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Abstract 
In two-player non-cooperative games whose strategy sets are Hilbert spaces, in order to approach Nash equilibria 
we are interested in the affine relaxations of the best response algorithm (where a player's strategy is exactly a 
best response to the strategy of the other player that comes from the previous step, sometimes called as 
"fictitious play"). For this purpose we define a class of games, called ratio-bounded games, that relies on explicit 
assumptions on the data and that contains large classes of games already known in literature, both in finite and in 
infinite dimensional setting: extended quadratic games including potential and antipotential games, non-quadratic 
games with a bilinear interaction, and linear state differential games. We provide a classification of the ratio-
bounded games in four subclasses such that, for each of them, the following issues are examined: the existence 
and uniqueness of Nash equilibria, the convergence of affine relaxations of the best response algorithm and the 
estimation of related errors. In particular, the results on convergence of convex relaxations of the best response 
algorithm include those obtained for zero-sum games in Morgan [Int. J. Comput. Math., 4 (1974), pp. 143-175], 
and the results on convergence of affine non-convex relaxations include those obtained for non-zero-sum games 
in Caruso, Ceparano, Morgan [SIAM J. Optim., 30 (2020), pp. 1638-1663]. 
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1 Introduction

The issue of finding Nash equilibria of non-cooperative games has been (and still is) a deeply

investigated topic in Game Theory literature since their definition in [32]. Starting from there,

many papers has been devoted to the algorithms for computing Nash equilibria and one of

the most explored methods involves the so-called Best Response Algorithm. In its best-known

version, that goes back to the alternating fictitious play process introduced in [8] for finite

strategy games (see also [34, 26, 27] for first results), the best response algorithm generates

a sequence of strategy profiles as follows: at a given step, the strategy of player i is obtained

by selecting a best response to the strategy profile of players other than i coming from the

previous step.

For instance, when there are two players and each player has a unique best response to a

strategy of the other player, the step n of the best response algorithm can be synthesized in

the following way

(Step n)

{
vn = b2(un−1)

un = b1(vn),

where b2(un−1) is the best response of player 2 to the strategy un−1 of player 1 and b1(vn) is

the best response of player 1 to the strategy vn of player 2.

In this paper, we will consider algorithms where, at a given step, the strategy of at least one

player is obtained by taking into account both his best response to the other players’ strategies

(coming from the previous step) and his own previous step strategy. In particular, we will focus

on the so-called affine relaxations for two-player games where only for player 1 the relaxation

is allowed: the generic step n of the affine relaxation of the best response algorithm we consider

is illustrated below

(Step n)

{
vn = b2(un−1)

un = δun−1 + (1− δ)b1(vn),

where δ ∈ R. Depending on the value of δ, three types of relaxations can be recognized

(a) when δ = 0: the classical best response algorithm,

(b) when δ ∈]0, 1[: a convex relaxation of the best response algorithm,

(c) when δ ∈] − ∞, 0[ or δ ∈]1,+∞[: an affine non-convex relaxation of the best response

algorithm.

Focusing on games where the strategy sets of the players are unconstrained spaces, various

authors, in different situations, employed these algorithms and showed their convergence to a

Nash equilibrium under suitable conditions on the data of the game.

(a) As well-known, the convergence of the classical best response algorithm is obtained under

assumptions of contraction on b1 ◦ b2 or b2 ◦ b1. Sufficient conditions on the data for such

assumptions have been given in [11] for two-player zero-sum games and in [23] for two-player

non-zero-sum games.
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Literature Game class Strategy sets Payoff functions

Classical best

response algorithm

(no relaxation)

Cherruault, Loridan

[11]

two-player

zero-sum

finite dimensional

spaces

strictly convex and coercive in

its argument, differentiable

Li, Başar [23] two-player Hilbert spaces strongly convex in its argu-

ment and differentiable

Convex relaxations Morgan [29] two-player

zero-sum

Hilbert spaces strictly convex and coercive in

its argument, differentiable

Affine non-convex

relaxations

Caruso, Ceparano,

Morgan [10]

two-player

non-zero-sum

Hilbert spaces strongly convex in its argu-

ment and differentiable

Affine relaxations Başar [1] two-player R or R2 strongly convex in its argu-

ment and quadratic

Table 1: Affine relaxations of the best response algorithm for games on Hilbert spaces

(b) Convex relaxations of the best response algorithm have been introduced in [29] for two-

player zero-sum games in real Hilbert spaces: the convergence is proved for suitable values

of δ ∈]0, 1[ and error bounds are obtained.

(c) Affine non-convex relaxations have been presented in [10] for two-player non-zero-sum

games in real Hilbert spaces: the convergence is proved for suitable values of δ ∈]1,+∞[

and error bounds are computed.

Note that, when the best response functions are linear and the strategy sets are R or R2,

convergence of affine (convex and non-convex) relaxations has been investigated in [1] for two-

players games. The results just illustrated, together with additional information about the

assumptions on payoff functions used in each paper, are summarized in Table 1.

When the players have constrained strategy sets, we mention that best response dynamics has

been investigated in [20, 18, 22] for two-player zero-sum games, in [18, 3] for weighted potential

games, and in [17, 4, 2] for N -player games (see [21, 35] for further discussion); whereas convex

relaxations of the best response dynamics have been examined in [16] for N -player games.

In each of the results mentioned in Table 1 about an unconstrained setting, a determinate

situation has been considered and a particular affine relaxation of the best response algorithm

has been used for that situation. In this paper we deal with two-player games whose strategy

sets are Hilbert spaces and our aim is to propose a class of games whereby:

(i) the above mentioned situations are enclosed,

(ii) new situations can be incorporated,

(iii) in each of the different cases identified by the class, one investigates

� existence and uniqueness of Nash equilibria,

� which types of affine relaxations of the best response algorithm converge,

� what is the “best” algorithm (in the sense of speed of convergence) when there are

more convergent algorithms.

Having in mind these motivations, we will define a non-restrictive class of games, called ratio-

bounded games, relying on explicit assumptions on the data and depending on three parameters.
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The values of such parameters with respect to each other and to the number 1 will allow to

identify different situations that, according to the similarity of the results shown afterward,

will provide a partition in four subclasses of the class of the ratio-bounded games. For each

of the four subclasses, the existence and uniqueness of Nash equilibria, the convergence of

affine relaxations of the best response algorithm and the estimation of related errors will be

examined.

The paper is structured as follows. In Section 2, we introduce the class of ratio-bounded

games and we state associated properties, how they have been used in the existing related liter-

ature and some key preliminary results. In Section 3, we show that the class of ratio-bounded

games contains large classes of games already known in literature, both in finite and in infinite

dimensional setting: extended quadratic games, including potential and antipotential games

(Section 3.1), non-quadratic games with a bilinear interaction (Section 3.2) and linear state

differential games (Section 3.3). The core results of the paper are illustrated in Section 4:

firstly, we carry out the partition of the class of ratio-bounded games in four subclasses and we

formally present the algorithm we consider, called Affine-Relaxed Best Response Algorithm;

then, for each of the four cases identified by the partition, we investigate the following is-

sues: existence and uniqueness of the Nash equilibria, convergence of the Affine-Relaxed Best

Response Algorithm and estimation of the errors. In the first three cases we prove that all

the issues are positively answered (Sections 4.1 to 4.3); instead in the fourth one we show

by counterexamples that it is not possible to obtain a positive result as in the previous cases

(Section 4.4).

2 Blanket assumptions

In the whole paper we consider a two-person noncooperative game Γ = {2, X1, X2, f1, f2}
where, for i ∈ I := {1, 2}, the strategy set Xi of player i is a real Hilbert space with inner

product 〈·, ·〉Xi and the associated norm ‖·‖Xi , and the payoff function fi of player i is a

real-valued function defined on the set of strategy profiles X1 ×X2 (equipped with the inner

product defined by 〈(x′1, x′2), (x′′1, x
′′
2)〉X1×X2

:= 〈x′1, x′′1〉X1
+ 〈x′2, x′′2〉X2

and the associated norm

‖·‖X1×X2).

As usual in Game Theory, for any i ∈ I we denote by −i the player who is not i, that is

{−i} = I \ {i}; hence (x1, x2) ∈ X1 ×X2 could be denoted with (xi, x−i). The best response

correspondence of player i ∈ I is the set-valued map Bi : X−i ⇒ Xi defined by

Bi(x−i) := Arg max
xi∈Xi

fi(xi, x−i) := {x′i ∈ Xi : f(x′i, x−i) ≥ f(xi, x−i), for any xi ∈ Xi}.

We recall that (x̄1, x̄2) ∈ X1 × X2 is a Nash equilibrium of Γ if and only if x̄i ∈ Bi(x̄−i) for

any i ∈ I (see [32]). When Bi is single valued, the best response function of player i is the

function bi : X−i → Xi such that {bi(x−i)} = Bi(x−i) for any x−i ∈ X−i.
Given two real normed vector spaces S and T equipped with the norms ‖·‖S and ‖·‖T

respectively, we denote by L(S, T ) the normed vector space of all continuous linear operators

from S to T , with the usual norm ‖Λ‖L(S,T ) := sup{‖Λ(s)‖T : s ∈ S and ‖s‖S = 1}, and
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by GL(S, T ) ⊆ L(S, T ) the set of all bijective continuous linear operators from S to T with

continuous (and linear) inverse.

We deal with games satisfying the following assumptions:

(A1) the function fi(·, x−i) is strongly concave on Xi for any x−i ∈ X−i, for any i ∈ I;

(A2) fi is twice continuously Fréchet differentiable on X1×X2 and D2
xifi(x1, x2) ∈ GL(Xi, X

∗
i )

for any (x1, x2) ∈ X1 ×X2 , for any i ∈ I;

(A3) λi is a real number for any i ∈ I, where

λi := sup
(x1,x2)∈X1×X2

‖[D2
xifi(x1, x2)]−1 ◦Dx−i(Dxifi)(x1, x2)‖L(X−i,Xi). (1)

Remark 2.1 For the sake of completeness, recall that the following properties of the best

response correspondences hold when the assumptions (A1)–(A3) are satisfied (see, e.g., [10,

Remark 2.1 and Lemma 2.5(i)(ii)]):

(i) the best response correspondences are single valued;

(ii) the function bi is continuously differentiable on X−i and Lipschitz continuous with Lipschitz

constant no greater than λi, for any i ∈ I.

Let ϑ : X1 → X1 be the composition of b1 and b2, that is

ϑ(x1) := (b1 ◦ b2)(x1) = b1(b2(x1)) for any x1 ∈ X1. (2)

Therefore, (x̄1, x̄2) ∈ X1 ×X2 is a Nash equilibrium of Γ if and only if x̄1 is a fixed point of ϑ

and x̄2 = b2(x̄1).

Finally, let H : X1 ×X1 ×X2 → L(X1, X1) be the operator defined by

H(x′1, x
′′
1, x2) :=[D2

x1f1(x′1, x2)]−1 ◦Dx2(Dx1f1)(x′1, x2)

◦ [D2
x2f2(x′′1, x2)]−1 ◦Dx1(Dx2f2)(x′′1, x2).

(3)

The properties of ϑ and its connections with the operator H are summarized below.

Remark 2.2 Assume (A2) and (A3). Then, we have (see, e.g., [10, Lemma 2.5(iii) and

Remark 2.8])

(i) the function ϑ is continuously differentiable on X1 and Lipschitz continuous with Lipschitz

constant no greater than λ := λ1 · λ2;

(ii) the derivative Dϑ : X1 → L(X1, X1) of ϑ is defined on X1 by

Dϑ(x1) =[D2
x1f1(ϑ(x1), b2(x1))]−1 ◦Dx2(Dx1f1)(ϑ(x1), b2(x1))

◦ [D2
x2f2(x1, b2(x1))]−1 ◦Dx1(Dx2f2)(x1, b2(x1));

(iii) H(ϑ(x1), x1, b2(x1)) = Dϑ(x1) for any x1 ∈ X1.
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The Lipschitz property in (i) and the connection illustrated in (iii) between the derivative of

ϑ and the operator H (involving explicitly the players’ payoff functions) will be key tools for

the convergence results on algorithms for finding Nash equilibria that we present in the next

sections. Such fundamental properties have been already used

� firstly in a zero-sum games framework: in [11] when ϑ is a contraction mapping (classical

best response dynamics), and in [29] when ϑ is not necessarily a contraction (convex

relaxation of best response dynamics). See also [30, 31, 12] for the case of constrained

strategy sets;

� afterwards, in a non-zero-sum games framework: in [23] when ϑ is a contraction (classical

best response dynamics), in [1] when the strategy sets are R or R2 and the best response

functions are linear (affine relaxation), in [9] when Γ is a weighted potential game (non-

convex relaxation), and in [10] when ϑ is a super monotone and Lipschitz mapping

(non-convex relaxation).

We point out that the following properties on H have been crucial in [29] and in [10]:

� in [29] (zero-sum games), the condition

〈H(x′1, x
′′
1, x2)ϕ,ϕ〉X1

‖ϕ‖2X1

≤ β < 0 for any x′1, x
′′
1 ∈ X1, x2 ∈ X2, ϕ ∈ X1 with ‖ϕ‖X1 6= 0,

implying that −H(x′1, x
′′
1, x2) is strongly monotone, has been required for the improve-

ment of the convergence of a “convex relaxation” of the best response algorithm;

� in [10] (non-zero-sum games), the condition

1 < α ≤ 〈H(x′1, x
′′
1, x2)ϕ,ϕ〉X1

‖ϕ‖2X1

for any x′1, x
′′
1 ∈ X1, x2 ∈ X2, ϕ ∈ X1 with ‖ϕ‖X1 6= 0,

implying that H(x′1, x
′′
1, x2) is super monotone, has been required for the convergence of

a “non-convex relaxation” of the best response algorithm.

Moreover, in both the cases above illustrated, the inequality

〈H(x′1, x
′′
1, x2)ϕ,ϕ〉X1

‖ϕ‖2X1

≤ λ for any x′1, x
′′
1 ∈ X1, x2 ∈ X2, ϕ ∈ X1 with ‖ϕ‖X1 6= 0

is guaranteed.

Starting from this, the aim of the paper is to identify a new class of games (that includes

those considered in the above mentioned papers) allowing to determine other games for which

affine relaxations of the best response algorithms converge to Nash equilibria. This class is

introduced in the following definition.

Definition 2.1 Let α, β ∈ R. A game Γ is (α, β)-ratio-bounded if Γ satisfies (A1)–(A3) and

the operator H has the (α, β)-ratio bounded property, that is,
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(A4) for any x′1, x
′′
1 ∈ X1 and x2 ∈ X2

α ≤ 〈H(x′1, x
′′
1, x2)ϕ,ϕ〉X1

‖ϕ‖2X1

≤ β for any ϕ ∈ X1 with ‖ϕ‖X1 6= 0.

We denote by Rα,β the class of all (α, β)-ratio-bounded games. Moreover, R := ∪α,β∈RRα,β

will be called the class of ratio-bounded games.

The next results illustrate some implications of assumption (A4) which concern the mono-

tonicity properties of ϑ and the relations among α, β and λ.

Lemma 2.1. Let Γ ∈ Rα,β. Then the following inequalities hold

α‖x′1 − x′′1‖2X1
≤ 〈ϑ(x′1)− ϑ(x′′1), x′1 − x′′1〉X1 ≤ min{β, λ}‖x′1 − x′′1‖2X1

for any x′1, x
′′
1 ∈ X1.

Proof. Let x′1, x
′′
1 ∈ X1 with x′1 6= x′′2. For any x1 ∈ X1, the Cauchy-Schwarz inequality and

the assumption (A3) imply that

〈H(ϑ(x1), x1, b2(x1))(x′1 − x′′1), x′1 − x′′1〉X1

‖x′1 − x′′1‖2X1

≤ ‖H(ϑ(x1), x1, b2(x1))‖L(X1,X1) ≤ λ1λ2 = λ.

So, from assumption (A4) it follows that

α ≤ 〈H(ϑ(x1), x1, b2(x1))(x′1 − x′′1), x′1 − x′′1〉X1

‖x′1 − x′′1‖2X1

≤ min{β, λ}. (4)

Moreover, by applying the Mean Value Theorem to the real-valued function h defined by

h(s) := 〈ϑ(sx′1 + (1 − s)x′′1), x′1 − x′′1〉X1 for any s ∈ [0, 1], there exists s̄ ∈]0, 1[ such that

〈ϑ(x′1) − ϑ(x′′1), x′1 − x′′1〉X1 = 〈Dϑ(s̄x′1 + (1 − s̄)x′′1)(x′1 − x′′1), x′1 − x′′1〉X1 . So, in light of

Remark 2.2(iii), we get

〈ϑ(x′1)− ϑ(x′′1), x′1 − x′′1〉X1 = 〈H(ϑ(x̃1), x̃1, b2(x̃1))(x′1 − x′′1), x′1 − x′′1〉X1 , (5)

where x̃1 = s̄x′1 + (1− s̄)x′′1.

Therefore, from (4) and (5) the result is proved.

Lemma 2.2. Let Γ ∈ Rα,β. Then the following inequalities hold:

α ≤ λ and − β ≤ λ.

Proof. The first inequality immediately comes from Lemma 2.1. By exploiting the bilinearity

property of the inner product, the Cauchy-Schwarz inequality and the assumptions (A3) and

(A4), we have

−β ≤ 〈H(ϑ(x1), x1, b2(x1))(−ϕ), ϕ〉X1

‖ϕ‖2X1

≤ ‖(H(ϑ(x1), x1, b2(x1))(−ϕ)‖X1

‖ϕ‖X1

≤ ‖H(ϑ(x1), x1, b2(x1))‖L(X1,X1) ≤ λ,

for any x1 ∈ X1 and ϕ ∈ X1 with ‖ϕ‖X1 6= 0; so even the second inequality is proved.

Note that the inequality −β ≤ λ is informative only if β < 0.

In the next section, we illustrate examples of games showing that the class of ratio-bounded

games is non-restrictive and contains widely used games in literature.

6



3 About the class of ratio-bounded games

We start in a finite dimensional setting and show that R contains “large” classes of quadratic

games (including potential games and antipotential games) and non-quadratic games with a

bilinear interaction. Then, moving towards an infinite dimensional setting, we present a class

of differential games that belong to R.

3.1 Extended quadratic games

Let Γ = {2, X1, X2, f1, f2} be the game where X1 = X2 = Rn is equipped with the usual inner

product (·, ·)Rn and the associated Euclidean norm ‖·‖Rn , and the payoff functions are defined

by

fi(x1, x2) = −ai‖xi‖2Rn + `i(xi) + si + pi(x−i) + di〈x1, x2〉Rn for any i ∈ I, (6)

where ai > 0, `i : Rn → R is a linear function, si ∈ R, pi : Rn → R is twice continuously

differentiable, and di ∈ R.

Obviously, the Nash equilibria of Γ are independent on the functions p1 and p2 and, when

p1 ≡ p2 ≡ 0, we recover the so-called class of quadratic games.

Let i ∈ I. The function fi is twice continuously differentiable, fi(·, x−i) is strongly concave for

any x−i ∈ Rn, and D2
xifi(x1, x2) ≡ −2aiIn is invertible for any (x1, x2) ∈ Rn × Rn (where In

denotes the identity matrix of size n). Moreover, denoted with ‖·‖∞ the infinity matrix norm

defined on Rn×n by ‖U‖∞ := max1≤j≤n
∑n

k=1|ujk|, we get

λi = ‖[−2aiIn]−1[diIn]‖∞ =
|di|
2ai

.

Hence, Γ satisfies (A1)–(A3).

Furthermore, for any x′1, x
′′
1, x2 ∈ Rn and any ϕ ∈ Rn we have

(H(x′1, x
′′
1, x2)ϕ,ϕ)Rn = ([−2a1In]−1[d1In][−2a2In]−1[d2In]ϕ,ϕ)Rn =

d1d2

4a1a2
‖ϕ‖2Rn ,

so the operator H has the (α, β)-ratio bounded property with α = β = d1d2
4a1a2

∈ R and Γ

belongs to R.

Depending on d1 and d2, the class of games illustrated above contains special types of games

already employed in literature.

Potential games: d1 > 0 and d2 > 0. In light of [9, Proposition 2], the game Γ is a weighted

potential game (see [28] for the definition). A weighted potential function P : Rn ×Rn → R is

defined by

P (x1, x2) = −
∑
i∈I

[
ai
di
‖xi‖2Rn −

`i(xi)

di

]
+ 〈x1, x2〉Rn ,

and the associated weights are d1 and d2. For a further discussion on potential games, see for

example [14, 33, 6].
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Antipotential games: d1 = −d2. The payoff functions in Γ can be rewritten as

f1(x1, x2) = Q(x1, x2) + h1(x2) and f2(x1, x2) = −Q(x1, x2)− h2(x1)

where Q(x1, x2) = −a1‖x1‖2Rn + `1(x1) + d1〈x1, x2〉Rn + a2‖x2‖2Rn − `2(x2) and

hi(x−i) = (−1)i+1[−a−i‖x−i‖2Rn + `−i(x−i) + si + pi(x−i)] for any i ∈ I and any x1, x2 ∈ Rn.

h1(x2) = −a2‖x2‖2Rn + `2(x2) + s1 + p1(x2) and h2(x1) = a1‖x1‖2Rn − `1(x1)− s2 − p2(x1).

So the game above illustrated belongs to the class of antipotential games, introduced in [24],

where lower semicontinuity properties of approximate Nash equilibria have been investigated in

the framework of one-leader two-follower Stackelberg games. Recall that Γ is an antipotential

game if the game Ω = {2, X1, X2, f1,−f2} is an (exact) potential game.

Note that, if

pi(x−i) = a−i‖x−i‖2Rn − `−i(x−i)− si for any i ∈ I,

then Γ is a zero-sum game. More generally, the class of antipotential games includes the

constant-sum games.

3.2 Non-quadratic games with a bilinear interaction

Let Γ = {2, X1, X2, f1, f2} be the game where X1 = X2 = Rn and the payoff functions are

defined by

fi(x1, x2) = qi(xi) + pi(x−i) + di〈x1, x2〉Rn for any i ∈ I

where qi : Rn → R, pi : Rn → R and di ∈ R. For the sake of simplicity of notation and calculus,

we consider n = 1.

Assume that qi : R→ R is twice continuously differentiable and

Mi := − inf
xi∈R

D2qi(xi) ∈ R and mi := − sup
xi∈R

D2qi(xi) ∈]0,+∞[ for any i ∈ I. (7)

Given the above, fi(·, x−i) is strongly concave, as D2
xifi(x1, x2) ≤ −mi < 0 for any (x1, x2) ∈

R2, and

λi = sup
(x1,x2)∈R2

∣∣∣∣Dx−i(Dxifi)(x1, x2)

D2
xifi(x1, x2)

∣∣∣∣ =
|di|
mi

,

for any i ∈ I. Hence Γ satisfies (A1)–(A3).

Furthermore, the (α, β)-ratio bounded property (A4) holds when

α ≤ min

{
d1d2

M1M2
,
d1d2

m1m2

}
and β ≥ max

{
d1d2

M1M2
,
d1d2

m1m2

}
;

so Γ belongs to R.

The assumptions in (7) are satisfied if, for example

qi(xi) =
1

1 + x2
i

− 4x2
i + xi for any i ∈ I.

Examples of games involving a non-bilinear interaction will be considered in the next section.
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3.3 Linear state differential games

Here we consider the following class of two-player differential games (see, e.g., [13, 19] for

definitions and applications):

� time varies in [0, T K, where [0, T K = [0, T ] if T < +∞ and [0, T K = [0,+∞[ if T = +∞;

� the state equation is given by

ẋ(t) = c1(t) + c2(t)−mx(t), (8)

where x : [0, T K → Rn with x(0) = x0 ∈ Rn, m ∈ R and the control variable of player

i ∈ I, ci : [0, T K→ Rn, belongs to L2([0, T K);

� the instantaneous payoff of player i ∈ I at time t is

πi(x(t), c1(t), c2(t)) := 〈ri(t), x(t)〉Rn − ai‖ci(t)‖2Rn + di〈c1(t), c2(t)〉Rn , (9)

where ri : [0, T K→ Rn, ai > 0 and di ∈ R;

� the objective function of player i ∈ I is

Ji(x, c1, c2) =

∫ T

0
e−ρitπi(x(t), c1(t), c2(t)) dt+ e−ρiT 〈wi, x(T )〉Rn ,

where ρi ≥ 0 is the individual discount rate and wi ∈ Rn is the individual residual (when

T = +∞, it is assumed that wi = 0).

The game described above belongs to the class of linear state differential games (for a further

discussion in an economic framework, see [13, sections 7.2, 9.5 and 11.3]). In order to show

that such a game is ratio-bounded, first we substitute the solution to the first-order differential

equations (8), that is x(t) = x0e
−mt+e−mt

∫ T
0 [c1(s) + c2(s)]ems ds, in the payoff defined in (9).

Therefore, we can rewrite the players’ objective functions as functions of the control variables

only and, denoted such functions by fi for any i ∈ I, we obtain

fi(c1, c2) =

∫ T

0
e−ρit

{
e−mt〈ri(t), x0〉Rn− ai‖ci(t)‖2Rn + di〈c1(t), c2(t)〉Rn

+e−mt
〈
ri(t),

∫ t

0
[c1(s) + c2(s)]ems ds

〉
Rn

}
dt

for any (c1, c2) ∈ L2([0, T K)× L2([0, T K). By arguing similarly to [10, Example 2.13] (see also

[9, Subsection 4.1] where weighted potential games are examined), it follows that the game

Γ = {2, L2([0, T K), L2([0, T K), f1, f2} belongs to R as

λi =
|di|
2ai

for any i ∈ I and α = β =
d1d2

4a1a2
.
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4 Affine relaxations and algorithms

Let Γ ∈ R. To such a game we can associate three important constants: α and β, bounds of

the ratio in Definition 2.1, and λ, as defined in Remark 2.2. Therefore, since α ≤ β and α ≤ λ
(by Lemma 2.2), we can identify eight situations depending on the values of such constants

with respect to each other and to the number 1:

α β λ 1 α β 1 λ α 1 β λ 1 α β λ

α λ β 1 α λ 1 β α 1 λ β 1 α λ β

For the sake of exposition, we will collect the situations that lead to the same results. So we

will consider the different cases in the following order:

C1) λ < 1 (situation 1 or 5 or 6),

C2) α > 1 (situation 4 or 8),

C3) β < 1 ≤ λ (situation 2),

C4) α ≤ 1 ≤ min{β, λ} (situation 3 or 7).

For each of these four cases we will analyze the following issues: existence and uniqueness of the

Nash equilibrium, convergence of algorithms based on affine relaxations of the best response

algorithm and related error bounds. We will answer differently in each of the four cases.

The algorithms we are interested in are based on the combination of the identity map of X1 and

of the composition of the best response functions of Γ. More precisely, denoted by tδ : X1 → X1

the operator defined by

tδ(x1) := δx1 + (1− δ)ϑ(x1), (10)

where δ ∈ R, we state below the Affine-Relaxed Best Response Algorithm.

Affine-Relaxed Best Response Algorithm (Aδ)

Let v0 ∈ X2 and u0 = b1(v0). For any n ∈ N

(Step n)

{
vn = b2(un−1)

un = δun−1 + (1− δ) b1(vn) = tδ(un−1).

Note that, for the sake of readability, we labelled the points generated by the algorithm as

un and vn in order to avoid the use of two indexes.

The algorithm (Aδ) is an affine relaxation of the widely used best response algorithm and,

depending on the value of δ, it will be named

� when δ = 0: the classical best response algorithm,

� when δ ∈]0, 1[: an affine convex relaxation of the best response algorithm,
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� when δ ∈] −∞, 0[ or δ ∈]1,+∞[: an affine non-convex relaxation of the best response

algorithm.

4.1 Contractive case C1: λ < 1

Let Γ be a game belonging to Rα,β and C1 be satisfied, that is

α ≤ β ≤ λ < 1 or α ≤ λ ≤ β < 1 or α ≤ λ < 1 ≤ β.

In light of Remark 2.2(i) and since λ ∈ [0, 1[, the function ϑ is a contraction and Γ has a unique

Nash equilibrium. In this case, the classical best response algorithm is well-known converging

to the Nash equilibrium; moreover its affine, convex as well as non-convex, relaxations can

provide improvements in the speed of convergence. The introduction of the classical best

response algorithm goes back to Brown in [8], where it was named as fictitious play (see, e.g.

[15, Chapter 2] for a further discussion). The convergence analysis of such an algorithm, in

the framework defined by assumptions (A1)-(A3), has been shown first in [11, Theorem 3.1,

Corollaries 3.1 and 3.2] for two-player zero-sum games and then in [23, Theorem 1] for two-

player non-zero-sum games. Affine convex relaxations of the best response algorithm have been

shown to converge to the Nash equilibrium for zero-sum games in [29] (even for λ ≥ 1). When

X1 = X2 = R and the best response functions are linear, affine non-convex relaxations of the

best response algorithms have been proved to converge in [1, Section 4] (even for λ ≥ 1).

The following more general result for two-player games, which includes the previous ones when

λ < 1, investigates the convergence of the Affine-Relaxed Best Response Algorithm (Aδ),
δ ∈ R.

Theorem 4.1. For any Γ ∈ Rα,β with λ < 1 we have:

(i) the game Γ has a unique Nash equilibrium (ū, v̄), where ū is the unique fixed point of ϑ

and v̄ = b2(ū);

(ii) for any δ ∈
]

λ2−1
λ2−2α+1

, 1
[

the sequence (un, vn)n generated by algorithm (Aδ) is strongly

convergent to (ū, v̄) in X1 ×X2 and

lim
n→+∞

fi(un, vn) = fi(ū, v̄) for any i ∈ I;

(iii) for any δ ∈
]

λ2−1
λ2−2α+1

, 1
[

the error estimations hold:

‖un−ū‖X1 ≤
κ(δ)n

1− κ(δ)
‖u1−u0‖X1 and ‖vn+1−v̄‖X2 ≤

λκ(δ)n

1− κ(δ)
‖v1−v0‖X2 for any n ∈ N,

where κ :
]

λ2−1
λ2−2α+1

, 1
[
→ R is defined by:

κ(δ) =

{
[(λ2 − 2α+ 1)δ2 − 2(λ2 − α)δ + λ2]1/2, if λ2−1

λ2−2α+1
< δ < 0

[(λ2 − 2 min{β, λ}+ 1)δ2 − 2(λ2 −min{β, λ})δ + λ2]1/2, if 0 ≤ δ < 1.

(11)
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Proof. Point (i) comes from the Contraction Mapping Theorem and the definition of ϑ in (2).

To show (ii) and (iii), we preliminarly note that the function κ in (11) is well-defined since: on

the one hand λ2 − 2α+ 1 > 0 and for any δ ∈
]

λ2−1
λ2−2α+1

, 0
[

we have (λ2 − 2α+ 1)δ2 − 2(λ2 −
α)δ + λ2 ≥ 0; on the other hand λ2 − 2 min{β, λ} + 1 > 0, −β ≤ λ (see Lemma 2.2) and for

any δ ∈ [0, 1[ we have (λ2 − 2 min{β, λ}+ 1)δ2 − 2(λ2 −min{β, λ})δ + λ2 ≥ 0.

Let δ ∈ R \ {1} and let x′1, x
′′
1 ∈ X1 with x′1 6= x′′1. By (10) and Remark 2.2(i),

‖tδ(x′1)− tδ(x′′1)‖2X1
≤ [δ2 + (1− δ)2λ2]‖x′1 − x′′1‖2X1

+ 2δ(1− δ)〈ϑ(x′1)− ϑ(x′′1), x′1 − x′′1〉X1 .
(12)

In light of Lemma 2.1, from (12) we get

‖tδ(x′1)−tδ(x′′1)‖2X1
≤

{
[δ2 + (1− δ)2λ2 + 2δ(1− δ)α]‖x′1 − x′′1‖2X1

, if δ < 0 or δ > 1

[δ2 + (1− δ)2λ2 + 2δ(1− δ) min{β, λ}]‖x′1 − x′′1‖2X1
, if 0 ≤ δ < 1.

Since δ2 +(1−δ)2λ2 +2δ(1−δ)α = (λ2−2α+1)δ2−2(λ2−α)δ+λ2 < 1 if δ ∈
]

λ2−1
λ2−2α+1

, 0
[

and

δ2 + (1− δ)2λ2 + 2δ(1− δ) min{β, λ} = (λ2− 2 min{β, λ}+ 1)δ2− 2(λ2−min{β, λ})δ+λ2 < 1

if δ ∈ [0, 1[, it follows that

‖tδ(x′1)− tδ(x′′1)‖X1 ≤ κ(δ)‖x′1 − x′′1‖X1 and κ(δ) ∈ [0, 1[ for any δ ∈
]

λ2 − 1

λ2 − 2α+ 1
, 1

[
.

Therefore, tδ is a contraction mapping for any δ ∈
]

λ2−1
λ2−2α+1

, 1
[

and, since tδ has the same fixed

points of ϑ, the sequence (un)n in (Aδ) strongly converges to ū. Furthermore, by Remark 2.1(ii)

we have

‖vn − v̄‖X2 = ‖b2(un−1)− b2(ū)‖X2 ≤ λ2‖un−1 − ū‖X1 , for any n ∈ N. (13)

As (un)n strongly converges to ū, the sequence (vn)n is strongly convergent to v̄. So, the

sequence (un, vn)n strongly converges to (ū, v̄). The second part of (ii) follows from the conti-

nuity of fi for any i ∈ I. Finally, since tδ is a contraction and κ(δ) is the estimated contraction

constant, the error estimation on (un)n in (iii) is a straightforward consequence of the Contrac-

tion Mapping Theorem (see, for example, [5, Theorem 2.1(iii)]). Given the above, inequality

(13) proves the error estimation on (vn)n in (iii).

Remark 4.1 When δ ∈]0, 1[ the sequence (un)n in (Aδ) can be seen as generated via the Mann

iteration procedure (see [25] and, e.g. [5, Chapter 4]). If in addition β ∈]0, 1[, by Lemma 2.1

the function ϑ is a generalized pseudo-contraction (as introduced in [36]) and the convergence

of (un)n can be shown by using [36, Theorem 2.1].

We highlight that Theorem 4.1(ii) ensures the convergence to the Nash equilibrium by

employing three kinds of affine relaxations of the best response algorithm: the classical best

response algorithm (A0), its convex relaxation (Aδ) for any δ ∈]0, 1[ and its non-convex relax-

ation (Aδ) for any δ ∈
]

λ2−1
λ2−2α+1

, 0
[
.
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As regards the speed of convergence of (Aδ), improvements have been obtained: in [29,

Theorem 1.3] for affine convex relaxations of the classical best response algorithm in two-player

zero-sum games whereby β < 0; and in [1, Section 4.1.3] for affine non-convex relaxations when

X1 = X2 = R and the best response functions are linear.

The next result, that includes the above mentioned ones, shows for which values of δ the

highest speed of convergence is obtained and which kind of affine relaxation of the classical

best response algorithm is the fastest one, depending on α, β and λ. We call “best algorithm”

the algorithm ensuring the highest speed of convergence.

Theorem 4.2. Let Γ ∈ Rα,β with λ < 1. Then

� when α > 0 and λ <
√
α the best algorithm is the affine non-convex relaxation of the

classical best response algorithm corresponding to δ∗ = λ2−α
λ2−2α+1

,

� when β < 0 or (β > 0 and
√
β < λ) the best algorithm is the affine convex relaxation of

the classical best response algorithm corresponding to δ∗ = λ2−β
λ2−2β+1

,

� in the remaining cases the best algorithm is the classical best response algorithm corre-

sponding to δ∗ = 0.

Proof. By Theorem 4.1(iii), the decrease of κ(δ) implies the increase in the speed of convergence

of the algorithm (Aδ). Hence, since the function κ has a unique minimizer over
]

λ2−1
λ2−2α+1

, 1
[
,

that is

δ∗ =


λ2−α

λ2−2α+1
, if α > 0 and λ <

√
α

λ2−β
λ2−2β+1

, if β < 0 or
(
β > 0 and

√
β < λ

)
0, otherwise,

the thesis follows by noting that λ <
√
α implies δ∗ < 0, β < 0 implies δ∗ ∈]0, 1[, and

√
β < λ

implies δ∗ ∈]0, 1[.

4.2 Super monotonicity case C2: α > 1

Let Γ be a game belonging to Rα,β and C2 be satisfied, that is

1 < α ≤ β ≤ λ or 1 < α ≤ λ ≤ β.

When α > 1, uniqueness of Nash equilibria and convergence of algorithms have been investi-

gated in [10]. Note that, by Lemma 2.1, ϑ is super monotone with constant α, that is

(ϑ(x′1)− ϑ(x′′1), x′1 − x′′1)X1 ≥ α‖x′1 − x′′1‖2X1
for any x′1, x

′′
1 ∈ X1

(see [10, Definition 2.6]), and so ϑ is not a contraction (see [10, Proposition 2.7]). In this case,

in light of [10, theorems 2.10 and 3.2], the game Γ has a unique Nash equilibrium and it can be

approached via affine non-convex relaxations of the best response algorithm, as summarized

in the following result.
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Theorem 4.3. For any Γ ∈ Rα,β with α > 1 we have:

(i) the game Γ has a unique Nash equilibrium (ū, v̄);

(ii) for any δ ∈
]
1, λ2−1

λ2−2α+1

[
the sequence (un, vn)n generated by algorithm (Aδ) strongly

converges to (ū, v̄) in X1 ×X2 and

lim
n→+∞

fi(un, vn) = fi(ū, v̄) for any i ∈ I;

(iii) for any δ ∈
]
1, λ2−1

λ2−2α+1

[
the following error estimations hold:

‖un−ū‖X1 ≤
ι(δ)n

1− ι(δ)
‖u1−u0‖X1 and ‖vn+1−v̄‖X2 ≤

ι(δ)nλ

1− ι(δ)
‖v1−v0‖X2 for any n ∈ N,

where ι :
]
1, λ2−1

λ2−2α+1

[
→ R is defined by ι(δ) = [(λ2 − 2α+ 1)δ2 − 2(λ2 − α)δ + λ2]1/2;

(iv) the value of δ corresponding to the highest speed of convergence of (Aδ) is the unique

minimizer of ι, that is δ∗ = λ2−α
λ2−2α+1

.

We point out that, in this case, the classical best response algorithm and its affine convex

relaxations may not converge to the Nash equilibrium, as illustrated in the following example.

Example 4.1 Let Γ be the game where X1 = X2 = R and

f1(x1, x2) = −x2
1 + 4x1x2, f2(x1, x2) = −x2

2 + 6x1x2.

This game belongs to the class illustrated in Section 3.1 (in particular Γ is a weighted potential

game) with ai = 1, `i ≡ pi ≡ 0, si = 0 for any i ∈ I, d1 = 4 and d2 = 6. Since λ1 = 2, λ2 = 3,

λ = 6 and

Dx2(Dx1f1)(x′1, x2)Dx1(Dx2f2)(x′′1, x2)

D2
x1f1(x′1, x2)D2

x2f2(x′′1, x2)
= 6 for any x′1, x

′′
1, x2 ∈ R,

the game Γ belongs to Rα,β with α > 1 and there is a unique Nash equilibrium, namely (0, 0).

Given an initial point v0 ∈ X2 and got u0 = 2v0, the algorithm (Aδ) generates the sequence

(un, vn)n defined by vn = 3un−1 and un = δun−1 + 2(1 − δ)vn = (6 − 5δ)un−1 for any n ∈ N.

Therefore, unless one chooses v0 = 0, the sequence (un, vn)n diverges for any δ ∈ [0, 1[, that is

both the classical best response algorithm and its affine convex relaxations do not converge to

the Nash equilibrium of Γ. Instead, according to Theorem 4.3, the affine non-convex relaxations

(Aδ) for any δ ∈]1, 7/5[ converge to (0, 0) and the highest speed of convergence is achieved

when δ = 6/5.

Further investigations regarding to the uniqueness of Nash equilibria, to its numerical

approximation and to related error bounds can be found in [10].

14



4.3 Presque-contractive case C3: β < 1 ≤ λ

Let Γ be a game belonging to Rα,β and C3 be satisfied, that is

α ≤ β < 1 ≤ λ.

In this case, only zero-sum games have been investigated: in [29] the convergence of affine

convex relaxations of the classical best response algorithm is proved and an improvement in

the speed of convergence is obtained when β < 0 ([29, theorems 1.2 and 1.3]). The following

result concerns affine convex relaxations and more general two-player games.

Theorem 4.4. For any Γ ∈ Rα,β with α ≤ β < 1 ≤ λ we have:

(i) the game Γ has a unique Nash equilibrium (ū, v̄);

(ii) for any δ ∈
]

λ2−1
λ2−2β+1

, 1
[

the sequence (un, vn)n generated by algorithm (Aδ) strongly

converges to (ū, v̄) in X1 ×X2 and

lim
n→+∞

fi(un, vn) = fi(ū, v̄) for any i ∈ I;

(iii) for any δ ∈
]

λ2−1
λ2−2β+1

, 1
[

the following error estimations hold:

‖un−ū‖X1 ≤
σ(δ)n

1− σ(δ)
‖u1−u0‖X1 and ‖vn+1−v̄‖X2 ≤

σ(δ)nλ

1− σ(δ)
‖v1−v0‖X2 for any n ∈ N,

where σ :
]

λ2−1
λ2−2β+1

, 1
[
→ R is defined by σ(δ) = [(λ2 − 2β + 1)δ2 − 2(λ2 − β)δ + λ2]1/2;

(iv) the value of δ corresponding to the highest speed of convergence of (Aδ) is the unique

minimizer of σ, that is δ∗ = λ2−β
λ2−2β+1

.

Proof. We preliminarly note that λ2−1
λ2−2β+1

∈]0, 1[ and the function σ is well-defined.

Let δ ∈]0, 1[ and let x′1, x
′′
1 ∈ X1 with x′1 6= x′′1. By (10), Remark 2.2(i) and Lemma 2.1,

‖tδ(x′1)− tδ(x′′1)‖2X1
≤ [δ2 + (1− δ)2λ2]‖x′1 − x′′1‖2X1

+ 2δ(1− δ)〈ϑ(x′1)− ϑ(x′′1), x′1 − x′′1〉X1

≤[δ2 + (1− δ)2λ2 + 2δ(1− δ)β]‖x′1 − x′′1‖2X1
.

Since δ2 + (1 − δ)2λ2 + 2δ(1 − δ)β = (λ2 − 2β + 1)δ2 − 2(λ2 − β)δ + λ2 ∈]0, 1[ if and only if

δ ∈
]

λ2−1
λ2−2β+1

, 1
[
, we have

‖tδ(x′1)− tδ(x′′1)‖X1 ≤ σ(δ)‖x′1 − x′′1‖X1 and σ(δ) ∈ [0, 1[ for any δ ∈
]

λ2 − 1

λ2 − 2β + 1
, 1

[
.

Therefore, tδ is a contraction mapping for any δ ∈
]

λ2−1
λ2−2β+1

, 1
[

and, since tδ has the same fixed

points of ϑ, the game Γ has a unique Nash equilibrium (ū, v̄) where ū is the (unique) fixed

point of tδ (and of ϑ) and v̄ = b2(ū). By the Contraction Mapping Theorem, the sequence

(un)n in (Aδ) strongly converges to ū. The convergence of the sequence (vn)n towards v̄, the

second part of (ii), and (iii) are obtained by arguing as at the end of the proof of Theorem 4.1.

The proof of (iv) is immediate.
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Remark 4.2 In light of Lemma 2.1, the function ϑ satisfies the following inequality:

〈ϑ(x′1)− ϑ(x′′1), x′1 − x′′1〉X1 ≤ β‖x′1 − x′′1‖2X1
for any x′1, x

′′
1 ∈ X1,

which implies that ϑ is a generalized pseudo-contraction with constant β if β > 0 and with any

positive constant if β ≤ 0 (see [36] for the definition and properties thereof). In particular,

when β ≤ 0, since for any δ ∈
]

λ2−1
λ2−2β+1

, 1
[

the function r ∈]−∞, 1[→ [(λ2−2r+1)δ2−2(λ2−
r)δ + λ2]1/2 is strictly increasing, the error estimations for the algorithm (Aδ) obtained via

Theorem 4.4 are better than applying results about generalized pseudo-contraction mappings

(see [7, 36] and [5, theorems 3.6 and 3.7]).

Note that the presque-contractive case includes also the situations such that β < 0 or

λ = 1 (ϑ is a non-expansive mapping), investigated in [29] only for zero-sum games. In order

to illustrate examples of non-zero-sum games in Rα,β satisfying C3 and such that β < 0 or

λ = 1, we consider games having also a non-bilinear interaction (so, not belonging to any class

of games presented in Section 3).

A game satisfying C3 and such that β < 0, is described in the following example.

Example 4.2 Let Γ = {2,R,R, f1, f2} where

f1(x1, x2) = −3

4
x2

1 − cosx1 sinx2 − 2x1x2, f2(x1, x2) =
1

1 + x2
2

− 4x2
2 + x2 + 4x1x2.

Since D2
x1f1(x1, x2) ≤ −1/2 and D2

x2f2(x1, x2) ≤ −15/2, the function fi(·, x−i) is strongly

concave for any i ∈ I. Moreover, λ1 = 4 and λ2 = 8/15, so λ = 32/15 and

−5

2
≤ Dx2(Dx1f1)(x′1, x2)Dx1(Dx2f2)(x′′1, x2)

D2
x1f1(x′1, x2)D2

x2f2(x′′1, x2)
≤ −1

5
for any x′1, x

′′
1, x2 ∈ R.

Therefore Γ is in Rα,β with α = −5/2 and β = −1/5 < 0, thus C3 is satisfied.

In the next example we illustrate a game satisfying C3 and such that λ = 1.

Example 4.3 Let Γ = {2,R,R, f1, f2} where

f1(x1, x2) = −3

4
x2

1 − cosx1 sinx2 −
1

2
x1x2, f2(x1, x2) =

1

1 + x2
2

− 4x2
2 + x2 +

15

2
x1x2.

As D2
x1f1(x1, x2) ≤ −1/2 and D2

x2f2(x1, x2) ≤ −15/2, the function fi(·, x−i) is strongly concave

for any i ∈ I. Furthermore, λ1 = λ2 = λ = 1 (that is, ϑ is non-expansive) and

−1 ≤ Dx2(Dx1f1)(x′1, x2)Dx1(Dx2f2)(x′′1, x2)

D2
x1f1(x′1, x2)D2

x2f2(x′′1, x2)
≤ 2

5
for any x′1, x

′′
1, x2 ∈ R.

Hence Γ belongs Rα,β with α = −1 and β = 2/5, so C3 is satisfied.
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4.4 Non-positively answered case C4: α ≤ 1 ≤ min{β, λ}

Let Γ be a game belonging to Rα,β and C4 be satisfied, that is

α ≤ 1 ≤ β ≤ λ or α ≤ 1 ≤ λ ≤ β.

In this case Γ is not guaranteed to have a unique Nash equilibrium, as illustrated in the

following three examples showing games that satisfy C4 and have, respectively, no equilibria,

three equilibria and infinitely many equilibria.

Example 4.4 Let Γ = {2,R,R, f1, f2} where

f1(x1, x2) = −x2
1 − 2x1 + 2x1x2, f2(x1, x2) = −x2

2 + 2x1x2.

The game belongs to the class examined in Section 3.1 (extended quadratic games, in particular

Γ is a weighted potential game) with a1 = a2 = 1, d1 = d2 = 2, `1(x1) = −2x1, `2 ≡ p1 ≡ p2 ≡ 0

and s1 = s2 = 0. So λ = 1 and Γ is in Rα,β with α = β = 1. Therefore Γ satisfies C4. Since

ϑ(x1) = x1 − 1 for any x1 ∈ R, ϑ has no fixed points so the game has no equilibria.

Example 4.5 Let Γ = {2,R,R, f1, f2} where

f1(x1, x2) = −1

2
x2

1 − x1 cosx2 +
5

4
x1x2, f2(x1, x2) = −x2

2 + 2x1x2.

Since D2
x1f1(x1, x2) = −1 and D2

x2f2(x1, x2) = −2, the function fi(·, x−i) is strongly concave

for any i ∈ I. Moreover, λ1 = 9/4 and λ2 = 1, so λ = 9/4 and

1

4
≤ Dx2(Dx1f1)(x′1, x2)Dx1(Dx2f2)(x′′1, x2)

D2
x1f1(x′1, x2)D2

x2f2(x′′1, x2)
≤ 9

4
for any x′1, x

′′
1, x2 ∈ R.

Γ is in Rα,β with α = 1/4 and β = 9/4, thus C4 is satisfied. Since ϑ(x1) = (5/4)x1 − cosx1

for any x1 ∈ R, ϑ has three fixed points so the game has three equilibria.

Example 4.6 Let Γ = {2,R,R, f1, f2} where

f1(x1, x2) = −x2
1 + 2x1x2, f2(x1, x2) = −x2

2 + 2x1x2.

The game belongs to the class examined in Section 3.1 (extended quadratic games, in particular

Γ is a weighted potential game) with a1 = a2 = 1, d1 = d2 = 2, `1 ≡ `2 ≡ p1 ≡ p2 ≡ 0 and

s1 = s2 = 0. So λ = 1 and Γ is in Rα,β with α = β = 1. Therefore Γ satisfies C4. Since

ϑ(x1) = x1 for any x1 ∈ R, the set of fixed ponts of ϑ is R so the game has infinitely many

equilibria.

Therefore, the examples above illustrated show that in the case C4 it is not possible, dif-

ferently from the previous three cases, to obtain a positive result concerning existence and

uniqueness of Nash equilibria together with convergence of affine relaxations of the best re-

sponse algorithm. In particular, we proved the following result.

Theorem 4.5. It is not true that for any Γ ∈ Rα,β with α ≤ 1 ≤ min{β, λ} the game Γ has a

unique Nash equilibrium.
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Moreover, we point out that even when Γ has a unique Nash equilibrium, none of the affine

relaxations of the best response algorithm is ensured to converge to the equilibrium. In fact,

the next example illustrates a game that satisfies C4 with a unique equilibrium and such that

the operator tδ defined in (10) is not a contraction mapping, whatever is δ ∈ R.

Example 4.7 Let Γ = {2,R,R, f1, f2} where

f1(x1, x2) = −1

2
x2

1 − x1 cosx2 +
3

2
x1x2, f2(x1, x2) = −x2

2 + 2x1x2.

Since D2
x1f1(x1, x2) = −1 and D2

x2f2(x1, x2) = −2, the function fi(·, x−i) is strongly concave

for any i ∈ I. Moreover, λ1 = 5/2 and λ2 = 1, so λ = 5/2 and

1

2
≤ Dx2(Dx1f1)(x′1, x2)Dx1(Dx2f2)(x′′1, x2)

D2
x1f1(x′1, x2)D2

x2f2(x′′1, x2)
≤ 5

2
for any x′1, x

′′
1, x2 ∈ R.

Γ is in Rα,β with α = 1/2 and β = 5/2, thus C4 is satisfied. Since ϑ(x1) = (3/2)x1 − cosx1

for any x1 ∈ R, ϑ has one fixed points, so the game has a unique equilibrium.

In light of the definition of tδ in (10), we have

tδ(x1) = δx1 + (1− δ)
(

3

2
x1 − cosx1

)
By contradiction, suppose there is δ̄ ∈ R such that tδ̄ is a contraction mapping. This would

imply Dtδ̄(x1) < 1 for any x1 ∈ R, that is equivalent to (1− δ̄) sinx1 < −(1− δ̄)/2. However

the last inequality does not hold for any x1 ∈ R, whatever the value of δ̄ is. Hence, there is no

value of δ for which tδ is a contraction.

Remark 4.3 Since the constants α and β in Definition 2.1 are, respectively, a lower and

an upper bound of the ratio involved in (A4), a more refined estimation of α and β (when

achievable) could tell additional information in the analysis of games satisfying C4. More

precisely, if Γ is in Rα,β, satisfies C4 and

� a better estimation of α leads to a value α′ > 1, then Γ satisfies C2 and the results of

Section 4.2 apply;

� a better estimation of β leads to a value β′ < 1, then Γ satisfies C1 (if λ ≤ β) or C3 (if

β ≤ λ) and the results of Section 4.1 or Section 4.3 apply.

Clearly, the best estimations of α and β for a game belonging to Rα,β are given by

α = inf
x′1,x

′′
1∈X1, x2∈X2

ϕ∈X1 with ‖ϕ‖X1
6=0

〈H(x′1, x
′′
1, x2)ϕ,ϕ〉X1

‖ϕ‖2X1

and β = sup
x′1,x

′′
1∈X1, x2∈X2

ϕ∈X1 with ‖ϕ‖X1
6=0

〈H(x′1, x
′′
1, x2)ϕ,ϕ〉X1

‖ϕ‖2X1

,

as obtained in the Examples 4.4 to 4.7. However, in general such values are not always possible

to compute explicitly.
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[3] M. Benäım, J. Hofbauer, and S. Sorin. Perturbations of set-valued dynamical systems,

with applications to game theory. Dyn. Games Appl., 2:195–205, 2012.

[4] U. Berger. Fictitious play in 2× n games. J. Econ. Theory, 120:139 – 154, 2005.

[5] V. Berinde. Iterative Approximation of Fixed Points. Springer, Berlin Heidelberg, 2007.

[6] R. Brânzei, L. Mallozzi, and S. Tijs. Supermodular games and potential games. J. Math.

Econ., 39:39–49, 2003.

[7] F. E. Browder and W. V. Petryshyn. Construction of fixed points of nonlinear mappings

in Hilbert space. J. Math. Anal. Appl., 20:197–228, 1967.

[8] G. W. Brown. Iterative solution of games by fictitious play. In T. C. Koopmans, editor,

Activity Analysis of Production and Allocation: Proceedings of a Conference, pages 374–

376. J. Wiley and Sons, New York, 1951.

[9] F. Caruso, M. C. Ceparano, and J. Morgan. Uniqueness of Nash equilibrium in continuous

two-player weighted potential games. J. Math. Anal. Appl., 459:1208–1221, 2018.

[10] F. Caruso, M. C. Ceparano, and J. Morgan. An inverse-adjusted best response algorithm

for Nash equilibria. SIAM J. Optim., 30:1638–1663, 2020.
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