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1 Introduction

The RT-PCR (Real Time Polymerase Chain Reaction) test on a nasopharyngeal swab is the

most reliable way to diagnose for a Covid-19 infection. Due to the big number of asymp-

tomatics, it is absolutely crucial to test as many individuals as possible in order to isolate

the infected and reduce contagions. However processing a big number of test is costly and

time consuming and the laboratories do not always have the resources and infrastructure to

do so. The result is an insufficient number of quarantined asymptomatics and an epidemic

that spreads quickly, leaving policy makers without many options aside from a lockdown.

Moreover, waiting longer to take a test or to receive its result is also extremely costly for the

individuals that cannot work or send their children to school.

In this paper I study how to increase the lab capacity to process tests with the group testing

strategy of Dorfman (1943). The idea consists in taking two samples from each individual

using two swabs. The first sample is mixed with others and processed in groups of fixed size.

If the result is negative for the group, then all of the group members are negative. The second

swabs are discarded. A positive result for the group means instead then at least one of the

components is positive. In this case the second swabs are processed individually to identify all

positives. In all cases, the result is a perfect identification of all positives without classification

errors. Israel and the state of Nebraska are, to date, the only two examples of application of

this testing protocol to Covid-19 (Gollier and Gossner 2020).

The optimal group size that minimizes the total number of tests is a decreasing function of

the fraction of positive individuals in the tested population. If, on average, 1.5% of the tests

are positive, testing in groups of 11 allows to reduce the number of tests, on average, by a

factor of 4. In other words, for fixed laboratory capacity, it is possible to process, on average,

4 times as many tests. I will refer to this number as the Lab Capacity Multiplier (LCM). If

instead 3% of the tests are positive, testing in groups of 6 yields a LCM of 3.

These gains in lab capacity implied by the computations by Dorfman (1943) are theoretical

averages, which are different from what a lab can actually achieve on a day-by-day basis. In

practice it is possible that it would not be able to process that many test if, as a result of

sampling variability, there are positives scattered in many groups, so that individual tests are
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required frequently. Leftovers tests can be actually processed the next day and, on average,

there will be enough capacity to do so, but it will take longer to receive the test response, with

a high cost for the quarantined individuals waiting for a result. I perform a simulation exercise

to show that there can be substantial gains even in case the lab capacity is set to the worse

case scenario. If the expected fraction of positives is 1.5%, the worse case scenario multiplier

of the lab capacity is equal to 2.75. Translated, a lab that adopts the two-swabs strategy

can be sure to process 2.75 as many tests as before without leftovers, so that everybody will

receive an answer the same day.

A second problem is that the gains from the two swabs strategy are smaller if the actual

fraction of positive tests is bigger than the expected capacity according to which the lab sets

the optima group size. In other words, a lab that sets its capacity according to the theoretical

LCM might have many leftover tests in case of more positives than expected, which is likely

to happen when the pandemic accelerates or right after a lockdown. Simulation results show

however that there can be gains even in case of a significant mistake. For instance, for an

expected positive fraction of 1.5%, the tests are reduced, on average, by a factor of 2 even if

the actual fraction of positives is 5%, or more than three times as big as expected. In this

case the lab can be sure to process roughly 1.6 times as many tests every day.

Another related problem is that the economic convenience of the two-swabs strategy de-

pends upon the ratio of the cost of testing device (i.e. the swab) to the processing cost (PCR

test). The strategy works better in case this ratio is small, since it entails using two devices

for each tested individual. I show that there are gains even in case of a high cost ratio if the

expected fraction of positives in the tested population is small.

The two swabs strategy can be generalized to three swabs with two levels of grouping. I

show that this strategy, while being slightly more complicated to implement, might actually

increase the LCM even more, although the costs will be high even in case of a relatively small

cost ratio.

The idea of the two-rounds group testing strategy is due to Dorfman (1943). More gen-

erally, there is a huge literature on the mathematics of group testing. Alridge, Johnson and

Scarlett (2019) survey the most important contributions. In the context of Covid-19, Gollier

and Gossner (2020) study group testing applications targeted at estimating the virus preva-
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lence, at allowing negatives to return to work and at screening for positives. My contribution

is limited to the screening of positives and consists in producing simulation results to help

labs setting their capacity in a such a way to produce quick responses.

The rest of the paper is organized as follows. Section 2 describes the two-samples strategy

by Dorfman (1943) and its theoretical results, extending also the analysis to the cost of the

tests. Section 3 summarizes the main results from the simulation exercise. Section 4 discusses

two extensions, to groups of different size and two a three-swabs strategy. Section 5 concludes.

2 The Two Swabs Strategy

In this section I describe the original idea by Dorfman (1943), focusing the analysis on the

increased lab capacity and extending it to the cost of the tests.

Suppose that the tests are performed on a population of size n and that the percentage

of positives is π. Two samples are collected from each individual using two swabs. The first

samples are grouped in groups of fixed size g. For simplicity, suppose that the population

size is such that n/g is integer. The tests are performed sequentially by a single lab and

there is independence in the results, meaning that there are no clusters of infected that are

processed back-to-back. The result of the group test is negative if all of the group members

are negative. This happens with probability (1 − π)g. In this case the lab performs 1 test

only for g individuals and discards the second swabs. A positive group test results means

instead that at least one of the group components is positive. This happens with probability

1− (1− π)g. In this case the lab needs to use the second swabs to perform g individual tests,

which amounts to a total of g + 1 tests for g individuals. Given that there is a total of n/g

groups, the expected number of tests performed is equal to:

nT (π, g) =
n

g

{
(1− π)g + (1 + g)[1− (1− π)g]

}
(1)

The optimal test size is the value of g that minimizes1 T for fixed π. This is the original

1The number of tests n does not play a role in the minimization problem as long as it is divisible by g (n/g
is integer). If it is not, than the expected number of test is slightly different than the output of equation 1 and
the solution to the problem entails also an additional strategy to test the leftovers individuals. For instance,
suppose that there are 100 individuals to test. Forming groups of 8 yields 12 full groups plus 1 remainder
group of 4, with three possible additional strategies for the 4 leftovers: 4 individual tests, 2 groups of 2 or 1
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problem solved by Dorfman (1943). I will focus on integer values of g in order to have simpler

strategies as a result (I discuss the non-integer case in section 4). At the optimal group size

g∗(π), a total of nT ∗(π) tests are required to perfectly screen n individuals.

A minimum number of tests per individual T ∗(π) means that a lab can process more tests

with the same maximum capacity. I define the expected Lab Capacity Multiplier (LCM) as

the ratio between the number of test that would be performed in case of an individual testing

strategy n to the expected number of tests performed under the two-swabs strategy for the

optimal choice of the test size: LCM = n/T ∗(π). For instance, T ∗(π) = 0.5 means that a lab

adopting the two-swabs strategy can perform, on average, twice as many tests than it would

otherwise do in case of individual testing.

The left panel of figure 1 plots the optimal group size for 0.001 ≤ π ≤ 0.1; the right

panel of figure 1 plots instead the expected LCM for the same values of π. The results for

selected levels of π are also summarized in table 1, alongside the number of tests required

to screen n = 100 individuals. The bigger the expected fraction of positives, the smaller the

group size, since it is actually more likely to find a positive among the group. The expected

number of tests is therefore an increasing function of π, while the expected capacity multiplier

decreases with π. If the expected fraction of positives is 1%, the optimal test size is 11 and

the expected number of tests is 19.56 for each 100 individuals. This means that the lab can

process slightly more than 5 times as many tests with the same capacity upon adoption of the

two-swabs strategy. If the expected fraction of positives is instead 3%, the optimal group size

is 6, the expected number of tests per 100 individuals 33.37 and the LCM close to 3. In case

π is 10%, the optimal group size is just 3 tests, the expected number of tests 59.39 per 100

and the expected LCM is only 1.68. In other words, the two-swabs strategy is not worthwhile

implementing in case of high incidence of the infection in the tested population.

Dorfman (1943) did not consider explicitly the the cost of this testing strategy. Putting

it differently, the assumption behind its analysis is that the only reason why the labs were

not able to process tests is either a time constraint or the luck of testing devices (such as

reagents). However cost monitoring is crucial in case there is a fixed amount of resources

assigned to each lab or, for public health systems, in case of limited borrowing capacity by

group of 4. In the spirit of the analysis, I assume that the number of individuals to test is fixed in multiples
of g after the optimal test size is computed.
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the government. Moreover, the two-swabs strategy entails consuming two testing devices per

individual, which means that it is worthwhile implementing only if the cost of the device

(the swab) c is sufficiently smaller than the processing cost (PCR test) C. Actually different

labs and/or governments can face different costs as a consequence of different physical infras-

tructure, technology, workforce size and organization and as a consequence of the different

market prices for the reagents or of the products needed to produce them in case of in-house

production. Moreover, it is in principle possible to have important cost fluctuations even

within small time intervals, for instance if speculators try to take advantage from the onset of

the epidemic. For all these reasons, it is important to compare testing strategies at different

values of the underling costs. The total cost of performing individual tests on n individuals is

n(C + c). The total cost of the two-swabs strategy2 is instead n[T ∗(π)C + 2c]. Denoting with

c̄ = c/C the ratio between the device cost and the processing cost, the relative expected cost

S of the two-swabs strategy is therefore equal to:

S(c̄) =
T ∗(π) + 2c̄

1 + c̄
(2)

Table 2 reports this relative expected cost of the two-swabs strategy as a function of c̄

for two levels of π, respectively 1.5% and 3%. The smaller is c̄, the more convenient is the

two-swabs strategy. For instance, if c̄ is equal to 10%, the relative cost of the two-swabs

strategy is roughly 40% if π = 1.5% and 48% if π = 3%. If instead c̄ is 50%, the relative

expected cost of the two-swabs strategy is 82% in case of π = 1.5% and 89% in case of π = 3%.

Summarizing, the two-swabs strategy reduces the overall cost of the tests in case the device

cost is much smaller than the processing cost and in case of small incidence of the infection

in the population.

3 Simulation

The expected capacity multipliers in section 2 are theoretical averages that are different from

what a lab can actually process each day, which depends on how many actual positives there

2Note that the optimal group size g that minimizes the number of tests is also the one that minimizes the
cost of administering the tests.
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are and how they are combined in groups. In particular, If most positives are bunched together

in few groups, the lab will be able to process more. Conversely, if the positives are scattered

across groups, second tests will be more frequent and the lab will be able to process less tests.

Sampling variability might therefore induce a relevant problem for a lab: if it collects samples

from n · LCM individuals (having a capacity of n individual tests per day), it might not be

able to process all of them in the same day. Leftovers can be processed the following days

and, on average, there will be enough capacity to do so, but the cost will be having longer

and uncertain test response times.

In this section I propose a simulation exercise that shows the distribution of the gains from

a two-swabs strategy for a particular choice of the probability π. I will use the simulation

results to identify the smallest possible gains in the worse case scenario, which can help a lab

set its maximum capacity to a number of tests that it will be sure to process each single day.

The details of the simulation are quite simple. I fix π = 1.5% as in Italy at the end of

August. The corresponding optimal test size is g = 9. I fix the device to processing cost ratio

to c̄ = 0.1 (the device costs is equal to one tenth of the processing cost). I simulate 5 thousand

times the tests for a population of n = 999 individuals. The size of each simulation run is

such that the ratio n/g is integer in order to have groups of equal size and to avoid dealing

with leftover tests bunched in a smaller residual group. At each simulation round, I draw a

random vector of n elements from a Bernoulli distribution with success probability equal to

π. I therefore assume that the tests are on a random sample of the population and that there

are no clusters of infected. Alternatively, the assumption is that there is a sufficiently big

number of tests processed by the lab and that the samples are shuffled so that, say, samples

from two family members that go together to take a test are not processed back to back3. At

each simulation run, I compute the number of performed test, the lab multiplier and the total

cost.

Figure 2 plots the empirical distribution of the lab capacity multiplier and of the total cost

over all simulation runs. The extreme values are not discarded in the spirit of the exercise.

The distribution is symmetric and the mean is very close to the expected LCM computed

in section ??: the median LCM is 4.219 and the mean 4.210. The interquartile range of the

3If there were clusters, the two-swabs strategy would work even better, since there would be many positives
bunched together in groups, but I am ignoring this possibility to keep the analysis simple.
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LCM is [3.92; 4.57], stressing that in a great number of cases the actual multiplier is close to

its theoretical value. But there are also cases when the LCM turns out to be smaller: in 10%

of the simulations, it is actually lower than 3.55. In 1% of the simulations, it is lower than

3.14. The worse case scenario is a LCM of 2.69. This actually means that, for π = 1.5, the

lab will be sure to process 2.69 times as many tests as before upon adoption of the two-swabs

strategy. Actually if it accepts 3 times as many tests, it will have leftovers in less than 1% of

the days. As for the cost, the worse case scenario is 52% of the individual testing strategy.

The cost will actually be bigger than 43% in less than 10% of the days and less than 39% in

half of the days. A huge saving indeed.

Another problem associated with the two-swabs strategy is that the optimal group size

is contingent on the expected fraction of positives. If the actual fraction of positives turns

out to be higher than what is used to set the group size, there will be lower gains both in

terms of additional tests performed and costs. I use again a simulation to gauge the extent

of the problem and to help labs sets their capacity. Table 3 reports the results for two levels

of expected π, respectively 1.5% (optimal test size 9) and 2% (optimal test size 8), and for

an actual percentage of positives π̂ between 0.5% and 5%. Again extreme simulation results

are not discarded. The way to read the table is the following. Suppose that the lab expects

to find π = 1.5% of positives and, accordingly, that it forms groups of 9. If it doubles its

capacity, it is sure to process all of them if the actual percentage of positives π̂ is below 3%

(the worse case scenario multiplier for 3% expected positives is 1.97). If the actual positives

turned out to be more than 3%, then the lab would face a small chance of not being able to

process some of them. As for the budget, there is actually a bigger chance to exceed it, but

since the median cost is smaller than 60% if the true π is below 5 percent, there is ample

margin to compensate.

If however the lab gets the percentage right (π = π̂), it can safely increase the capacity up

to 4 times. Thus it is very important to have a good forecast model, updated daily, to predict

the number of positives based on the diffusion pattern of the pathogen. The group size must

be adjusted every day accordingly4.

4Actually It is unlikely to have big swings in the number of positives from one day to next, unless there is
a regime change such as the relaxation of some mitigation policy previously implemented.
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4 Extensions

In this section I discuss two extensions. The first entails groups of different size, slightly more

difficult to implement. The second is instead the possibility of using three swabs rather than

two. In both cases I will show that such complicated strategies do not significantly improve

upon the two-swabs strategy with equal group sizes.

4.1 Groups of Different Size

Dorfman (1943) solves for groups of equal size, which yields easier strategies to implement.

But looking at easier strategies is meaningful only if the gains from more complex one are not

too big. In this section I consider solution with different group sizes in order to understand if

there are potential gains from their implementation. In particular, I consider the possibility of

constructing H types of groups, each with gi elements and such that gi 6= gj if i 6= j . Denoting

with hi the fraction of groups of size gi, the average group size is ḡ =
∑H

i=1 hi gi. For instance,

an average group size of ḡ = 5.5 can be reached with g1 = 5, g2 = 6 and h1 = h2 = 0.5. An

average group size of ḡ = 3.33 with g1 = 3, g2 = 4, h1 = 2/3 and h2 = 1/3. In both cases, the

number of individuals to test is set after the choice of the group size in such a way that n/ḡ

is integer. The total number of tests is:

nT
(
π,H, {gi}Hi=1

)
=

H∑
i=1

hi
n

gi

{
(1− π)gi + (1 + gi)[1− (1− π)gi ]

}
(3)

The goal is to find a minimum with respect to gi, hi and H. Such a problem is very

complicated to solve without imposing some more structure and/or without restricting the

set of candidate solutions. To simplify it, I will look only at candidate solutions with the

following characteristics: two types of groups only (H = 2), average group sizes in half

integers (1.5, 2.5, 3.5, . . . ) or thirds of an integer (1.33, 2.33, 3.33, . . . ) and a difference between

the two group sizes equal to 1 (∆g = g1 − g2 = 1). Both examples discussed at the beginning

of this section meet these three requirements. Once again, the requirements are such that the

resulting strategies are easy to implement. The results shows that there are no actual gains

in adopting such strategies: the expected number of tests in case of groups of equal size is
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always lower, albeit just slightly in some cases. Given that strategies with equal group sizes

are arguably easier to manage, the conclusion is that it is better to focus on them. These

arguments in do not exclude the possibility that some more complicated strategy, say with

3 or 4 different group size, might actually yield a smaller expected number of tests. But the

overall test planning and group allocation problem will be much more difficult in case of a

bigger number of groups H, especially if the average group size must be updated on a daily

basis according to the evolution of the probability π. All in all, focusing on groups of equal

size seems preferable.

4.2 Three Swabs

The two-swabs strategy is able to reduce the number of tests required to perfectly screen a

given population. However using two swabs is not the only possibility. In principle, three, four

or even more swabs can be used, bunching the tests in groups of progressively smaller size. The

convenience of such strategies, abstracting from their complexity of implementation, depends

mostly on two aspects: the expected fraction of positives and the relative magnitude of the

device cost. The bigger the expected number of positives and the bigger the relative cost of

the device, the less convenient they are, since they involve bigger group sizes at earlier stages

and since they require using a lot of devices. In what follows, I consider a simple extension of

the Dorfamn (1943) problem to a three-swabs strategy and compare its performance to the

two-swabs case.

The three swabs strategy entails two separate rounds of bunching. Three samples must

be collected for each tested individual. The first samples are merged into groups of size G. In

case the group result is negative, which happens with probability (1 − π)G, the second and

third samples are discarded and one test is necessary for G individuals. In case the group

result is instead positive, which happens with probability 1− (1−π)G, the second samples are

merged into G/g groups of size g and such that 1 ≤ g ≤ G. At this stage we have the same

problem discussed in section 2. The expected number of tests is equal to:

nT3(π, g,G) =
n

G

{
(1− π)G +

[
1− (1− π)G

][
1 +

G

g
T (π, g)

]}
(4)

where T (π, g) is defined in equation (1). The problem is now to find the values of G and
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g that minimize T3 for given level of π. As in section 2, I look only at integer values of G. For

consistency, and given the results in section 4.1, I only look for solutions with integer values

of G/g. For instance, for G is equal to 10, I only look at two values of g, 5 and 2. For the

same reason, I do not consider prime numbers as candidate solutions for G.

The expected number of test with the three-swabs strategy is much lower. If the expected

number of positives is 1.5%, a first groups size of G=18 tests and a second group size of g=9

tests make it possible to test 100 individuals with just 11.23 tests on average, with an expected

lab capacity multiplier equal to 8.9. For a much higher number of positives, say 5%, the gains

are smaller: with G=10 and g=10, the expected number of tests is 27.1 and the expected lab

multiplier 3.68. The relative cost with respect to the individual testing strategy is:

S3(c̄) =
T ∗

3 (π) + 3c̄

1 + c̄
(5)

where T ∗
3 (π) is the minimum test number corresponding to the optimal choice of G and g.

Figure 3 plots the costs associated with the two-swabs and with the three swabs strategies as

a function of c̄ for two levels of π, respectively 1.5% and 3%. For c̄ between 10% and 20%, the

two costs are very close. The costs diverge instead for higher c̄, and the cost of the three swabs

strategy grows very rapidly towards 100, the threshold value above which individual testing is

less costly. Considering that the three-swabs strategy carries also higher organizational costs,

the conclusion is that it is not worth implementing unless the relative device cost is very small

as compared to the processing cost.

5 Conclusion

It is well known that the two-samples, group testing, strategy can significantly reduce the

number of test required to perfectly screen a population, therefore increasing the labs capacity

to process tests for a fixed amount of assigned resources. In this paper I showed that a lab

that adopts this strategy can safely increase its capacity and be sure to process a significant

number of additional test responding within one day even in worse case scenarios with a much

bigger fraction of positives than expected and/or in case of many positive individuals scattered

among groups.
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In the Covid-19 case, the scarcity of reagents and of trained professionals is among the first

reasons why an insufficient fraction of the population has been screened, with the consequence

of a much faster virus diffusion. Moreover, the time spent waiting to be tested or to receive

the test result puts a significant burden both on the quarantined individuals that cannot work

and on the society in general.

The two-swabs strategy generates a small additional discomfort for the tested individuals,

but the samples can be actually taken contemporaneously, perhaps with smaller swabs. Clearly

communicating the reasons why two swabs are used will also significantly increase cooperation

from the tested subjects. There could also be congestion effects, for instance longer lines in

front of the lab that might discourage individuals from taking a test (assuming that they are

not required to do so), but such effects are likely to be minor.

The two-swabs strategy will not work in case of tests to symptomatic individuals, say at

the hospital or in the emergency room, because there is a high fraction of expected positives.

However it will work very well for mandatory screening after contact tracing: when testing all

recent contacts of an infected individual, given the relatively small basic reproduction number

of the Covid-19 virus, there will not be a high number of expected positives. In general, the

strategy to make the two-swabs strategy work is to test a wide number of people so to have a

small expected fraction of positives. It’s a sort of a paradox: the bigger the number of tested

subjects, the lower the expected number of positive and the lower the final cost of the tests.

An additional benefit of the two-swabs strategy is that it will also reduce the number of

false positives, because each positive individual is tested twice. Notice also that it is perfectly

possible to have a positive test for the group and a negative for the individuals. This can

happen if there is not enough virus to be detected in individual samples but that becomes

detectable if more samples are bunched. The correct behavior in such cases is the following:

if infected with very low viral charges are contagious, then all of the group members must be

quarantine; if they are not, then the result is a negative for the group.
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Table 1: Group Size, Number of Tests and Capacity Multiplier

Fraction of Positives (π) Group Size (n) Test Number (T ) Capacity Multiplier (LCM)

0.5 15 12.461 7.189

1.0 11 19.557 5.113

1.5 9 23.828 4.196

2.0 8 27.423 3.646

2.5 7 30.527 3.275

3.0 6 33.369 2.996

3.5 6 35.913 2.784

4.0 6 38.391 2.604

4.5 5 40.564 2.465

5.0 5 42.621 2.346

5.5 5 44.637 2.240

6.0 5 46.609 2.145

6.5 5 48.541 2.060

7.0 4 50.195 1.992

7.5 4 51.791 1.930

8.0 4 53.361 1.874

8.5 4 54.905 1.821

9.0 4 56.425 1.772

9.5 4 57.919 1.726

10 4 59.391 1.683

Notes: The expected number of positives π is the probability of finding a positive in the test. The group size n is the one
that minimizes the expected number of test in the two-swabs strategy. Test Number T is the expected number of tests required
to perfectly screen n = 100 individuals The expected lab capacity multiplier LCM is the ratio between the number of tested
individuals n and the expected number of tests in the two-swabs example for the optimal choice of the group size.
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Table 2: Expected Cost

π = 1.5% π = 3%

Device Cost (c̄) Expected Cost (S) Expected Cost (S)

0.01 25.57 35.02

0.025 28.13 37.44

0.05 32.22 41.31

0.10 39.84 48.52

0.15 46.81 55.11

0.20 53.19 61.14

0.25 59.06 66.69

0.30 64.48 71.82

0.35 69.51 76.57

0.40 74.16 80.98

0.45 78.51 85.08

0.50 82.55 88.91

Notes: c̄ is the ratio of the device cost c to the test processing cost C S is the expected cost of the two-swabs strategy as a
fraction of the cost of the individual tests. π is the probability of finding a positive in the test.
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Figure 1: Output Group Size and Lab Capacity Multiplier
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Notes: Left Panel: optimal group size g as a function of the expected number of positives π. Right Panel: Expected multiplier

of the laboratory capacity LCM as a function of the expected number of positives π.
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Figure 2: Simulation Results
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Notes: Empirical distribution of the results of the two-swabs strategy over 5000 simulation. Left panel: multiplier of the

laboratory capacity LCM . Right panel: Total cost as a ratio of the cost of the individual tests. Assumptions: π = 1.5%, g = 9

and c̄ = 0.1.
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Figure 3: Total Cost, Three Swabs versus Two Swabs
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Notes: Total cost of the Two-swabs and Three-swabs strategies, expressed in terms of the cost of individual testing, as a function

of the ratio c̄ between the device cost c and the processing cost C. Left panel: 1.5% expected fraction of positives in the population

(π). Right panel: 3% expected fraction of positives in the population (π).
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