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Abstract 
This research argues that differences in the distribution of human capital across countries and their impact on the 
advancement and the adoption of technology contributed to the differential timing of the transition from the 
Malthusian stagnation to modern growth and the persistent differences in income per capita across the globe. 
Polarization in the distribution of human capital within an economy implied a trade-off between innovation and 
adoption of technologies that determined the transition from stagnation to growth. Despite the contribution of the 
upper tail of the human capital distribution to technological innovation, the absence of wide group of educated 
individuals among the working population delayed technology adoption and the transition from stagnation to 
growth. 
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1 Introduction

Throughout most of human existence, societies around the globe exhibited

living standards at subsistence level and limited economic growth. In the

last two centuries, several regions of the world witnessed a transition to an

era of unprecedented growth in living standards. Differences in the tim-

ing of this transition from the so-called Malthusian stagnation to modern

growth contributed significantly to the disparity in income per capita that

we observe across societies today (Galor, 2011). Understanding the deter-

minants of the timing of this transition is crucial to deepen our understating

of the development process.

Several studies have emphasized the crucial role of human capital in

explaining the transition from stagnation to growth. The joint evolution

of technological progress and human capital has been shown to influence

investment in the quality of children (Galor and Weil, 1999, 2000; Car-

illo, 2020), life expectancy (Cervellati and Sunde, 2005), and the adoption

of growth-enhancing institutions (Doepke and Zilibotti, 2005). While the

upper tail of the human capital distribution is a key determinant of the in-

novation process that led to the Industrial Revolution (Mokyr, 2002, 2005;

Jacob, 2014), a large number of studies suggest that a sufficiently educated

labor force was important for the adoption of innovations in the production

process (Griliches, 1957; Nelson and Phelps, 1966; Benhabib and Spiegel,

2005b), and more generally for economic growth (Becker et al., 2011; Mad-

sen and Murtin, 2017). While previous works mainly emphasize the effects

of the upper tail of the human capital distribution and mass education in

isolation, their joint evolution, and effects on the long-term trajectory of

the economy are not fully understood.

This paper advances the hypothesis that differences in the distribution

of human capital across societies and their impact on the advancement and

adoption of technology contributed to the differential timing of the tran-

sition from the pre-industrial stagnation to modern growth and long-term

development. Polarization in the distribution of human capital within an

economy (i.e. fat tails at the two ends of the human capital distribution)

had two implications for long-run growth. First, it implied a trade-off

between technological innovation and adoption. Despite the contribution
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of the upper tail of the human capital distribution to technological inno-

vation, the absence of a wide group of educated individuals among the

working population delayed technological adoption and the transition from

stagnation to growth. Second, it implied a trade-off between the timing of

the transition and long-run growth. By harnessing adoption, low polariza-

tion also delayed the transition out of the Malthusian stagnation, during

which improvements in living standards are mainly devoted to the number

of children, fueling population growth for a longer period. The resulting

large population at the time of the transition, and the associated large

number of highly educated individuals fostered innovations, which could

be adopted by the educated labor force, ultimately enhancing long-run

economic growth and convergence to early-takeoff economies.

In the model presented in this paper, technology adoption has two main

purposes. First, innovation can have a direct effect on production improve-

ments only if it is adopted. An emblematic example is the precursor of the

steam engine, developed by the Italian scholar Giambattista Della Porta

(1535? - 1615), who used steam power to pump water already in 1606.

The first commercially successful engine did not appear until around 1712

(Brown, 2002, pp. 60). It was invented by Thomas Newcomen and paved

the way for the Industrial Revolution (Stuart, 1829). Yet, his first applica-

tion was to pump water as well (Rolt, 1963). Thus, absent the appropriate

conditions for technology adoption, even the most powerful innovation in

history may not trigger a technological breakthrough.

Second, adoption serves as a mechanism to store, make accessible, and

transmit knowledge, which ultimately can be improved over time. This

channel was especially relevant in pre-industrial ages, when a common sci-

entific language was not yet developed, generating difficulties in storing and

accessing information. For instance, the first scientific journal — the Royal

Society of London — appeared in 1662 (Bekar and Lipsey, 2004). Only

at that time, innovations were stored and made accessible to the scientific

community. Before then, they were transmitted across generations mainly

when they were adopted and thus transformed from theoretical projects

into material “gadgets” (Ashton, 1955). These could be stored and under-

stood despite the lack of a common scientific language. They could also be

improved over generations (Bekar and Lipsey, 2004) based on a process of
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“tinkering” (Mokyr, 1990) that paved the way for a basic mechanization ex-

perimentation based (Musson and Robinson, 1989). This indirect effect of

adoption on technological advancement is primarily conducted by artisans

skilled in tinkering and producing gadgets, which supplied a combination

of intellectual and manual labor and thus composed the mass in the middle

of the human capital distribution.

Therefore, low polarization in human capital and the associated wide

share of the labor force able to understand and employ new ideas facilitated

their adoption that, through the creation of gadgets materially representing

these ideas could be improved over time, with feedback effects on the ac-

cumulation of knowledge and technological progress. The interplay of this

feedback effect together with the direct effect on production implies that

studying the distribution of human capital is a crucial element in the anal-

ysis of the transition from stagnation to growth and for our understanding

the disparities in living standards across the globe today.

This paper mainly contributes to three strands of the literature. First, it

may reconcile seemingly contrasting findings on persistence vis-à-vis rever-

sals in economic performance across the globe. While a large literature has

documented persistence in economic development and technology adoption

over thousands of years (Comin et al., 2010; Putterman and Weil, 2010;

Chanda et al., 2014), others have emphasized reversals in the process of

development (Acemoglu et al., 2002). Factors such as geography and his-

torical institutions are important elements to explain these findings. The

present paper complements this literature by mapping these historical con-

ditions to differences in the prevalence of an educated labor force and an

educated elite. In turn, providing a novel mechanism of how these differ-

ences in historical factors may influence long-run growth.

Second, the paper bridges the long-run growth literature with the liter-

ature emphasizing technology adoption as a byproduct of specific skills and

human capital levels. Several studies have hypothesized that human capi-

tal and technology are complementary (Griliches, 1957; Nelson and Phelps,

1966). This view induced the emergence of a body of empirical studies in

cross-country settings (Benhabib and Spiegel, 2005a) as well as across local-

ities within countries (Foster and Rosenzweig, 1996; Carillo, 2020) pointing

at human capital as an essential precondition for technology adoption. By
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investigating the interlink between the distribution of human capital and

technology adoption, this paper links this literature to the body of works

studying the transition from stagnation to growth.

Third, this paper employs a tractable approach that introduces differ-

ent skill levels in explaining the transition to modern growth a Unified

Growth Theory framework. Thus, it extends the literature studying fac-

tors that influenced the transition from stagnation to growth, including

human capital (Galor and Weil, 1999, 2000), life expectancy (Cervellati

and Sunde, 2005), physical development (Croix and Licandro, 2013), and

fertility choices (Strulik and Weisdorf, 2008).

The paper is organized as follows. Section 2 presents the theoretical

model, which includes the human capital polarization and technological

adoption. Section 3 explores the link between human capital polarization,

the timing of the transition out of the Malthusian stagnation, and long-run

growth. Section 4 concludes.

2 The Model

Consider an overlapping generation model that evolves over infinite discrete

time. Every period t, a finite homogeneous good, Yt, can be produced

according to two alternatives regimes of production, defined respectively as

old regime and new regime. To model in a tractable fashion the distribution

of human capital in the population, I employ three levels of skills.1 Factors

of production are three sources of labor force reflecting three levels of human

capital of workers.2 The three sources of labor force are: manual labor,

human capital intensive labor and a combination between the two.

Manual labor, Lt, reflects the amount of labor supplied by individuals

characterized by the lowest level of human capital. Human capital-intensive

labor, Ht, reflects the amount of labor supplied by highly educated labor

force, that is relatively more likely to innovate and thus are called inno-

vators. A third source of labor force, which represents the middle of the

1The use of a discrete distribution is in line with the indivisibility of skills and degrees.
2Considering also land as a constant factor of production with the absence of property
rights (Galor and Moav, 2002), the results would not change qualitatively. Consid-
ering capital as a factor of production would complicate the model to the point of
intractability.
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human capital distribution, is given by a combination between manual la-

bor and intellectual labor, Mt, which is supplied by individuals that are

enough educated to understand and adopt new innovations, thus they are

called adopters.

2.1 Production

Production may take place according to two alternative production regimes,

defined as old regime and new regime.

2.1.1 The Old Regime

The old regime of production is such that only manual labor and highly

educated labor are employed.3

Y o
t = AotH

α
t L

1−α
t = AotLth

α
t (1)

where ht is the proportion of highly educated over manual labor force, given

by

ht ≡
Ht

Lt
(2)

In other words, in early stages of technological development, new inven-

tions, which were mainly produced by high-skilled labor force, can be di-

rectly adopted by the manual labor force. The idea is that when the level

of knowledge is low, new innovations are not too complex to adopt and

thus understanding of the practical functioning is possible even for low-

skilled labor. In particular, even though their theoretical foundation could

be unknown to the masses, the simplicity of early technology is reflected

in simplicity of its adoption, implying that there is no necessity of specific

forms of education or skills to adopt them in production.

Examples of technologies of this sort include ley farming: an agricul-

tural system where land is alternately seeded for grain and left fallow.

During the fallow period the soil is filled with roots of grasses and other

plants. While sophisticated chemical skills were needed in order to invent

3Following Aghion and Howitt (1992), innovators may be considered as monopolists
of an intermediate sector of innovations. Despite the complexity of such alternative
approach, the result would be identical.
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ley farming, which was introduced in one of the most advanced forms at

the beginning of the seventeenth century (Stapledon et al., 1948), it could

be easily understood and adopted by farmers. They would simply need

to know which grasses to cultivate during the fallow period to ultimately

increase agricultural yields.

Highly educated individuals are modeled as directly contributing to

production through the creation of innovations. Moreover, as discussed

in Section 2.3, they also indirectly contribute to knowledge accumulation.

Thus, in early stages of technological development, the creation of innova-

tions required human capital, but their adoption did not. However, manual

laborers’ limited understanding of the new techniques may have harnessed

the improvement of these newly adopted techniques. This additional ele-

ment will be discussed in Section 2.3.

2.1.2 The New Regime

Production in the new regime takes place according to a production func-

tion that includes manual labor, innovators’ labor, and adopters’ labor

force.

Y n
t = AntH

β
t M

φ
t L

1−β−φ
t = Ant Lth

β
tm

φ
t (3)

where mt is the proportion of adopters over manual labor force,

mt ≡
Mt

Lt
; ht ≡

Ht

Lt
(4)

The rationale is that, when technology is more complex, innovations

are mainly adopted by individuals sufficiently educated to understand and

employ them in the production process. This is the case of most advanced

technical innovations, whose comprehension and adoption typically requires

a basic level of skills. Artisans and craftsmen, for instance, had specific

training aimed at employing gadgets. This sort of labor force, supplying

a combination of manual and intellectual labor, composed the mass in the

middle of the human capital distribution.
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2.1.3 Factor Prices

Markets are perfectly competitive, the inverse demands for factors of pro-

duction depend on the regime employed. The inverse demand for highly

skilled labor, given (1) and (3),

wht =

{
αAoth

α−1
t if Y o

t > 0

βAnt h
β−1
t mφ

t if Y n
t > 0

(5)

where wht is the wage of innovators. The inverse demand for manual

labor, given (1) and (3), is

wlt =

{
(1− α)Aoth

α
t if Y o

t > 0

(1− β − φ)Ant h
β
tm

φ
t if Y n

t > 0
(6)

where wlt is the wage of unskilled labor. The inverse demand for adopters’

labor, given (3), is

wmt = φAnt h
β
tm

φ−1
t if Y n

t > 0 (7)

where wmt is the wage of adopters, that will be employed only in new regime.

Moreover, given (5) and (6), the wage ratio of the innovators over manual

labor is

wht
wlt

=

{
α

1−α
1
ht

≡ ω
(
hot
)

if Y o
t > 0(

β
1−β−φ

)
1
ht
≡ ω

(
hnt
)

if Y n
t > 0

(8)

Given (7) and (6) the wage ratio of the adopters over manual labor is

given by
wmt
wlt

=
( φ

1− β − φ

) 1

mt

≡ ωm
(
mt

)
if Y n

t > 0 (9)

From the properties of the production functions, it follows that wage ratios

are characterized by the following properties:

ω
′
(jt) < 0, limjt→0 ω

j(jt)→∞ , limjt→∞ ω
j(jt)→ 0 with j = m,h and

∀jt ∈
[
0,∞

)
.

2.2 The Individual Choice

Consider an economy in which individuals live for two periods of time:

childhood and parenthood. During the first period of life they consume
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a fraction of parental endowment that consists in one unit of time. All

decisions are made in the adult period of life. Parents are endowed with

one unit of time as manual labor, l, adopters labor, m, or innovators labor,

h, depending on the level of education they received during childhood. Such

endowment is allocated between children rearing and consumption.

2.2.1 Preferences and Budget Constraints

Preferences are defined over parental consumption and the potential ag-

gregate income of their children (Galor and Mountford, 2008). Parents i,

where i = l,m, h, choose the number of children ni,j for each level of ed-

ucation j, with j = l,m, h, and parental utility from each child depends

on the wage she gets on the market. In other terms, parents get their own

utility according to the utility function

uit = (1− γ)lncit + γln
(
wlt+1n

i,l
t + wmt+1n

i,m
t + wht+1n

i,h
t

)
(10)

where cit is parental consumption at time t, ni,jt is the number of children

of type j reared by parent i at time t.4

The budget constraint is given by

cit + wit
(
ni,lt τ

l + ni,mt τm + ni,ht τ
h
)
≤ wit (11)

2.2.2 Optimization

{cit, n
i,l
t , n

i,m
t , ni,ht } = argmax

[
(1−γ)lncit+γln

(
wlt+1n

i,l
t +wmt+1n

i,m
t +wht+1n

i,h
t

)]
(12)

subject to

cit + wit
(
ni,lt τ

l + ni,mt τm + ni,ht τ
h
)
≤ wit (13)

cit ≥ c̃ (14)

where τ l < τm < τh. In particular τ j is the cost of having a child of type

j with j = l,m, h, therefore the higher the level of human capital of the

offspring the higher the cost of producing a child with that particular level

of education5.

4Notice that, since mortality is not explicitly modeled, nt can be interpreted as the
number of surviving children.

5Alternatively, one may argue that, despite the lower level of human capital intrinsic in
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The optimal level of consumption is given by,

cit =

{
c̃ if (1− γ)wit < c̃

(1− γ) if (1− γ)wit ≥ c̃
(15)

The amount of time invested in child rearing is given by,

ni,lt τ
l + ni,mt τm + ni,ht τ

h =

{
wit−c̃
wit

if (1− γ)wit < c̃

γ if (1− γ)wit ≥ c̃
(16)

During the old regime of production,

ni,ht = 0 if wht /w
l
t < τh/τ l

ni,ht > 0 and ni,l > 0 only if wht /w
l
t = τh/τ l

ni,lt = 0 if wht /w
l
t > τh/τ l

(17)

which means that if the wages ratio equals the cost ratio all the types

available in the old regime will exist.

Equivalently, during the new regime of production,

ni,ht = 0 if wht /w
l
t < τh/τ l or wht /w

m
t < τh/τm

ni,mt = 0 if wmt /w
l
t < τm/τ l or wmt /w

h
t < τm/τh

ni,lt = 0 if wht /w
l
t < τh/τ l or wht /w

m
t < τh/τm

(ni,ht , n
i,m
t , ni,lt )� 0 only if wht /w

l
t = τh/τ l and wmt /w

l
t = τm/τ l

(18)

Lemma 1 Consider the old regime of production. There exists a

unique ratio of innovators to manual labor ratio, (ho)∗ such that

wo,ht

wo,lt
= ω((ho)∗) =

τh

τ l
(19)

artisans’ skills with respect to philosophers or mathematicians, the scarcity of certain
skills, such as the carpenter or armorer ones, entails difficulties in acquiring them with
the consequence of higher costs. However, most artisans’ skills were acquired through
job training or, in more advanced stages of urbanization, through apprenticeship under
the supervision of masters. Both these approaches of acquiring this source of human
capital are characterized by a higher degree of economies of scale with respect to the
acquisition of high level human capital, in turn implying a lower cost relative to other
forms of human capital.
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where,

ni,lt = 0 if ht < (hot )
∗

ni,ht = 0 if ht > (hot )
∗ (20)

Proof. The uniqueness of (hot )
∗ follows from the properties of ω((hot )

∗). The

remaining part is a corollary of (17).

Hence, during the old regime, if ht < (hot )
∗ the relative reward for having

uneducated offspring is low with respect to the relative cost and thus there

are no incentives to raise them, implying an increase in ht. Whereas, if

ht > (hot )
∗ there are no incentives to raise high-human-capital offspring,

implying a decrease in ht up to the equilibrium proportion,(hot )
∗.

Corollary 1 If the old regime of production is employed then ht =

(hot )
∗, that is,

ht = (hot )
∗ if Y o

t > 0 (21)

and therefore wages for innovators are

wht = αAot
[
(hot )

∗]α−1 if Y o
t > 0 (22)

wages for manual labor are

wlt = (1− α)Aot
[
(hot )

∗]α if Y o
t > 0 (23)

and thus

(hot )
∗ =

( α

1− α

) τ l
τh

(24)

where the latter comes from (8), given Lemma 1.

Importantly, notice from (24) that during the old regime the optimal

proportion of innovators over manual labor force is constant over time, that

is,

(hot )
∗ = (ho)∗ ∀t (25)
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Lemma 2 Consider the new regime. There exists a unique innovators

to manual labor ratio, (hn)∗, and a unique adopters to manual labor ratio,

m∗, such that

wn,ht

wn,lt
= ω((hnt )∗) =

τh

τ l
(26)

wmt

wn,lt
= ω(m∗t ) =

τm

τ l
(27)

ni,ht = 0 if ht > (hn)∗ or mt < m∗t

ni,mt = 0 if mt > m∗t or ht < (hn)∗

ni,lt = 0 if ht < (hn)∗ or mt < m∗t

(28)

Proof. The uniqueness of (hnt )∗ and m∗t follows from the properties of

ω((hnt )∗) and ω(m∗t ) respectively. The remaining part is a corollary of

(18).

Hence, during the new regime, if ht > (hnt )∗ there are no incentives to

raise highly-educated children, implying a reduction in ht. However, also

in the case in which mt < m∗t there are no incentives to raise neither highly

educated children nor uneducated children because the relative reward of

raising offspring with an intermediate level of education is higher, therefore

resources will move in this direction, increasing mt.

In other words, if the proportion of one of the three source of labor force

is lower than optimal, the potential relative wage of that child is higher

than the relative cost, inducing parents to invest their resources in rearing

offspring with that particular level of education, ultimately increasing their

relative proportion and reducing their relative wage until equations (26)

and (27) are satisfied.

Corollary 2 If the new regime of production is employed then ht =

(hnt )∗ and mt = m∗t , that is,

ht = (hnt )∗ and mt = m∗t if Y n
t > 0 (29)
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and therefore wages for innovators are

wht = βAnt
[
(hn)∗

]β−1[
m∗
]φ

if Y n
t > 0 (30)

wages for adopters are

wmt = φAnt
[
(hn)∗

]β[
m∗
]φ−1

if Y n
t > 0 (31)

wages for manual labor are

wlt = (1− β − φ)Ant
[
(hn)∗

]β[
m∗
]φ

if Y n
t > 0 (32)

and thus

(hnt )∗ =
( β

1− β − φ

) τ l
τh

(33)

m∗t =
( φ

1− β − φ

) τ l
τm

(34)

where (33) and (34) come from (8) and (9) , given Lemma 2. Notice from

(33) and (34) that during the new regime the optimal ratios of innovators

to manual labor and adopters to manual labor are constant over time, that

is,

(hnt )∗ = (hn)∗ and m∗t = m∗; ∀t (35)

Furthermore from (19) and (26),

ω((ho)∗) = ω((hn)∗) (36)

that implies ( α

1− α

)
(hn)∗ =

( β

1− β − φ

)
(ho)∗ (37)

Notice that, plausibly assuming that production in the old regime is

manual-labor-intensive ((1−α) < (1−β−φ)), the prevalence of innovators

with respect to manual labor force is higher in the new regime, that is,

(hn)∗ > (ho)∗ (38)
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2.3 Technological Progress

Suppose that, during the old regime, technology formation between time t

and t+ 1, depends on the number of innovators in the economy at time t:

Aot+1 − Aot
Aot

= Ω(Ht) (39)

where Ao0 is historically given and the innovation function Ω(Ht) is an

increasing and concave function Ω′ > 0 and Ω′′ < 0 and Ω ∈ (0,∞).

That is, technological progress during early stages of development de-

pends on the population of innovators in the economy. Note that Ω(0) > 0,

that is, in the absence of innovators, there would still be technological ad-

vancements.

During the new regime of production, in addition to the effect of inno-

vators, the presence of a share of the labor force that can adopt innovations

and improve them over time is an additional source of technological accu-

mulation
Ant+1 − Ant

Ant
= Ω(Ht)

(
1 + λ(Mt/Nt)

)
(40)

where An0 is historically given and the adoption rate λ′ > 0, λ′′ < 0 and

λ ∈ (0,∞) with λ(0) > 0. The adoption rate λ depends on the fraction of

adopters in the economy, Mt

Nt
, the higher the fraction of adopters the closer

the economy is to perfect adoption. Note that technological progress is

faster in the new regime.6

During the old regime, despite the fact that the new regime of produc-

tion is not operative, knowledge advancement permits the potential produc-

tivity of the new regime to grow over time. That is, when the new regime

is not efficient, adopters are not employed in the production process, and

thus not rewarded on the market, however there is a latent technology

advancement due to those workers that, throughout a process of tinker-

ing and learning by doing in laboratories rather than on the job, acquire

those skills that are necessary to the process of adoption and make the new

regime more efficient.

6This is ensured by the assumption that even if the share of adopters is null, the adoption
rate is assumed to be positive (i.e. λ(0) > 0).
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2.4 Viability of production regimes

The two regimes are available at each point in time, thus each agent chooses

the preferred regime depending on the reward he can get. In other terms,

Every agent i chooses the regime j if wj,it ≥ w−j,it ∀i = l,m, h;∀t (41)

Lemma 3 At each point in time, only one regime of production is

operative.

Proof. It comes from condition (41) given Lemma 1 and Lemma 2.

Considering that each agent chooses the preferred regime depending

on the reward he can get, lemmas 1 and 2 imply that, during the old

and the new regime respectively, the proportions of factors of production

in the economy are constant over time (see (24), (33) and (34)). Thus,

factors of production are not free to adjust up to an equilibrium wage that

permits the coexistence of the two regimes. Conversely, in each regime

wages are given (but not constant: they depend on the level of technology

Ajt , for j = old, new ) and at each point in time agents compare such wages

determining the operative regime.

Lemma 4 The new regime is economically viable if 7

wn,lt+1 ≥ wo,lt+1 (42)

where wn,lt+1 is the wage that uneducated children at time t will get at time

t+ 1 in regime j = old, new

Proof. It comes from condition (41) given (19), (26) and (27).

Since the wage ratios are constant over time, if the new regime is eco-

nomically viable for the manual laborers it will be economically viable for

all agents in the economy. During the old regime adopters are not rewarded,

therefore parents will choose to invest in that particular level of education

only when the new regime will be operative. That is, only when children

7It is assumed that, in the case in which wages for a specific source of labor force are
equal in both regimes, the new regime is preferred. However, as will be clear in the
following, this equality can persist only for one period of time.

14



that are educated at high level (innovators) or at low level (manual labor)

will get a higher wage in that regime. Therefore, the difference between the

wage that manual workers can earn in the new regime and the one available

in the old regime represents a threshold rule for the transition to the new

regime of production.

2.5 The Time Path of the Economy

2.5.1 Technological Progress

The productivity parameters are restricted so that the new regime is not

economically viable in period 0, that is,

Ao0
An0

>
1− β − φ

1− α
[(hn)∗]β[m∗]φ

[(ho)∗]α
(43)

Lemma 5 It exists a time t∗ such that the new regime is viable, that

is,

∃t∗|∀t ≥ t∗, wn,lt ≥ wo,lt (44)

Proof. It comes from lemma 4, (32) and (23), given (39) and (40)

Since the productivity of the new regime grows faster8 and given that

the unique source of time variation of wages is due to total productivity

growth, there exists a point in time, t∗, in which the new regime yields

a level of wages higher than the old one, leading to the transition to the

new regime. This also means that, regardless of where the economy is

positioned in the ht,mt plane (see Figure 1) at some point it will experience

the transition from stagnation to growth.

Lemma 6 It exists a time tc such that the Malthusian constraint is

no longer binding, that is,

∃tc|∀t ≥ tc, wo,lt ≥ c̃/(1− γ) (45)

8Although the new regime of production is not employed, knowledge advancements
imply improvements in the potential technology. Innovations stimulate productivity of
the old regime as well as knowledge advancements that employ adopters’ skills through,
for instance, learning by doing rather than market returns. See, for instance, Galor
and Mountford (2008).
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Proof. It comes from equation (23) , given (39)

Equilibrium wages increase of time due to technology advancement,

therefore necessarily exists a point in time at which the subsistence con-

straint is no longer binding.

The new regime of production implies a level of knowledge sufficiently

advanced to consolidate an educated labor force, which can be achieved

when the subsistence constraint is no longer binding. Thus, it is assumed

that t∗ = tc, which is equivalent to assume that the wage level wt∗ such that

wt∗ ≡ wn,lt = wo,lt is such that wt∗ = c̃/(1−γ). The assumption implies that

the Malthusian constraint will be binding during the old regime and the

escape from stagnation is associated with the transition to the new regime

of production. While unnecessary, this assumption simplifies the analysis

and is broadly consistent with historical patterns.

2.5.2 The Timing of the Transition

Given the equilibrium quantities h∗; m∗ and the threshold Gt, it possible

to solve for the time at which an economy will experience the transition to

the new regime, t∗. Where Gt is such that (42) is satisfied with equality,

that is,

Gt =
{
G(ht,mt)|wn,lt − w

o,l
t = 0

}
∀t ≤ t∗ (46)

where ht ≡ hnt .

Lemma 7 The threshold Gt, before the transition, is a function of the

proportions of factors of production in the new regime and parameters of

the model, that is,

Gt = wn,lt − w
o,l
t = G

(
hnt ,mt;A

o
t , A

n
t , ζ
)

= 0 ∀t ≤ t∗ (47)

where ζ = ζ(τ l, τh;α, β, φ)

Proof. It comes from (23), (24) and (82) given Lemma 5 noting that only

the old regime is operative.

Thus, before the transition takes place, only the old regime is operative

(see condition (43)). The threshold Gt, ∀t < t∗, represents the sets of points
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(ht,mt), where hnt ≡ ht, such that the new regime is viable, therefore, it can

be represented on a ht,mt plane (see Figure 1). The new regime is viable

when the equilibrium proportions (h∗,m∗) satisfies the threshold rule Gt.

The timing of the transition can be measured considering the time elapsed

between period 0 and the period in which the optimal proportions of factors

of production belong to the threshold, t∗|(h∗,m∗) ∈ G∗t . Figure 1 depicts

the movement of the threshold, Gt, until the transition is experienced (i.e.

t ≤ t∗). Therefore, the timing of the transition, t∗, is a function of the

distance from the equilibrium point (h∗,m∗) and the curve Gt=0. More

specifically, time is given by the ratio between distance and speed, thus the

timing of the transition from stagnation to growth is given by,

t∗ =
d∗

st∗
(48)

where, d∗ is the minimum distance between (h∗,m∗) and Gt=0, st∗ is the

speed of convergence to the new regime9. Therefore, noticing (24), (33)

and (34) the time of the transition can be expressed as follows,

t∗ = t(τ l, τm, τh; ξ) (49)

where ξ ≡ ξ(α, β, φ, Ao0, A
n
0 , λ(0)). The costs of raising offspring, τ j, with

j = l,m, h, determine polarization in distribution of human capital in the

economy. Therefore, analyzing the effect of variations in such parameters

on t∗, it is possible to investigate the effect of polarization in the human cap-

ital distribution on the timing of the transition from stagnation to growth.

3 Comparative Statics

Environmental and institutional differences may explain variations in the

costs of raising children, influencing the human capital distribution and the

long- evolution of economic performance. In the following, I explore the

effect of the changes in the parameters and their effects on the transition

to modern growth and on the growth rate of the economy.

9See Appendix for the specification of d∗ and st∗
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Figure 1: The Timing of the Transition

Notes: At t∗ Economy A will experience the transition from the old to the new regime.

3.1 Timing of the Transition

Each point in the h,m plane depicted in Figure 2 represents a potential

distribution of human capital once the transition occurs. An economy,

depending on the cost parameters, will be located on one point that rep-

resents the optimal distribution of human capital. The distance from such

point to the threshold Gt=0 is proportional to the timing of the transition

from stagnation to growth. Variations in the costs of raising children with

different levels of education — τ l, τm and τh — are associated with changes

in the distribution of human capital and the transition timing, t∗, which

explains the link between polarization and the transition from stagnation

to growth.

As depicted in Figure 2, an increase in the cost of raising highly ed-

ucated children, τh, reduces the prevalence of innovators implying a shift

from point A to point B which, in turn, corresponds to a larger distance

AA′ with respect to BB′. Thus economy B would need more time to

achieve the transition with respect to economy A.10 Low polarization in

10The effect of the speed function due to variations in τ j , with j = l,m, h, exacerbates
the effect of the change in the parameters on the distance function. Therefore, it
is sufficient to analyze the effect on the distance to understand the direction of the
overall effect on the timing on the transition.
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the distribution of human capital implied a relatively low level of innova-

tion in the economy, ultimately delaying the transition from stagnation to

growth. Similarly, high cost of raising adopters, τm, lowers the share of

adopters and shifts the economy from A to C, delaying the transition (i.e.

CC ′ > AA′). Finally, high cost of raising uneducated offspring, τ l, entails a

larger prevalence of innovators and adopters, which accelerate the process

of technological progress implying an early take-off.

Lemma 8
∂t∗

∂τ l
< 0;

∂t∗

∂τm
> 0;

∂t∗

∂τh
> 0 (50)

Proof. See Appendix.

This cross-country comparison is linked to the assumption that

economies considered in the analysis are isolated from a technological point

of view. This condition is in line with the imperfect transmission of tech-

nology across societies in early stages of development. Thus, ni line with

the advanced theory, technologies diffused mostly when innovations were

adopted in the production process entailing the creation of gadgets that

could be transmitted both across space and time.

The model predicts that, in early stages of development, polarization

in the distribution of human capital implied a trade-off between innova-

tion and adoption of innovation, determining the timing of the transition

from stagnation to growth. The following section explores the effect of

polarization on economic growth in the aftermath of the escape from the

Malthusian stagnation.

3.2 Long-Run Growth

During the Malthusian stagnation, improvements in output are eroded by

proportional increases in population. The model shows that increases in

parental income induce larger fertility rates, and thus limited improve-

ment in living standards. As a result, growth in output per capita is null

during the old regime when the Malthusian constraint is binding. Then,

at the time of the exodus from the Malthusian trap, the transition to a

modern growth regime leads to a significant growth in output per capita,
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Figure 2: Polarization and the Timing of the Transition

Notes: Case 1 [τ ld > τ la] - In country D the level of human capital is higher with
respect to A; Case 2 [τhb > τha ] - In country B polarization is lower with respect to A ;
Case 3 [τmc > τma ] - In country C polarization is higher with respect to A.

which is generated by the interlink between human capital and technolog-

ical progress.

The growth rate of output in the two regimes is given by11,

Lemma 9

a) goy = 0 ∀ t < t∗ (51)

b) gny = Ω(Ht)
(
1 + λ(Mt/Nt)

)
∀ t ≥ t∗ (52)

Proof. See Appendix

Lemma 10

gny = Ω(nt−t
∗
)χ (1 + λ(Mt/Nt)) ∀ t ≥ t∗ (53)

Proof. See Appendix

Equation (53) provides the link between polarization and the growth

rate of output per capita. The results are illustrated in Figure 3. In the

11Where gjy =
Y j
t+1/N

j
t+1−Y j

t /Nj
t

Y j
t /Nj

t

and j = old, new.

20



Figure 3: The Long Run Effect of Polarization

Notes: Case 1 [τ ld′ > τ ld > τ la] - In country D the level of human capital is higher with
respect to Country A; Case 2 [τhb > τha ] - In country B polarization is lower with
respect to Country A ; Case 3 [τmc > τma ] - In country C polarization is higher with
respect to Country A.

21



first case, economy D has a higher cost of raising uneducated offspring with

respect to A, τ ld > τ la, therefore in D more educated children will be raised

since their relative cost is lower. In turn, entailing a higher level of human

capital in the economy and an earlier transition (as shown in Figure 3).

However, increasing τ l the benefits of the early transition are eroded by a

small population. In turn, inducing a lower long-run growth in output per

capita (Figure 3, case 1).

The second case is the effect of an increase in the cost raising highly

educated children, τh, which implies lower polarization in B than in A

(Figure 2) and a delayed transition, which is compensated by faster long-

run growth (Figure 3, case 2). Low polarization (high τh) by delaying the

timing of the transition also implies that the Malthusian mechanism lasts

longer, in turn inducing a higher level of population once the transition is

experienced. Subsequently, the larger number of innovators supported by a

larger fraction of the population able to adopt such innovation, ultimately

implied higher growth after the take-off from the Malthusian stagnation.

Thus the model predicts a reversal of fortunes: the initial disadvantage in

the timing of the transition induced by low polarization is compensated by

an advantage in long-run growth rate after the transition occurs.

The last case is the case in which the cost of raising offspring enough

educated to contribute to technology formation through the adoption of

innovations in the production process, τm, is higher in economy C with

respect to A (as shown in Figure 2). Economy C is disadvantaged both in

low prevalence of adopters and in terms of population size, and therefore

it will experience a late transition and a slow growth (Figure 3, case 3).

4 Conclusions

This paper examines the effect of the distribution of human capital on the

advancement and adoption of technology and their influence on the timing

of the transition from stagnation to growth and the long-run evolution of

the economy. While highly educated individuals enhanced innovation, the

absence of an educated labor force hindered technology adoption, delaying

the transition from stagnation to growth. Yet, a wide group of educated

individuals in the labor force induced faster economic growth in the modern
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period, compensating for the delayed transition due to the limited presence

of highly educated individuals.

The advanced theory offers a number of testable predictions of the link

between human capital distribution and long-run growth, which can be

linked to the parameters of the models. The cost of raising children can be

mapped to environmental factors that generate differences in the cost of

producing food. The parameters indicating the cost of educating children

at different levels can be mapped to institutional factors influencing the

cost of acquiring education for the masses and for the elites.

While the econometric identification of these effects is beyond the scope

of this paper and is left for future research, the present study offers new

insights on the effect of the distribution of human capital and the long-term

development process. In turn, indicating a promising avenue for future em-

pirical investigation of the links between the distribution of human capital

and the long-term evolution of living standards.
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Appendices

A The Speed Function

From equation (47), the threshold can be written, without loss of generality,

as,

Gt ≡
[
ht
]β[

mt

]φ (1− β − φ)

(1− α)

(
(ho)∗

)−α − (Aot
Ant

)
= 0 (54)

Therefore the speed of convergence to the new regime is calculated as

the movement the points (ht,mt) ∈ Gt have to do each period in order to

compensate the time variation of the productivity ratio,
(
Aot
Ant

)
. Therefore,

speed at t+ 1 is given by

st+1 =
{[
ht+1

]β[
mt+1

]φ − [ht]β[mt

]φ}(1− β − φ)

(1− α)
(55)

=
{[ht+1

]β[
mt+1

]φ − [ht]β[mt

]φ[
ht
]β[

mt

]φ }[
ht
]β[

mt

]φ (1− β − φ)

(1− α)
(56)

≈ ln
([ht+1

]β[
mt+1

]φ[
ht
]β[

mt

]φ )[
ht
]β[

mt

]φ (1− β − φ)

(1− α)
(57)

= ln
(Aot+1

Aot

Ant
Ant+1

)Aot
Ant

(
(ho)∗

)α
(58)

=
[
ln
(Aot+1

Aot

)
−ln

(Ant+1

Ant

)]Aot
Ant

(
(ho)∗

)α
(59)

≈ ‖
[
−Ω(Ht)λ(0)

]Aot
Ant

(
(ho)∗

)α‖ (60)

(61)

where it is understood that speed cannot be negative, thus the absolute

value is considered.

B The Distance Function

The distance d∗ is the square of the minimum distance between the point

(h∗,m∗) and the curve Gt=0
12. The (h∗,m∗) point is given by equations (33)

12It is considered the distance squared for simplicity of calculations. The results are not
affected by this simplification.
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and (34); the function Gt=0 is given by the threshold function in period 0,

that is

G0 ≡
[
ht
]β[

mt

]φ (1− β − φ)

(1− α)

(
(ho)∗

)−α − (Ao0
An0

)
= 0 (62)

In order to find the minimum distance between a point and a curve, first

it is necessary to find a point (h̃, m̃) ∈ Gt=0 that minimize the distance

function, that is,

{h̃, m̃} = argmin
{(
h̃− h∗

)2
+
(
m̃−m∗

)2}
(63)

taking into account that, since (h̃, m̃) ∈ Gt=0 = 0, then m̃ = m̃(h̃). Thus,

substituting (h̃, m̃) into the generic distance function13 squared the distance

function, d∗ is obtained, that is,

d∗ =
{[
h̃(h∗,m∗, (ho)∗)− h∗

]2
+
[
m̃
(
h̃(h∗,m∗, (ho)∗), (ho)∗

)
−m∗

]2}
Notice that from the distance minimization it is sufficient to find h̃ to

uniquely determine m̃. Whereas it is not possible to find an explicit solution

for h̃, the sign of variations in the cost parameters are derived through the

implicit function theorem.

C Comparative Statics on the Transition

Timing

Given that

t∗ =
d∗

st∗

the comparative statics exercise is made on the speed function, st∗ , and on

the distance function, d∗.

Given equation for the speed derived above, it is straightforward to

13The generic distance function, d, is given by

d =

√{[
h̃− h∗

]2
+
[
m̃−m∗

]2}
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derive that

∂st∗/∂τ
h < 0∀t ≤ t∗ (64)

and

∂st∗/∂τ
l > 0∀t ≤ t∗ (65)

The comparative statics exercise on d∗ implies,

∂d∗

∂τm
> 0;

∂d∗

∂τh
> 0;

∂d∗

∂τ l
< 0 (66)

In order to make the comparative statics exercises on the distance function,

d∗, it can be useful to consider the quantities m̃ and h̃. Where, from (62)

m̃ =
[((ho)∗)α 1−α

1−β−φA
o
0

h̃An0

]1/φ
(67)

from the first order conditions of the minimization problem given by (63),

taking into account (67), thus h̃ is implicitly defined by function K̃, where,

K̃ ≡ (h−h∗)−1

φ

[(((ho)∗)α 1−α
1−β−φA

o
0/A

n
0

h̃β

)
−m∗

](((ho)∗)α 1−α
1−β−φA

o
0/A

n
0

h̃β

)β
h̃

= 0

(68)

The comparative statics is done for each of the parameters τ j with j =

l,m, h, where derivatives of h̃ are implicitly derived from K̃. The effect on

d∗ of a variation in τm is given by,

∂d∗

∂τm
= 2
[
h̃− h∗

][ ∂h̃
∂m∗

∂m∗

∂τm

]
+2[m̃−m∗

][(∂m̃
∂h̃

∂h̃

∂m∗
− 1
)∂m∗
∂τm

]
> 0 (69)

D Population

The number of individuals in the manual labor force

N l
t =

{
(1− α)Nt ∀t < tc

(1−β−φ)/τ l
(1−β−φ)/τ l+β/τh+φ/τmNt ∀t ≥ t∗

(70)

The number of Adopters

Nm
t = (φ)/τm

(1−β−φ)/τ l+β/τh+φ/τmNt ∀t ≥ t∗ (71)
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The number of Innovators

Nh
t =

{
αNt ∀t < tc

(β)/τh

(1−β−φ)/τ l+β/τh+φ/τmNt ∀t ≥ t∗
(72)

Proof. It comes from the optimization, given the equilibrium quantities

(L∗t ,M
∗
t , H

∗
t ) = (N l

t l
l,∗
t , N

m
t l

m,∗
t , Nh

t l
h,∗
t ), where ljt is the amount of working

time of individual j = l,m, h

D.1 Population Dynamics

Nt+1 =


Nt

(
1

(1−α)τ l+ατh

)[
1− c̃

Aot

(
1+ho,∗

((ho)∗)α

)]
∀t < t∗

Nt

(
(1− β − φ)/τ l + β/τh + φ/τm

)
γ ∀t ≥ t∗

(73)

Proof. It comes from the optimization, given the equilibrium quantities

(N j
t )with j = l,m, h, given

∑
i n

i,j
t = N j

t+1 ∀i ∈ (1, Nt) where i is the

number of parents at time t

E Lemma 9

a) goy = 0 ∀ t < t∗ (74)

Proof. Lemma 9 a) comes from feasibility condition that is such that

Y o
t = c̃N o

t ∀t∗ < t (75)

Where Nt given derived by equations (70), (71) and (72) considering that

t < t∗

b) gny = Ω(Ht)
(
1 + λ(Mt/Nt)

)
∀ t ≥ t∗ (76)

Proof. Lemma 9 b) comes from the fact that from equation (77), Lt is a

constant fraction of Nt. Where Nt is derived by (the sum of) equations

(70), (71) and (72)
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F Aggregate Labor Allocation

Lt =

{
c̃Nt
Aot

[
α

1−α
τ l

τh

]−α ∀t < t∗

( 1−γ)(1−β−φ)/τ l
(1−β−φ)/τ l+β/τh+φ/τmNt ∀t ≥ t∗

(77)

Ht =

{
c̃Nt
Aot

[
α

1−α
τ l

τh

]1−α ∀t < t∗

( 1−γ)(β)/τh
(1−β−φ)/τ l+β/τh+φ/τmNt ∀t ≥ t∗

(78)

Mt =

{
0 ∀t < t∗

( 1−γ)(φ)/τm
(1−β−φ)/τ l+β/τh+φ/τmNt ∀t ≥ t∗

(79)

G Equilibrium wages

wht =

{
αAot

[
(ho)∗

]α−1
if Y o

t > 0

βAnt
[
(hn)∗

]β−1[
m∗
]φ

if Y n
t > 0

(80)

wmt = φAnt
[
(hn)∗

]β[
m∗
]φ−1

if Y n
t > 0 (81)

wlt =

{
(1− α)Aot

[
(ho)∗

]α
if Y o

t > 0

(1− β − φ)Ant
[
(hn)∗

]β[
m∗
]φ

if Y n
t > 0

(82)

H The Dynamical System

In order to find Ht∗ it is necessary to solve the following dynamical system.

From (73) and (78)

Ht+1 = Ht
Aot
Aot+1

( 1

(1− α)τ l + ατh

)[
1− c̃

Aot

(1 + (ho)∗)

((ho)∗)α

)]
∀t < t∗ (83)

where ((ho)∗) is given by (24).

From (39)

Aot+1 = Aot
[
1 + Ω(Ht)

]
(84)

In other terms the dynamical system is given by

Ht+1 = f(Aot+1, A
o
t )Ht (85)
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Figure 4: The Dynamical System

Notes: H∗
t is the solution to the dynamical system with Ao

t = At∗ .

and

Aot+1 = f(Aot )Ht (86)

Therefore, the AA locus is defined as

AA =
{

(Ht, A
o
t )|∆Aot = 0

}
(87)

where ∆Aot ≡ Aot+1 − Aot = Aot
[
1 + Ω(Ht)

]
− Aot = 0 if Ω(Ht) = 0 which is

not feasible since Ω(0) > 0 by construction. The intuition is that in this

economy technology does not have a steady state in levels because there

will always be technological advancements.

The HH locus is given by

HH =
{

(Ht, A
o
t )|∆Ht = 0

}
(88)

where ∆Ht = Ht+1 −Ht = 0. Such condition, taking into account (86), is

satisfied by

Ht = Ω−1
(( 1

(1− α)τ l + ατh
)[

1− c̃

Aot

(1 + (ho)∗)

((ho)∗)α
)]
− 1
)
∀t ≤ t∗ (89)
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Let define, Ht as,

Ht ≡ Ω−1
(
χ(Aot )

)
∀t ≤ t∗ (90)

The (85) implies that ∂At
∂H

> 0 and ∂2At
∂H2

t
< 0 as represented by the blue line

in Figure 4.

Finally, Ht∗ =
{
Ht|Aot = At∗

}
where At∗ =

{
Aot |w

o,l
t = c̃/(1 − γ)

}
where wo,lt is the equilibrium wage in the old regime, given by (23). That

is

At∗ =
c̃

(1− γ)(1− α)
(
(ho)∗

)α (91)

I Lemma 10

gny = Ω(nt−t
∗
)χ λ(Mt/Nt) ∀ t ≥ t∗ (92)

Proof. It comes from equation (76), given that from the dynamics of pop-

ulation, λ(Mt/Nt) is constant over, considering that Ht is given by

Ht = nt−t
∗
Ht∗ ∀t > t∗

. Where n is given by

n =
(1− β − φ

τ l
+
β

τh
+

φ

τm

)
γ (93)

Given that Ht∗ is the solution of the dynamical system, which is given by

Ht∗ = Ω−1(χ(At∗))

, where χ(At∗) is given by

χ(At∗) =
( 1

(1− α)τ l + ατh

)
(1− (1 +

(
(ho)∗

)
)(1− α)(1− γ)) (94)

Where in the latter I make use of equation (91).
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