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1 Introduction

The core of an economy is defined as the set of feasible allocations that are not blocked or

objected by any coalition. The possibility for other agents to react to this objection and

propose a new counter-objection is not taken into account. Aumann and Maschler (1964)

propose a new solution concept according to which objections that are counter-objected are

not credible and therefore they should be neglected. Mas-Colell (1989) adapts this notion to

atomless economies and defines the bargaining set as an enlargement of the core containing

all the feasible allocations against which it is impossible to raise an objection with no counter-

objections. Mas-Colell (1989) proves the equivalence between the set of competitive equilibria

and the bargaining set under assumptions that are close to those used to prove the existence

of competitive equilibria and the Core-Walras equivalence theorem respectively in Aumann

(1966) and Aumann (1964). The key idea of Mas Colell’s proof consists in characterizing

credible objections as those that are price supported. This allows him to conclude that the

set of competitive allocations and the bargaining set coincide and are equivalent to the core

in atomless economies.

It is clear that when we move on to the case of finite economies the previous equivalences

are no longer true. In this case, in fact, the core and, a fortiori, the bargaining set, strictly

contains the set of competitive allocations. Furthermore, Anderson, Trockel, and Zhou (1997)

show that, whereas the core shrinks to the set of competitive allocations after a sufficiently

large number of replicas, the bargaining set does not. A similar investigation is conducted by

Shitovitz (1989) in mixed markets, i.e. economies in which the measure space of agents have

both atoms and an atomless sector. An atom of a measure space (T,Σ,m) is a set A ∈ Σ with

positive measure such that m(A\B) = 0 or m(B) = 0 for every other B ⊆ A and it represents

a non negligible agent in the market. For example, an atom can be representative of a trader

who concentrates in his hands an initial ownership of commodities that is sufficiently large

with respect to the total market endowment, as in the case of monopolistic or, more generally,

oligopolistic markets. Or else, even though the initial endowment is spread over a continuum

of negligible traders, an atom can be representative of a group of traders that decide to act

as a single player, as in the case of cartels, syndicates, or similar institutions. Notice that

in a mixed market the set of agent T is the disjoint union of an atomless section T0 and

the atomic part T1. This allows to view as special case of mixed markets both atomless

economies (once T1 is empty) and finite economies (when T0 is null and T1 finite). Shitovitz

(1989) proves that, if in addition to certain assumptions there exists a commodity owned by

only one of the atoms (veto player), then the core coincides with the bargaining set and it

strictly contains the set of competitive allocations. He also illustrates an example of mixed

market outside the class mentioned above and satisfying the sufficient hypotheses for the

Core-Walras equivalence theorem (Shitovitz (1973)) in which the bargaining set is strictly

larger than the core.

The previous conclusions seem to suggest that it is the core, rather than the set of competitive

equilibria, to be compared with the bargaining set in models comprising atoms. In this work,
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instead, we go back to the original idea in Mas-Colell (1989), with the aim of characterizing

the bargaining set also in mixed markets by means of competitive equilibria. Our approach

consists in relaxing the class of coalitions that can form an objection and/or a counter-

objection according to the veto mechanism of Aubin (1979). We allow agents to join a

coalition with a partial participation rate, rather than to decide only whether to join or not.

Basically, we enlarge the class of potential blocking coalitions to the so-called generalized

coalitions. A generalized coalition is a measurable function γ from the space of agents

T to the unit interval [0, 1] with non-null support. Intuitively, the value γ(t) represents

the share of resources employed by agent t in the formation of the coalition γ. We define

four variants of the bargaining set depending on which class of coalitions is involved in

objections and/or counter-objections and we study the relations among them (Proposition

2.13). In particular we show that all four bargaining set variants coincide when the economy

is atomless, the familiar framework of Mas-Colell (1989) (Proposition 3.7). Our main result

states the equivalence between the set of competitive allocations and a bargaining set in

mixed economies in which atoms have convex preferences (Theorem 1), an assumption quite

common in the literature of mixed markets (see for example Hildenbrand (1974), Shitovitz

(1973), Greenberg and Shitovitz (1986), Pesce (2014), Bhowmik and Graziano (2015) and

Avishay (2019), among the others). Our theorem extends to mixed economies the Mas-

Colell’s equivalence theorem since, as already noticed, once the set of atoms is null, a mixed

market reduces to be an atomless economy. From a technical point of view, we closely follow

the approach of Mas-Colell (1989), since we identify the notion of competitive objection as

the one on which to focus attention. Indeed, even if competitive objections are defined as

particular objections with a specific property and hence constitute only a part of the set of

all possible objections, they are the only ones to consider when dealing with the bargaining

set. Precisely, we prove that in order to show that an allocation belongs to the bargaining

set it is enough to verify that there are no competitive objections against it. From this

result we derive the existence of a competitive equilibrium in a mixed market under quite

mild conditions (Corollary 3.6) as done by Mas-Colell (1989) for atomless economies. On

the other hand, contrary to Mas-Colell (1989), since the measure space of agents we consider

is not necessarily non-atomic, we cannot conclude that the correspondence defined as the

integral of the demand net trade set has convex values. For this reason we work with its

convex hull, a needless step in Mas-Colell’s setting thanks to Lyapunov-Richter’s Theorem. A

further contribution of this paper is the identification of certain properties that a generalized

coalition γ has to satisfy to object. Indeed, we show that for an allocation f outside the

bargaining set there exists a competitive objection characterized by full participation of

negligible traders as well as of traders which are strictly better off (Proposition 4.3).

Summing up, our analysis contributes to two literatures: the one that studies bargaining sets

in exchange economies and the literature on mixed markets. Recently Hervés-Beloso, Hervés-

Estévez, and Moreno-Garćıa (2018), Hervés-Estévez and Moreno-Garćıa (2018) and Hervés-

Estévez and Moreno-Garćıa (2015) study the notion of bargaining set in finite economies.

They allow generalized coalitions to form objections and counter-objections and obtain the
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Mas-Colell’s equivalence theorem for finite economies. Their result follows from ours since,

as earlier observed, even a finite economy can be viewed as a special case of mixed mar-

ket. At the same time, our work differs from the previous contributions in many respects.

We consider four variants of the bargaining set among which only one is an extension to

mixed markets of the definition they adopt. We obtain the equivalence theorem directly via

the notion of competitive objections and we use existence and welfare theorem arguments,

whereas in the above papers the equivalence is obtained by associating to the finite economy

a continuum economy with a finite number of types of agents1. On the other hand, they also

allow for production2, they also investigate on the bargaining set of replica economies and

analyze how the restriction on the formation of coalitions may impact on the bargaining set.

We defer the analysis of our model to address these research questions to future works.

The paper is organized as follows: in Section 2 we introduce the economic model and the

main definitions. Our main theorem is presented in Section 3 whereas further results are

stated in Section 4. All the proofs are collected in the Appendix.

2 The model and main definitions

2.1 The economic model

We consider an exchange economy E with a finite number N of different commodities. The

commodity space is therefore the positive orthant RN
+ of the N -dimensional Euclidean space

while ∆ := {p � 0 :
∑N

i=1 pi = 1} is the set of all price systems. We use the symbol P to

denote the set of all total pre-orders on RN
+ that are continuous and strictly monotone3 and

consider it endowed with the product topology. As usual, for <∈ P, the relations � and ∼
denote the irreflexive and symmetric components of < respectively.

The agents in the economy are represented as the points of a σ-additive, complete probability

space (T,Σ,m). Each agent t ∈ T is characterized by an initial bundle of resources e(t) ∈ RN
+

and a preference relation <t∈ P. An economy is thus represented as the measurable map:

E : T → P × RN
+

defined by the relation E(t) := (<t, e(t)), where e : T → RN
+ is an integrable function and

<t∈ P for all t ∈ T . We assume that
∫

e(t)dt � 0 meaning that each good is present in the

market.

Since we do not require m to be non-atomic, it is allowed the presence in Σ of m-atoms,

i.e. sets A ∈ Σ with non-zero measure which are such that m(A \ B) = 0 or m(B) = 0 for

every other B ⊆ A. According to the atomless-atomic decomposition of measures, T can

be partitioned into an atomless sector representative of an ocean of negligible traders and

the union of at most countably many disjoint atoms representative of non-negligible traders.
1For a similar construction see Husseinov (1994).
2See also Liu (2017), Liu and Zhang (2016).
3A binary relation < on RN

+ is continuous if the sets {y : y � x} and {y : x � y} are open. It is strictly
monotone if y � x whenever y ≥ x and x 6= y.
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We denote by A the collection of all m-atoms in Σ; we write T1 := ∪A for the atomic

component and T0 := T \ T1 for the atomless component of the measure space (T,Σ,m).

Being E : T → P × RN
+ a measurable map, for any A ∈ A and t, s ∈ A we necessarily have

E(s) = E(t). Therefore, every agent in A is endowed with the same preference relation <A

and the same initial bundle of resources eA. This allows the usual interpretation that each

atom can be interpreted as a single individual concentrating in his hands a large ammount

of the total initial endowment (oligopolistic agent) or as a group of individuals deciding to

act only together (cartels, syndacates).

An allocation is an integrable function f : T → RN
+ and it is said to be feasible if

∫
f(t) dt ≤∫

e(t) dt. The set of all allocations is denoted by M(E).

Definition 2.1 A feasible allocation f ∈ M(E) is competitive or Walrasian if there is

a price system p ∈ ∆ such that, for almost all t ∈ T , p · f(t) ≤ p · e(t) and p · x > p · e(t)
whenever x �t f(t).

We use the symbol W(E) to indicate the set of competitive allocations in E .

2.2 The objection mechanism

Following Aubin (1979), we allow agents to participate in coalitions using only a part of

their resources. This way of considering participation in a coalition actually leads to an

enlargement of the class of ordinary coalitions. Formally, a coalition is any element of Σ with

positive measure. Whereas, a generalized coalition is any couple (S, γ) where γ : T → [0, 1]

is a non-null integrable function and S is its support, i.e. the set {t ∈ T : γ(t) > 0}. We

denote by F the collection of all generalized coalitions and we observe that, by pairing each

coalition S ∈ Σ with its correspondent characteristic function4 χS , the σ-algebra Σ can be

viewed as a subset of F . In what follows, for the sake of the exposition, we call standard or

crisp coalitions the elements of Σ with positive measure.

Definition 2.2 Given an allocation f ∈ M(E), a generalized coalition (S, γ) objects or

improves upon f if there is an allocation g ∈M(E) such that:

(i)
∫

γ(t)g(t) dt ≤
∫

γ(t)e(t) dt,

(ii) g(t) <t f(t) for almost every t ∈ S,

(iii) m({t ∈ S : g(t) �t f(t)}) > 0.

In this case, the triple (S, γ, g) is said to be an Aubin-objection to f and we denote by

OA(f) the set of all the Aubin-objections to f .
4For any S ∈ Σ, the characteristic function of S is the function χS : T → [0, 1] that assigns 1 to each t ∈ S

and 0 to every other t outside S.
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The weighted veto mechanism based on generalized coalitions extends the ordinary one by

assigning more power to coalitions. In fact, as it has been mentioned before, any standard

coalition can be paired to its characteristic function and identified with a generalized coali-

tion. This allows us to adapt Definition 2.2 and say that (S, g) is a standard (or crisp)

objection against f if (S, χS , g) is an Aubin-objection against f . In this case we write

(S, χS , g) ∈ OS(f), where OS(f) denotes the set of all the standard objections against f .

Observe that the inclusion OS(f) ⊆ OA(f) always holds.

Definition 2.3 A feasible allocation f is in the Aubin core if OA(f) = ∅. We denote by

CA(E) the Aubin core of the economy E. Whereas f belongs to the core of E, denoted by

C(E), if OS(f) = ∅.

Remark 2.4 In Definition 2.2(ii) a weak improvement formulation is considered, while in

the definition of the Aubin-core and of the core, usually, coalitional improvement is formu-

lated as a strong notion. However, under continuity and monotonicity, weak and strong

improvement are equivalent. In particular, from the inclusion OS(f) ⊆ OA(f) we deduce

the well known inclusion CA(E) ⊆ C(E).

Definition 2.5 Let f be an allocation and (S, γ, g) be an Aubin objection to f , i.e. (S, γ, g) ∈
OA(f). A generalized coalition (Q, δ) counter-objects (S, γ, g) if there is an allocation h

such that:

(i)
∫

δ(t)h(t) dt ≤
∫

δ(t)e(t) dt,

(ii) h(t) �t g(t) for almost every t ∈ Q ∩ S,

(iii) h(t) �t f(t) for almost every t ∈ Q \ S.

In this case, the triple (Q, δ, h) is said to be an Aubin-counter-objection to (S, γ, g) and

we write (Q, δ, h) ∈ COA(S, γ, g), denoting by COA(S, γ, g) the set of all Aubin-counter-

objections to (S, γ, g).

As done for objections, among all the counter-objections to (S, γ, g) we call (Q,h) a stan-

dard (or crisp) counter-objection to (S, γ, g) if (Q,χQ, h) is an Aubin-counter-objection to

(S, γ, g). We denote by COS(S, γ, g) the set of all standard counter-objections to (S, γ, g)

and we identify it with a subset of COA(S, γ, g), i.e. COS(S, γ, g) ⊆ COA(S, γ, g).

We stress that, being T = T0 ∪ T1, any atom A ∈ T1 is treated as a single individual, thus

it can belong to S and prefer h to g or it can be outsite S and prefer h to f . The same is

not guaranteed in the corresponding atomless economy obtained by splitting each atom into

a continuum of negligible individual (as in Greenberg and Shitovitz (1986)), because in that

case there might be two non-null groups of identical agents t of A so that one objects being

in S and the other does not being outside S.
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Remark 2.6 (The allocation induced by an objection) Whenever (S, γ, g) is an Aubin-

objection against f ∈M(E), our interest in the allocation g is limited to its restriction to S,

that is the support of γ. Indeed, outside S, g can take any value (it can even be unbounded)

and still it does not affect (S, γ)’s capacity of objecting the allocation f . To improve this

idea, we introduce the notion of allocation generated by the Aubin-objection (S, γ, g) as the

function g̃ ∈M(E) defined by

g̃(t) :=

g(t) if t ∈ S,

f(t) otherwise.

Notice that in defining a counter-objection to the Aubin-objection (S, γ, g) it is the support

S of γ that is taken into account rather than the function γ itself. Hence, the only thing that

determines whether or not (S, γ, g) is counter-objected is the pair (S, g) and, consequently,

the allocation g̃ generated by the objection.

The following proposition clarifies the role of the allocation g̃ induced by an objection.

Proposition 2.7 Let (S, γ, g) be an Aubin-objection against f . Then, (S, γ, g) is Aubin-

counter-objected by a generalized coalition (Q, δ) if and only if there is an allocation h such

that (Q, δ, h) is an Aubin-objection to the allocation g̃ induced by (S, γ, g).

Proof: See Appendix A.1.

Remark 2.8 From Proposition 2.7 we deduce that an Aubin-objection (S, γ, g) against f ∈
M(E) has no Aubin-counter-objection if the induced allocation g̃ belongs to the Aubin core.

The converse might not be true because, although g̃ cannot be objected by any generalized

coalition, it might be not feasible. However, if a standard objection (S, χS , g) against f ∈
M(E) has no Aubin counter-objection then the induced allocation g̃ restricted to S, that

coincides with g, belongs to the Aubin core of E restricted to S. A similar result has been

obtained by Hervés-Beloso, Hervés-Estévez, and Moreno-Garćıa (2018)[Proposition 3.1] for

production economies with a finite number of agents and in terms of standard counter-

objections and core.

Remark 2.9 In a similar fashion we can observe that an Aubin-counter-objection (Q, δ, h)

induces a new allocation h̃. Precisely, when (S, γ, g) ∈ OA(f), g̃ is the induced allocation

and (Q, δ, h) ∈ COA(S, γ, g), that is (Q, δ, h) ∈ OA(g̃) (by Proposition 2.7), we can define a

new allocation h̃ by

h̃(t) :=

h(t) if t ∈ Q,

g̃(t) otherwise.

Similarly to Dutta, Ray, Sengupta, and Vohra (1989), we can iterate one more step the

counter-objection process and define an Aubin-counter-objection to (Q, δ, h) as an Aubin-

objection to h̃.
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2.3 The bargaining sets

A bargaining set is the collection of all feasible allocations against which it is impossible to

raise an objection that is not counter-objected itself. Different notions of bargaining sets

can therefore be obtained by specifying which classes of objections and counter-objections

are allowed at each time.

In particular, with the definitions given above, we can introduce four different versions of

the bargaining set depending on whether or not Aubin or standard objections and counter-

objections are considered.

Definition 2.10 Given a feasible allocation f ∈M(E), we say that:

• f ∈ BSss if all the standard objections to f have a standard counter-objection.

• f ∈ BSas if all the Aubin-objections to f have a standard counter-objection.

• f ∈ BSsa if all the standard objections to f have an Aubin-counter-objection.

• f ∈ BSaa if all the Aubin-objections to f have an Aubin-counter-objection.

Remark 2.11 The notions of BSss and BSaa are an extension to mixed markets respec-

tively of the definitions of bargaining set given by Mas-Colell (1989) and by Hervés-Estévez

and Moreno-Garćıa (2015) (see also Hervés-Estévez and Moreno-Garćıa (2018) and Hervés-

Beloso, Hervés-Estévez, and Moreno-Garćıa (2018)). In general, the relationship between

the two sets BSaa and BSss is unclear. Indeed, on the one hand reducing the set of poten-

tial objecting coalitions enlarges the bargaining set, whereas, on the other hand, reducing

the set of potential coalitions that can counter-object restricts it. Nevertheless, the trivial

inclusions COS(S, γ, g) ⊆ COA(S, γ, g) and OS(f) ⊆ OA(f), that hold whenever f ∈ M(E)

and (S, γ, g) ∈ OA(f), can be used to prove the following inclusions:

BSas ⊆ BSaa ⊆ BSsa and BSas ⊆ BSss ⊆ BSsa.

Furthermore by Definition 2.10:

CA(E) ⊆ BSas ⊆ BSaa and C(E) ⊆ BSss ⊆ BSsa.

Our goal is to determine the relations between these four notions of bargaining sets and the

set of competitive allocations W(E). In this perspective, we first focus on those allocations

against which it is not possible to raise any objection at all.

Proposition 2.12 For any f feasible allocation let us consider the following statements:

(1) There is a p � 0 such that p · x ≥ p · e(t) for almost every t ∈ T and every x ∈ RN
+ for

which x <t f(t).
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(2) There is no Aubin-objection against f .

Then condition (1) implies condition (2). If, in addition, <t is convex for every t ∈ T1, then

the conditions (1) and (2) are equivalent.

Proof: See Appendix A.2.

The above proposition establishes the well known relation between the set of competi-

tive allocations and the Aubin core. A Walrasian allocation cannot be objected, hence

W(E) ⊆ CA(E) ⊆ C(E). Conversely, if atoms have convex preferences, any allocation not

objected by a generalized coalition is competitive, i.e., W(E) = CA(E) ⊆ C(E).5 Conse-

quently, a Walrasian allocation must belong to each of the bargaining sets we have defined.

Furthermore, a bargaining set shrinks whenever we allow a larger set of objections or a

smaller set of counter-objections. Summing up, we can state the following general result.

Proposition 2.13 The following inclusions always hold.

• W(E) ⊆ BSas ⊆ BSss ⊆ BSsa.

• W(E) ⊆ BSas ⊆ BSaa ⊆ BSsa.

The above inclusions may be strict. This can be shown by means of the bargaining set Bas.

In fact, as the next example shows, it may happen that there is a feasible non-Walrasian

allocation that belongs to the Aubin core of a finite economy and hence to the set BSas,

making the inclusion W(E) ⊆ Bas strict.

Example 2.14 Consider an exchange economy with two goods (N = 2) and three agents

(T = {1, 2, 3}) whose characterists are given as follows:

e(t) = (0, 1) ut(x(t), y(t) = x2(t) + y2(t) for t = 1, 2 and

e(3) = (1, 1) u3(x(3), y(3)) = x2(3) + y(3)

We now show that the initial endowment e is an Aubin core allocation and a fortiori it be-

longs to BSas, whereas it is not a Walrasian allocation.

Assume to the contrary the existence of an alternative allocation (x, y) and a generalized

coalition (S, γ) such that

x2(1) + y2(1) > 1 if γ(1) > 0 (or 1 ∈ S),

x2(2) + y2(2) > 1 if γ(2) > 0 (or 2 ∈ S),

x2(3) + y(3) > 2 if γ(3) > 0 (or 3 ∈ S),

γ(1)x(1) + γ(2)x(2) + γ(3)x(3) ≤ γ(3)

γ(1)y(1) + γ(2)y(2) + γ(3)y(3) ≤ γ(1) + γ(2) + γ(3).

5For the equivalence with the standard core stronger conditions on T1 are needed as proved by Shitovitz
(1973) and Greenberg and Shitovitz (1986) among others (see also Pesce (2010) for asymmetric information
economies and Basile, Graziano, and Pesce (2016) for economies with public goods).
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First notice that for t = 1, 2

(x(t) + y(t))2 ≥ x2(t) + y2(t) > 1 ⇒ x(t) + y(t) > 1.

Hence, γ(3) > 0, which implies that x(3) ≤ 1, and γ(1), γ(2) can not be both null. Further-

more, from x(3) ≤ 1, it follows that x(3)+y(3) ≥ x2(3)+y(3) > 2 and hence x(3)+y(3) > 2.

By summing the last two inequalities in the system above, we get the following contradiction.

γ(1)+γ(2)+2γ(3) < γ(1)[x(1)+y(1)]+γ(2)[x(2)+y(2)]+γ(3)[x(3)+y(3)] ≤ γ(1)+γ(2)+2γ(3).

Hence, e ∈ CA(E) ⊆ BSas. We now show that e is not a Walrasian allocation. To this end,

let (p, q) be any price system of ∆ and consider agent 3.

If p > q, the bundle (x(3), y(3)) =
(
0, p+q

q

)
is such that

u3(x(3), y(3)) = p
q + 1 > 2 = u3(1, 1) and,

px(3) + qy(3) = p + q = (p, q) · (1, 1).

If p ≤ q, the bundle (x(3), y(3)) = (2, 0) is such thatu3(x(3), y(3)) = 4 > 2 = u3(1, 1) and,

px(3) + qy(3) = 2p ≤ p + q = (p, q) · (1, 1).

The example above proves that with no further assumptionW(E) ( BSaa andW(E) ( BSss.

In the next section we look for sufficient conditions to the equivalence between the set of

competitive allocations and the barganining set in mixed economies.

3 Equivalence results

Throughout this section we consider the following additional assumption on preferences

which is standard in the literature on mixed markets (see for instance (Hildenbrand, 1974)).

Assumption 3.1 For all A ∈ A, <A is convex.

Note that, when Assumption 3.1 is met, Proposition 2.12 ensures that Walrasian allocations

are all and only those that cannot be objected by any generalized coalition. Our main goal

is now to characterize the Walrasian allocations as the only allocations for which all the

Aubin objections are counter-objected by a generalized coalition, i.e. W(E) = BSaa. To this

end, following Mas-Colell (1989), we consider a specific class of objections obtained with the

imposition of a price system p.

Definition 3.2 (Competitive objections) Let f ∈ M(E). An Aubin objection to f
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(S, γ, g) ∈ OA(f) is competitive if there exists a price system p � 0 such that for ev-

ery x ∈ RN
+ and almost every t ∈ T we have:

• p · x ≥ p · e(t) whenever t ∈ S and x <t g(t).

• p · x ≥ p · e(t) whenever t /∈ S and x <t f(t).

Suppose that (S, γ, g) is an objection against f and that g̃ is the allocation it induces. The

next lemma shows that (S, γ, g) is competitive if and only if g̃ satisfies the condition (2) in

Proposition 2.12.

Lemma 3.3 Let (S, γ, g) be an Aubin objection against a feasile allocation f ∈ M(E) and

let g̃ be the allocation it induces. Then, (S, γ, g) is competitive if and only if there is no

Aubin-objection against g̃.

Proof: See Appendix A.3.

By combining Proposition 2.7 and Lemma 3.3 we derive the following key result, which

generalizes Propositions 1 and 3 of Mas-Colell (1989).

Proposition 3.4 Let f be a feasible allocation and (S, γ, g) ∈ OA(f). Then (S, γ, g) is

competitive if and only if there is no Aubin-counter-objection against it.

Proposition 3.4 implies that even though competitive objections represent only a small por-

tion of all possible way that a generalized coalition can object an allocation f , they are the

only one about which we should be concerned in the study of the bargaining sets. Therefore,

in order to prove that an allocation f belongs to BSaa (or BSsa) it is sufficient to show that

no competitive Aubin (or standard) objection can be raised against f . The next proposi-

tion is a generalization of Proposition 2 in Mas-Colell (1989) to mixed markets with Aubin

objections.

Proposition 3.5 Assume that e(t) � 0 for almost all t ∈ T , and let f be a feasible non-

Walrasian allocation. Then there is an Aubin-objection against f that is competitive.

Proof: See Appendix A.3.

As consequences of Proposition 3.5 we get the existence of a Walrasian allocation for a mixed

economy. The same has been proved in Mas-Colell (1989) for atomless economies.

Corollary 3.6 Assume that e(t) � 0 for almost all t ∈ T , then there exists a Walrasian

allocation in the mixed economy E.

Proof: See Appendix A.3.

Furthermore Proposition 3.5 allows us to derive the desired equivalence theorem.
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Theorem 1 Assume that e(t) � 0 for almost all t ∈ T , then W(E) = BSaa.

Proof: See Appendix A.3.

Mas-Colell (1989) proves the equivalence W(E) = BSss when (T,Σ,m) is an atomless mea-

sure space. More precisely, he shows that whenever T = T0 and f ∈ M(E) is a feasible

non-Walrasian allocation, it is always possible to find a standard objection against f that is

competitive (Mas-Colell, 1989, Proposition 2). In our framework, we can use this property

together with Proposition 3.4 to extend Mas-Colell’s main result and prove that in atomless

economies all the notions of bargaining set we gave are actually equivalent.

Proposition 3.7 Suppose that T = T0. Then W(E) = BSas = BSaa = BSss = BSsa.

Remark 3.8 Going back to the series of inclusions proved in Proposition 2.13, Theorem 1

ensures that under Assumption 3.1 we always have the following:6

W(E) = CA(E) = BSas = BSaa ⊆ BSss ⊆ BSsa.

In particular, the Aubin-core equivalence theorem holds true in the mixed market assuming

convexity of preferences only for atoms7. However, even in this case, the inclusion BSaa ⊆
BSss might be strict in mixed economies. This can be proved moving from the examples

provided by Shitovitz (1989) who considers the notion of the veto player as an atom who is

the unique owner of a certain good. In one example, Shitovitz (1989) describes an economy

with no veto player and two atoms with the same initial endowment and same utility function

in which the bargaining set is strictly larger than the core which, on the other hand, coincides

with the set of Walrsian allocations by Shitovitz (1973). Hence,

W (E) = CA(E) = Bas = BSaa = C(E) $ BSss.

A second example illustrates an economy with a veto player in which the core coincides with

the bargaining set and strictly contains the set of Walrasian allocations. Hence,

W (E) = CA(E) = Bas = BSaa $ C(E) = BSss.

Therefore, to extend the equivalence theorem of Mas-Colell (1989) between W(E) and BSss

to mixed economies stronger assumptions are needed or a weaker notion of bargaining set

should be defined. This analysis will be the object of our future research.

Remark 3.9 A proof of Theorem 1 alternative to the one proposed in Appendix A.3 consists

in constructing an atomless economy E∗ associated to the mixed market E , which is obtained

by splitting each atom A into a coalition A∗ of negligible agents with measure equal to A and
6Notice that Example 2.14 does not fulfill the assumptions of Theorem 1.
7The Aubin-core equivalence is proved by Noguchi (2000) when the commodity space is infinite dimensional

and assuming convexity of preferences.
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whose members have A’s endomwents and preferences (see Greenberg and Shitovitz (1986)).

With similar arguments used in Husseinov (1994) for the Aubin core, it can be shown that

there is a one-to-one correspondence between the set BSaa of the mixed economy E and

the set BSss of the associated atomless economy E∗. Then, the proof is straightforward

because any Walrasian allocation f corresponds to an allocation f∗ which is in BSss because

of Mas-Colell (1989)’s equivalence theorem. This allocation f∗ corresponds to f which in

turn, thanks to the proved one-to-one correspondence, belongs to the bargaining set BSaa

of E .

4 Further characterizations

Competitive objections have been shown to play a key role in the study of bargaining sets.

In this section we look for some further characterizations of competitive objections under

the Assumption 3.1. To this end, the following new notations are needed.

Let f be a feasible allocation. For every price vector p ∈ ∆, we denote by η(t, p) the demand

set for the agent t ∈ T and define C(p) and D(p) as follows:

C(p) := {t : η(t, p) �t f(t)}, D(p) := {t : η(t, p) <t f(t)}.

Intuitively, an agent t belongs to C(p) (respectively D(p)) if she strictly (respectively weakly)

prefers what she can obtain by trading e(t) at price p over the bundle f(t).

Remark 4.1 Being agents’ preferences continuous and monotone, the set C(p) defined

above coincides with the set {t ∈ T : ∃ v for which v <t f(t) and p · v < p · e(t)} defined in

Mas-Colell (1989). Furthermore, by Proposition 2.12, OA(f) 6= ∅ if and only if m(C(p)) > 0

for every p ∈ ∆.

We can now prove the following result.

Proposition 4.2 Let f be a feasible allocation such that the set OA(f) is not empty. Then

(S, γ, g) is a competitive Aubin-objection against f if and only if there is a price p ∈ ∆ such

that:

(1) g(t) ∈ η(t, p) for almost every t ∈ S,

(2) C(p) ⊆ S ⊆ D(p),

(3)
∫
S γ(t)(g(t)− e(t)) dt = 0.

Proof: See Appendix A.4.

Pursuing the interest in the bargaining set BSaa we now present a second result that allows

us to focus on a smaller class of Aubin-objections.
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Proposition 4.3 Let f ∈M(E) be such that f /∈ BSaa. Then there is a competitive Aubin-

objection (S, γ, g) against f such that:

1. γ is a simple function,

2. γ(t) = 1 for every t ∈ S ∩ T0,

3. γ(t) = 1 for every t ∈ S such that g(t) �t f(t).

The Proposition above follows directly from the Proof of Proposition 3.5 where we consider

a feasible f /∈ BSaa and find a competitive Aubin-objection (S, γ, g) to it. In Step 3 of the

Proof, in fact, we show how the function γ meets all the conditions of Proposition 4.3.

Remark 4.4 Proposition 4.3 says that, as in the case of atomless economies, small agents

fully participate in a competitive objection. The same is true for traders which are strictly

better off whereas agents which are indifferent can object with any participation rate. Notice

that, even though Proposition 4.2 does not give a full description of all competitive Aubin-

objections, Proposition 4.3 can be seen a characterization of BSaa. Indeed, define a new

class of Aubin-objections O∗
A(f) formed by all the (S, γ, g) ∈ OA(f) such that γ satisfies

all the three conditions in Proposition 4.3. Similarly to what we did in Paragraph 2.3, we

can define a new bargaining set BS∗ containing all attainable f ∈ M(E) such that every

(S, γ, g) ∈ O∗
A(f) has an Aubin-counter-objection. Being O∗

A(f) strictly smaller than OA(f),

we would expect BS∗ to contain BSaa. However, the result in Proposition 4.3 guarantees that

whenever f /∈ BSaa we can always find a (S, γ, g) ∈ O∗
A(f) that cannot be counter-objected.

Hence, BS∗ = BSaa = W(E).

A Appendix

A.1 Proof of Proposition 2.7

Proof. The first implication directly follows from the definition of the allocation g̃ induced

by (S, γ, g). For the converse we use continuity and strict monotonicity of agents’ preferences.

Precisely, let h ∈M(E) be such that (Q, δ, h) ∈ OA(g̃), that is

(i)
∫

δ(t)h(t)dt ≤
∫

δ(t)e(t)dt

(ii) h(t) <t g̃(t) for almost all t ∈ Q

(iii) m(Q′) > 0, where Q′ = {t ∈ Q : h(t) �t g̃(t)}.

If m(Q \ Q′) = 0, then (Q, δ, h) is an Aubin-counter-objection to (S, γ, g). Otherwise, by

(iii) and continuity, there exists ε ∈ (0, 1) and Q̃ ⊆ Q′ such that m(Q̃) > 0 and εh(t) �t g̃(t)

for almost all t ∈ Q̃. Define

h̃(t) :=

εh(t) if t ∈ Q̃,

h(t) + 1−ε
m(Q\Q̃)

∫
Q̃ δ(t)h(t)dt if t ∈ Q \ Q̃.
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Notice that by (i), we have that∫
δ(t)h̃(t)dt =

∫
Q̃

δ(t)εh(t)dt +
∫

Q\Q̃
δ(t)h(t)dt +

∫
Q\Q̃

δ(t)
[

(1− ε)
m(Q \ Q̃)

∫
Q̃

δ(t)h(t)dt

]
dt ≤

≤ ε

∫
Q̃

δ(t)h(t)dt +
∫

Q\Q̃
δ(t)h(t)dt + (1− ε)

∫
Q̃

δ(t)h(t)dt =
∫

δ(t)h(t)dt ≤

≤
∫

δ(t)e(t)dt, that is

(1)
∫

δ(t)h̃(t)dt ≤
∫

δ(t)e(t)dt.

Furthermore, by strict monotonicity and (ii), h̃(t) �t g̃(t) for almost all t ∈ Q, which means,

by the definition of g̃, that

(2) h̃(t) �t g(t) for almost all t ∈ Q ∩ S

(3) h̃(t) �t f(t) for almost all t ∈ Q \ S.

Therefore, the Aubin-objection (S, γ, g) against f is Aubin-counter-objected by (Q, δ, h̃).

This concludes the proof.

A.2 Proof of Proposition 2.12

We divide the proof of Proposition 2.12 in two separated statements, one for each implication.

Lemma A.1 (Proposition 2.12, first implication) Suppose that f is a feasible alloca-

tion and p � 0 such that p · x ≥ p · e(t) for almost every t ∈ T and every x ∈ RN
+ for which

x <t f(t). Then there is no Aubin-objection against f .

Proof. First of all let us observe that since p � 0, by the continuity and strict monotonicity

of preferences, the inequality p · e(t) < p · x holds for almost every t ∈ T and x ∈ RN
+ for

which x �t f(t).

Suppose, by the way of contradiction, that there exist g ∈ M(E) and (S, γ) are such that

(S, γ, g) ∈ OA(f). Hence,
∫

γ(t)g(t)dt ≤
∫

γ(t)e(t)dt; g(t) <t f(t) for almost every t ∈ S

and S′ := {t ∈ S : g(t) �t f(t)} has positive measure. Using the assumption on p we obtain

the following inequalities:

p ·
∫

S\S′
γ(t)(g(t)− e(t)) dt =

∫
S\S′

γ(t) p · (g(t)− e(t)) dt ≥ 0,

p ·
∫

S′
γ(t)(g(t)− e(t)) dt =

∫
S′

γ(t) p · (g(t)− e(t)) dt > 0

which together imply

p ·
∫

S
γ(t)g(t) dt > p ·

∫
S

γ(t)e(t) dt,

that contradicts the inequality
∫

γ(t)g(t) dt ≤
∫

γ(t)e(t) dt.
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Lemma A.2 (Proposition 2.12, second implication) Suppose that <t is convex for ev-

ery t ∈ T1 and let f be a feasible allocation such that there are no Aubin-objections against

it. Then there is p � 0 such that p · e(t) ≤ p ·x for almost every t ∈ T and x ∈ RN
+ for which

x < f(t).

Proof. By the continuity of preferences it is enough to find a p � 0 such that p ·x ≥ p · e(t)
for almost every t ∈ T and every x ∈ RN

+ for which x �t f(t).

Let us define a correspondence ϕ : T → 2RN
by setting ϕ(t) := {x ∈ RN

+ : x �t f(t)}−{e(t)}
for every t ∈ T . By the monotonicity assumption ϕ is a non-empty valued correspondence

which admits integrable selections. This implies that the set

K :=
{∫

S
γ(t)ϕ(t) dt : (S, γ) ∈ F

}
is non empty. We now prove that K is convex. To this end, define the sets

K0 :=
{∫

S∩T0

γ(t)ϕ(t) dt : (S, γ) ∈ F
}

and K1 :=
{∫

S∩T1

γ(t)ϕ(t) dt : (S, γ) ∈ F
}

,

and notice that K = K0 + K1, where K0 is convex thanks to Lyapunov-Richter’s Theorem.

To conclude our claim is then enough to show that K1 is convex as well. This follows from

Assumption 3.1. Indeed, let αy1 +(1−α)y2 be a convex combination of two elements y1 and

y2 of K1. Then, there exist (S1, γ1), (S2, γ2) ∈ F and z1, z2 ∈M(E) such that

y1 =
∫

S1∩T1

γ1(t)z1(t)dt and y2 =
∫

S2∩T1

γ2(t)z2(t)dt,

where zi(t) ∈ ϕ(t) for i = 1, 2 and for almost all t ∈ Si. Define now the generalize coalition

γ, with support S1 ∪ S2, and the function y : (S1 ∪ S2) ∩ T1 → RN
+ as follows:

γ(t) = αγ1(t) + (1− α)γ2(t)

y(t) =
αγ1(t)
γ(t)

z1 +
(1− α)γ2(t)

γ(t)
z2(t).

From Assumption 3.1, y(t) ∈ ϕ(t) for almost all t ∈ (S1∪S2)∩T1, and hence
∫
(S1∪S2)∩T1

γ(t)y(t)dt ∈
K1. Since

αy1 + (1− α)y2 =
∫

(S1∪S2)∩T1

γ(t)y(t)dt ∈ K1,

the set K1 is convex and so is K. Now, being OA(f) empty, the sets K and −RN
+ are disjoint

and can therefore be separated by a hyperplane. That is, there exists a p ≥ 0, p 6= 0 such

that p ·
∫
S γ(t)(g(t)−e(t)) dt ≥ 0 whenever (S, γ) ∈ F , g ∈M(E) and g(t) �t f(t) for almost

every t ∈ S. We conclude that

p · e(t) ≤ p · x for almost every t ∈ T and x ∈ RN
+ forwhich x �t f(t). (1)
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We only need to show that p � 0. To this end, first observe that
∫

f(t)dt =
∫

e(t)dt,

otherwise from monotonicity (T, 1, f +
∫

[e(t)− f(t)]dt) ∈ OA(f) for any y ∈ R`
+ \ {0}. This

together with (1) implies that p · f(t) = p · e(t) for almost all t ∈ T . Since by assumption∫
e(t)dt � 0 and p ≥ 0, p 6= 0, it follows that m({t ∈ T : p · e(t) > 0}) > 0. Take t such

that p · f(t) = p · e(t) > 0 and notice that continuity implies that p · x > p · e(t) whenever

x �t f(t). Now, assume to the contrary that ph = 0 for some h ∈ {1, . . . , N} and consider

the bundle g defined as gh = fh(t) if ph > 0 and gh = fh(t)+ y, with y > 0, if ph = 0. Then,

p · g = p · f(t), but by monotonicity g �t f(t) and hence p · g > p · e(t) = p · f(t), which is a

contradiction. This proves that p � 0.

A.3 Proofs of Section 3

Proof of Lemma 3.3. One implication directly follows from Proposition 2.12. Precisely, if

there is no Aubin-objection against g̃, then there exists a price p � 0 such that p·x(t) ≥ p·e(t)
for almost every t ∈ T and every x ∈ RN

+ for which x <t g̃. By definition of the allocation

g̃, it follows that (S, γ, g) is competitive. Conversely, let (S, γ, g) be competitive and assume

to the contrary that (Q, δ, h) is an Aubin-objection against g̃. Thus,

(i)
∫

δ(t)h(t)dt ≤
∫

δ(t)e(t)dt,

(ii) h(t) <t g̃(t) for almost every t ∈ Q,

(iii) h(t) �t g̃(t) for almost all t ∈ Q′ ⊆ Q with m(Q′) > 0.

By definition of g̃, since (S, γ, g) is competitive, from (ii) it follows that p · h(t) ≥ p · e(t) for

almost all t ∈ Q, with a strict inequality for almost all t ∈ Q′ because agents’ preferences

are continuous and strictly monotone and p � 0. Therefore,
∫

δ(t)p ·h(t)dt >
∫

δ(t)p · e(t)dt

which contradicts (i) above.

We now show Proposition 3.5. To this end, we divide the proof in several steps, in order to

simplify it and to make further comparisons with Mas-Colell’s original work.

Proof of Proposition 3.5. Let us fix a feasible allocation f ∈M(E) that is not Walrasian.

As in Paragraph 4, for every p ∈ ∆ we denote by η(t, p) the demand set for the agent t ∈ T

and use C(p) and D(p) for the sets:

C(p) := {t : η(t, p) �t f(t)}, D(p) := {t : η(t, p) <t f(t)}.

Being f non Walrasian it must be that m(C(p)) > 0.

Step 1: Let us call ϕ : ∆ × T → 2RN
the correspondence that assigns to each p ∈ ∆ and

t ∈ T the set:

ϕ(p, t) :=


η(p, t)− e(t), if t ∈ C(p),

η(p, t)− e(t) ∪ {0}, if t ∈ D(p) \ C(p),

{0}, otherwise.

16



Then define Φ: ∆ → 2RN
as the integral of ϕ, i.e. the map Φ(p) :=

∫
T ϕ(p, t) dt, and observe

that Φ satisfies all of the following properties: (i) Φ is upper hemicontinuous and bounded

from below, (ii) Φ is non-empty for every p ∈ ∆, (iii) The Walras’ law prevails, which is

saying that p · v = 0 for every p ∈ ∆ and v ∈ Φ(p), (iv) for every sequence (pn)n ⊂ ∆

converging to some p /∈ ∆ we have ‖xn‖ → ∞ whenever (xn)n is such that xn ∈ Φ(pn) for

every n ∈ N8. We can therefore apply the weak form of Gale-Debreu-Nikaido Lemma to Φ

and obtain the existence of a p ∈ ∆ such that 0 ∈ coΦ(p) (a proof can be found, for example

in Hildenbrand 1974, Lemma 1 page 150).

Step 2: Since 0 ∈ coΦ(p) and the latter was defined as
∫

ϕ(p, t) dt, we can take g1, g2 be

integrable selections of ϕ(p, ·) and θ ∈ [0, 1] such that

θ

∫
g1(t) dt + (1− θ)

∫
g2(t) dt = 0.

By the Lyapunov-Richter’s Theorem
∫
T0

θg1(t)+(1−θ)g2(t) dt =
∫
T0

g0(t) for some integrable

selection g0 of ϕ(p, ·). Call S0 := {t ∈ T0 : g0(t) + e(t) ∈ η(p, t)} and, for i = 1, 2, put

Si := {t ∈ T1 : gi(t) + e(t) ∈ η(p, t)}. Now define the allocation g : T → RN
+ by:

g(t) :=



g0(t) + e(t), if t ∈ S0,

g1(t) + e(t), if t ∈ S1 \ S2,

θg1(t) + (1− θ)g2(t) + e(t), if t ∈ S1 ∩ S2,

g2(t) + e(t), if t ∈ S2 \ S1,

0 otherwise.

For all t, g(t) ∈ η(p, t) if t ∈ S := S0 ∪ S1 ∪ S2 and g(t) = 0 if t /∈ S. In particular, this is

true because when t ∈ S1 ∩ S2 ⊂ T1, g1(t) + e(t) and g2(t) + e(t) are both in η(p, t) and the

latter is convex since <t is convex by assumption.

Step 3: Define γ as the function χS0 + θχS1 + (1 − θ)χS2 . We claim that (S, γ, g) is a

competitive Aubin-objection to f . First we observe that (S, γ, g) is an Aubin-objection to

x: in fact, by construction, S is the non-null support of γ and:∫
γ(t)(g(t)− e(t)) dt =

∫
T0

g0(t) dt +
∫

T1

θg1(t) + (1− θ)g2(t) dt =

= θ

∫
g1(t) dt + (1− θ)

∫
g2(t) dt = 0.

Furthermore, S ⊆ D(p) and hence g(t) <t f(t), for all t ∈ S. Finally, since C(p) ⊂ S and

m(C(p)) > 0 (because f is non-competitive) m({t ∈ S : g(t) �t f(t)}) > 0. We are only

left to prove that (S, γ, g) is competitive: for any x ∈ RN
+ , if x <t g(t) for some t ∈ S, then

8The proof of (i)− (iv) is almost identical to what is done for the proof of the existence of a competitive
equilibrium. See for example Mas-Colell 1985, page 270.
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x <t η(p, t) and so p · x ≥ p · e(t). Similarly, if x <t f(t) for some t /∈ S then x <t η(p, t) and

so p · x ≥ p · e(t). We conclude that (S, γ, g) is a competitive Aubin-objection to f .

Remark A.3 The proof of Proposition 3.5 follows from a close range the proof of Propo-

sition 2 in Mas-Colell 1989 for the case of a non-atomic economy. In particular, Step 1 is

identical to what is done by Mas-Colell with the only exception that, since our measure space

of agents is not necessarily non-atomic, we could not conclude that the correspondence Φ has

convex values. This is the reason why, in Step 2, we had to move from Φ to its convex hull, an

expedient that was unnecessary in Mas-Colell’s settings thanks to Lyapunov-Richter’s The-

orem. Once the triple (S, γ, g) is defined, in Step 3 the proof that (S, γ, g) is a competitive

Aubin-objection follows, with the necessary changes in register, the last part of Mas-Colell’s

proof.

Proof of Corollary 3.6. If the initial endowment e is a Walrasian allocation, then the

Corollary is trivially proved. If e is not Walrasian, then by Proposition 3.5 there exists an

Aubin-objection (S, γ, x) against e which is competitive. In particular:

(i)
∫

γ(t)x(t)dt ≤
∫

γ(t)e(t)dt

(ii) x(t) <t e(t) for almost all t ∈ S,

(iii) x(t) �t e(t) for almost all t ∈ S′ ⊆ S, with m(S′) > 0.

By the proof of Proposition 3.5, we can assume that γ(t) = 1 for almost all t ∈ (T0 ∩S)∪S′.

Consider now the allocation y(t) = γ(t)x(t) + (1 − γ(t))e(t) for all t ∈ T and notice that

by (i) it is feasible. Since (S, γ, x) is a competitive Aubin-objection against e, there exists

p ∈ ∆ such that

(1) p · z ≥ p · e(t) whenever t ∈ S and z <t x(t)

(2) p · z ≥ p · e(t) whenever t /∈ S and z <t e(t).

We show that y is a Walrasian allocation supported by p. First note that from (1) and (i)

it follows that p · x(t) = p · e(t) for almost all t ∈ S. Hence, by definition of y we have that

p · y = p · e(t) for almost all t ∈ T . Suppose now the existence of a bundle z preferred to

y(t) by some agent t, i.e. z �t y(t). If t /∈ S, then γ(t) = 0 and z �t y(t) = e(t). Thus,

from (2), p · z ≥ p · e(t). Actually, p · z > p · e(t) because <t is continuous and e(t) � 0.

If t ∈ (T0 ∩ S) ∪ S′, then γ(t) = 1 and z �t y(t) = x(t), whereas for t ∈ (S \ S′) ∩ T1,

z �t y(t) ∼t x(t). Thus, from (1), p · z ≥ p · e(t). Again continuity of <t and e(t) � 0 imply

that p · z > p · e(t). This completes the proof.

Proof of Theorem 1. Let f be a feasible non-Walrasian allocation. Proposition 3.5 implies

the existence of an Aubin-objection to f which is Walrasian and which, in addition, has no

Aubin-counter-objection because of Proposition 3.4. Then f /∈ BSaa, that is BSaa ⊆ W (E).

The other inclusion is given by Proposition 2.13.
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A.4 Proof of Proposition 4.2

Proof of Proposition 4.2. First notice that, since OA(f) is non empty, it is m(C(p)) > 0

for every p ∈ ∆.

Let us assume that (S, γ, g) is competitive and call p the relative price system. Point (1)

follows directly from the definition of competitive allocation. If point (2) is violated then

either m(C(p)\S) > 0 or m(S\D(p)) > 0. In the first case let t ∈ C(p)\S and take x ∈ η(t, p);

by definition we have x �t f(t) and p · x ≤ p · e(t) and so (S, γ, g) is not competitive. On

the other hand, for t ∈ S \ D(p) then f(t) �t g(t) contradicts the fact that (S, γ, g) is an

Aubin-objection against f . To prove point (3) suppose that x :=
∫
S γ(t)(g(t)− e(t)) dt < 0

and define define h ∈M(E) by:

h(t) = g(t)− x∫
S γ(t) dt

.

But then (S, γ, h) constitutes an Aubin-counter-objection to (S, γ, g) in contradiction to

Proposition 3.4.

Suppose now that (S, γ, g) satisfies conditions (1), (2) and (3). We first need to prove that

(S, γ, g) ∈ OA(f). The requirement for which
∫
S γ(t)g(t) dt ≤

∫
S γ(t)e(t) dt, is guaranteed

by point (3). For every t ∈ S we have that t ∈ D(p) (point (2)) and g(t) ∈ η(t, p) (point

(1)), meaning that g(t) <t f(t). Furthermore, from (1) and (2) we also derive that {t ∈ S :

g(t) �t f(t)} = C(p) and has non-zero measure. To prove that (S, γ, g) is competitive we

pick x ∈ RN
+ and observe that, being g(t) ∈ η(t, p), if x <t g(t) for some t ∈ S we must have

p · x ≥ p · e(t). On the other hand, if x <t f(t) for some t /∈ S, the inclusion t /∈ C(p) allows

us to write x <t η(t, p) so that p · x ≥ p · e(t).
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