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1 Introduction

We consider a private ownership economy with consumption and production
externalities. In a differentiable framework, our purpose is to prove the non-
emptiness and compactness of the set of competitive equilibria with consump-
tions and prices strictly positive. In line with the classical contributions of
Arrow and Hahn (1971) and Laffont and Laroque (1972), the paper considers
a general equilibrium model of a private ownership economy where the choices
of all households and firms affect individual consumption sets, individual pref-
erences and production technologies. The importance of consumption and pro-
duction externalities on individual preferences and production technologies has
been widely recognized in literature. Externalities may also affect individual
consumption sets and do not directly affect preferences. For instance, (i) in
the case of internet or electricity, the congestion due to the global consump-
tion limits the physically possible individual consumption; (ii) an increase in
the production of transport services decreases the minimal threshold of con-
sumption of fuel; (iii) an increase of polluting production makes worse the
individual health, and consequently it increases the survival threshold of con-
sumption of medicines.

In our model, each firm is characterized by a technology described by an in-
equality on a differentiable function called the transformation function. Each
household is characterized by a consumption set, preferences and an initial en-
dowment of commodities. Following del Mercato (2006), each consumption set
is described by an inequality on a differentiable function called the possibility
function. Individual preferences are represented by a utility function. Firms
are owned by households. In the spirit of Laffont and Laroque (1972) the asso-
ciated concept of competitive equilibrium is nothing else than an equilibrium
à la Nash, the resulting allocation being feasible with the initial resources of
agents.

Our main result states that for all initial endowments which satisfy classical
survival conditions, the set of competitive equilibria with consumptions and
prices strictly positive is non-empty and compact. Following the seminal work
by Smale (1974), and the recent contributions made by del Mercato (2006)
and del Mercato and Platino (2017), we prove our result using an homotopy
argument and the topological degree modulo 2. 1 As shown by del Mercato and
Platino (2017), due the fact that the production sets are not required to be
convex, one needs to provide a “price-wise homotopy” which makes the proof
of our result non-trivial.

We now compare our contribution with previous works. The existence re-

1 The reader can find a survey on the theory of modulo 2 and related concepts in
Milnor (1965), Geanakoplos and Shafer (1990) and in Villanacci et al. (2002).
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sults by Arrow and Hahn (1971), Laffont and Laroque (1972), Bonnisseau
and Médecin (2001) and Mandel (2008) are more general than ours since
in these works individual consumption sets and firms technologies are rep-
resented by correspondences. 2 We are interested in a model where one can
perform comparative static analysis, and therefore Pareto improving policies
from a differentiable viewpoint. So, at the cost of loosing generality, we choose
to use an inequality on differentiable functions, instead of more general corre-
spondences, to describe individual consumption sets and firms technologies.

del Mercato (2006), Balasko (2015), Ericson and Kung (2015), and del Mer-
cato and Platino (2017) use a differentiable approach to general equilibrium
analysis. In Ericson and Kung (2015), individual preferences and production
technology also depend on the price system. To get existence result, the au-
thors perturb all fundamentals of the economy. In del Mercato (2006) a general
model of pure exchange economies with externalities on consumption sets and
preferences is studied. In Balasko (2015), wealth dependent preferences are
taking into account. del Mercato and Platino (2017) consider a private own-
ership economies with externalities and standard consumption sets.

The paper is organized as follows. In Section 2, we present the model and the
assumptions. In Section 3, the concept of competitive equilibrium is adapted
to our economy. Then, we focus on the equilibrium function which is built on
first order conditions associated with households and and firms maximization
problems. In Section 4, we present our main result, that is Theorem 11. In
Section 5 and 6, we prove Theorem 11 by constructing the test economy and
the required homotopy. All the propositions are proved in Section 7. In Ap-
pendix, the reder can find the definition and the fundamental properties of
the topological degree modulo 2.

2 The model and the assumptions

There is a finite number C of physical commodities or goods labeled by
the superscript c ∈ C := {1, . . . , C}. The commodity space is RC . There
is a finite number H of households or consumers labeled by the subscript
h ∈ H := {1, . . . , H}. Each household h is characterized by an endowment
of commodities, a possibility function and preferences described by a util-
ity function. There is a finite number J of firms labeled by the subscript
j ∈ J := {1, . . . , J}. Each firm j is owned by the households and it is char-
acterized by a technology described by a transformation function. Individual

2 In Mandel (2008), each consumption set coincides with the positive orthant of the
commodity space, so concerning the consumption side our model is more general
since it also allows externalities on consumption sets.
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utility, possibility and transformation functions are affected by the consump-
tion choices of all households and the production activities of all firms which
represent the externalities created on individual agents (households and firms)
by all the other agents. The notations are summarized below.

• yj := (y1
j , .., y

c
j , .., y

C
j ) is the production plan of firm j. As usual, the

output components are positive and the input components are negative;
y−j := (yz)z 6=j denotes the production plan of firms other than j and
y := (yj)j∈J denotes the production of all the firms.
• xch is the consumption of commodity c by household h;
xh := (x1

h, .., x
c
h, .., x

C
h ) denotes household h’s consumption; x−h := (xk)k 6=h

denotes the consumption of households other than h and x := (xh)h∈H
denotes the consumption of all the households.
• The technology of firm j is described by an inequality on a trasformation

function tj, which depends on the production and consumption activities
of all other agents. So, given y−j and x, the production set of the firm j
is described by the following set,

Yj(y−j, x) :=
{
yj ∈ RC : tj(yj, y−j, x) ≤ 0

}
where the transformation function tj is a function from RC × RC(J−1) ×
RCH

++ to R. So, tj describes the way firm j’s technology is affected by the
actions of the other agents. Denote t := (tj)j∈J .
• As in general equilibrium models à la Arrow–Debreu, each household h

has to choose a consumption in his consumption set Xh. Analogously to
the production side, each consumption set Xh is described in terms of an
inequality on a function χh.

3 We call χh the possibility function of house-
holds h. The main innovation of this paper comes from the dependency
of the consumption set on the consumptions of the other households and
the production activities of firms. So, given x−h and y the consumption
set of household h is given by

Xh(x−h, y) :=
{
xh ∈ RC

++ : χh(xh, x−h, y) ≥ 0
}

where the possibility function χh is a function from RC
++×RC(H−1)

+ ×RCJ

to R. Thus, χh describes the way in which the set of all consumption
alternatives which are a priori possible for household h is affected by the
actions of the other agents. Denote χ := (χh)h∈H.
• Each household h ∈ H has preferences described by a utility function
uh from RC

++ × RC(H−1)
+ × RCJ to R, and uh(xh, x−h, y) is the utility

level of household h associated with (xh, x−h, y). So, uh describes the
way household h’s preferences are affected by the consumption and the
production of the other agents. Denote u := (uh)h∈H.

3 In same spirit, see Smale (1974), and Bonnisseau and del Mercato (2010).
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• sjh ∈ [0, 1] is the share of firm j owned by household h; sh := (sjh)j∈J ∈
[0, 1]J denotes the vector of the shares of all firms owed by household h;
s := (sh)h∈H ∈ [0, 1]JH . As usual,

∑
h∈H sjh = 1. We denote by S the set

of all the shares.
• eh := (e1

h, .., e
c
h, .., e

C
h ) ∈ RC

++ denotes household h’s endowment; e :=

(eh)h∈H and r :=
∑
h∈H

eh.

• E := ((χ, u, e, s), t) is a private ownership economy with externalities.
• pc is the price of one unit of commodity c; p := (p1, .., pc, .., pC) ∈ RC

++.
• Given w = (w1, .., wc, .., wC) ∈ RC , we denote w\ := (w1, .., wc, .., wC−1) ∈
RC−1.

We make the following assumptions on the transformation functions.

Assumption 1 For all j ∈ J ,

(1) The function tj is continuous in its domain. For every (y−j, x) ∈ RC(J−1)×
RCH

++ , the function tj(·, y−j, x) is differentiable and Dyj tj(·, ·, ·) is contin-

uous on RC(J) × RCH
++ .

(2) For every (y−j, x) ∈ RC(J−1) × RCH
++ , tj(0, y−j, x) = 0.

(3) For every (y−j, x) ∈ RC(J−1) × RCH
++ , the function tj(·, y−j, x) is differen-

tiably strictly quasi-convex, i.e., it is C2 function and for all y′j ∈ RC,
D2
yj
tj(y

′
j, y−j, x) is positive definite on kerDyj tj(y

′
j, y−j, x).

(4) For every (y−j, x) ∈ RC(J−1)×RCH
++ , Dyj tj(y

′
j, y−j, x)� 0, for all y′j ∈ RC.

Fixing the externalities, the assumptions on tj are standard in “smooth” gen-
eral equilibrium models. In particular, from Points 1 and 4 of Assumption 1,
the production set is a C1 manifold with boundary of dimension C and its
boundary is a C1 manifold of dimension C − 1. We point out that we do not
require the production set to be convex with respect to the externalities.

For any given externality (x, y) ∈ RCH
++ × RCJ , Y (x, y) denotes the set of all

the production allocations that are consistent with (x, y), that is

Y (x, y) := {y′ ∈ RCJ : tj(y
′
j, y−j, x) ≤ 0, ∀ j ∈ J } (1)

The assumption below is analogous to Assumption UB (Uniform Bounded-
ness) in Bonnisseau and Médecin (2001), and Assumption P(3) in Mandel
(2008). 4

Assumption 2 (Uniform Boundedness) There exists a bounded set C(r) ⊆

4 As it is pointed out by del Mercato and Platino (2017), Assumption 2 is weaker
than the condition provided by Arrow and Hahn (1971).
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RCJ such that for every (x, y) ∈ RCH
++ × RCJ ,

Y (x, y) ∩

y′ ∈ RCJ :
∑
j∈J

y′j + r � 0

 ⊆ C(r)

The following lemma is an immediate consequence of Assumption 2.

Lemma 3 There exists a bounded set K(r) ⊆ RCH
++ ×RCJ such that for every

(x, y) ∈ RCH
++ × RCJ , the following set is included in K(r).

A(x, y; r) :=

(x′, y′) ∈ RCH
++ × RCJ : y′ ∈ Y (x, y) and

∑
h∈H

x′h −
∑
j∈J

y′j ≤ r


From Assumption 2, the set of feasible allocations A(x, y; r) is uniformly
bounded with respect to the externalities. Lemma 3, is nedeed to prove the
compactness of the homotopy, once externalities move along the homotopy arc
(see Step 2.1 of the proof of Proposition 14 in Section 7).

We make the following assumptions on the utilities functions.

Assumption 4

(1) The function uh is continuous on its domain. For every (x−h, y) ∈ RC(H−1)
+ ×

RCJ , the function uh(·, x−h, y) is differentiable and Dxhuh(·, ·, ·) is con-
tinuous on RCH

++ × RCJ .

(2) For every (x−h, y) ∈ RC(H−1)
++ × RCJ , the function uh(·, x−h, y) is diffe-

rentiably strictly increasing, i.e. Dxhuh(x
′
h, x−h, y)� 0 for all x′h ∈ RC

++.

(3) For every (x−h, y) ∈ RC(H−1)
++ × RCJ , the function uh(·, x−h, y) it is dif-

ferentiably strictly quasi-concave, i.e. it is C2 and for all x′h ∈ RC
++,

D2
xh
uh(x

′
h, x−h, y) is negative definite on KerDxhuh(x

′
h, x−h, y).

(4) For every (x−h, y) ∈ RC(H−1)
+ × RCJ and for every u ∈ Imuh(·, x−h, y),

clRC{xh ∈ RC
++ : uh(xh, x−h, y) ≥ u} ⊆ RC

++

Fixing the externalities, the assumptions on uh are standard in “smooth” gen-
eral equilibrium models. We remark that in Point 1 and Point 4 of Assumption
4 we consider consumption x−h in the closure of a RC(H−1), just to look at the
limit of a behavior (see Step 2.2 of the proof of Proposition 14 in Section 7).

We make the following assumptions on the possibility functions.

Assumption 5 For all h ∈ H,

(1) χh is continuous in its domain. For every (x−h, y) ∈ RC(H−1)
++ ×RCJ , the

5



function χh(·, x−h, y) is differentiable and Dxhχh(·, ·, ·) is continuous on
RCH

++ × RCJ .

(2) For every (x−h, y) ∈ RC(H−1)
+ × RCJ , the function χh(·, x−h, y) is quasi-

concave.
(3) There exists xh ∈ RC

++ such that χh(xh, x−h, y) ≥ 0 for every (x−h, y) ∈
RC(H−1)

++ × RCJ .

(4) For every (x−h, y) ∈ RC(H−1)
++ × RCJ and for all x′h ∈ RC

++,
(a) Dxhχh(x

′
h, x−h, y) 6= 0 ; (b) Dxhχh(x

′
h, x−h, y) /∈ −RC

++ .

The above assumptions are adapted from del Mercato (2006). Notice that by
Points 1 and 4(a) of Assumption 5, the consumption set is a C1 manifold
with boundary of dimension C and it boundary is a C1 manifold of dimension
C−1. We only point out that del Mercato (2006) requires a global desiderability
assumption in order to get positive prices at equilibrium. We do not require
this assumption because of Point 4 of Assumption 1 (see Steps 1.3 and 2.3
of the proof of Proposition 14 in Section 7). In Assumption 5, we consider
consumption bundles x−h in the closure of RC

++, just to look at limit of a
behavior (see step 2.2 of the proof of Proposition 14 in Section 7).

Remark 6 As in del Mercato and Platino (2017), one may restrict the do-
main of the utility and the possibility functions by considering strictly positive
consumption bundles x−h, but in addition, one needs to require the existence

of a continuous extension of χh on RC
++×RC(H−1)

+ ×RCJ , and one of the two
assumptions provided by del Mercato and Platino (2017) at page 84, namely
Assumption 7 and 8.

We now define, the set of endowments which satisfy the Survival Assumption
for given possibility functions.

Definition 7 Define the set Ω :=
∏
h∈H

Ωh ⊆ RCH
++ where

Ωh :=
{
x′h ∈ RC

++ : χh(x
′
h, x−h, y) ≥ 0, ∀ (x−h, y) ∈ RC(H−1)

+ × RCJ
}

+ RC
++

From Point 3 of Assumption 5, Ω is nonempty and it is open by definition.
From Points 3 and 4(a) of Assumption 5, the Survival Assumption is satisfied
on the set Ω since for all e ∈ Ω the following property holds true.

∀(x−h, y) ∈ RC(H−1)
+ ×RCJ , ∃x̂h ∈ RC

++ : χh(x̂h, x−h, y) > 0 and x̂h � eh (2)

As a direct consequence of Points 1 and 2 of Assumptions 5 and (2) we get the
following proposition. The continuous selection functions given by Proposition
8 will play a fundamental role in the construction of the continuous homotopy
used to show our main result (see Theorem 11). Specifically, we use Proposition

6



8 to define the homotopies given in Section 6. 5

Proposition 8 For all h ∈ H, there exists a continuous selection function
x̂h : RC(H−1)

+ × RCJ × Ωh → RC
++ such that for each (x−h, y, eh) ∈ RC(H−1)

+ ×
RCJ × Ωh, χh(x̂h(x−h, y, eh), x−h, y) > 0 and x̂h(x−h, y, eh)� eh.

Remark 9 From now on, we only consider economies E for which the initial
endowments e = (eh)h∈H belong to the set Ω.

3 Competitive equilibrium and equilibrium function

In this section, we provide the notion of competitive equilibrium associated
with our economy and the equilibrium function. Without loss of generality,
commodity C is the numeraire good. So, given p\ ∈ RC−1

++ with innocuous
abuse of notation, we denote p := (p\, 1) ∈ RC

++.

Definition 10 (x∗, y∗, p∗\) ∈ RCH
++ ×RCJ ×RC−1

++ is a competitive equilibrium
for the economy E if

(1) for all j ∈ J , y∗j solves the following problem

max
yj∈RC

p∗ · yj

subject to tj(yj, y
∗
−j, x

∗) ≤ 0
(3)

(2) For all h ∈ H, x∗h solves the following problem

max
xh∈RC++

uh(xh, x
∗
−h, y

∗)

subject to χh(xh, x
∗
−h, y

∗) ≥ 0

p∗ · xh ≤ p∗ ·

eh +
∑
j∈J

sjhy
∗
j


(4)

(3) (x∗, y∗) ∈ RCH
++× ∈ RCJ satisfies market clearing conditions, that is∑

h∈H
x∗h =

∑
h∈H

eh +
∑
j∈J

y∗j (5)

Let Ξ := (RC
++×R++×R)H×(RC×R++)J×RC−1

++ be the set of endogenous vari-
ables with generic element ξ := (x, λ, µ, y, α, p\) := ((xh, λh, µh)h∈H, (yj, αj)j∈J , p

\),
where λh and µh denote respectively the Lagrange multiplier associated with

5 The proof of Proposition 8 is based on Points 1 and 2 of Assumption 5, and on
the Micheal’s Selection Theorem. See del Mercato (2006) for details.

7



the household h’s budget constraint and consumption set, and αj denotes the
Lagrange multiplier associated with the firm j’s technological constraint. Com-
petitive equilibria for an economy E can be described using the equilibrium
function F : Ξ→ Rdim Ξ,

F (ξ) :=
((
F h.1 (ξ) , F h.2 (ξ) , F h.3 (ξ)

)
h∈H

(
F j.1 (ξ) , F j.2 (ξ)

)
j∈J

, FM (ξ)
)

where F h.1 (ξ) := Dxhuh(xh, x−h, y)− λhp+ µhDxhχh(xh, x−h, y),
F h.2 (ξ) := −p · (xh − eh −

∑
j∈J sjhyj), F

h.3 (ξ) := min {µh, χh(xh, x−h, y)},
F j.1 (ξ) := p − αjDyj tj(yj, y−j, x), F j.2 (ξ) := −tj(yj, y−j, x), and FM (ξ) :=∑
h∈Hx

\
h−

∑
j∈J y

\
j −

∑
h∈He

\
h. An element ξ∗ ∈ Ξ is an extended equilibrium for

the economy E if and only if F (ξ∗) = 0. With innocuous abuse of terminology,
we call an extended equilibrium simply an equilibrium.

4 Compactness and non-emptiness of the set of competitive equi-
libria

In this section, we state the main result of the paper, and we provide the idea
of its proof.

Theorem 11 (Existence and compactness) The set of competitive equi-
libria with strictly positive consumption and prices associated with an economy
E = ((χ, u, e, s), t) with e ∈ Ω, is compact and non-empty.

In order to prove Theorem 11, we use an homotopy approach following the
seminal paper by Smale (1974). The following theorem is a consequence of the
homotopy invariance of the topological degree. Following recent contributions
by del Mercato (2006), Bonnisseau and del Mercato (2008) and del Mercato
and Platino (2017), our homotopy approach is based on the degree modulo 2,
hereafter “deg2”. 6

Theorem 12 (Homotopy Theorem) Let M and N be C2 manifolds of the
same dimension contained in euclidean spaces. Let y ∈ N and f, g : M → N
be two functions such that f is continuous, g is C1 in an open neighborhood of
g−1(y), y is a regular value for g and #g−1(y) is odd. Let L be a continuous
homotopy from g to f such that L−1(y) is compact. Then,
(1) g−1(y) is compact and deg2(g, y) = 1,
(2) f−1(y) is compact and deg2(f, y) = 1.

The equilibrium function F defined in Section 3 plays the role of the function
f in Theorem 12. We use Theorem 12 to prove the compactness of F−1(0) and

6 See the Appendix for a brief review of the topological degree modulo 2.
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deg2(F, 0) = 1. As a consequence of the non-trivial property of the topological
degree, the set F−1(0) is nonempty.

In order to construct the required homotopy and the function that will play
the role of the function g, we proceed as follows. First, we fix the external-
ities and we consider a Pareto optimal allocation of a standard production
economy without externalities. Second, using the Second Theorem of Welfare
Economics, we construct an appropriate private ownership economy Ẽ that
has a unique regular equilibrium. The economy Ẽ is called “test economy” and
it is an economy à la Arrow–Debreu without externalities at all. Third, we con-
struct the equilibrium function G associated with the test economy playing
the role of the function g. This is analysed in detail in Section 5. Finally, in
Section 6 we provide the required homotopy H from G to F playing the role
of L.

5 The test economy and its properties

Fix the externalities at (x, y) and define uh(xh) := uh(xh, x−h, y) for every
household h and tj(yj) := tj(yj, y−j, x) for every firm j. Consider the produc-

tion economy à la Arrow–Debreu, E := ((RC
++, u), t, r) with r :=

∑
h∈H eh.

Notice that, the consumption set of each household coincides with the strictly
positive orthant of the commodity space. Since there are no externalities
at all, the notions of feasibility and Pareto optimality are standard. Under
Assumptions 1, 2 and 4, there exists a Pareto optimal allocation (x̃, ỹ) ∈
RCH

++ ×RCJ of the economy E, and there exist Lagrange multipliers (θ̃, γ̃, β̃) =

((θ̃h)h6=1, γ̃, (β̃j)j∈J ) ∈ RH−1
++ ×RC

++×RJ
++ such that (x̃, ỹ, θ̃, γ̃, β̃) is the unique

solution to the following system. 7


(1) Dx1u1(x1) = γ (2) ∀ h 6= 1, θhDxhuh(xh) = γ (3) ∀ h 6= 1, uh(xh) = uh(x̃h)

(4) ∀ j ∈ J , γ = βjDyj tj(yj) (5) ∀ j ∈ J , −tj(yj) = 0 (6)
∑
h∈H

xh −
∑
j∈J

yj = r

(6)
It is well known that the Pareto optimal allocation, (x̃, ỹ) is an equilibrium
relative to some price system p̃. From system above, one easily deduces a
supporting price p̃, a redistribution of the initial endowments ẽ := (ẽh)hH
and the equilibrium equations satisfied by (x̃, ỹ) for appropriate Lagrange
multipliers. Define

ẽh := x̃h −
∑
j∈J

sjhỹj (7)

and the test economy Ẽ := ((RC
++, u, ẽ, s), t). Notice that the economy Ẽ is

7 For a formal proof, see for instance del Mercato and Platino (2017).
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a private ownership economy à la Arrow–Debreu with no externalities at all.
Consider the function G : Ξ→ Rdim Ξ,

G (ξ) :=
((
Gh.1 (ξ) , Gh.2 (ξ) , Gh.3 (ξ)

)
h∈H

,
(
Gj.1 (ξ) , Gj.2 (ξ)

)
j∈J

, GM (ξ)
)
(8)

whereGh.1 (ξ) := Dxhuh(xh, x−h, y)−λhp,Gh.2 (ξ) := −p·(xh−ẽh−
∑
j∈J sjhyj),

Gh.3 (ξ) := min {µh, χh(x̂h(x−h, y, eh), x−h, y)},Gj.1 (ξ) := p−αjDyj tj(yj, y−j, x),

Gj.2 (ξ) := −tj(yj, y−j, x), and GM (ξ) :=
∑
h∈Hx

\
h −

∑
j∈J y

\
j −

∑
h∈Hẽ

\
h.

We remark that the continuous function x̂h is given by Proposition 8 and
Gh.3(ξ̃) = µ̃h = 0 since χh(x̂h(x−h, y, eh), x−h, y) > 0. As a consequence, the
function G is nothing else than the equilibrium function associated with the
test economy Ẽ. Finally define the vector ξ̃ := (x̃, λ̃, µ̃, ỹ, α̃, p̃\) ∈ Ξ with

λ̃1 := γ̃C , λ̃h := γ̃C

θ̃h
for all h 6= 1, µ̃h = 0 for all h ∈ H, α̃j := β̃j

γ̃C
and p̃\ := γ̃\

γ̃C
.

From system (6), one easily deduces G(ξ̃) = 0.

The next proposition shows that ξ̃ is the unique equilibrium for the economy
Ẽ. Furthermore, it is a regular equilibrium.

Proposition 13 G−1(0) = {ξ̃}, G is C1 in an open neighborhood of ξ̃ and 0
is a regular value for G.

6 The homotopy and its properties

The basic idea is to homotopize endowments and externalities by a segment
in the two economies Ẽ and E. Due to the fact that the production sets are
not required to be convex, the individual budget set may be empty along the
homotopy arc. 8 To overcome this difficulty, we define the homotopy H by
using the two homotopies Φ and Γ defined below. In the homotopy Φ, we
only homotopize the initial endowments. In the homotopy Γ we homotopize
the externalities in utility and transformation functions, and the consumption
choices in possibility functions. In order to simplify the notation, we define
the following convex combinations,

eh(τ) := τeh + (1− τ)ẽh, x(τ) := τx+ (1− τ)x, y(τ) := τy + (1− τ)y

and the homotopies, Γ,Φ : Ξ× [0, 1]→ Rdim Ξ defined by

Φ (ξ, τ) :=
((

Φh.1 (ξ, τ) ,Φh.2 (ξ, τ) ,Φh.3 (ξ, τ)
)
h∈H

,
(
Φj.1 (ξ, τ) ,Φj.2 (ξ, τ)

)
j∈J

,ΦM (ξ, τ)
)

8 See del Mercato and Platino (2017) for details.
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where Φh.1 (ξ, τ) := Dxhuh(xh, x−h, y) − λhp, Φh.2 (ξ, τ) := −p · [xh − eh(τ) −∑
j∈J sjhyj],Φ

h.3 (ξ, τ) := min {µh, χh(x̂h(x−h, y, eh), x−h, y)},Φj.1 (ξ, τ) := p −
αjDyj tj(yj, y−j, x),Φj.2 (ξ, τ) := −tj(yj, y−j, x),ΦM (ξ, τ) :=

∑
h∈Hx

\
h−
∑
j∈J y

\
j−∑

h∈Heh(τ)\.

Γ (ξ, τ) :=
((

Γh.1 (ξ, τ) ,Γh.2 (ξ, τ) ,Γh.3 (ξ, τ)
)
h∈H

,
(
Γj.2 (ξ, τ) ,Γj.2 (ξ, τ)

)
j∈J

,ΓM (ξ, τ)
)

where Γh.1 (ξ, τ) := Dxhuh(xh, x−h(τ), y(τ)) − λhp + τµhDxhχh(τxh + (1 −
τ)x̂h(x−h, y, eh), x−h, y), Γh.2 (ξ, τ) := −p · [xh− eh−

∑
j∈J sjhyj], Γh.3 (ξ, τ) :=

min {µh, χh(τxh + (1− τ)x̂h(x−h, y, eh), x−h, y)}, Γj.1 (ξ, τ) := p−αjDyj tj (yj, y−j(τ), x(τ)),

Γj.2 (ξ, τ) := −tj (yj, y−j(τ), x(τ)), ΓM (ξ, τ) :=
∑
h∈Hx

\
h −

∑
j∈J y

\
j −

∑
h∈He

\
h.

We remind that, the continuous function x̂h is given by Proposition 8.

Define the homotopy H : Ξ× [0, 1]→ Rdim Ξ,

H(ξ, ψ) :=

Φ(ξ, 2ψ) if 0 ≤ ψ ≤ 1
2

Γ(ξ, 2ψ − 1) if 1
2
≤ ψ ≤ 1

Observe that H is a continuous function. Indeed, Φ and Γ are continuous
because they are composed by continuous functions (see Point 1 of Assump-

tions 1, 4 and 5, and Proposition 8). Moreover, H
(
ξ, 1

2

)
is well defined since

Φ(ξ, 1) = Γ(ξ, 0). Finally, observe thatH (ξ, 0) = Φ (ξ, 0) = G(ξ) andH (ξ, 1) =
Γ (ξ, 1) = F (ξ).

Proposition 14 For each e ∈ Ω, H−1(0) is compact.

7 Proofs

Proof of Proposition 13. The proof is standard and it is available upon
request from the author. We just point out that G is C1 in an open neighbor-
hood of G−1(0) = ξ̃. By the continuity of χh and x̂, the function gh : ξ ∈ Ξ→
gh(ξ) := (χh(x̂h(x−h, y, eh), x−h, y) − µh) ∈ R is continuous. For all h ∈ H,
gh(ξ̃) > 0 since χh(x̂h(x̃−h, ỹ, eh), x̃−h, ỹ) > 0 and µ̃h = 0. Thus, in some open
neighborhood I(ξ̃) ⊆ Ξ of ξ̃ we get gh(ξ) > 0 for all h ∈ H. Therefore, in the
open neighborhood I(ξ̃), the component Gh.3(ξ) = µh for all h ∈ H while the
components Gh.1(ξ), Gh.2(ξ), Gj.1(ξ), Gj.2(ξ) and GM(ξ) are given by (8). So,
G(ξ) is obviously a C1 function in I(ξ̃).

Proof of Proposition 14. Observe that H−1(0) = Φ−1(0) ∪ Γ−1(0). Since
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the union of a finite number of compact sets is compact, it is enough to show
that Φ−1(0) and Γ−1(0) are compact.

Claim 1. Φ−1(0) is compact.

We prove that, up to a subsequence, every sequence (ξν , τ ν)ν∈N ⊆ Φ−1(0) con-
verges to an element of Φ−1(0), where ξν := (xν , λν , µν , yν , αν , pν \)ν∈N. First
observe that, since {τ ν : ν ∈ N} ⊆ [0, 1], up to a subsequence, (τ ν)ν∈N con-
verges to some τ ∗ ∈ [0, 1]. From Steps 1.1, 1.2, 1.3 and 1.4 below, we have that
up to a subsequence, (ξν)ν∈N converges to some ξ∗ := (x∗, λ∗, µ∗, y∗, α∗, p∗ \) ∈
Ξ. Since the homotopy Φ is continuous, taking the limit, we get the desired
result, that is (ξ∗, τ ∗) ∈ Φ−1(0).

Step 1.1. Up to a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ RCH
+ ×

RCJ . We show that for r =
∑
h∈H eh, the sequence (xν , yν)ν∈N belongs to the

bounded set K(r) given in Lemma 3. By Φj.2(ξν , τ ν) = 0, for every j and
for any ν, the sequence (yν)ν∈N is included in the set Y (x, y) given by (1).
Summing Φh.2(ξν , τ ν) = 0 over h, by ΦM(ξν , τ ν) = 0 one gets

∑
h∈H x

ν
h −∑

j∈J y
ν
j =

∑
h∈H eh(τ

ν) for every ν ∈ N. By the definition of ẽh given in (7),
system (6) and Proposition 13, one easily gets

∑
h∈H eh(τ

ν) = r. Therefore,
(xν , yν) ∈ A(x, y; r) ⊆ K(r). Consequently, the sequence (xν , yν)ν∈N belongs
to the compact set clK(r) which is included in RCH

+ × RCJ . Therefore, up to
a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ RCH

+ × RCJ .

Step 1.2. The consumption allocation x∗ is strictly positive, i.e. x∗h � 0 for
every h ∈ H. The argument is similar to the one used in Step 2.1 of Claim 1.
It suffices to replace:

(1) the problem (9) with the following problem

max
xh∈RC++

uh(xh, x−h, y)

subject to pν · xh ≤ pν · [τ νeh + (1− τ ν)x̃h] + pν ·
∑
j∈J

sjh(y
ν
j − (1− τ ν)ỹj)

according to Φh.1(ξν , τ ν) = Φh.2(ξν , τ ν) = 0;
(2) the point x̂h(x

ν
−h, y

ν , eh) given by Proposition 8, with the bundle êh(τ
ν) :=

τ νeh + (1− τ ν)x̃h ∈ RC
++.

(3) the problem (10) with the following problem

max
yj∈RC

pν · yj

subject to tj(yj, y−j, x) ≤ 0

according to Φj.1(ξν , τ ν) = Φj.2(ξν , τ ν) = 0.

Next, as in Step 2.2 of Claim 2 one easily shows that x∗h belongs to the closure

12



of the upper counter set of e(τ ∗), which is included in RC
++ by Point 4 of

Assumption 4. Thus, x∗h ∈ RCH
++ .

Step 1.3. Up to a subsequence, (αν , pν \)ν∈N converges to some (α∗, p∗ \) ∈
RJ

++ × RC−1
++ . Using Points 1 and 3 of Assumption 1, the proof is similar to

the one of Step 1.3 in Claim 1. Thus, p∗ \ ∈ RC−1
++ .

Step 1.4. Up to a subsequence, (λν , µν)ν∈N converges to some (λ∗, µ∗) ∈ RH
++×

RH
+ . By Φh.3 (ξν , τ ν) = 0 and Proposition 8, we have µνh = 0 for every ν ∈ N.

Taking the limit, we get µ∗h = 0.

For any household h, fix a commodity c(h). By Φh.1 (ξν , τ ν) = 0, for every

ν ∈ N we have λνh =
D
x
c(h)
h

uh(xνh,x−h,y)

pνc(h)
. Taking the limit and using the con-

tinuity of Duh (see Point 1 of Assumption 4) we have λ∗h =
D
x
c(h)
h

uh(x∗h,x−h,y)

p∗c(h)

which is strictly positive since fixing the externalities the function uh is strictly
increasing (see Point 2 of Assumption 4).

Claim 2. Γ−1(0) is compact.

Let (ξν , τ ν)ν∈N be a sequences in Γ−1(0). As in Claim 1, (τ ν)ν∈N converges
to τ ∗ ∈ [0, 1]. From Seps 2.1, 2.2, 2.3 and 2.4 below, we have that, up to a
subsequence, (ξν)ν∈N converges to an element ξ∗ := (x∗, λ∗, µ∗, y∗, α∗, p∗\) ∈ Ξ.
Since Γ is a continuous function, taking limit one gets (ξ∗, τ ∗) ∈ Γ−1(0).

Step 2.1. Up to a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ RCH
+ ×

RCJ . We show that, for r =
∑
h∈H eh, the sequence (ξν , τ ν)ν∈N is included in

the bounded set K(r) given by Lemma 3. By Γj.2(ξν , τ ν) = 0, for every j we
get 9

tj(y
ν
j , y

ν
−j(τ

ν), xν(τ ν)) = 0, ∀ν ∈ N
Thus, for every ν ∈ N, the production plan yνj belongs to the set Y (xν(τ ν), yν(τ ν))
given by (1). Summing Γh.2(ξν , τ ν) = 0 over h, by ΓM(ξν , τ ν) = 0 we get∑
h∈H

xνh −
∑
j∈J

yνj =
∑
h∈H

eh for all ν ∈ N. Therefore, for every ν ∈ N, (xν , yν)

belongs to the set A(xν(τ ν), yν(τ ν)) which is included in K(r). Consequently,
the sequence (xν , yν)ν∈N belongs to clK(r) which is a compact set. So, up to
a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ clK(r) ⊆ RCH

+ ×RCJ ,
and thus (x∗, y∗) ∈ RCH

+ × RCJ .

Step 2.2. The consumption allocation x∗ is strictly positive, i.e. x∗h � 0 for
every h ∈ H. The proof is based on Point 4 of Assumption 4. By Γh.1(ξν , τ ν) =
Γh.2(ξν , τ ν) = Γh.3(ξν , τ ν) = 0 and the KKT sufficient conditions, xνh solves the

9 For every ν, we use the notation xν(τν) := τνxν + (1 − τν)x and yν(τν) :=
τνyν + (1− τν)y.

13



following problem for every ν ∈ N

max
xh∈RC++

uh(xh, x
ν
−h(τ

ν), yν(τ ν))

subject to χh(τ
νxh + (1− τ ν)x̂h(xν−h, yν , eh), xν−h, yν) ≥ 0

pν · xh ≤ pν · (eh +
∑
j∈J

sjhy
ν
j )

(9)

We show now that x̂h(x
ν
−h, y

ν , eh) belongs to the constraint set of the problem
above. We first claim that x̂h(x

ν
−h, y

ν , eh) belongs to the budget set of agent
h. By Γj.1(ξν , τ ν) = Γj.2(ξν , τ ν) = 0 and KKT sufficient conditions, yνj solves

max
yj∈RC

pν · yj

subject to tj(yj, y
ν
−j(τ

ν), xν(τ ν)) ≤ 0
(10)

By Point 2 of Assumption 1, 0 belongs to the production set of firm j.
Therefore, pν · yνj ≥ 0 and

∑
j∈J sjhp

ν · yνj ≥ 0. As a consequence, the ini-
tial endowment eh belongs to the budget set of agent h. By Proposition 8,
x̂h(x

ν
−h, y

ν , eh)� eh for any ν, and consequently, pν · x̂h(xν−h, yν , eh) < pν · eh,
which completes the proof of the claim. Finally, x̂h(x

ν
−h, y

ν , eh) belongs to the
possibility set of the agent by Proposition 8.

We claim now that x∗h belongs to the closure of some upper contour set. For
every ν ∈ N, uh(x

ν
h, x

ν
−h(τ

ν), yν(τ ν)) ≥ uh(x̂h(x
ν
−h, y

ν , eh), x
ν
−h(τ

ν), yν(τ ν)).

By Point 2 of Assumption 4, for every ε > 0 we have uh(x
ν
h+ε1, x

ν
−h(τ

ν), yν(τ ν)) >
uh(x̂h(x

ν
−h, y

ν , eh), x
ν
−h(τ

ν), yν(τ ν)), where 1 := (1, . . . , 1) ∈ RC
++. So, taking

the limit for ν → +∞ and using the continuity of uh and x̂h (see Point 1
of Assumption 4 and Proposition 8), we get uh(x

∗
h + ε1, x∗−h(τ

∗), y∗(τ ∗)) ≥
uh(x̂h(x

∗
−h, y

∗, eh), x
∗
−h(τ

∗), y∗(τ ∗)) for every ε > 0. That is, x∗h belongs to the
closure of the upper counter set of x̂h(x

∗
−h, y

∗, eh), which is included in RC
++

by Point 4 of Assumption 4. Thus, x∗h ∈ RCH
++ . One should notice that, since

τ ∗ ∈ [0, 1], x∗−h(τ
∗) and x∗−h are not necessarily strictly positive. For that rea-

son, in Point 4 of Assumption 4 and in Point 2 Assumption 5 we consider x−h
in RC(H−1)

+ .

Step 2.3. Up to a subsequence, (αν , pν \)ν∈N converges to some (α∗, p∗ \) ∈
RJ

++ × RC−1
++ . By Γj.1 (ξν , τ ν) = 0, considering commodity C for every ν ∈ N,

we get ανj = 1
D
yC
j
tj(yνj ,y

ν
−j(τ

ν),xν(τν))
. Taking the limit for ν → +∞ and using the

continuity of Dtj and the “free disposal” property (see Points 1 and 4 of As-
sumption 1), the sequence (ανj )ν∈N converges to α∗j := 1

D
yC
j
tj(y∗j ,y

∗
−j(τ

∗),x∗(τ∗))
>

0. By Γj.1 (ξν , τ ν) = 0, for every commodity c 6= C and for all ν ∈ N we have
pν c = ανjDycj

tj(y
ν
j , y

ν
−j(τ

ν), xν(τ ν)). Taking the limit and using Points 1 and 4
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of Assumption 1, for all c 6= C we get p∗ c = α∗jDycj
tj(y

∗
j , y
∗
−j(τ

∗), x∗(τ ∗)) > 0.

Thus, p∗ \ ∈ RC−1
++ .

Step 2.4. Up to a subsequence, (λν , µν)ν∈N converges to some (λ∗, µ∗) ∈ RH
++×

RH
+ . We have two possible cases, in Case a), τ ∗ = 0, and in Case b), τ ∗ ∈ (0, 1].

Case a). τ ∗ = 0. Using Γh.3(ξν , τ ν) = 0, we first claim that there exists ν∗ ∈ N
such that for every ν ≥ ν∗, µνh = 0. Since τ ∗ = 0, the sequence (τ νxνh +
(1 − τ ν)x̂h(x

ν
−h, y

ν , eh), x
ν
−h, y

ν)ν∈N converges to (x̂h(x
∗
−h, y

∗, eh), x
∗
−h, y

∗). By
Proposition 8, χh(x̂h(x

∗
−h, y

∗, eh), x
∗
−h, y

∗) > 0. The continuity of the functions
x̂h and χh (see Proposition 8 and Point 1 of Assumption 5) imply that there is
ν∗ ∈ N such that for every ν ≥ ν∗, χh(τ

νxνh+(1−τ ν)x̂h(xν−h, yν , eh), xν−h, yν) >
0, which proves the claim. Thus, the sequence (µνh)ν∈N converges to µ∗h = 0.

By Γh.1(ξ, τ) = 0, considering commodity C for every ν ≥ ν∗, we get λνh =
DxC

h
uh(x

ν
h, x

ν
−h(τ

ν), yν(τ ν)) . Taking the limit and using the continuity of Duh
(Point 1 of Assumption 4), we get λ∗h = DxC

h
uh(x

∗
h, x−h, y) which is strictly

positive by Point 2 of Assumption 4.

Case b). τ ∗ ∈ (0, 1]. We first claim that up to a subsequence, (λν , µν)ν∈N ⊆
RH

++×RH
+ converges to some (λ∗, µ∗) ∈ RH

+×RH
+ . Second, we show that λ∗ � 0.

In order to prove the claim, it is enough to show that (λνh, µ
ν
h)ν∈N is bounded

for every h ∈ H. Otherwise, suppose that there is a subsequence that without
loss of generality we continue to denote with (λνh, µ

ν
h)ν∈N such that ‖(λνh, µνh)‖

diverges to +∞. Consider the sequence
(

(λνh,µ
ν
h)

‖(λν
h
,µν
h

)‖

)
ν∈N

in the sphere, which

is a compact set. 10 Up to a subsequence,
(

(λνh,µ
ν
h)

‖(λν
h
,µν
h

)‖

)
ν∈N

converges to some

(λh, µh) 6= (0, 0). 11 Obviously, λh ≥ 0 and µh ≥ 0, since λνh > 0 and µνh ≥ 0
for all ν ∈ N.

Dividing both sides of Γh.1(ξν , τ ν) = 0 by ‖(λνh, µνh)‖, and taking the limit, we
get

λhp
∗ = τ ∗µhDxhχh(τ

∗x∗h + (1− τ ∗)x̂h(x∗−h, y∗, eh), x∗−h, y∗) (11)

Notice that µh > 0 and λh > 0. Indeed from Point 4(a) of Assumption 5, we
know that Dxhχh(τ

∗x∗h + (1 − τ ∗)x̂h(x
∗
−h, y

∗, eh), x
∗
−h, y

∗) 6= 0. Thus, µh > 0
because if µh = 0, from (11) we get λh = 0 which contradicts the fact that
(λh, µh) 6= (0, 0). Finally, µh > 0, τ ∗ > 0, p∗ ∈ RC

++ and (11) imply λh > 0.

We prove now that

λhp
∗ · x̂h(x∗−h, y∗, eh) < λhp

∗ · x∗h (12)

10 Since ‖(λνh, µνh)ν∈N‖ diverges to +∞ , without loosing of generality, we suppose
that ‖(λνh, µνh)‖ > 0 for every ν.
11 Observe that (λh, µh) 6= (0, 0) since ‖(λh, µh)‖ = 1.
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Since λh > 0, Proposition 8 implies that

λhp
∗ · x̂h(x∗−h, y∗, eh) < λhp

∗ · eh (13)

Multiplying Γh.2(ξν , τ ν) = 0 by λνh, for every ν ∈ N we get λνhp
ν · eh + λνhp

ν ·∑
j∈J sjhy

ν = λνhp
ν ·xνh. Thus, dividing both sides by ‖(λνh, µνh)‖ and taking the

limit, we get

λhp
∗ · eh + λhp

∗ ·
∑
j∈J

sjhy
∗
j = λhp

∗ · x∗h (14)

Therefore, (12) follows from (13) and (14) since λhp
∗ ·∑j∈J sjhy

∗
j ≥ 0. This

inequality follows by Γj.1(ξν , τ ν) = Γj.2(ξν , τ ν) = 0 and the possibility of
inactivity (Point 2 of Assumption 1). Indeed, KKT sufficient conditions imply
that yνj solves problem (10), and consequently pν · yνj ≥ 0 for every ν ∈ N.
Multiplying both sides by λνh, dividing by ‖(λνh, µνh)‖ and taking the limit, we
get λhp

∗ · y∗j ≥ 0 for every j ∈ J .

Finally, we show that λhp
∗ · x̂h(x∗−h, y∗, eh) ≥ λhp

∗ · x∗h which combined with
(12) leads to a contradiction. Therefore, our claim is completely proved.

Since µh > 0, there exists n ∈ N such that µνh > 0 for every ν ≥ n. From
Γh.3(ξν , τ ν) = 0, we get χh(τ

νxνh+(1−τ ν)x̂h(xν−h, yν , eh), xν−h, yν) = 0 for every
ν ≥ n. Taking the limit, one gets χh(τ

∗x∗h+(1−τ ∗)x̂h(x∗−h, y∗, eh), x∗−h, y∗) = 0.
Therefore, (11) and the KKT sufficient conditions imply that x∗h solves the
following problem.

min
xh∈RC++

λhp
∗ · xh

subject to χh(τ
∗xh + (1− τ ∗)x̂h(x∗−h, y∗, eh), x∗−h, y∗) ≥ 0

By Proposition 8, x̂h(x
∗
−h, y

∗, eh) belongs to the constraint of this problem,
and so λhp

∗ · x̂h(x∗−h, y∗, eh) ≥ λhp
∗ · x∗h holds true.

Therefore, one concludes that the sequence (λνh, µ
ν
h)ν∈N is bounded, and con-

sequently it admits a subsequence converging to some (λ∗, µ∗) ∈ RH
+ × RH

+ .

Now we show that λ∗ � 0. From Γh.1(ξν , τ ν) = 0, taking the limit (and using
the continuity of functions Dxhuh, Dxhχh and x̂h) we get

λ∗hp
∗ = Dxhuh(x

∗
h, x

∗
−h(τ

∗), y∗(τ ∗))+τ ∗µ∗hDxhχh(τ
∗x∗h+(1−τ ∗)x̂h(x∗−h, y∗, eh), x∗−h, y∗)

Since µ∗h ≥ 0, by Point 2 of Assumption 4 and Point 4 of Assumption 5,
there exists a commodity c(h) such that λ∗hp

∗ c(h) = D
x
c(h)
h

uh(x
∗
h, x

∗
−h, y

∗) +

τ ∗µ∗hDx
c(h)
h

χh(τ
∗x∗h + (1− τ ∗)x̂h(x∗−h, y∗, eh), x∗−h, y∗) > 0. Since p∗ c(h) > 0, we

get λ∗h > 0 which completes the proof of the step.
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Appendix

We remind the definition of the degree modulo 2 for continuous functions. See
Appendix B in Geanakoplos and Shafer (1990), and Chapter 7 in Villanacci
et al. (2002) for further details.

Let M and N be two C2 manifolds of the same dimension contained in eu-
clidean spaces. Let A be the set of triples (f,M, y) where

(1) f : M → N is a continuous function,
(2) y ∈ N and f−1(y) is compact.

Theorem 15 There exists a unique function, called degree modulo 2 and de-
noted by deg2 : A → {0, 1} such that

(1) (Normalisation) deg2(idM ,M, y) = 1
where y ∈M and idM denotes the identity of M .

(2) (Non–triviality) If (f,M, y) ∈ A and deg2(f,M, y) = 1, then f−1(y) 6= ∅.

(3) (Excision) If (f,M, y) ∈ A and U is an open subset of M such that
f−1(y) ⊆ U , then

deg2(f,M, y) = deg2(f, U, y)

(4) (Additivity) If (f,M, y) ∈ A and U1 and U2 are open and disjoint subsets
of M such that f−1(y) ⊆ U1 ∪ U2, then

deg2(f,M, y) = deg2(f, U1, y) + deg2(f, U2, y)

(5) (Local constantness) If (f,M, y) ∈ A and U is an open subset of M with
compact closure such that f−1(y) ⊆ U , then there is an open neighborhood
V of y in N such that for every y′ ∈ V ,

deg2(f, U, y′) = deg2(f, U, y)

(6) (Homotopy invariance) Let L : (z, τ) ∈ M × [0, 1] → L(z, τ) ∈ N be a
continuous homotopy. If y ∈ N and L−1(y) is compact, then

deg2(L0, U, y) = deg2(L1, U, y)

where L0 := L(·, 0) : M → N and L1 := L(·, 1) : M → N .

If there is no possible confusion on the manifoldM , we simply denote deg2(f, y)
the degree modulo 2 of the triple (f,M, y).

As stated in the following proposition, in the case of C1 functions and regular
values, the degree modulo 2 is computed using the residue class modulo 2.
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Proposition 16 If (g,M, y) ∈ A, g is a C1 function and y is a regular value
of g (i.e., for all z∗ ∈ g−1(y), the differential mapping Dg(z∗) is onto), then
g−1(y) is finite (possibly empty) and the degree modulo 2 of g is given by

deg2(g,M, y) = [#g−1(y)]2 =

 0 if #g−1(y) is even

1 if #g−1(y) is odd
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