suppliers. The mechanism driving the results is very different than in our model.
9Two-part tariffs are common among energy distributors (Ito, 2014), parking operators (Inci, 2015) and

payment card platforms (Bedre-Defolie and Calvano, 2013). Telecom suppliers often adopt more complex
tariffs (Economides and Hermalin, 2015). However, we show in Appendices C.8 and D.1, that there is no loss
of generality in restricting attention to two-part tariffs.
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increasing and concave. We denote by qi the quantities chosen (i.e., demand) by type-i
consumers, given the usage fee pi. These quantities are such that:

dui
dq

= pi, i = 1, ...,Θ. (3.1)

The government can levy unit or ad valorem commodity taxes. We assume the latter can
be differentiated according to the part of the tariff applied by I. Let τ be the unit tax rate, tA
the ad valorem tax rate on the access fee and tp the ad valorem tax rate on the usage charge.
The standard ad valorem tax tA = tp = t is a special case of this tax system.10 Hence, firm
I’s net of tax profit (which we assume to be concave in pi for i = 1...Θ) is

πI =
∑

i=1...ΘAi (1− tA) + [pi (1− tp)− τ − c] qi. (3.2)

In a standard monopoly model (Oi, 1971), firm I can capture each consumer’s net surplus,
ui (qi)− piqi, with the access fee. However, in more realistic settings there may be constraints
on the monopolist’s ability to extract consumer surplus. To convey the essence of our results,
at this stage we model these constraints in an ad-hoc way, assuming there is an exogenous part
of surplus, Fi, that I cannot extract from consumers of type i. A possible foundation for Fi is
that part of the surplus may be captured by providers of complementary goods. For example,
connection to an ISP enables consumers to reach online content (e.g., music, video, games,
apps) and part of consumer surplus accrues to content providers (Economides and Hermalin,
2015). A second possible foundation relates to the presence of multiple consumer types: the
supplier must leave an information rent to some types in order to obtain the intended self-
selection (Maskin and Riley, 1984). We model these foundations for Fi in Sections 4.1 and
4.2, respectively.

Given pi and qi for i = 1...Θ, Ai satisfies the following equality

Ai = ui (qi)− piqi − Fi, i = 1, ...,Θ. (3.3)

We assume Fj to be a function of the usage fees, pi, for i, j = 1...Θ. Indeed, as we show
in Section 4.1, the price of goods complementary to the network infrastructure, and thus the
surplus extracted by the providers of those goods, decrease in I’s usage fee. Furthermore, as

10Our choice of the tax base for tA and tp is based on several considerations. First, as will become clear,
distortions in the market are due to the structure of the two-part tariff. Second, these taxes should be easy
to calculate and implement for the tax administration. Third, excise taxes on either access or usage already
exist in some countries for markets such as telecom, as we have argued in the Introduction (footnote 2).
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we show in Section 4.2, when I proposes a menu of tariffs to screen consumers, raising the
price paid at the margin by certain types makes screening more effective, because information
rents decrease. Accordingly, we assume that ∂Fj

∂pi
≤ 0, i, j = 1..Θ.11

We define welfare as the sum of profits, consumer surplus and tax revenue, which simplifies
to
∑

i=1...Θ ui (qi) − cqi. It is straightforward that the allocation maximizing welfare is such
that dui

dq
= c. We denote the equilibrium usage fees (conditional on the tax rates) as pi. Using

equations (3.2) and (3.3), these fees satisfy the following first-order conditions:

dπI
dpi

= (1− tA)

[(
dui
dqi
− pi

)
dqi
dpi
− qi −

∑
j=1,...,Θ

∂Fj
∂pi

]
+ (3.4)

+ (1− tp)
(
pi
dqi
dpi

+ qi

)
− (c+ τ)

dqi
dpi

= 0, i = 1, ...,Θ.

In the absence of taxation (tA = tp = τ = 0), and given (3.1) and (3.4) we obtain

dui
dq

= pi = c+

∑
j=1...Θ

∂Fj
∂pi

dqi
dpi

, i = 1, ...,Θ, (3.5)

This expression implies that, in equilibrium, consumers’ marginal utility from consumption
is weakly higher than the marginal cost c (given ∂Fj

∂pi
≤ 0, i, j = 1, ...,Θ and dqi

dpi
< 0). As

long as ∂Fj
∂pi

< 0 for some j, raising pi above c produces a net gain. Hence, I sets the usage
fees in a way that restricts consumption with respect to the welfare-optimal level, to relax the
constraint (3.3).

This market inefficiency calls for government intervention. The focus of our subsequent
analysis is whether taxation can alleviate this distortion. As a first step, we consider standard
instruments that the literature has concentrated on so far (see Appendix B for the proofs of the
statements that follow). Consider first the effect of unit taxes. Differentiating (3.4) delivers
dpi
dτ
> 0, and, hence dqi

dτ
< 0. The intuition is that when τ rises, the effect on firm I is the same

as that of an increase in the production cost. Thus, firm I’s best response is to reduce total
provision, which is achieved by increasing pi. Consider now uniform ad valorem taxation,
i.e. tA = tp = t. We obtain, by differentiating (3.4), that dpi

dt
≥ 0 and therefore dqi

dt
≤ 0.

The intuition is that the tax reduces the total revenue collected by the monopolist and, hence,
makes provision implicitly more costly. Thus, neither unit nor uniform ad valorem taxation can
alleviate the restrictions imposed by firm I, and both actually worsen the distortion if c > 0.

11For example, suppose there are no complementary goods, that Θ = 2 and type 1 potentially mimics type
2. Given these assumptions, we would have ∂F2

∂p2
= ∂F1

∂p1
= ∂F2

∂p1
= 0 and ∂F1

∂p2
< 0.
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In other words, conditional on relying on these standard instruments, the welfare-maximizing
policy is to subsidize the provider. This is a well-known result from the commodity taxation
literature (Auerbach and Hines, 2002).

We now analyze the effects of differentiated ad valorem taxes. Differentiating (3.4) with
respect to the usage tax, tp, we get

dpi
dtp

=

(
pi
qi

dqi
dpi

+ 1
)
qi

d2πI
dp2
i

, i = 1, ...,Θ. (3.6)

Because the denominator on the right hand side of (3.6) is negative by concavity of πI , the
tax tp reduces pi when the numerator is positive. This condition holds if and only if the
equilibrium consumption level, qi, is on the inelastic part of consumer demand. To understand,
consider that tp targets the revenue collected through the usage fee, piqi. Therefore, firm I

has an incentive to change pi in a way that reduces such revenue. If qi is on the inelastic
part of demand, the ensuing change in pi is negative. Consequently, consumption by type-i
individuals increases. We characterize the conditions on parameters such that dpi/dtp < 0 holds
in Sections 4.1 and 4.2. However, to get a sense of when dpi/dtp < 0 can hold, consider an initial
equilibrium with zero taxes. Given qi decreases with pi, the condition pi < −qi/dqidpi

holds when
neither term on the right hand side of (3.5) is exceedingly large.

Observe that dpi/dtp < 0 could not hold if firm I were restricted to charging linear tariffs
(i.e., Ai = 0). Indeed, firms with market power that charge linear prices operate on the elastic
part of demand and, thus, typically respond to ad valorem taxes by reducing output (Auerbach
and Hines, 2002).

Finally, consider the effect of tA on pi. Differentiating (3.4) and using (3.1), we obtain

dpi
dtA

=

(
dui
dq
− pi

)
dqi
dpi
− qi −

∑
j=1...Θ

∂Fj
∂pi

d2πI
dp2
i

=
−qi −

∑
j=1...Θ

∂Fj
∂pi

d2πI
dp2
i

, i = 1, ...,Θ. (3.7)

To understand this expression, note that tA gives firm I an incentive to reduce its access fees.
Given (3.3) holds in equilibrium, reducing such fees involves changing the usage fees. The
sign of the required change depends on pi’s effect on type-i consumers’ net surplus, ui − piqi,
and the revenue constraints,

∑
j=1...Θ Fj. Again, we postpone characterizing the conditions on

parameters such that dpi/dtA < 0 to Sections 4.1 and 4.2. However, we expect that dpi/dtA < 0

when the terms
∑

j=1...Θ
∂Fj
∂pi

are large in magnitude. Notice from (3.5) that these terms increase
pi and thus reduce qi, all else given.
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To summarize, we have illustrated that differentiated ad valorem taxation can increase
provision and welfare in presence of multi-part tariffs. To our knowledge, this is a previously
unnoticed effect of commodity taxes.

4 Foundations of the bare-bones model

In this section, we provide foundations of the ad-hoc model presented above. In particular,
we characterize the term Fi introduced in expression (3.3) and its relation to the tariffs set
by the infrastructure provider. In Section 4.1, we consider a setting with identical consumers,
where the infrastructure is essential to consume some final goods. In that setting, Fi is linked
to the rent captured by the providers of final goods when the latter have market power. In
Section 4.2, we consider taxation when the supplier offers a menu of tariffs, screening different
consumer types (light and heavy users). In that setting, Fi originates from the information
rent left to heavy users.

4.1 A representative consumer framework

This section builds upon the model of Economides and Hermalin (2015). We consider a unit
mass of identical individuals who want to consume N goods, indexed by j = 1, ..., N . Each
good is supplied by a different monopolist, also indexed by j. The utility function is

U =
N∑
j=1

u (qj) + y, (4.1)

where qj are units of good j and y is a numeraire good. We assume du
dqj

> 0 > d2u
dq2
j
.12 To

consume these goods, individuals need to access an essential infrastructure, provided by firm
I.13 For convenience, we refer to the good provided by I as the “infrastructure” good and to
the N goods as “final” goods.

As in Economides and Hermalin (2015), firm I can be thought of as an ISP that connects
consumers to providers of digital content (e.g. music and video). I could also be a payment

12In this setup, we treat the N goods as independent. In Appendix C.2, we provide an alternative version of
the model where these goods are imperfect substitutes and show that our results are not affected qualitatively.

13In Appendix C.3, we show that our results are robust to allowing consumers to acquire goods without using
firm I’s infrastructure as long as bypassing the infrastructure is costly (for instance, carrying more cash instead
of using a card may imply a cost for consumers). Moreover, we consider competition between infrastructure
providers in Section 5.
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card platform that enables consumers to purchase goods supplied by several retailers.14

Given all consumers acquire access to the infrastructure good in equilibrium (see below),
the profit of final good provider j reads

πj = (xj − φ) qj, j = 1, .., N, (4.2)

where xj denotes the price of a unit of good j and φ is the marginal cost, assumed symmetric
for all final good providers. We assume for convenience that such providers charge linear
prices.15

For ease of exposition, we assume that for each unit of final good a consumer needs a fixed
quantity of the infrastructure good, which we normalize to one. For example, watching a movie
online entails downloading a given quantity of data (say, 1 GB). Furthermore, individuals
need to make one transaction with the payment card provider per purchase. Given this
assumption, consumption of

∑N
1 qj units of the final goods entails using the same quantity of

the infrastructure good.
Firm I charges a two-part tariff of the form

TI = A+ p
N∑
1

qj, (4.3)

where A is the access fee and p is a per unit (usage) fee.16

14We ignore payments from final goods providers to the infrastructure provider here. In some circumstances,
these payments may be limited by regulation (e.g., net neutrality rules for ISPs). However, they are common
in other markets, e.g. payment card platforms that charge merchants. In Appendix C.4.1, we let the usage fee
p be charged to final good providers. However, the physical incidence of p is irrelevant for the analysis, because
this fee is similar to a tax on consumption of final goods by the infrastructure provider (Weyl and Fabinger,
2013). Alternatively, the infrastructure provider could charge a lump-sum access fee to the providers of final
goods. We show in Appendix C.4.2 that our main results are not affected as long as final good providers have
some bargaining power, so that I is unable to extract all their profit.

15Linear prices are natural for such final good providers as brick-and-mortar retailers. Several digital content
providers charge linear prices (e.g., the movie stores on iTunes and Google Play), though some adopt nonlinear
tariffs (e.g., Netflix). We show in Appendix C.5 that our results are robust to this modification, as long as
at least one final good provider charges linear prices. Note that the linear formulation can also capture the
case where content providers are ad-financed (Economides and Hermalin, 2015). In this interpretation, xj
can be seen as the quantity of ads per unit of content. Normalizing the advertising rate to one, xjqj is the
per-consumer ad revenue. Given that ads decrease utility, the effect on consumers is the same as that of a
monetary price.

16In Appendix C.8, we show that firm I makes at least as much profit with a two-part tariff than with a
three-part tariff of the form TI = A+ p ·max

{
0,
∑N

1 qj − L
}
, where L is a consumption limit (i.e., a certain

quantity of service bundled with access) and p is a per unit fee applying to all units over the limit (an “overage
charge”). Such a three-part tariff encompasses most of the tariff structures encountered in reality. First, if
L > 0 and p is finite, this tariff has a “loose” limit: the consumer can exceed the limit, but has to pay an
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The individual’s budget constraint reads

M ≥ A+ p
N∑
1

qj +
N∑
1

xjqj + y, (4.4)

where M is the exogenously given income. Thus, firm I earns the before-tax profits

πI = A+ (p− c)
N∑
1

qj, (4.5)

where c ≥ 0 is the marginal cost of the infrastructure good.
Social welfare is defined as the sum of consumer surplus, firm profits and tax revenues,

which equals total surplus:

W =
N∑
j=1

u (qj)− (c+ φ) qj +M. (4.6)

From this expression, one obtains the socially optimal consumption levels q∗ (we drop the
index j because these quantities are symmetric for all final goods), such that:

du

dqj
= c+ φ, j = 1, .., N. (4.7)

That is, the socially optimal quantities are such that marginal utility equals the sum of
marginal costs of provision.

We have shown in Section 3 that standard tax instruments (i.e. a uniform ad valorem
tax or a unit tax on the infrastructure good) cannot increase welfare.17 Because this result
naturally extends to the current setting as well, we focus here on differentiated ad valorem
tax rates. That is, we allow for a “usage” tax rate tp that applies to p

∑N
1 qj, and an “access”

tax rate tA, which applies to the access payment A, where tk ∈ [−1, 1], k = A, p.
We assume the following timing of moves. First, the government sets tA and tp. Then,

the infrastructure provider sets its tariff. Next, consumers decide whether to acquire access.
Thereafter, the final good providers simultaneously decide on their prices, xj. Finally,
consumers choose qj.18

overage charge per unit. Second, if L > 0 and p =∞, the tariff has a “strict” limit, which cannot be exceeded.
Obviously, when L = 0, the tariff has only two parts. See, e.g., arstechnica.com for examples of tariffs set by
residential ISPs in the US that fit this description (http://tiny.cc/xp9h9y).

17In Appendix C.6, we also analyze taxes on final goods, and show that such taxes cannot increase welfare.
18We consider an alternative timing, with sellers of final goods moving before I, in Appendix C.1. Changing

12



We solve the model by backward induction, starting from the consumer’s problem. Given
the budget constraint binds and using (4.3), utility is

U =


∑N

1 [u (qj)− (p+ xj) qj]− A+M if acquiring access

M otherwise.
(4.8)

To satisfy the consumer’s participation constraint, the infrastructure provider can at most
extract the consumer’s net surplus from consumption, i.e. A ≤

∑N
1 [u (qj)− (p+ xj) qj]

in equilibrium. Under this condition, all consumers acquire access to the infrastructure.
Maximizing (4.8) with respect to qj yields

du

dqj
= p+ xj, j = 1, .., N, (4.9)

which defines a consumer’s demand for good j, denoted qj (p, xj). Note that, to save notation,
in the following we omit the arguments of this demand. Clearly, the usage fee, p, and the final
goods price, xj, have the same effect on this demand, that is ∂qj

∂p
=

∂qj
∂xj

< 0.
Each final good provider, j = 1, .., N , maximizes (4.2) with respect to xj. Assuming

concavity, the equilibrium price of good j (given p and the tax rates), is determined by

∂πj
∂xj

= qj + (xj − φ)
∂qj
∂xj

= 0⇒ xj = φ− qj
∂qj
∂xj

, j = 1, .., N. (4.10)

Thus, xj follows from the standard monopoly markup rule. Because consumers’ utility is
symmetric and separable, and final good suppliers are symmetric as well, the price defined by
(4.10) is identical for all j. Therefore, we denote the equilibrium price by x and the demand
for each final good as q, dropping the index j.

Intuitively, because consumer demand for final goods depends on p as well as x, the
infrastructure provider may influence the price set by final good providers through its usage
fee. The effect of p on x is ambiguous a priori. However, it is reasonable to expect that in
most circumstances x decreases with p, because p reduces the surplus consumers get from each
additional unit of final goods. A sufficient condition to ensure this intuitive outcome is that
consumers’ demand is not exceedingly convex.19 To streamline the exposition, in line with

the timing affects the pricing decisions by firm I, but not the main results regarding the effects of taxation.
19Starting from (4.10) and using ∂q/∂p = ∂q/∂x, we get ∂x/∂p < 0 if and only if ∂q/∂x +

(x− φ)
(
∂2q/∂x2

)
< 0. This condition holds as long as ∂2q/∂x2 is either non-positive or relatively small

in magnitude.
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Economides and Hermalin (2015), we assume that this condition holds, so that

∂x/∂p < 0. (4.11)

However, as we show in Appendix A.1, the combined price p+ x increases in p, i.e.

d (p+ x)

dp
= 1 +

∂x

∂p
> 0. (4.12)

Thus, the overall effect of an increase in the usage fee on consumption is negative

dq

dp
=
∂q

∂p
+
∂q

∂x

∂x

∂p
=
∂q

∂p

(
1 +

∂x

∂p

)
< 0. (4.13)

We now turn to the infrastructure provider’s problem:

max
A,p

πI = (1− tA)A+ (p (1− tp)− c)Nq, s.t. A ≤ N [u (q)− (p+ x) q] . (4.14)

The participation constraint binds in equilibrium, because the infrastructure provider could
otherwise increase A without changing consumer behavior and make strictly higher profits.
Hence, we have

A = N [u (q)− (p+ x) q] . (4.15)

Thus, the infrastructure provider cannot extract the whole consumer surplus, because part of
it, Nxq, accrues to the suppliers of final goods. This term provides a foundation to the term
Fi in expression (3.3) of Section 3 (given a single consumer type).

Using the access fee characterized above, the maximization problem of firm I simplifies to

max
p
πI = N [(1− tA) (u (q)− pq − xq) + ((1− tp) p− c) q] . (4.16)

The equilibrium usage fee (conditional on tA and tp), denoted p, satisfies the following first-
order condition

N (1− tA)

[(
du

dq
− p
)
dq

dp
− q −

(
x
dq

dp
+ q

∂x

∂p

)]
+N (1− tp)

(
p
dq

dp
+ q

)
−Ncdq

dp
= 0. (4.17)

The last term in square parentheses captures the effect of the usage fee on the part of consumer
surplus, Nxq, that accrues to final goods providers. Using the equilibrium condition (4.9) in
the above expression, we get
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p =
1

1− tp

(
(tp − tA)

q
dq
dp

+ (1− tA)

∂x
∂p
q

dq
dp

+ c

)
. (4.18)

To analyze the effects of taxation, it is useful to first consider as a benchmark the case of
zero taxes. Setting tA = tp = 0 in (4.17) yields

du

dq
=
xdq
dp

+ q ∂x
∂p

dq
dp

+ c. (4.19)

The numerator on the right hand side of this expression corresponds to
∑

j=1...Θ
dFj
dpi

in
expression (3.5). It captures the distortion that the infrastructure provider induces to extract
part of the surplus otherwise accruing to the suppliers of final goods (Economides and
Hermalin, 2015). Indeed, using (4.18), equation (4.19) simplifies to

p =

∂x
∂p
q

dq
dp

+ c, (4.20)

which shows that, despite its ability to extract surplus via the access fee, the infrastructure
provider charges a usage fee above the marginal cost. Doing so induces the suppliers of
final goods to reduce their own prices, so that the additional revenue from usage that firm I

receives from increasing p exceeds the reduction in the access fee needed to maintain consumer
participation.

Summing up, because p > c and x > φ with no taxes, consumption falls short of the socially
optimal level, i.e., q < q∗. We now analyze how the government can design its instruments to
alleviate this distortion. Focus first on the effects of the tax on access. Totally differentiating
(4.17) with respect to p and tA and using (4.9) yields

∂p

∂tA
= − dA/dp

∂2πI/∂p2
= −

(
1 + ∂x

∂p

)
qN

∂2πI/∂p2
> 0. (4.21)

Firm I responds to tA by reducing A. In this setting, the implication is that p increases.
To see why, consider that, in equilibrium, A captures the consumer’s net surplus, satisfying
(4.15). This surplus decreases with p, given that the combined price of final goods, p + x,
increases with the usage fee (see (4.12)). In other words, I reacts to the access tax by relying
less on the access fee and more on usage fee to extract surplus from consumers.

Consider now the effects of the usage tax. Totally differentiating (4.17) with respect to p
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and tp delivers

∂p

∂tp
=

(
1 + p

q
dq
dp

)
qN

∂2πI/∂p2
=

(
1 + ∂x

∂p

)(
(1− tA) q + c∂q

∂p

)
N

(1− tp) ∂2πI/∂p2
. (4.22)

The first equality in (4.22) indicates that p decreases with tp if and only if q lies on the
inelastic part of consumer demand, i.e. p

q
dq
dp
> −1 holds. Under this condition, the tax base,

Npq, decreases with p. Thus, reducing p is the provider’s optimal response as tp increases.
The last equality in (4.22) follows from the equilibrium usage fee in (4.18) and equation (4.13).
We obtain

∂p

∂tp
< 0⇐⇒ c < −(1− tA) q

∂q
∂p

. (4.23)

Hence, if the marginal cost c is sufficiently low, an increase in the usage tax reduces the
usage fee.20 The reason is that higher marginal costs imply a higher usage fee, p, and a lower
consumption level, q. Hence, a higher marginal cost makes it less likely that q lies on the
inelastic part of demand. Similarly, the usage fee is less likely to decrease with tp the larger
is tA, because the access tax increases p (as pointed out above). Note also that the condition
(4.23) tends to be more stringent when the cost of final goods, φ, increases, because this cost
results in a higher price x and reduces q, all else equal.

In sum, because q decreases with the usage fee, the previous results imply that consumption
can be stimulated either by reducing the tax on access or, provided (4.23) holds, increasing the
tax on usage.21 Therefore, taxation can reduce the distortion stemming from the providers’
market power.

The effects of a change in either tax on welfare are given by

∂W

∂tk
= N

(
du

dq
− c− φ

)
dq

dtk
= N (p+ x− c− φ)

dq

dtk
, k = A, p. (4.24)

Thus, because at equilibrium p + x > c + φ holds, the government can increase welfare by
raising tp, provided that the marginal cost c is small enough (as specified in (4.23)). This
finding readily brings us to the optimal tax rates. Ideally, the government should implement

20The right hand side of (4.23) also depends on c, but remains strictly positive when c approaches zero. By
continuity, the inequality holds when c is small enough.

21Although taxation affects the access fee as well, there is no effect on market participation because all
consumers connect in equilibrium. In Appendix E, we consider an extension where only consumers with a
sufficient valuation for access connect. While the effects of taxing usage on the consumption of final goods
do not change, there may be a reduction in the number of consumers connecting. However, a tax on access
expands the number of connections. As a result, taxing usage (resp. access) is optimal when the demand for
access tends to be inelastic (resp. elastic).
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the socially optimal allocation, which is characterized by p + x = c + φ. However, because
x > φ in equilibrium, the optimum can only be achieved if p is below the marginal cost c.
For the sake of exposition, we restrict our attention to equilibria where p ≥ c.22 Given p + x

increases with p (see (4.12)), the constrained optimum is such that p = c. Hence, using (4.18),
we conclude

p = c⇐⇒ tp =
tA

(
1 + ∂x

∂p

)
− ∂x

∂p

1 + c
q
dq
dp

, (4.25)

which suggests that an infinite set of pairs (tp, tA) implements the constrained optimum. Many
of these pairs involve positive tax rates on access and usage. However, if (4.23) holds, it is
sufficient to tax usage only, setting t∗p = −

∂x
∂p

1+ c
q
dq
dp

> 0 and t∗A = 0.23

Proposition 1. Consider a setting with homogeneous consumers, imperfect competition in the
markets for final goods and a monopolist infrastructure provider adopting a multi-part tariff.
If the marginal cost of infrastructure usage is sufficiently low (see (4.23)), an ad valorem usage
tax increases consumption and social welfare.

Note that a small marginal cost is fairly realistic for the main applications of this model.
For instance, the cost for ISPs of delivering an additional Gigabyte of data is close to zero.
Similarly, there is virtually no cost of handling an additional transaction for payment card
platforms.24

Our analysis focuses on efficiency, but we can also shed some light on the distributional
consequences of taxation in this setting. It is straightforward to show that the tax on usage
reduces the profit of the infrastructure supplier. The effect on final good providers’ profits is
instead positive as long as ∂p

∂tp
< 0, because final good providers can charge higher prices and

sell higher quantities if the usage fee decreases with tp. To continue, the infrastructure provider
captures the whole net consumer surplus. Therefore, the effect of taxation on consumers is
zero. Note also that we have assumed that tax revenue has the same weight as the other
components of social welfare. That is, the cost of public funds equals one. Assuming a larger
weight would of course increase the welfare benefit of the taxes we consider. For example, the
government could use their revenue to reduce other distortionary taxes in the economy. Thus,

22Usage fees below marginal cost are possibly not feasible in applications such as telecom and payment cards,
where marginal costs are most likely very small. However, our conclusions about the optimal tax rates do not
change if we allow for p < c, as we show in Appendix C.7.

23Note that when tA = 0, (4.23) is sufficient to ensure the denominator of (4.25) is positive, given
0 > dq

dp = ∂q
∂p

(
1 + ∂x

∂p

)
> ∂q

∂p .
24Telecom firms may face issues of network congestion, which could affect the optimal usage fees. We discuss

these issues in Section 6.
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if provision increases with tp, this tax would produce a double dividend.

4.2 Menus of tariffs and screening

In the industries where multi-part tariffs are common, such as telecom and energy distribution,
firms often propose menus of tariffs with the goal of screening consumers. We now explore
the effects of differentiated taxation in this context, characterizing the conditions such that
imposing differentiated taxes on access and usage increases welfare. In so doing, we provide
an additional foundation for the ad-hoc model in Section 3.

We again consider a monopolist infrastructure provider I that consumers use to access
final goods. However, we relax the assumption of homogeneous consumers and allow them
to differ in the utility they get from final goods. To keep the setup as simple as possible, we
assume there is only one such good (N = 1). We consider two types of individuals, indexed
by i = h, `, where h stands for “heavy user” and ` for “light user.” We normalize the total
number of consumers to one, denoting the share of type h by σ ∈ (0, 1). The utility function
is

u (q, αi) + y, i = h, `, with
∂2u

∂q∂α
> 0, (4.26)

The preference parameter αi, assumed private information, determines a consumer’s utility
from the final good, with αh > α` > 0. This parameter determines also the intensity of
consumers’ infrastructure network usage. The infrastructure provider engages in second-
degree price discrimination, by proposing a menu of tariffs. We retain the same timing as
in the previous sections and restrict again attention to equilibria with two-part tariffs.25

To concentrate on the effects of taxation when the infrastructure provider screens
consumers, we assume there is perfect competition in the final good market. Therefore, the
price of a unit of final good equals marginal cost, φ. Hence, unlike in Section 4.1, influencing the
final good’s price is not a motive driving the choice of tariffs by the infrastructure provider. In
fact, in this setting we could ignore final goods altogether (dropping φ from the expressions that
follow). Consequently, this model can also apply to situations where connecting to providers
of final goods is not the main purpose of using the infrastructure, as in, e.g., the case of energy
distribution or parking. Hence, one may also interpret q as the length of stay in a parking
garage or as the amount of energy consumed for heating and operating domestic appliances.

The net utility of a type-i consumer, conditional on choosing the tariff intended for type
25Analogously to Section 4.1, the focus on two-part tariffs is without loss of generality (see Appendix D.1).
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ĩ = h, ` and given the quantity q, is

u (q, αi) +M − Aĩ − (pĩ + φ) q, i, ĩ = h, `. (4.27)

We denote the quantity chosen by such consumer as qĩi and the ensuing gross utility, u (qĩi, αi),
as uĩi. We drop the double index when i = ĩ (i.e., when consumers choose the intended
tariff). In equilibrium, participation and incentive compatibility constraints are satisfied and
all consumers self-select into the tariff intended for their type. Hence, the quantities qi satisfy
the following first-order conditions

∂u (q, αi)

∂q
= pi + φ, ∀i, (4.28)

that is, marginal utility equals the sum of unit prices, pi + φ.
Tax revenue amounts to R = tp (phqhσ + p`q` (1− σ)) + tA (Ahσ + A` (1− σ)) and welfare,

defined ad the sum of this revenue plus consumer surplus and firms’ profits, is:

W = σ (uh − (c+ φ) qh) + (1− σ) (u` − (c+ φ) q`) +M. (4.29)

Hence, the socially optimal consumption levels, q∗i , are such that the marginal utility equals
the sum of marginal cost, that is ∂u(q,αi)

∂q
= c+ φ.

The infrastructure provider’s problem can be written as

max
Ah,ph,A`,p`

σ [(1− tA)Ah + (1− tp) phqh − cqh] + (1− σ) [(1− tA)A` + (1− tp) p`q` − cq`]

s.t. Vi ≡ u (qi, αi) +M − Ai − (pi + φ) qi ≥M, i = h, `, and

Vi ≥ u (qĩi, αi) +M − Aĩ − (pĩ + φ) qĩi, i, ĩ = h, `, i 6= ĩ.

The first set of constraints are the participation constraints and the second set represent the
incentive compatibility constraints. We relegate the standard steps to solve this problem to
Appendix A.2 (see Laffont and Martimort, 2001). We find that in equilibrium the participation
constraint is binding for i = `, whereas the incentive compatibility constraint is binding for
i = h. The other constraints are slack. The equilibrium access fees are thus given by

A` = u` − (p` + φ) q`, Ah = uh − (ph + φ) qh − (uh` − u`) , (4.30)

where ui ≡ u (qi, αi) and uh` ≡ u (q`, αh). The fee charged to the light users captures all their
net surplus from consumption. By contrast, heavy users pay an access fee which does not
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capture their whole surplus: they receive some information rent to ensure they do not mimic
the other type. This rent, captured by the last term in parentheses in (4.30), provides another
foundation to the term Fi introduced in Section 3 (see (3.3)).

The equilibrium usage fees are

ph =
1

1− tp

(
(tp − tA)

qh
∂qh
∂ph

+ c

)
,

p` =
1

1− tp

(
(tp − tA)

q`
∂q`
∂p`

+ (1− tA)
σ

1− σ

(
∂uh`
∂q`
− ∂u`
∂q`

)
+ c

)
. (4.31)

To analyze the effects of taxation, it is useful to first consider as a benchmark the equilibrium
with zero taxes. Setting tA = tp = 0, we get

ph = c, and p` =
σ

1− σ

(
∂uh`
∂q`
− ∂u`
∂q`

)
+ c. (4.32)

In the absence of taxation, firm I does not distort heavy users’ consumption as compared to
the socially optimal level. By contrast, the firm does impose a restriction to the light users,
who pay a usage fee above marginal cost, as captured by the right hand side of the expression
for p` in (4.32). This result stems from the trade-off between rent-extraction and efficiency
(Maskin and Riley, 1984). By restricting light users’ consumption, the infrastructure provider
makes mimicking less appealing to heavy users, that value the marginal unit of consumption
more than light users, given ∂2u

∂q∂α
> 0. In so doing, firm I reduces heavy users’ information

rent and can thus extract more revenue from them through the access fee, Ah (see (4.30)). As
a result, there is underprovision (only) to the light users because p` > c and, in turn, q` < q∗` .

We now analyze whether taxation can correct this underprovision. The effects of the access
tax, tA, on the usage fees are given by

∂ph
∂tA

= σ
∂Ah/∂ph
∂2πI/∂p2

h

= − σqh
∂2πI/∂p2

h

> 0, (4.33)

∂p`
∂tA

=
(1− σ) ∂A`/∂p` + σ∂Ah/∂p`

∂2πI/∂p2
`

= − (1− σ)
q` + σ

1−σ

(
∂uh`
∂q`
− ∂u`

∂q`

)
∂q`
∂p`

∂2πI/∂p2
`

. (4.34)

Intuitively, firm I responds to this tax by reducing the access fees. These fees are pinned
down, respectively, by the binding participation (for i = `) and incentive compatibility (for
i = h) constraints, resulting in (4.30). Hence, to reduce Ah and A`, firm I changes the usage
fees. Specifically, a higher ph reduces Ah, because ph reduces the net surplus of heavy users,
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uh− (ph + φ) qh. However, ph has no effect on A`. Therefore, we find that ∂ph/∂tA > 0. Taxing
access gives the infrastructure supplier an incentive to collect more revenue from heavy users
through the usage fee.

By contrast, collecting less revenue through access fees does not necessarily entail an
increase in the usage fee for light users. On the one hand, a higher p` reduces the net surplus
of light users, which in turn reduces A`. On the other hand, consumption of heavy users who
mimic is reduced as well. Therefore, the information rent decreases, which raises Ah. These
opposing effects are captured, respectively, by the first and second terms at the numerator
of the rightmost fraction in (4.34). The sign of ∂p`/∂tA depends on which effect dominates.
Specifically, when distorting the consumption of light users strongly affects the heavy users’
information rent, firm I responds to the tax on access by reducing p`. In other words, the
supplier’s incentive to restrict the consumption of light users is weakened, because the gain
from reducing heavy users’ information rent is partly taxed away.

Consider now the effects of the tax on usage, which are given by

∂ph
∂tp

= σ
qh + ph

∂qh
∂ph

∂2πI/∂p2
h

= σ
(1− tA) qh + c ∂qh

∂ph

∂2πI/∂p2
h (1− tp)

, (4.35)

∂p`
∂tp

= (1− σ)
q` + p`

∂q`
∂p`

∂2πI/∂p2
`

= − (1− σ)
(1− tA)

[
q` + σ

1−σ

(
∂uh`
∂q`
− ∂u`

∂q`

)
∂q`
∂p`

]
+ c ∂q`

∂p`

∂2πI/∂p2
` (1− tp)

. (4.36)

As in our previous settings, the effect of tp on each usage fee, pi, is negative if and only if the
revenues generated by such fee, piqi, increase with pi. That is, pi decreases with tp if and only
if qi lies on the inelastic part of type-i consumers’ demand. In the case of heavy users, this
condition holds under a very similar condition to (4.23). Specifically, ∂ph/∂tp < 0 if the marginal
cost and the tax on access (which tends to increase ph, as pointed out above) are sufficiently
small. As in the previous section, this condition is more likely to be satisfied the smaller is φ.
The condition determining the sign of ∂p`/∂tp is more interesting. Expression (4.36) suggests
that the above-mentioned conditions are not sufficient for p` to decrease with tp: even if c and
tA are zero, p` can increase with tp when the effect of this fee on the information rent left
to heavy users, captured by σ

1−σ

(
∂uh`
∂q`
− ∂u`

∂q`

)
∂q`
∂p`

, is large. Furthermore, a higher tA makes it
more likely that ∂p`/∂tp > 0 if and only if the term in square parentheses in (4.36) is positive,
i.e. σ

1−σ

(
∂uh`
∂q`
− ∂u`

∂q`

)
∂q`
∂p`

is small.
We now analyze whether taxation can increase welfare. Differentiating (4.29) with respect
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to tk and using (4.28), we obtain

∂W

∂tk
= σ (ph − c)

dqh
dtk

+ (1− σ) (p` − c)
dq`
dtk

, k = A, p, (4.37)

where dqi
dtk

= ∂qi
∂pi

∂pi
∂tk

, with i = `, h. Furthermore, setting tp = tA = 0 and using (4.32), we get

∂W

∂tk

∣∣∣∣
tA=0,tp=0

= σ

(
∂uh`
∂q`
− ∂u`
∂q`

)
dq`
dtk

> 0⇐⇒ ∂p`
∂tk

< 0, k = A, p. (4.38)

Because there is underprovision to the light users, the government can increase welfare by
introducing either a tax on access or one on usage, provided p` decreases with such taxes.
That is, the government can alleviate the restriction firm I imposes on light users by taxing
access if the impact of a marginal increase in p` on the information rent of heavy users is large.
Instead, if the impact of p` on the information rent and the marginal cost c are both small, a
similar effect can be obtained by taxing usage. Based on our previous results, we can state:

Proposition 2. Consider a setting where a monopolist infrastructure provider implements a
menu of multi-part tariffs to screen consumers. If the marginal cost of infrastructure usage
and the effect of restricting the consumption of light users on heavy users’ information rent
are small, introducing an ad valorem usage tax increases welfare. Instead, if restricting the
consumption of light users has a large effect on the information rent, welfare increases with
an ad valorem access tax.

A small marginal cost is a reasonable assumption for ISPs, credit card platforms and
parking providers. In line with Proposition 1, Proposition 2 suggests that this condition makes
it more likely that a tax on usage increases output and welfare. However, this condition is not
sufficient: the impact of restricting usage by light users on the information rent should also be
relatively small. We can expect the latter condition to apply when either the share of heavy
users in the population, σ, is small and/or when their marginal utility from consumption is
similar to that of light users (i.e., the difference between αh and α` is small). By contrast, a
tax on access is more likely to increase welfare when the impact of restricting usage by light
users on the information rent is large.

We can again shed some light on the distributional implications of taxation. It is
straightforward to show that taxes reduce the profit of the infrastructure provider and leave
the profit of final good providers unchanged. Moreover, because the surplus of light users is
entirely captured by the provider, the net effect of taxation on light users is also zero. However,
when taxes induce an increase in consumption by the light users, the information rent left to
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heavy users increases and they are better off.26 Note also that, as in the previous section, we
ignore the potential welfare benefits from the tax revenue that government could eventually
use to reduce other distortionary taxes in the economy.

We conclude this part by discussing the implications of relaxing some of our assumptions.
An infrastructure provider may also screen consumers on the quality of service (e.g. download
speed in the case of ISPs). Adding this dimension to the model should not change the main
conclusions. We expect the heavy users to have a higher willingness to pay for high-quality
service. Hence, light users would be offered plans with lower quality as well as restricted
volumes. The effect of the usage fee on information rents could be either magnified or reduced,
depending on whether quality and volume are complements or substitutes.

Finally, we assumed I serves both consumer types. However, in some circumstances, the
firm may prefer to exclude the light users, because serving them entails an exceedingly high
rent to the heavy ones. This outcome can occur, for example, if the light users’ willingness to
pay is substantially smaller than that of the heavy users. Exclusion may also become more
profitable with taxation. Nevertheless, provided both types are served in laissez faire, there
should always exist positive (possibly small) tax rates such that welfare increases and exclusion
does not take place.

5 Competition among infrastructure providers

We now extend the model of Section 4.1 to allow for competition among infrastructure
providers. For brevity, we relegate much of the analysis to Appendix F, and focus here on
describing the model setup and the results.

We consider a horizontally differentiated duopoly, with infrastructure providers located at
the extremes of a Hotelling line, i.e. firm m is located at point 0 and firm n at point 1. The
unit mass of consumers is uniformly distributed on the [0, 1] interval.27 The utility a consumer
located at point z ∈ [0, 1] gets from connecting via supplier s = m,n and consuming q units
of final good is

26To understand, replace Ah from (4.30) in (4.27), obtaining Uh = uh` − u`, and note that ∂uh`

∂q`
− ∂u`

∂q`
> 0.

27Horizontal differentiation may arise from differences in technologies (e.g. Cable vs DSL for ISPs, fossil vs.
renewable sources for energy distributors) and other services bundled with access (e.g. TV channels bundled
with Internet access). Horizontal differentiation may also capture heterogeneous coverage, which is quite
common for network industries such as telecom. Depending on their physical location, some consumers may
prefer using one provider rather than the other, because better coverage implies higher quality and reliability
of service. See, e.g., Chen and Savage (2011), Dessein (2003), and Granier and Podesta (2010) for previous
models of competition in the telecom and energy sectors that assume horizontally differentiated providers.
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Us =

∫ q

0

(α− r) dr + V − β |z − ls|+M − Ts − Tf,s, s = m,n. (5.1)

The first term of (5.1) is the utility from consuming the final good. To ease notation, let
there be only one such good (N = 1). To simplify the analysis, we adopt a specific form
for such utility (as in Economides and Hermalin, 2015). We assume α > φ + c. The second
term in (5.1), V − β |z − ls|, is the utility of a consumer at location z acquiring access from
s, where V is the gross intrinsic surplus from acquiring access, β is the transportation cost,
and ls represents the firm’s position on the Hotelling line, with lm = 0 and ln = 1. We assume
consumers acquire access from exclusively one provider and focus on the case where their
surplus is large enough that all acquire access in equilibrium. The last two terms in (5.1) are
the tariffs paid to infrastructure provider s and to the supplier of the final good, respectively.
We again focus on two-part tariffs set by infrastructure providers, Ts = As + psq. Instead, the
provider of the final good sets a linear price, so Tf,s = xsq. Note that we allow the latter firm
to charge a different price to consumers according to which of the providers they subscribe to.
This assumption is not essential, but simplifies the analysis (see below).28

Social welfare is the sum of consumer surplus, profits and government revenue. This sum
simplifies to

W =

∫ Dm

0

(∫ qm

0

(α− r) dr − zβ − (c+ φ) qm

)
dz + (5.2)

+

∫ 1

Dm

(∫ qn

0

(α− r) dr − (1− z) β − (c+ φ) qn

)
dz +M.

where Ds is the market share of infrastructure provider s and qs the quantity consumed by an
individual acquiring access from provider s.

To derive the socially optimal allocation, we maximize (5.2) with respect to qm, qn, and
Dm, obtaining q∗s = α − φ − c and D∗m = D∗n = 1

2
. Consumers choose the infrastructure

provider that is closest to their location, and their consumption of the final good is such that
marginal utility equals the combined marginal cost of provision by the infrastructure and final
good providers.

Setting tA = tp = 0, the equilibrium prices and quantities are such that: ps = α−φ+2c
3

,
xs = α+2φ−c

3
, qs = α−φ−c

3
and Ds = 1

2
, for s = m,n. In the absence of taxation, consumers

28There are examples of such price discrimination. Streaming music services Spotify and Deezer offer
special rates to subscribers of specific ISPs (e.g. Orange in France), whereas Netflix allows Comcast’s Xfinity
subscribers free access to its content for limited time periods (such as the “Watchathon” week).
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pay a usage fee above the marginal cost of infrastructure usage, c. The intuition is again that
raising the usage fee allows to extract more surplus from consumers, because it induces the
final good provider to reduce its own markup. Given this fee and the mark-up imposed by the
final good supplier, there is underprovision in equilibrium (qs < q∗s).

We find that taxation produces similar effects as in the model of Section 4.1. In particular,
introducing a tax on usage tp increases consumption as long as the marginal costs are not
exceedingly large. Although the infrastructure providers raise the access fee, this increase has
only distributional but not welfare consequences, because the market is fully covered.

Proposition 3. With competing infrastructure providers that adopt multi-part tariffs, an ad
valorem usage tax increases consumption and social welfare as long as the marginal cost of
infrastructure usage is sufficiently small.

Before concluding, we briefly comment on relaxing the assumption of price discrimination
by the final good supplier. When an infrastructure provider, say m, raises its usage fee above
marginal cost, it induces a reduction in the price of the final good. Suppose the final good
supplier does not discriminate consumers according to which infrastructure provider they
connect to. Then, m does not gain from such price reduction, because consumers get to
benefit even if they connect to the other provider, n. Thus, both providers would set ps = c in
equilibrium. Nevertheless, because the final good supplier charges a monopoly markup, there
is still underprovision without taxes. Consequently, provided it induces a reduction in ps, the
tax tp still increases welfare. The analysis of this case is available upon request.

6 Concluding remarks

We studied commodity taxation with multi-part tariffs, allowing for differentiated ad valorem
taxes on the various parts of the tariff. We have modeled different market situations where
multi-part tariffs generate distortions, showing that consumption and welfare can increase
with differentiated taxes. Our results imply that tax exemptions for goods or services that are
priced according to multi-part tariffs may be inefficient.

Although we have shown our results hold in several specifications, we briefly discuss some
issues that were left out of the analysis. We have ignored consumption externalities such as
pollution and congestion. The former is relevant for some applications of the model, such
as energy. If the supplier does not internalize the externality, the welfare gains of increased
provision must be weighed against the increased external costs. Congestion often takes place
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on digital and transport networks. Unlike pollution, this external cost should be internalized
by the supplier (particularly in the case of a monopoly) and therefore reflected in the usage fee.
This effect implies a larger usage fee, which in turn means that the conditions ensuring that
the usage fee decreases with taxation become stricter (see (3.6)). Whether these conditions
hold depends of course on how large congestion is, which is an empirical question. We note
that, as shown by Economides and Hermalin (2015), underprovision may occur even if the
supplier internalizes congestion. Hence, the taxes we study may still increase welfare.

Our analysis also abstracted from long-run issues. By reducing the net revenue collected
from each consumer, taxation may reduce an infrastructure supplier’s incentives to invest
in capacity and service improvements. On the other hand, if taxation does increase usage,
incentives to invest may be strengthened. Moreover, final good suppliers’ investments
may increase. In addition, tax revenue can be used to fund public initiatives to enhance
infrastructure investment (e.g., universal service funds; see OECD, 2015 for an overview of
these initiatives). We have also ignored how the market structure may be affected by taxes in
the long run. Because taxation reduces profits, it may discourage entry in the infrastructure
market. However, if taxes stimulate usage, they indirectly benefit the providers of the final
goods, possibly leading to additional entry. A complete analysis of the effects of taxation in a
dynamic context is left for future work.
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Appendix

A Proofs

A.1 Proof of (4.12)

We differentiate p + x with respect to p and get d (p+ x(p)) /dp = 1 + ∂x/∂p =

(∂q/∂p) /
(

2∂q
∂p

+ (x− φ) ∂2q
∂p2

)
> 0. The last equality follows from totally differentiating (4.10)

and the fact that ∂q/∂p = ∂q/∂x < 0. The denominator in the last expression is negative by
second order conditions of the final good providers’ problem.

A.2 Proof of (4.31)

The infrastructure provider’s problem is

max
Ah,ph,A`,p`

σ ((1− tA)Ah + (1− tp) phqh − cqh) + (1− σ) ((1− tA)A` + (1− tp) p`q` − cq`)

s.t. Vi ≥M i = h, ` and Vi ≥ Vĩi i, ĩ = h, `

where the first set of constraints are the participation constraints (PCs) and the second set of
constraints are the incentive compatibility constraints (ICCs). Moreover,

Vi = u(qi, αi) +M − Ai − (pi + φ) qi i = h, `,

Vĩi = u(qĩi, αi) +M − Aĩ − (pĩ + φ) qĩi i, ĩ = h, `, i 6= ĩ,

are, respectively, the indirect utility levels of a type-i consumer adopting the intended tariff,
and that of a mimicker. Following standard steps (Laffont and Martimort, 2001), it can be
shown that the solution has to be such that the PCs are slack for i = h and the ICCs are slack
for i = ` and ĩ = h , whereas the other constraints are binding. Furthermore, in order to relax
the ICC for i = h, it is optimal to have qh` arbitrarily close to q` (this can be implemented by
imposing an extra fee for usage immediately beyond q`, which would however not be paid in
equilibrium). Hence, we rewrite the problem as

max
Ah,ph,A`,p`

σ ((1− tA)Ah + (1− tp) phqh − cqh) + (1− σ) ((1− tA)A` + (1− tp) p`q` − cq`)

s.t. V` = M and Vh = Vh`.
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From the equality constraints, we get

A` = u(q`, α`)− (p` + φ) q`, (A.1)

Ah = u(qh, αh)− (ph + φ) qh − (u(q`, αh)− (p` + φ) q` − A`) . (A.2)

We can therefore rewrite the profit maximization problem as

max
ph,p`

σ [(1− tA) (u(q`, α`)− u(q`, αh) + u(qh, αh)− (ph + φ) qh) + (1− tp) phqh − cqh] +

+ (1− σ) [(1− tA) (u(q`, α`)− (p` + φ) q`) + (1− tp) p`q` − cq`] .(A.3)

Using the equilibrium conditions ∂u(q,αi)
∂q

= pi + φ, for i = h, `, we can write the first-order
conditions (FOCs):

dπ

dph
= (tA − tp) qh +

∂qh
∂ph

((1− tp) ph − c) = 0, (A.4)

dπ

dp`
= −σ (1− tA)

(
∂uh
∂q`
− ∂u`
∂q`

)
∂q`
∂p`

+ (A.5)

+ (1− σ)

(
q` (tA − tp) +

∂q`
∂p`

((1− tp) p` − c)
)

= 0.

We obtain (4.31) by rearranging the above FOCs. Furthermore, differentiating these FOCs,
we obtain the comparative statics in (4.33) - (4.36).
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B Alternative tax instruments

Unit taxes. Differentiating (3.4) and given dqi
dpi

< 0, we get

dpi
dτ

=
dqi
dpi
d2πI
dp2
i

> 0, i = 1, ...,Θ. (B.1)

The inequality follows from the fact that the numerator is negative and the denominator is
also negative by concavity of πI .

Uniform ad valorem taxes. Setting tA = tp = t and differentiating (3.4) we get

dpi
dt

=
( duidq −pi)

dqi
dpi
−qi−

∑
j=1...Θ

dFj
dpi

+pi
dqi
dpi

+qi

d2πI
dp2
i

, i = 1, ...,Θ. (B.2)

Given (3.4), the numerator of the above expression equals c
1−t

dqi
dpi
≤ 0. Therefore, given the

denominator is also negative by concavity of πI , we have dpi
dt
> 0 as long as c > 0 and dpi

dt
= 0

if c = 0.

C Extensions to Section 4.1

C.1 Alternative timing for the representative consumer model

(section 4.1)

We consider the following timing. First, the government sets tA and tp. Thereafter, the sellers
of final goods simultaneously set their prices xj. Then, the infrastructure provider sets its own
tariff. Next, consumers choose consumption levels qj. We show that the results of Section 4.1
are robust to this change in timing. In a nutshell, we shall show that given this timing there
is no response of final good prices to the usage fee p. Hence, firm I has no incentive to raise
this fee above the marginal cost c. Nevertheless, because prices exceed marginal costs in the
no-tax equilibrium, there is underprovision and taxes have the same implications as in the
baseline model.

We solve the model backwards. Stage 4 is as in the main model, and the equilibrium
consumption is characterized by (4.9). Then, at stage 3 the infrastructure provider solves the
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problem in (4.14), with the difference that xj is given. Again, the infrastructure provider sets
A to extract all consumer surplus, and solves (4.16). Differentiating πI with respect to p, using
the equilibrium condition du

dq
= p + x (we omit the index j because the final good sellers are

symmetric), we obtain

p =
c

1− tp
+
q (tp − tA)
dq
dp

(1− tp)
. (C.1)

Hence, if tp = tA = 0, then p = c. The main difference with respect to (4.18) is that there is
no effect of p on x, because x is given when firm I decides its tariff. However, as we will show,
the effect of taxes on p is similar to the main text. Furthermore, given the generalized price
of final goods is higher than marginal cost, taxes have a similar effect on social welfare.

Let us now solve the problem of the sellers j = 1, .., N . Each firm j maximizes its profit
πj = (xj − φ) qj with respect to xj. Assuming this profit is concave, the equilibrium price of
good j is determined by

∂πj
∂xj

= qj + (xj − φ)

(
∂qj
∂xj

+ qj
∂p

∂xj

)
= 0, j = 1, .., N. (C.2)

Hence, given the prices are symmetric across final good providers, we find

x = φ− q
∂q
∂x

+ p ∂p
∂x

.

We assume the denominator is negative, implying that x > φ, which is intuitive. Consider
now the effect of taxes on p:

∂p

∂tA
= −
− q

dq
dp

(1−tp)

∂2πI/∂p2
> 0,

∂p

∂tp
=
q + pdq

dp

∂2πI/∂p2
=

(1− tA) q + c∂q
∂p

(1− tp) ∂2πI/∂p2
.

Hence the condition for p to increase in tp is isomorphic to (4.23).
Finally, we argue that introducing a tax tp increases welfare, as long as ∂p

∂tp
< 0. Let us

start from the laissez faire equilibrium. Given that x + p > c + φ, we have q < q∗, where the
latter is such that u′ (q∗) = c+ φ. As argued above, there is no effect of p on x. Hence, p+ x

decreases with tp and, thus, ∂q
∂tp

> 0, as long as the condition (4.23) holds. Introducing a tax
on usage therefore alleviates underprovision and increases welfare.
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C.2 Sellers provide imperfect substitutes

We now show that the main results of Section 4.1 continue to hold when final good suppliers
provide imperfect substitutes, and hence compete with each other. In a nutshell, we show that,
as long as final good providers have market power (even though they compete), their prices
respond to changes in the usage fee p. Hence, firm I restricts consumption at the marginal
and taxation has similar effects as in the baseline model.

For tractability, we focus on the case where N = 2 and we assume the final good providers
are symmetric. Consumer utility is

U (q1, q2)− x1q1 − x2q2 − p (q1 + q2)− A. (C.3)

We assume that ∂U
∂qi

> 0 and ∂2U
∂q2
i
< ∂2U

∂q1∂q2
< 0, which implies that the two goods are imperfect

substitutes. Let us consider the consumer’s utility maximization problem. The FOCs are

fi ≡
∂U

∂qi
− xi − p = 0, i = 1, 2. (C.4)

Hence, we get

∂q1

∂x1

= −

det

[
∂f1

∂x1

∂f1

∂q2
∂f2

∂x1

∂f2

∂q2

]

det

[
∂f1

∂q1

∂f1

∂q2
∂f2

∂q1

∂f2

∂q2

] , ∂q1

∂p
= −

det

[
∂f1

∂p
∂f1

∂q2
∂f2

∂p
∂f2

∂q2

]

det

[
∂f1

∂q1

∂f1

∂q2
∂f2

∂q1

∂f2

∂q2

] .

We proceed assuming that the denominator of these expressions is positive, as required by
second-order conditions of the consumer’s problem. The numerator of the first expression is
∂f1

∂x1

∂f2

∂q2
> 0, because ∂f2

∂x1
= 0, ∂f1

∂x1
< 0 and ∂f1

∂q2
< 0. Hence, ∂q1

∂x1
< 0. Similarly, we can show

that ∂q1
∂x2

> 0, because − ∂f2

∂x2

∂f1

∂q2
< 0. Furthermore, we have ∂q1

∂p
< 0. To see this, consider that

∂f1

∂p
∂f2

∂q2
− ∂f2

∂p
∂f1

∂q2
= ∂f1

∂p

(
∂f2

∂q2
− ∂f1

∂q2

)
> 0, because ∂f1

∂p
= ∂f2

∂p
< 0 and ∂2U

∂q2
i
< ∂2U

∂q1∂q2
.

Consider now the effect of p on the prices set by sellers. Each seller’s profit is πj =

(xj − φ) qj. The FOCs are

gj ≡ qj + (xj − φ)
∂qj
∂xj

= 0, j = 1, 2. (C.5)
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Therefore, we have

∂x1

∂p
= −

det

[
∂g1

∂p
∂g1

∂x2

∂g2

∂p
∂g2

∂x2

]

det

[
∂g1

∂x1

∂g1

∂x2

∂g2

∂x1

∂g2

∂x2

] .

We proceed again assuming that the denominator is positive. Hence, we have ∂x1

∂p
< 0 if and

only if ∂g1

∂p
∂g2

∂x2
− ∂g2

∂p
∂g1

∂x2
> 0. Because ∂g1

∂x2
> 0 (which follows from the assumption that the goods

are imperfect substitutes) and ∂g2

∂x2
< 0 by the second-order conditions of the sellers’ problem,

we have that ∂x1

∂p
< 0 if and only if ∂gi

∂p
< 0. This inequality holds as long as consumer demands

is not exceedingly convex, similarly to what we have assumed in the main text. Given this
condition, we have ∂xi

∂p
< 0.

Let us now consider the problem of firm I. Its profit is

πI = (1− tA) [U(q1, q2)− x1q1 − x2q2] + (tA − tp) p (q1 + q2)− c (q1 + q2) , (C.6)

and the FOC for the optimal usage fee is given by

∂πI
∂p

=
∑
i=1,2

(
(1− tA)

(
∂U

∂qi
− xi

)
+ (tA − tp) p− c

)(
∂qi
∂p

+
∑
j=1,2

∂qi
∂xj

∂xi
∂p

)
(C.7)

− (1− tA)
∑
i=1,2

qi
∂xi
∂p

+ (tA − tp) (q1 + q2) = 0.

Denoting dqi
dp
≡ ∂qi

∂p
+
∑

j=1,2
∂qi
∂xj

∂xi
∂p

, using the FOCs of the consumer problem and rearranging,
we get

p =
1

1− tp

(
(tp − tA)

∑
i=1,2 qi∑
i=1,2

dqi
dp

+ (1− tA)

∑
i=1,2

∂xi
∂p
qi∑

i=1,2
dqi
dp

+ c

)
. (C.8)

When there are no taxes, the above expression becomes

p =

∑
i=1,2

∂xi
∂p
qi∑

i=1,2
dqi
dp

+ c. (C.9)

Given that dqi
dp
< 0, it is optimal to price usage above marginal costs, i.e. p > c.

Finally, consider the effect of tp on p. Starting from (C.7), the effect of a change in tp on
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p is given by

∂p

∂tp
=

∑
i=1,2

(
qi + pdqi

dp

)
∂π2
I

∂p2

=

∑
i=1,2

(
(1− tA) qi

(
1 + ∂xi

∂p

)
+ cdqi

dp

)
(1− tp)

∂π2
I

∂p2

. (C.10)

Given that the denominator is negative by second-order conditions of firm I’s problem, and
given

(
1 + ∂xi

∂p

)
> 0, then ∂p

∂tp
< 0 as long as c is sufficiently small.

C.3 Alternative way to access final goods

We now suppose that consumers can access the final goods without the services of the
infrastructure provider. In a nutshell, we show that, assuming that using the alternative
way to access final goods is costly to consumers, raising p still has the effect of reducing
the demand faced by final good providers and, hence, induces them to reduce their price.
As a result, firm I still has an incentive to set p > c, there is underprovision and taxes on
infrastructure usage have similar effects as in the baseline model.

Let q = qI + qW be the units of final good consumed, where qI is the quantity of units
accessed using the infrastructure provided by firm I and qW the quantity accessed without
using the infrastructure. For example, in the case of a payment card platform, qW can be
interpreted as the quantity of retail goods purchased using cash rather than the card. We
assume that the consumer sustains a cost m

(
qW
)
when consuming qW units of final good

without the infrastructure, with m (0), m′ (0) = 0, and m′ (.) and m′′ (.) strictly positive when
qW is positive. The idea is that not using the infrastructure provider to acquire final goods
implies an extra cost or inconvenience to the user (e.g., carrying more cash instead of using a
card), which increases with the number of goods that users acquire not using the infrastructure.
We also assume that the function m(.) is steep enough that using the infrastructure provider
for at least some units of q is optimal, i.e. m′ (.) ≥ p. We assume without loss that there is
a single final good (N = 1) and that the producer of this good charges the same price, x, to
consumers irrespectively of how they acquire this good.

Given the tariff set by firm I and writing qW = q − qI , the utility of a user is

U = u (q)− pqI −m
(
q − qI

)
− xq − A. (C.11)
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Maximizing the above with respect to qI and q, we get the following FOCs

−p+m′ = 0,
du

dq
−m′ − x = 0, (C.12)

from which we obtain that m′ = p, so that we can rewrite the last equation, describing the
choice of q, as

du

dq
= p+ x. (C.13)

This expression implies that, for any set of prices, consumption of the final good is chosen in
the same way as in the baseline model (see (4.9)). Note that the above expression implies that
∂q
∂p

= ∂q
∂x

and that dqI

dp
< 0.

Consider now the price setting decision by the final good provider. Its profit is π =

(x− φ) q, hence x satisfies the following FOC:

q + (x− φ)
∂q

∂x
= 0, (C.14)

which is isomorphic to (4.10). Hence, the same conditions as in the baseline model are sufficient
to ensure that ∂x

∂p
< 0. As in the baseline model, we have 1 + ∂x

∂p
> 0.

Consider now the choice of tariff by firm I. We have

πI = A+ (p− c) qI , s.t. A ≤ u (q)− pqI −m
(
q − qI

)
− xq.

In equilibrium, the participation constraint is satisfied at equality. Hence, we can writ

πI =
(
u (q)− pqI −m

(
q − qI

)
− xq

)
(1− tA) + (p (1− tp)− c) qI . (C.15)

Using (C.13) and (C.12), we can write the FOC of this problem as

− (1− tA)

(
qI
(

1 +
∂x

∂p

)
+
∂x

∂p

(
q − qI

))
+ (1− tp)

(
qI + p

dqI

dp

)
− cdq

I

dp
= 0. (C.16)

Therefore, we obtain

p =
c

1− tp
+

(tp − tA) qI + (1− tA) ∂x
∂p
q

(1− tp) dqI

dp

. (C.17)

Without taxation, we get p = c +
q ∂x
∂p

dqI

dp

. The terms of this expression are essentially the same
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as (4.20). Note that the last one is positive. This expression therefore suggests that p > c.
As in the baseline model, p+ x > φ+ c in the no tax equilibrium, so consumption of the final
good is below the socially optimal level.

Consider now the effect of taxing usage of the infrastructure. Using (C.16) and (C.17), we
get

dp

dtp
=
qI + pdq

I

dp

d2πI
dp2

=
(1− tA)

(
qI + ∂x

∂p
q
)

+ cdq
I

dp

d2πI
dp2 (1− tp)

,

which given concavity of πI and qw = q − qI , implies that

dp

dtp
< 0⇐⇒ c < −

(1− tA)
(
q
(

1 + ∂x
∂p

)
− qw

)
dqI

dp

.

Similarly to (4.23), this expression suggests that it is possible to reduce the combined price
of final goods and, hence, increase consumption (given dq

dp
= ∂q

∂p

(
1 + ∂x

∂p

)
< 0) with a tax on

usage, if the marginal cost c is below a threshold. Given that 1 + ∂x
∂p
> 0, this threshold is

strictly positive as long as qw is not exceedingly large.

C.4 Infrastructure supplier charging providers of final goods

C.4.1 Unit fee to final good providers

We argue that there is no loss of generality when assuming that firm I charges a usage fee to
consumers and not to providers of final goods. Our reasoning follows standard tax incidence
arguments (Weyl and Fabinger, 2013).

Consider first the case where I charges p to consumers, as in section 4.1. Note that, to
simplify notation, we use that prices and quantities of providers of final goods are symmetric,
dropping the index j. Let x be the price charged by a final good provider. Denote xc the
price of the good as perceived by consumers, that is, including p paid to firm I. Therefore,
x+ p = xc. Using this formulation, we can rewrite consumer utility (4.8) as

U = N (u (q)− xcq)− A+M, (C.18)

whereas the profit of the provider of final good j is

πj = (x− φ) q. (C.19)
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Therefore, the price x is defined by the following FOC:

∂q

∂x
(x− φ) + q =

∂q

∂x
(xc − φ− p) + q = 0. (C.20)

In equilibrium, firm I sets A = N (u (q)− (x+ p) q) = N (u (q)− xcq), therefore its profit is

πI = N [(1− tA) (u (q)− xcq) + (p (1− tp)− c) q] . (C.21)

Suppose now that p is paid by providers of final goods, rather than consumers. For
consistency, we assume p is subject to the same tax rate as above, tp. Let x′ be the price
of final goods and x′c the price perceived by consumers. Differently from the previous case,
because p is paid by final good suppliers, x′ = x′c. We can therefore write consumer utility as

U = N (u (q)− x′cq)− A+M, (C.22)

which is isomorphic to (C.18). The profit of a provider of final goods, j, is

πj = (x′ − φ− p) q, (C.23)

given it has to pay p for each unit produced. Therefore, the price x′ is defined by the following
FOC:

∂q

∂x′
(x′ − φ− p) + q =

∂q

∂x′
(x′c − φ− p) + q = 0. (C.24)

This condition is therefore isomorphic to (C.20). Finally, in equilibrium, firm I sets A =

N (u (q)− x′cq), therefore its profit is

πI = N [(1− tA) (u (q)− x′cq) + (p (1− tp)− c) q] . (C.25)

Comparing the above expressions, it is clear that the expressions that characterize the
equilibrium where p is physically paid by consumers are isomorphic to the expressions
characterizing the equilibrium where p is paid by providers of final goods. Hence, there is
no loss of generality in assuming that p is physically paid by consumers.

C.4.2 Access fee to final good providers

Assume that firm I charges a lump-sum access fee, Aj, to each final good provider j. At stage
3, provider j maximizes profits (xj − φ) qj − Aj, so its first-order conditions are as in (4.10).
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Firm j acquires access if and only ifAj ≤ (xj − φ) qj. At stage 2, firm I sets the access fee to
consumers as in the main model, see (4.15), to ensure all consumers connect. We again assume
that final good providers are symmetric. To capture in a simple way the idea that firm I may
have to negotiate an access payment with each provider j, and thus be unable to extract the
latter’s entire profit with such fee, let γ ∈ [0, 1] represent the share of such profit that can be
extracted (capturing I’s bargaining power). Hence, I sets Aj such that Aj = γ (xj − φ) qj.
After replacing Aj, we rewrite profits of firm I as (we again omit subscripts given symmetry)

πI = N [(1− tA) (u (q)− q (x (1− γ)− γφ)) + (tA − tp) pq − cq] .

Assuming tA = tp = 0 and using the consumers’ equilibrium condition du
dq

= p + x, the
first-order condition for the choice of p is:

dπI
dp

= N

[
(p+ x)

dq

dp
−
(

(x (1− γ)− γφ)
dq

dp
+ (1− γ) q

∂x

∂p

)
− cdq

dp

]
= 0.

Suppose that γ = 1. The above expression boils down to p + x = c + φ. Therefore, the
combination of the usage fee and the price set by final good providers is such that there is
no distortion with respect to the socially optimal allocation. Suppose now γ < 1. We can
rearrange the above first-order condition to obtain

p = c− γ (x− φ) +
(1− γ) q ∂x

∂p

dq
dp

.

Using the equilibrium price of final goods, x = φ− q
∂q
∂x

, the above expression can be rewritten
as

p+ x = c+ φ+ (1− γ)

(
q ∂x
∂p

dq
dp

− q
∂q
∂x

)

Because dq
dp
< 0 and ∂q

∂x
< 0, and ∂x

∂p
< 0 by assumption, we have (1− γ)

(
q ∂x
∂p
dq
dp

− q
∂q
∂x

)
> 0.

Hence, the equilibrium level of consumption is smaller than the socially optimal one. Therefore,
there is scope for taxation to reduce the distortion, as in the main text. One can therefore
follow similar steps to argue that, given a sufficiently small c, a tax on usage increases provision
and welfare.
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C.5 Final good providers charging nonlinear tariffs

We consider the presence of final good providers that charge nonlinear tariffs. We show that
such providers tend to extract surplus from consumers using lump-sum payments. Nonetheless,
the main results do not change. In particular, firm I still has an incentive to charge a usage
fee above the marginal cost. As long as there is at least one final good provider charging
linear prices, we still obtain that an ad valorem tax on usage increases consumption when the
marginal cost is small enough.

Assume there are two groups of final goods producers. There are Nn symmetric suppliers
charging a nonlinear tariff and we assume without loss of generality that they charge a two
part tariff of the form Bj + xjqj. Their profit is therefore

Bj + (xj − φ) qj, j = 1, ..., Nn. (C.26)

In the above expression, Bj is the access fee charged by supplier j, xj is the usage fee and qj
the quantity of good j. Moreover, there are L ≡ (N −Nn) symmetric final goods suppliers
which charge linear prices, as in our main analysis, whose profit is

(xj − φ) qj, j = Nn + 1, ..., N. (C.27)

The surplus a consumer obtains from consuming final good j is given by

u (qj)−Bj − xjqj − pqj, j = 1, ..., Nn,

u (qj)− xjqj − pqj, j = Nn + 1, ..., N.
(C.28)

Consider the pricing strategy of a final good provider j ∈ {1, ..., Nn}. Given Bj ≤
u (qj)− xjqj − pqj is necessary and sufficient to ensure that all consumers who acquire access
to the infrastructure good also acquire access to good j, the condition

Bj = u (qj)− xjqj − pqj, j = 1, ..., Nn (C.29)

holds in equilibrium. Hence, the final goods providers earn the following profit

πj = u (qj)− (p+ φ) qj, j = 1, ..., Nn, πj = (xj − φ) qj, j = Nn + 1, ..., N. (C.30)

It follows that the equilibrium price xj satisfies (4.10) for j = Nn + 1, ..., N . As for the
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producers adopting nonlinear tariffs, we have

dπj
dxj

=

(
du

dqj
− (p+ φ)

)
∂qj
∂xj

= 0⇒ xj = φ, j = 1, ..., Nn, (C.31)

where the last equality follows from the equilibrium condition du
dqj

= p + xj. Henceforth, we
assume φ = 0. We make this assumption to simplify the analysis and to capture the fact
that many content providers charge only access fees (e.g., Netflix). Therefore, the final goods
providers who adopt nonlinear tariffs do not charge for usage. Notice that the solution to all
final goods providers problem is symmetric. Hence, to simplify notation, we are now going
to denote qj ≡ qn for j = 1, ..., Nn and qj ≡ qr for j = Nn + 1, ..., N . Similarly, we denote
xj ≡ xn = 0 and Bj ≡ Bn for j = 1, ..., Nn and xj ≡ xr for j = Nn + 1, ..., N .

Let us now consider the problem of firm I, which maximizes

πI = Q

(
A (1− tA) + (p (1− tp)− c)

N∑
1

qj

)
, (C.32)

subject to
A ≤ Nnu(qn) + Lu(qr)− p (Nnqn + Lqr)−NnBn − Lxrqr. (C.33)

After replacing from (C.29) and (C.31) and noting that this constraint must also be satisfied
with equality in equilibrium, we get

A = L (u(qr)− pqr − xrqr) . (C.34)

Therefore,

πI = (1− tA) (Lu(qr)− Lpqr − Lxrqr) + (p (1− tp)− c) (Nnqn + Lqr) . (C.35)

We now maximize the above expression with respect to p. Using the equilibrium condition
du
dql

= p+ xr, the first-order condition of this problem is

dπI
dp

= (1− tA)L
(
−qr − ∂xr

∂p
qr

)
+ (C.36)

(1− tp)
(
Nn

(
dqn
dp
p+ qn

)
+ L

(
dqr
dp
p+ qr

))
− c

(
Nn

dqn
dp

+ Ldqr
dp

)
= 0.
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Rearranging this expression we obtain

p =
1

1− tp

(
c+

(1− tA)L∂xr
∂p
qr − (1− tp)Nnqn + (tp − tA)Lqr

Nn
dqn
dp

+ Ldqr
dp

)
(C.37)

Evaluating (C.37) at zero tax rates, we get

p = c+
L∂xr

∂p
qr −Nnqn

Ldqr
dp

+Nn
dqn
dp

. (C.38)

Observe that, when Nn = 0, the expression boils down to (4.18). By contrast, when L = 0,
we get a standard monopoly pricing formula. The intuition for the latter is that the nonlinear
pricing final good providers capture the entire consumer surplus via their access fee, Bn, except
for what consumers pay for usage of the infrastructure, pqn. Hence, if there are no linear
pricing providers, the infrastructure provider can only generate revenue through its usage fee,
i.e. A = 0 (see (C.34)). That is, the infrastructure provider is effectively constrained to linear
pricing.

Let us now consider the effect of the tax on usage. Differentiating (C.36) and replacing
from (C.37) we obtain

∂p

∂tp
=
p
(
Nn

dqn
dp

+ Ldqr
dp

)
+Nnqn + Lqr

d2πI
dp2

=
(1− tA)Lqr

(
1 + ∂xr

∂p

)
+ c
(
Nn

dqn
dp

+ Ldqr
dp

)
d2πI
dp2 (1− tp)

.

(C.39)
Therefore,

∂p

∂tp
< 0⇐⇒ c < −

(1− tA)Lqr

(
1 + ∂xr

∂p

)
Nn

dqn
dp

+ Ldqr
dp

. (C.40)

This expression shows that as long as L ≥ 1, the condition for the tax on usage to decrease
the usage fee (and hence, consumption) is very similar to (4.23), which is derived assuming
Nn = 0. However, when Nn > 0 there is an additional term in the denominator, which implies
that satisfying the condition for p to decrease with tp becomes harder. Note also that, if L = 0,
then ∂p

∂tp
> 0 because cNn

dqn
dp

< 0. Thus, when L = 0 and c > 0, the effect of the tax on p is
positive. When both c and L are zero, however, taxation has no effect.
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C.6 Taxing final goods

Unit tax on final goods. Assume the government imposes a unit tax, τF , on the final
goods. A final good provider’s profit is

πj = (xj − φ− τF ) qj, j = 1, .., N. (C.41)

The first-order conditions from maximizing (C.41) are

∂πj
∂xj

= qj + (xj − φ− τF )
∂qj
∂xj

= 0, j = 1, .., N. (C.42)

By differentiating (C.42), we get

∂xj
∂τF

=

∂qj
∂xj

d2πj
dx2
j

> 0, j = 1, .., N. (C.43)

The inequality follows from the fact that the numerator is negative because ∂qj
∂xj

> 0, and the
denominator is negative by concavity of πj.

Ad valorem tax on final goods. Assume the government imposes an ad valorem tax, tF ,
on final goods. The final goods’ producers profit is

πj = (1− tF )xjqj − φqj, j = 1, .., N, (C.44)

The first-order conditions from maximizing (C.44) are

∂πj
∂xj

= (1− tF )

(
qj + xj

∂qj
∂xj

)
− φ∂qj

∂xj
= 0, j = 1, .., N. (C.45)

By differentiating (C.45), we get

∂xj
∂tF

=
qj + xj

∂qj
∂xj

d2πj
dx2
j

≥ 0, j = 1, .., N. (C.46)

Given (C.45), the numerator of the above expression equals φ
1−tF

∂qj
∂xj

. As the denominator is
also negative by concavity of πj, we therefore get ∂xj

∂tF
≥ 0 for φ ≥ 0.
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C.7 Allowing for p < c when deriving optimal tax rates

We relax the assumption that p ≥ c when deriving the optimal tax rates and show that our
main results continue to hold. Starting from the analysis in Section 4.1, the optimal usage fee
described in expression (4.18) is

p =
1

1− tp

(
(tp − tA)

q
dq
dp

+ (1− tA)

∂x
∂p
q

dq
dp

+ c

)
. (C.47)

To implement the first-best allocation, the government should set taxes such that p+x−c−φ =

0. Plugging (C.47) into p + x− c− φ = 0, using x− φ = − q
∂q
∂x

from the final good providers’

problem and ∂q
∂x

= ∂q
∂p
, we get

1

1− tp

[
tp

(
q
dq
dp

+ c

)
− tA

(
1 +

∂x

∂p

)
q
dq
dp

+

∂x
∂p
q

dq
dp

]
=

q
∂q
∂p

.

Multiplying by dq
dp
, dividing by q and solving for tp yields

tp =
1 + tA

(
1 + ∂x

∂p

)
1 + c

q
dq
dp

+
(

1 + ∂x
∂p

) . (C.48)

The numerator of this expression is strictly positive, because 0 <
(

1 + ∂x
∂p

)
< 1 and

−1 ≤ tA ≤ 1. Furthermore, given tA = 0 and under the condition (4.23) in the text, the
denominator is positive as well. Hence, the government can implement the optimal allocation
setting tA = 0 and the positive tp described in (C.48).

In our analysis above, we assumed that the government is unconstrained in implementing
its tax rates, i.e. we allowed for p < 0 in the optimum. However, because a negative usage
fee may not be feasible, we now derive the optimal tax rates under the constraint p ≥ 0. In
the analysis above, the optimum requires that p = c+ q

∂q
∂x

, with q
∂q
∂x

= − (x− φ). Suppose now
that c + q

∂q
∂x

< 0 at the optimal allocation which implies that the constraint p ≥ 0 is binding.
Using (4.18), setting p = 0, and solving for tp we obtain

tp = −∂x
∂p

+ tA

(
1 +

∂x

∂p

)
− c

q

dq

dp
.

Given −∂x
∂p
> 0 and dq

dp
< 0, the above expression is strictly positive when tA = 0. Therefore,
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Figure 1: Illustration of the structure of three-part tariffs.

the government can again implement the constrained optimal allocation setting tA = 0 and
tp > 0.

C.8 Introducing three-part tariffs

We show that there is no loss of generality in assuming that the firm adopts the two-part tariff
as given in (4.3), instead of a three-part tariff of the form

TI = A+ p ·max

{
0,

N∑
1

qj − L

}
, (C.49)

where L is a consumption limit (i.e., a certain quantity of service bundled with access) and p
is a per unit fee of this good applying to all units over the limit (an “overage charge”). Figure
1 provides an illustration of this tariff).

We generalize the tax structure assumed in the main text as follows: tp applies to the
payment a consumer makes for usage, the latter being valued at the marginal unit price.
Formally, the tax base for tp is p

∑N
1 qj if

∑N
1 qj ≥ L, and zero otherwise. The tax rate tA

applies instead to the access payment A. Letting Q denote the quantity of consumers that
acquires access, firm I’s tax burden is thus

bI = QtAA if
N∑
1

qj < L, (C.50)

bI = Q

(
tAA+ tpp

N∑
1

qj

)
if

N∑
1

qj ≥ L. (C.51)

46



Observe that this tax structure coincides with the one we assume in the paper when the firm
adopts a two-part tariff, i.e. L = 0.

Given the above assumptions, we claim

Lemma C.1. Assume the infrastructure provider adopts a multi-part tariff as in (C.49).
There always exists a two-part tariff that induces either the same equilibrium or one where I
makes strictly higher after-tax profits.

Lemma C.1 implies that, without loss of generality, we can focus on two-part tariffs such
as (4.3). Before turning to the proof, consider the intuition, which runs as follows. Consider
an equilibrium where the firm adopts a tariff as in (C.49) and

∑N
1 qj > L holds.29 Because

the access fee A is sunk at the last stage, only the usage fee p is relevant for the consumer’s
decision at the margin. Suppose the firm adopts (4.3) and sets p equal to the same overage
price as in the original (multi-part) tariff. Then, the quantity

∑N
1 qj chosen by the consumer

does not change, provided the prices of the final goods are also the same. This is indeed the
case, because the demand faced by the final good sellers is unchanged. Furthermore, although
the consumer pays an additional amount pL for usage with the two-part tariff, the firm can
discount it from the access fee, as shown in the left panel of Figure 1, so that the total charge
on the consumer does not change. Finally, the firm pays a usage tax equal to tpp

∑N
1 qj in

both equilibria, but the access tax payment is smaller.
Suppose now the initial equilibrium entails a binding consumption limit

∑N
1 qj = L and

p is larger than the net surplus consumers get from the marginal additional unit. The firm
can adopt a two-part tariff such that individuals still consume L units (see the right panel of
Figure 1). However, the final good sellers charge lower prices in the new equilibrium. The
reason is that they perceive consumers’ demand as less elastic when the consumption limit is
binding. Hence, the firm is able to extract a larger total payment from each consumer than
with a three-part tariff, thus making more profit.30

Proof of Lemma C.1

We divide the proof into two parts. In Part 1 we consider the case where
∑N

1 qj > L, while in
Part 2 we look at the case where

∑N
1 qj = L and the consumption limit binds. In each part,

29The case where
∑N

1 qj < L is trivial, because p is irrelevant for the consumer.
30Economides and Hermalin (2015, Proposition 4) show that, with a finite number of final good sellers, a

strict limit results in lower profits for the infrastructure provider than a two-part tariff. Note also that, when
the usage tax is positive, the firm can always reduce the tax burden by avoiding a binding limit. The reason
is that, if the limit is binding, the firm can always reduce p without changing the quantity of consumption.
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Figure 2: The bold line denotes the tariff, the solid curve is the indifference curve. Left panel: equilibrium
with a non-binding consumption limit. The dashed line is the two-part tariff that induces the same consumption
and total payment. Right panel: equilibrium with strict (binding) consumption limit. The dashed line is the
two-part tariff that induces the same consumption.

we proceed by steps. First, we prove that, starting from an initial equilibrium when the tariff
is as in (C.49), the infrastructure provider can implement the same equilibrium by adopting
a two-part tariff, obtaining the same pre tax profit. Second, we show that the equilibrium
with the two-part tariff is such that the after-tax profit cannot be lower than in the original
equilibrium.

Part 1. STEP 1: Consider an equilibrium where the infrastructure provider sets a multi-
part tariff, prices for the final goods are {xj}j=1,..,N , consumers buy qj units from seller j and
that

∑N
1 qj > L holds. Let Q be the number of consumers that connect to the infrastructure

provider. We refer to this equilibrium as the “original” equilibrium, and denote the components
of the firm’s tariff with the subscript o. Hence

TI = Ao+po

(
N∑
1

qj − L

)
, bI = Q

(
tp · po ·

N∑
1

qj + tA · Ao

)
, πI = Q

(
TI − bI − c

N∑
1

qj

)
.

(C.52)
In the original equilibrium, the quantity qj that maximizes

U =
N∑
1

u (qj) +M − Ao − po

(
N∑
1

qj − L

)
−

N∑
1

xjqj, (C.53)
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is implicitly given by the following FOC

du

dqj
= po + xj, j = 1, .., N. (C.54)

Suppose now the infrastructure provider adopts the two-part tariff T2P = A + p
∑N

1 qj,
with p = po and A = Ao − poL. Assume that the set of prices {xj}j=1,..,N in the equilibrium
with T2P is identical to the original equilibrium (we prove that this condition holds below).
Because p = po, the FOC for consumption is identical to (C.54), implying that qjs are identical
in the two scenarios, for any j.

We now prove that the set {xj}j=1,..,N under T2P is indeed the same as in the original
equilibrium. Recall that Q and the prices of the other sellers are given when seller j sets xj.
Hence, (C.54) locally defines the demand function qj(po, xj) faced by seller j. The equilibrium
price xj satisfies

∂πj
∂xj

= qj(po, xj) + (xj − φ)
∂qj(po, xj)

∂xj
= 0.

The overage price po in the original equilibrium is given in a neighborhood of the equilibrium
quantity qj and the same applies to p in T2P . Furthermore, because p = po by assumption, then
qj(p, xj) = qj(po, xj) . Hence, if xj is the unique maximizer of πj in the original equilibrium
with a multi-part tariff, it must be also when T2P is implemented. It follows that the set of
prices {xj}j=1,..,N does not change if the infrastructure provider adopts T2P . Accordingly, also
the quantities qj and Q are unchanged.

We have therefore established that, by adopting T2P , the infrastructure provider can
induce the same equilibrium as with a multi-part tariff, obtaining the same pre-tax profit
A+ (p− c)

∑N
1 qj = Ao − poL+ (po − c)

∑N
1 qj.

STEP 2: Next, we show that the tax burden bI in the original equilibrium is weakly larger
than in the equilibrium with T2P . To see this, consider that the burden when T2P is adopted
is

b2P = Q

(
tp · p ·

N∑
1

qj + tA · A2P

)
= Q

(
tp · po ·

N∑
1

qj + tA · (A− poL)

)
,

while the tax burden in the original equilibrium is

bI = Q

(
tp · po ·

N∑
1

qj + tA · Ao

)
.

The latter is weakly higher than the former, given that quantities are the same and poL ≥ 0.
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Part 2. STEP 1 : Suppose that the consumption limit is binding in the original equilibrium
(that is, with the multi-part tariff as in (C.49)). Faced with the tariff TI and the set of prices
{xj}j=1,..,N , consumers get

∑N
1 qj = L units, with po + xj > u′ (qj). Consider the choice of

consumption quantities qj. Because the constraint
∑N

1 qj ≤ L is binding, the set of equilibrium
quantities {qj}j=1,..,N is the solution to the following problem

max{qj}j=1,..,N

N∑
1

u (qj) +M − A−
N∑
1

xjqj s.t.
N∑
1

qj = L.

Denoting by λ the Lagrange-multiplier associated with the constraint
∑N

1 qj = L, the set of
FOCs are given by

du

dqj
= λ+ xj, j = 1, .., N. (C.55)

Consider now the problem of final good provider j when I adopts a multi-part
tariff. Equation (C.55) implicitly defines the demand qj (λ, xj) for j’s good. Because the
infrastructure provider’s tariff and the set {xj}−j of other sellers’ prices are given when j sets
xj, the equilibrium value of xj satisfies the following FOC

∂πj
∂xj

= qj (λ, xj) + (xj − φ)
∂qj (λ, xj)

∂xj
= 0, (C.56)

where
dqj
dxj

=
∂qj
∂xj

+
∂qj
∂λ

∂λ

∂xj
=
∂qj
∂xj

(
1 +

∂λ

∂xj

)
. (C.57)

The last equality follows from the fact that ∂qj
∂xj

=
∂qj
∂λ

< 0, as implied by (C.55) and concavity of
u (qj). Furthermore, ∂λ

∂xj
< 0, because the shadow price of additional consumption decreases

when the final good becomes more expensive. Finally, the fact that sellers are symmetric
implies that xj = x for any j. Therefore, given (C.55), we also have qj = L

N
for any j.

Let us now assume that the infrastructure provider adopts a two-part tariff T2P =

A + p
∑N

1 qj designed such that (i) the equilibrium quantity is qj = L
N

for each final good
(although there is no binding limit) and (ii) the number of connected consumers Q are identical
to the original equilibrium. We show that adopting this tariff yields a pre tax profit for the
infrastructure provider which is weakly higher than in the original equilibrium. When the
consumer faces T2P and a set of prices {xj}j=1,..,N , the quantity q satisfies

du

dqj
= p+ xj, j = 1, .., N. (C.58)
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By assumption, the usage fee p is chosen such that (C.58) yields q = L
N
. This equality can hold

only if there are no differences between the prices charged by the sellers, but this is indeed
the case. Because Q, T2P and the set {xj}−j of other sellers’ prices are given when j sets xj,
seller j’s price for the final good is implicitly determined by

∂πj
∂xj

= qj (p, xj) + (xj − φ)
∂qj (p, xj)

∂xj
= 0. (C.59)

Because p is constant and the same for all j, xj is identical for all sellers and we denote it by
x2P .

Let us now evaluate the two FOCs (C.56) and (C.59) in the neighborhood of the same
value for q. They differ in their second terms. Because ∂qj

∂xj
= 1

u′′ (qj)
< 0, we get that

dqj
dxj

=
∂qj
∂xj

(
1 +

∂xj
∂λ

)
>

∂qj
∂xj

, which means that the level of xj that satisfies (C.56) must
be larger than that which satisfies (C.59). Therefore, the equilibrium quantities q are
identical in the two equilibria, but the price for the final good is smaller when the two-part
tariff is adopted, i.e., x2P < x. Accordingly, the surplus a connecting consumer gets from
consumption,

∑N
1 u (q)−Nxq, is smaller in the original equilibrium than under T2P . Assume

the infrastructure provider intends to serve the same number of consumers, Q. Because the
consumer gets more net surplus from consumption, the infrastructure provider can extract
from each consumer a total payment that is at least as large as in the original equilibrium.
Recall that, in this equilibrium, each consumer pays just Ao to the infrastructure provider.
With T2P , a consumer’s total payment is A + p

∑N
1 qj = A + pL, which exceeds Ao by our

previous arguments. Thus, by adopting T2P , the infrastructure provider’s pre-tax profit cannot
be smaller.

Note that the tariff T2P described above must be such that p < po. To see why, recall that,
by assumption, po + x > du

dqj

∣∣∣
L
N

in the original equilibrium. If p ≥ po when T2P is adopted,

because (as we have shown) p + x increases with p, then p + x > du
dqj

∣∣∣
L
N

, implying that the

consumer would choose a quantity q smaller than L
N
. This outcome contradicts our assumption

that T2P induces q = L
N
.

STEP 2: The infrastructure provider’s after-tax profit is πI = Ao − (tppoL+ tAAo) − cL
in the original equilibrium with a multi-part tariff and πI,2P = A− (tppL+ tAA)− cL under
the two-part tariff. The difference between the after-tax profits is thus given by

πI,2P − πI = Q [(A+ pL− Ao) + tA (Ao − A) + tpL (po − p)] .
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With non-negative tax rates, the above difference cannot be negative, because A + pL ≥ Ao

and po > p. The term in squared brackets is bounded from below by pL+ tpL (po − p) ≥ 0.

D Extensions to Section 4.2

D.1 Three-part tariffs with menus of tariffs

In this section, we argue that there is no loss of generality in assuming the firm adopts a menu
of two-part tariffs, as done in Section 4.2, compared to the case where the firm is allowed to
charge three-part tariffs.

Lemma D.1. For any equilibrium where the infrastructure provider adopts a menu of multi-
part tariffs as in (C.49), there exists a menu of two-part tariffs Ai+piq, i = h, ` which induces
the same equilibrium quantities, but yields weakly higher after-tax profits for the downstream
firm.

The intuition for Lemma D.1 is similar to that for Lemma C.1. A menu of multi-part
tariffs can be replaced by two-part tariffs inducing the same consumption by the type they
are intended for, and a total payment to the downstream firm that is at least arbitrarily close
to the initial one, while tax payments cannot be higher. Thus, the downstream firm cannot
be worse off.

Proof of Lemma D.1

We divide the proof in two steps. First, we show that the pre tax profit of the downstream
firm when adopting a multi-part tariff is arbitrarily close to the profit when the two-part tariff
menu is adopted. Second, we show that the downstream firm’s tax burden when adopting the
menu of two-part tariffs cannot be higher than with a menu of multi-part tariffs. Therefore,
the infrastructure provider’s post-tax profit is at least arbitrarily close to that in the original
equilibrium.

STEP 1 : Consider a menu of tariffs TM = {T`, Th}, with the structure described in (C.49),
and the associated equilibrium. Let bI be the associated tax payment by the infrastructure
provider. Let also qh (resp. q`) be the quantity chosen by type-h (resp. type-`) when choosing
the tariff intended for its type. Further, let Th` (resp. T`h) be the out-of-equilibrium payment
that type h (resp. `) makes when choosing the tariff intended for the other type. Similarly,
qh` and q`h are the out-of-equilibrium quantities. For convenience, we refer to this equilibrium
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as the “original” equilibrium, and denote the components of the infrastructure provider’s tariff
with the subscript o. Let Ui(Tĩi, qĩi) be the utility of a consumer of type i given the payment
Tĩi and the quantity qĩi, with i, ĩ = h, ` and recall we drop the double index when i = ĩ. By
assumption, the following conditions must be satisfied in the original equilibrium

Uh(Th, qh) ≥ Uh (Th`, qh`) (D.1)

U`(T`, q`) ≥ U`(T`h, q`h) (D.2)

Ui(Ti, qi) ≥M i = h, ` (D.3)

Conditions (D.1) and (D.2) are incentive compatibility constraints. Conditions (D.3) are
participation constraints.

Using standard arguments (see, e.g., Laffont and Martimort, 2001), one can show that
(D.1) and (D.3) for i = ` are binding in the original equilibrium, whereas (D.3) for i = h

and (D.2) are slack. Furthermore, as we now argue, the condition qh` = q` must hold in the
original equilibrium. To see this, consider that when an h-type mimics an `-type, the former’s
utility is Uh (Th`, qh`) = u (qh`, αh) − Ao` − φqh` − po` · max {qh` − L`; 0}. Because ∂2u

∂q∂α
> 0,

whenever qh` > q` ≥ L` the condition ∂u(q`,αh)
∂q

− φ > po` ≥ ∂u(q`,α`)
∂q

− φ holds. Similarly,
whenever qh` > q` and q` < L`, the condition ∂u(q`,αh)

∂q
−φ > ∂u(q`,α`)

∂q
−φ = 0 holds. Therefore,

the marginal surplus a mimicker gets from consuming units in excess of q` is strictly positive.
Hence, the infrastructure provider can always reduce qh` up to qh` = q`, and thereby reduce
the mimicker’s utility Uh (Th`, qh`). This move is profitable because it does not produce any
change in the equilibrium quantities, but reduces the information rent left to the h-types and,
hence, raises the total payment that the infrastructure provider can extract. Note that the
optimality of qh` = q` implies that L` = q` in the original equilibrium: because ∂2u

∂q∂α
> 0,

qh` = q` can hold only if po` ≥ ∂u(q`,αh)
∂q

− φ > ∂u(q`,α`)
∂q

− φ.
Keeping the original tariff T` fixed, the infrastructure provider can replace Th by a two-part

tariff T2P,h ≡ Ah + phq such that ph = u′ (qh, αh) and Ah = Th − phqh, obtaining the same
payment from h-types, and inducing the same quantity qh. Observe that, because (D.2) is
slack in the original equilibrium, it is also when T2P,h is adopted, given that qh and the total
payment Ah + phqh = Th are unchanged. The same applies to (D.3) for i = h.

Assume now that T2P,h is the tariff intended for h-types. The infrastructure provider can
replace the original tariff T` with a “quasi” two-part tariff T2P,` ≡ A`+p`q+z ·max {0, q − L2P},
with p` = u′ (L`, α`)−φ, such that the following conditions are satisfied: (i) q` does not change,
(ii) constraints (D.1) and (D.3) for i = ` remain binding and (iii) the total payment collected
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from h- and `-types is arbitrarily close to their payment in the original equilibrium. To see
how these conditions can be satisfied, note first that p` = u′ (L`, α`)− φ implies that q` = L`

when T2P,` is implemented. Second, by setting A2P,` = T` − p`q`, the infrastructure provider
ensures that the `-type’s total payment is the same as in the original equilibrium. Third, by
setting z large enough and L2P = L` + ε, where ε > 0 and arbitrarily small, the infrastructure
provider ensures that an h-type mimicker consumes a quantity arbitrarily close to q`. Hence,
the mimicker’s payoff Uh (Th`, qh`) is arbitrarily close to her payoff in the original equilibrium.
Thus, adopting T2P,h and T2P,` implies that (D.2) is slack and (D.3) for i = ` is binding. It
follows that the h-type’s payment T2P,h = A2P,h+phqh can also be made arbitrarily close to that
in the original equilibrium. Thus, the firm’s pre-tax profit is arbitrarily close to the original
one, T` (1− σ) + Thσ. Note that T2P,` is such that z ·max {0, q − L2P} = 0 in equilibrium.

STEP 2 : Given positive tax rates, the firm’s tax burden when adopting {T2P,`, T2P,h} is
bounded from above by the burden in the original equilibrium, which is given by

bI = tp (po` · L` · (1− σ) + poh · qh · σ) + tA ((1− σ)Ao` + σAoh) ,

with po` >
∂u(L`,α`)

∂q
− φ and poh = ∂u(qh,αh)

∂q
− φ. By contrast, when {T2P,`, T2P,h}, the tax

burden is

bI,2P = tp (p` · L` · (1− σ) + ph · qh · σ) + tA ((1− σ)A` + σAh) ,

Because A2P,` = T` − p`q` = A` − p`L` and A2P,h = Th − phqh = Ah − phLh, we get

bI,2P = tp (p` · L` · (1− σ) + ph · qh · σ) + tA ((1− σ) (A` − p`L`) + σ (Ah − phLh)) .

with p` = ∂u(L`,α`)
∂q

−φ and ph = ∂u(qh,αh)
∂q

−φ. Hence, ph = poh. Furthermore, po` > ∂u(q`,α`)
∂q
−φ =

p`. Therefore, bI,2P ≤ bI holds.

E Consumer heterogeneity in the value of access

In the model of Section 4.2, consumers differ in the utility they derive from final goods. In
this Section, we consider a different type of heterogeneity, namely in the intrinsic valuation
for accessing the infrastructure, independently of final goods. For example, in the case of
Internet connections, some consumers may value non-data-intensive services, such as email or
instant messaging, in addition to data-intensive ones such as video and gaming. Furthermore,
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depending on their location, consumers may face different levels of quality due to, e.g., uneven
network coverage.

To focus on the implications of this heterogeneity, we extend the model of Section 4.1, where
consumers have identical valuations for final goods as well as access. We assume consumer
utility is

∑
j=1...N

∫ qj

0

(α− r)dr + y + (V − βz) with z ∼ U(0, z̄), (E.1)

where V > 0 is the common valuation for access, independently of consumption of final goods.
The term z ∈ [0, z̄], multiplied by the positive parameter β, captures an idiosyncratic cost of
access. Hence, the last term in (E.1) can be interpreted as the idiosyncratic utility from access.
In the case of Internet connections, V may represent the utility from accessing services, such as
email or instant messaging. The parameter z may capture instead the cost of using the Internet
for these activities, compared to other networks (e.g., traditional mail or the telephone). In
the case of a highway, V may represent the value of accessing other destinations, while z may
capture the transportation cost of accessing the highway.

Note that, for ease of exposition, we adopt a specific form of utility from final goods
(identical to that in Economides and Hermalin, 2015). We also assume without loss that
N = 1, to reduce notation clutter. Apart from these modifications, we retain the same
assumptions as in Section 4.1.

Given that consumers’ budget constraints bind, we can write utility as

U =


∫ q

0
(α− r) dr − (p+ x) q + V − βz − A+M if acquire access,

M otherwise.
(E.2)

Note that we dropped the index j for final goods as N = 1. A consumer acquires access if and
only if she receives a positive utility from doing so. Hence, the total number of individuals
connecting is given by Q (p, x, A) = z̃, where

z̃ =

∫ q
0

(α− r) dr − (p+ x) q + V − A
β

, (E.3)

denotes the marginal consumer who is indifferent between acquiring access and not. It is
straightforward to show that higher prices reduce z̃ and, thus, the number of consumers that
connect (the “extensive margin” of consumption).

We begin by characterizing the equilibrium level of consumption of final goods by those
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who get access (the “intensive margin”). Maximizing (E.2), we obtain that the equilibrium
q is such that u′ (q) = p + x. Moreover, because the profit of the final good provider is
π = Q (x− φ) q, and Q is given when x is chosen, the optimal price is determined by the same
expression as (4.10). Furthermore, as in Section 4.1, x and q are decreasing in p as long as
consumer demand is not exceedingly convex (which we assume).

The infrastructure provider maximizes its profit

πI = Q [(1− tA)A+ ((1− tp) p− c) q] (E.4)

with respect to the usage and access fee. The solution is

p =
1

1− tp

(
(tp − tA)

q
dq
dp

+ (1− tA)

∂x
∂p
q

dq
dp

+ c

)
, (E.5)

A = − Q
∂Q
∂A

− ((1− tp) p− c) q = − Q
∂Q
∂A

− q2

dq
dp

(
(tp − tA) + (1− tA)

∂x

∂p
+ c

)
. (E.6)

See Appendix E.1 for the derivation. We note that the equilibrium usage fee in (E.5) is
identical to that in (4.18). It is therefore not surprising that the effects of taxes on p and
q are unchanged with respect to Section 4.1. These are given by (see Appendix E.2 for the
derivation):

∂p

∂tA
> 0,

∂p

∂tp
< 0⇐⇒ c < −(1− tA) q

∂q
∂p

, (E.7)

dq

dtA
=
dq

dp

∂p

∂tA
< 0,

dq

dtp
=
dq

dp

∂p

∂tp
> 0⇐⇒ c < −(1− tA) q

∂q
∂p

. (E.8)

Concerning the access fee in (E.6), the infrastructure provider now faces a trade-off between
extracting more surplus from inframarginal customers and losing the marginal ones. The
effects of the tax rates on A are given by

∂A

∂tA
=

(
Q+ A

∂Q

∂A

)
∂2πI
∂p2

− A∂Q
∂p

∂2πI
∂p∂A

, (E.9)

∂A

∂tp
= pq

∂Q

∂A

∂2πI
∂p2

−
[
qQ+ p

(
Q
dq

dp
+ q

∂Q

∂p

)]
∂2πI
∂p∂A

. (E.10)

These expressions are quite involved and hard to sign. Therefore, the effect of the tax rates
on the extensive margin

dQ

dtk
=
∂Q

∂A

∂A

∂tk
+
∂Q

∂p

∂p

∂tk
k = A, p, (E.11)
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is also ambiguous. To illustrate the ambiguity, consider an increase in the tax on usage and
assume ∂p

∂tp
< 0 holds (see (E.7)). The tax results in a higher consumption by those who

acquire access. Although this effect increases the consumer’s willingness to pay for access,
the net effect on the extensive margin depends also on the change in the access fee, which
is ambiguous. Nonetheless, we can show that, when tA = tp = 0 and the marginal cost c is
small, the following holds

dQ

dtp

∣∣∣∣
tA=0,tp=0

≷ 0⇐⇒ dQ

dtA

∣∣∣∣
tA=0,tp=0

≶ 0. (E.12)

Which implies that the government can expand the extensive margin of consumption by taxing
either access or usage. See Appendix E.3 for the proof.

We now examine the implications for welfare. To simplify the analytics, henceforth we
assume that c = φ = 0. These assumptions apply particularly to the case of ISPs and digital
final goods. Given these assumptions, we get dQ

dtp

∣∣∣
tA=0,tp=0

< 0 and dQ
dtA

∣∣∣
tA=0,tp=0

> 0. Thus,

taxing usage (resp. access) expands consumption on the intensive (resp. extensive) margin,
but restricts the other one. The effect of a marginal change in tax rates is given by

∂W

∂tk
= Qu′(qe)

dq

dtk
+ (u (q) + V − βQ)

dQ

dtk
, k = A, p. (E.13)

The first term in this expression represents the effect of changes in the intensive margin of
consumption, which is given by the marginal utility of the final goods, multiplied by the change
in consumption induced by the tax. By (E.8), the latter is positive (resp. negative) when tp
(resp. tA) increases. The second term in (E.13) captures the change in welfare due to changes
in the extensive margin of consumption. The factor in brackets is the gross surplus generated
by the marginal consumer that acquires access to the infrastructure.

Because each tax rate expands consumption on either the intensive or the extensive margin,
but reduces consumption on the other, the effect on welfare is also ambiguous. However, we
can show (see Appendix E.4) that

∂W

∂tp

∣∣∣∣ tA=0,tp=0 > 0⇐⇒ V >
α2

2
, (E.14)

∂W

∂tA

∣∣∣∣ tA=0,tp=0 > 0⇐⇒ V <
α2

2
. (E.15)

Welfare increases with the tax on usage when the common valuation for access, V , is large
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compared to the marginal utility from the final goods α. By contrast, the tax on access
increases welfare when α is relatively large compared to V . To understand this finding, note
from (E.8) that q increases with tp, and so does the total surplus of consumers that acquire
access. On the other hand, A increases, with a negative effect on the quantity of consumers
that acquires access. The first effect has greater impact on aggregate surplus the larger is the
initial consumer base, Q, which increases with V . Although Q increases with α as well, this
parameter also increases the welfare loss from the marginal consumer that does not acquire
access. Hence, when V is large enough, welfare increases with a tax on usage. By the same
token, when α is large compared to V , welfare increases with a tax on access.

In other words, a large intrinsic valuation implies the initial base of consumers that acquire
access is relatively large. That is, a larger V makes the demand for access less elastic. Hence,
the increase in consumption of final goods (intensive margin) that results from taxing usage
has a positive impact on a large number of consumers, dominating the lost surplus from those
who stop using the infrastructure and consuming the final goods (extensive margin). By
contrast, with a relatively small initial base of consumers, total surplus increases with a tax
on access.

Although the analytical complexity of the problem prevents a full characterization of the
optimal tax rates, the conditions provided above are also sufficient for taxes on either usage
or access being globally optimal (conditional on the other being zero). Indeed, we show in
Appendix E.5 that

V >
α2

2
=⇒ t∗p > 0, (E.16)

α2

2
> V =⇒ t∗A > 0. (E.17)

We summarize in the following

Proposition E.1. Consider a setting where consumers differ in the intrinsic valuation
for access to the infrastructure, imperfect competition in the markets for final goods and a
monopolist infrastructure provider adopting a multi-part tariff. Assume also a small marginal
cost of infrastructure usage. A tax on usage (respectively, access) increases total surplus if
consumers’ valuation for access (respectively, for consumption of the final goods) is relatively
large.
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E.1 Proof of (E.5) and (E.6)

The first-order conditions of the infrastructure provider are

∂πI
∂p

=
∂Q

∂p
A (1− tA) +

[
qQ (1− tp) + (p (1− tp)− c)

(
q
∂Q

∂p
+Q

dq

dp

)]
= 0,

∂πI
∂A

=
∂Q

∂A
A (1− tA) +Q (1− tA) + ((1− tp) p− c) q

∂Q

∂A
= 0. (E.18)

Note that only the direct effect of p on Q matters. Indeed, dQ
dp

= ∂Q
∂p

+ ∂Q
∂q

dq
dp
, but the last

term is equal to zero because (E.3) and u′ (q) = p + x hold in equilibrium. Combining these
expressions and solving for p and A, we get (E.5) and (E.6).

E.2 Proof of (E.7), (E.9), and (E.10)

Total differentiation of (E.18) yields

∂p

∂tp
= −

det

[
∂2πI
∂p∂tp

∂2πI
∂p∂A

∂2πI
∂A∂tp

∂2πI
∂A2

]

det

[
∂2πI
∂p2

∂2πI
∂p∂A

∂2πI
∂p∂A

∂2πI
∂A2

] , ∂p

∂tA
= −

det

[
∂2πI
∂p∂tA

∂2πI
∂p∂A

∂2πI
∂A∂tA

∂2πI
∂A2

]

det

[
∂2πI
∂p2

∂2πI
∂p∂A

∂2πI
∂p∂A

∂2πI
∂A2

] . (E.19)

We proceed assuming that the determinants at the denominator of these expressions (Hessian
matrix) are positive, as required by the second-order conditions of the profit maximization
problem. Therefore,

∂p

∂tp
< 0⇔ ∂2πI

∂p∂tp

∂2πI
∂A2

− ∂2πI
∂A∂tp

∂2πI
∂p∂A

> 0, (E.20)

∂p

∂tA
> 0⇔ ∂2πI

∂p∂tA

∂2πI
∂A2

− ∂2πI
∂A∂tA

∂2πI
∂p∂A

< 0. (E.21)

It is useful to note the following equalities that follow from (E.18), ∂Q
∂A

= −F ′(z̃)
β

and the fact

that ∂Q
∂p

= −F ′(z̃)
β
N
(
q + pdq

dp

)
:

A (1− tA) +N ((1− tp) p− c) q = −Q (1− tA)
∂Q
∂A

, (E.22)

(
(1− tp)

(
q + p

dq

dp

)
− cdq

dp

)
∂Q

∂A
= (1− tA)

∂Q

∂p
. (E.23)
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∂Q

∂p
= q

(
1 +

∂x

∂p

)
∂Q

∂A
. (E.24)

We now establish the sign of ∂p
∂tp

. Using the FOCs in (E.18), we get ∂2πI
∂A∂tp

= −pq ∂Q
∂A

,
∂2πI
∂p∂tp

= −
(
qQ+ pQdq

dp
+ pq ∂Q

∂p

)
= − Q

1−tp

(
q (1− tA)

(
1 + ∂x

∂p

)
+ cdq

dp

)
− pq ∂Q

∂p
. The last

equality follows from replacing p from (E.5). Furthermore, using (E.22) and (E.23), we
get ∂2πI

∂A2 = (1− tA)
(
−∂2Q
∂A2

Q
∂Q
∂A

+ 2∂Q
∂A

)
. Note that, because πI is concave by assumption,

this expression has to be negative. Finally, using (E.22) and (E.23), we have ∂2πI
∂p∂A

=

(1− tA)
(

2∂Q
∂p
− ∂2Q

∂p∂A
Q
∂Q
∂A

)
. Combining these equalities, and using (E.24), we get

∂p

∂tp
=

∂2πI
∂p∂tp

∂2πI
∂A2

− ∂2πI
∂A∂tp

∂2πI
∂p∂A

= −Q
1 + ∂x

∂p

1− tp

(
(1− tA) q + c

∂q

∂p

)(
−∂

2Q

∂A2

Q
∂Q
∂A

+ 2
∂Q

∂A

)
.

(E.25)
Because Q

1+ ∂x
∂p

1−tp > 0 and the last term in brackets is negative, we get ∂p
∂tp

< 0 if and only if
(1− tA) q + c∂q

∂p
> 0.

We turn now to ∂p
∂tA

. Using the previous results, and the fact that ∂2πI
∂A∂tA

= −
(
A∂Q
∂A

+Q
)

and ∂2πI
∂p∂tA

= −A∂Q
∂p
, rearranging the terms, we obtain

∂p

∂tA
=

∂2πI
∂p∂tA

∂2πI
∂A2

− ∂2πI
∂A∂tA

∂2πI
∂p∂A

= Qq

(
1 +

∂x

∂p

)(
−∂

2Q

∂A2

Q
∂Q
∂A

+ 2
∂Q

∂A

)
. (E.26)

Again, because the last term in brackets is negative and Qq
(

1 + ∂x
∂p

)
> 0, we have ∂p

∂tA
> 0.

Observe also that, when c→ 0, (E.19), (E.25) and (E.26) imply that

dp

dtA
= − 1− tp

1− tA
dp

dtp
. (E.27)

Let us now consider the effect of tax rates on A. We get

∂A

∂tp
= −

det

[
∂2πI
∂p2

∂2πI
∂p∂tp

∂2πI
∂p∂A

∂2πI
∂A∂tp

]

det

[
∂2πI
∂p2

∂2πI
∂p∂A

∂2πI
∂p∂A

∂2πI
∂A2

] , ∂A

∂tA
= −

det

[
∂2πI
∂p2

∂2πI
∂p∂tA

∂2πI
∂p∂A

∂2πI
∂A∂tA

]

det

[
∂2πI
∂p2

∂2πI
∂p∂A

∂2πI
∂p∂A

∂2πI
∂A2

] .

As before, we assume that the denominator of these expressions is positive. Therefore, we
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have
∂A

∂tp
> 0⇔ ∂2πI

∂p2

∂2πI
∂A∂tp

− ∂2πI
∂p∂A

∂2πI
∂p∂tp

< 0,

∂A

∂tA
> 0⇔ ∂2πI

∂p2

∂2πI
∂A∂tA

− ∂2πI
∂p∂A

∂2πI
∂p∂tA

< 0.

Because ∂2πI
∂A∂tp

= −pq ∂Q
∂A

, ∂2πI
∂p∂tp

= −
[
qQ+ p

(
Qdq
dp

+ q ∂Q
∂p

)]
, ∂2πI

∂A∂tA
= −

(
A∂Q
∂A

+Q
)
, and

∂2πI
∂p∂tA

= −A∂Q
∂p
, we obtain (E.9) and (E.10).

E.3 Effects of tax rates on the extensive margin (Proof of (E.12))

We provide the proof for the case where c = 0. If the result holds under this condition, it must
hold also for positive values of c that are sufficiently close to zero. To show this result we solve
the infrastructure provider’s problem sequentially. First, we maximize πI with respect to p,
treating A as a parameter. The solution, denoted p (A), is implicitly defined by the following

∂πI
∂p

=
∂Q

∂p
A (1− tA) + (1− tp)

[
qQ+ p

(
q
∂Q

∂p
+Q

dq

dp

)]
= 0. (E.28)

Next, we maximize πI with respect to A, recalling that p (A) is defined by (E.28). We have
dπ0

dA
= ∂πI

∂A
+ ∂p

∂A
∂πI
∂p

= ∂πI
∂A
. The last equality follows from the fact that ∂πI

∂p
= 0. Hence, the

FOC of the problem is

dπI
dA

=
∂πI
∂A

= −Q (1− tp)
(
q + p(A) · dq

dp

) ∂Q
∂A
∂Q
∂p

+Q (1− tA) = 0, (E.29)

where we have made use of (E.28) to replace A (1− tA) + (1− tp) pq =
−Q(1−tp)(q+p dqdp)

∂Q
∂p

.

Differentiation of (E.29) with respect to tA (recalling that p is a function of A) results in
∂2πI
∂A∂tA

+ ∂2πI
∂A2

∂A
∂tA

= 0, which, after some rearrangements, brings to

∂A

∂tA
=
Q+K dp

dtA
∂2πI
∂A2

,

where dp
dtA

= ∂p
∂A

dA
dtA

and

K ≡ Q (1− tp)

(q + p(A) · dq
dp

)
·
d
(
∂Q
∂A
/∂Q
∂p

)
dp

+

(
2
dq

dp
+ p(A) · d

2q

dp2

)
∂Q

∂A
/
∂Q

∂p

 .
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Following similar steps, we get

∂A

∂tp
=
−Q

(
q + pdq

dp

)
∂Q
∂A
/∂Q
∂p

+K ∂p
∂tp

∂2πI
∂A2

=
−Q+K dp

dtp

∂2πI
∂A2

,

where the last equality follows from (E.24).
Let us now consider the effect of changes in tA and tp on Q. We have

dQ

dtk
=
∂Q

∂A

∂A

∂tk
+
∂Q

∂p

dp

dtk
k = A, p.

Replacing ∂Q
∂A

= −F ′(z̃)
β

and ∂Q
∂p

= −F ′(z̃)
β

(
q + pdq

dp

)
, and using the above results, we get

dQ

dtA
= −F

′(z̃)

β

(
Q+K dp

dtA
∂2π0

∂A2

+

(
q + p

dq

dp

)
· dp
dtA

)
,

dQ

dtp
= −F

′(z̃)

β

(
−Q+K dp

dtp

∂2π0

∂A2

+

(
q + p

dq

dp

)
· dp
dtp

)
.

Given (E.27), these two expressions must have opposite sign when tA = tp.

E.4 Proof of (E.14) and (E.15)

Given the assumptions made in the text, by solving (E.18) we obtain the following equilibrium
prices and quantities

p =
α (1− 2tp + tA)

3 + tA − 4tp
, A =

V

2
− (α (1− tp))2 (1− 4tp + 3tA)

4 (3− 4tp + tA)2 (1− tA)
, (E.30)

x = q =
α (1− tp)

3 + tA − 4tp
, Q =

1

β

(
V

2
+

(α (1− tp))2

4 (3− 4tp + tA)2 (1− tA)

)
. (E.31)

Note that we restrict attention to equilibria such that both p and A are non-negative. This
restriction implies that we focus on combinations of tax rates such that 1−2tp+ tA ≥ 0 holds.
Using the above expressions, we get
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dQ

dtp
= − α2 (1− tp) (1− 2tp + tA)

2β (3− 4tp + tA)2 (1− tA)
< 0, (E.32)

dQ

dtA
=

(α (1− tp))2 (1− 2tp + tA)

2β (3− 4tp + tA)2 (1− tA)2 > 0. (E.33)

Using (E.30) and (E.31), we have p + x = u′(q) =
(

2α
3

)
and u (q) + V − βQ = 7α2

36
+ V

2
when

tA = tp = 0. Using these equalities, we can rearrange (E.32) and (E.33) to get (E.14) and
(E.15).

E.5 Proof of Proposition E.1

The proof is organized in two parts, and each part is divided in two steps. Part 1 focuses on
the optimal tp given tA = 0. In step 1, we establish that, conditional on tA = 0, the only value
of tp that is potentially a global maximizer of W within the [−1, 0] interval is −1. In step 2,
we establish that, when V ≥ α2

2
, there exists a value tp > 0 such that W is strictly larger than

when tp = −1. Taken together, these findings imply that the optimal tp must be positive. Part
2 focuses on the optimal tA given tp = 0 . In step 1 we establish that, conditional on tp = 0,
the only potential global maximizer of W on the tA ∈ [−1, 0] interval is −1. In step 2, we
establish that, when Nα2

2
> V , there exists a value tA > 0 such that W is strictly larger than

when tA = −1. Taken together, these findings imply that the optimal tA must be positive.

Part 1. STEP 1 : The first order derivative ∂W
∂tp

∣∣∣
tA=0

can be written as −α2 X+Y
8(3−4tp)4β

, where

X ≡ −2(3− 4tp)(1 + tp(7 + 2tp(−9 + 4tp)))V,

Y ≡ α2(1− tp)2(1− 4tp)(3− tp(3 + 2tp)).

X and Y are monotonically decreasing in tp when tp ∈ [−1, 0]. Furthermore, as long as V > α2

2

holds, we have X + Y > 0 when tp = −1, and X + Y < 0 when tp = 0. Consequently, the
only local maximizers on the tp ∈ [−1, 0] interval are its extremes. However, because we have
already established that ∂W

∂tp

∣∣∣
tA=0,tp=0

> 0 when V > α2

2
, tp = 0 cannot be a global maximizer

of W . Therefore, the only potential maximizer of W on the tp ∈ [−1, 0] interval is tp = −1.
STEP 2 : If we can establish that W is larger when tp = 1

2
than when tp = −1, we can
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conclude that the global maximizer of W must be such that tp > 0. We have

W |tp=1/2,tA=0 =
1

β

(
3

8
V 2 +

7

32

(
α2V

)
+

11

512
α4

)

W |tp=−1,tA=0 =
1

β

(
3

8
V 2 +

19

98

(
α2V

)
+

17

686
α4

)
Because the difference between these terms is increasing in V , and W |tp=1/2,tA=0 >

W |tp=−1,tA=0 holds when V = α2

2
, the claim is proved.

Part 2. STEP 1 : The first order derivative ∂W
∂tA

∣∣∣
tp=0

can be written as −α2 X+Y
8β(1−tA)3(3+tA)4 ,

where
X ≡ (3 + tA) (2(1− tA)(1 + tA(2 + tA)(−5 + 2tA))V ) ,

Y ≡ α2(1 + 3tA)(−3 + tA(3 + 2tA)).

Under the assumption that α2

2
> V , these expressions are monotonically decreasing with tA

on the interval [−1, 0]. Furthermore, they are all positive when tA = −1, but their sum is
negative when tA = 0, because, ∂W

∂tA

∣∣∣ tp=0,tA=0 > 0 . It follows that the only local maximizers
of W on the interval tA ∈ [−1, 0] are tA = −1 and tA = 0. However, the latter cannot be a
global maximizer of W , because ∂W

∂tA

∣∣∣ tp=0,tA=0 > 0 .
STEP 2 : If we can show that ∃tA > 0 such that W is larger than when tA = −1, we can

conclude that the global maximizer of W must be such that tA > 0. We have

W |tp=0,tA=2/3 =
1

β

(
0.375V 2 + 0.22V α2 + 0.027α4

)
W |tp=0,tA=−1 =

1

β

(
0.375V 2 + 0.218V α2 + 0.021α4

)
Because the difference between these terms is increasing in α2, and W |tp=0,tA=2/3 >

W |tp=0,tA=−1 when α2

2
= V , the claim is proved.

F Competition between infrastructure providers: proofs

We solve the model by proceeding backwards. At stage 3, consumers subscribing to s = m,n

choose the level of consumption qs maximizing (5.1) given the prices set by the infrastructure
and final goods providers. We obtain that qs = α − ps − xs. Given this outcome and
taking the number of subscribers to each infrastructure provider as given, at stage 2 the
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final good provider maximizes its profit, πf = qm (xm − φ)Dm + qn (xn − φ)Dn, with respect
to xm and xn. Solving the system of first-order conditions ∂πf

∂xs
= 0, s = m,n, we obtain

xs = 1
2

(α− ps + φ).
Finally, at stage 1, consumers decide which infrastructure provider they choose, taking

as given its tariffs (ps, As). We first determine the marginal consumer z who is indifferent
between the two infrastructure providers. Equating Un (z) = Um (z) and solving for z, we find

z =
1

2
+

8 (An − Am) + 2α (pn − pm) + p2
m − p2

n

16β
. (F.1)

Demand for firm m is given by all consumers to the left of z on the Hotelling line, while that
for firm n is given by all consumers to its right. That is, Dm = z and Dn = 1− z.

The infrastructure providers simultaneously maximize their profits πs with respect to
(ps, As), given the choices of the other players. Let tp and tA be the tax rates. The profit
of firm s is πs = Ds [(1− tA)As + (1− tp) psqs − cqs]. We assume this function is concave in
ps, As. From the system of first-order conditions ∂πs

∂ps
= 0, s = m,n and ∂πs

∂As
= 0, s = m,n, we

find

As = β − (α− φ)2 (1 + tA − 2tp) (1− tp)2

(1− tA) (3 + tA − 4tp)
2 , ps =

(α− φ) (1 + tA − 2tp) + 2c

3 + tA − 4tp
. (F.2)

Substituting ps and xs in qs characterized above, we find

qs =
(α− φ) (1− tp)− c

3 + tA − 4tp
. (F.3)

Setting tA = tp = 0, we obtain that ps = α−φ+2c
3

, xs = α+2φ−c
3

, qs = α−φ−c
3

and
Dm = Dn = 1

2
. In the absence of taxation, both infrastructure providers charge individuals

for consumption. To derive the socially optimal allocation, we maximize (5.2) with respect
to (qm, qn, Dm), which yields q∗s = α − φ − c and D∗m = D∗n = 1

2
. Hence, as in the baseline

model, there is underprovision of the final good (qs < q∗s) in the no-tax equilibrium.
From (F.2), we find that that

∂ps
∂tA

=
2 ((α− φ) (1− tp)− c)

(3 + tA − 4tp)
2 ,

∂ps
∂tp

= −2 (α− φ) (1− tA)− 8c

(3 + tA − 4tp)
2 .

Hence, the infrastructure suppliers respond to an increase in tp by reducing ps, as long as the
marginal cost c is not exceedingly large. By contrast, raising tA increases ps if c is small. As
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a result, we find

∂qs
∂tA

= −(α− φ) (1− tp)− c
(3 + tA − 4tp)

2 ,
∂qs
∂tp

=
(α− φ) (1− tA)− 4c

(3 + tA − 4tp)
2 .

The effects of taxes on welfare are given by

∂W

∂tA
= −(α− φ)2 (1− tp) (2 + tA − 3tp) + c

(3 + tA − 4tp)
3 ,

∂W

∂tp
=

(α− φ)2 (1− tA) (2 + tA − 3tp)− 4c

(3 + tA − 4tp)
3 .

Hence, starting from tA = tp = 0, a tax on usage increases welfare as long as c is sufficiently
small.
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