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Abstract 
We propose a tractable framework to introduce externalities into a monopolist screening model. Agents differ both 
in their payoff type and their influence, i.e. how strongly their action affects the aggregate externality. Applications 
range from non-linear pricing of a network good, to taxation or subsidization of industries that produce 
externalities (e.g. pollution and human capital formation). When both dimensions are unobserved (full screening) 
the optimal allocation satisfies lexicographic monotonicity: within a payoff-type, the monopolist optimally tilts the 
allocation towards influential agents to increase the externality, while standard IC drives monotonicity across 
payoff-types. We characterize the solution through a two-step ironing procedure that addresses the 
nonmonotonicity in virtual values arising from the countervailing impact of payoff-types and influence. The 
allocation is inefficient if and only if the payoff-type is unobservable. Only influence is observable, equilibrium 
utility can vary across the latter as it is used as a signal of the payoff-type. We provide sufficient conditions for 
(expected) rents from influence to emerge. 
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1 Introduction

In many settings ranging from production with a polluting factor to the consumption

of a network good, individual activities affect the payoff of others and their willingness

to act. A planner or firm designing policy in such an environment is often affected by

adverse selection as well: A network good monopolist may price discriminate to exploit

unobserved heterogeneity in consumers’ valuations, while providing large amounts

cheaply to influential consumers in order to increase the willingness to pay of the

population. Likewise, a regulator that controls pollution through production quotas

or taxes may need to discriminate among heterogeneously productive firms. Given

the attention received by the study of externalities and screening separately and the

abundance of applications that are affected by both forces, it is perhaps surprising that

their interaction has only received limited attention in the literature on screening. A

possible explanation is that the most natural framework for conducting this analysis is

a screening model with at least two dimensions of heterogeneity: agents differ both

in their taste for the activity and their impact on others. Multidimensional screening

problems, however, present notorious difficulties and often require a case by case

analysis of the particulars of the setting.1

In this paper, we propose a tractable framework for analysing the interplay of

screening and externalities. The principal faces a population of agents whose payoffs

are interdependent through a global externality. Agents can be characterized by a

two-dimensional type, one parametrizing the returns from the activity as in a standard

screening model, the other parametrizing the impact of his activity on the externality.

There is no aggregate uncertainty, the principal knows the distribution of types and

costs or benefits from the externality in aggergate, but is ignorant of each individual

agent’s type. The crucial assumption is that even though both dimensions of the agents

type enter the principal’s objective, only one dimension affects their utility. Apart from

single-crossing, we are permissive on the functional form of the payoff and externality

function. We provide bounds ensuring the existence of a solution and derive its

properties in the general case, though we we make specific functional form assumption

that relate to the applications presented to illustrate our results in specific settings.

A crucial intermediate step is to show that despite the apparent multidimensionality,

there is a fixed total order of types determining the binding sorting constraints. We

study how the observability of each of the dimensions affects the allocation of the

activity and rents as well as the aggregate externality.

We now preview our results in more detail. Clearly, if both characteristics are

observed by the principal, she can implement the efficient contract and extract all rents.

1Rochet and Stole (2003) survey the literature on multidimensional screening, highlighting tractable
cases and the source of the general difficulty of such problems: the lack of fixed order on types along
which sorting constraints bind. This justifies the usage of multi-dimensional for the discrete setting as
well.
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This result holds as long as the payoff type is observed:2 as the influence type does not

affect an agent’s utility, sorting constraint imply that utility is flat along this dimension;

the first best (through full surplus extraction) satisfies this feasibility condition, and

hence is optimal.

We then turn to the screening problem where both dimensions are unobserved

(full screening contract), which constitutes the core contribution of this paper. We

exploit the special structure of the resulting two-dimensional screening problem with

externalities to arrive at a tractable solution. As in a standard screening problem,

incentive compatibility requires that the allocation is increasing in the payoff type.

Within a payoff type slice, the monopolist tilts the allocation and provides higher

consumption to more influential consumers in order to create a larger externality (we

ensure the higher surplus/higher rents tension always favors the former and profits

are increasing in the aggregate activity). We show (Theorem 1) that the full screening

allocation is increasing along the lexicographic order where the payoff type is the

dominant dimension. We can hence transform the problem into a one-dimensional

problem along this order. Even under the usual regularity conditions, the virtual

value will typically be non-monotonic in the lexicographic order for two reasons,

both arising around the switching types (types with the highest level of influence,

that are consequently adjacent to a type with higher payoff type in the lexicographic

order): First, only the consumption of these types directly causes information rents

and hence only their virtual value is downward distorted. Second, the subsequent type

in the lexicographic order has the lowest influence; as the virtual value is increasing in

influence, this downward jump is a source of non-monotonicity. We generalize standard

techniques to take into account that the network effect creates interdependence among

individuals’ virtual values and provide a two-step ironing procedure (Theorem 2) to

obtain allocations and aggregate activity that solve the full screening problem. In

contrast to efficiency at the boundary results (e.g. Rochet and Choné, 1998), we show

that bunching can occur even for agents with the highest payoff-type and that every

bunching region contains agents of the highest-influence type.

One feature shared by the efficient and the full screening contract is that individuals’

influence is not rewarded: In the former case, full surplus extraction leaves everyone

without any rent, while in the latter case incentive compatibility prevents any rent to

emerge along a dimension (influence) that does not directly affect individuals’ utility.

This implication seems at odds with evidence of large rents enjoyed by influencers

inside a network. To see whether such rents can emerge we study the problem with

observable influence (but unobserved payoff type) in our linear-quadratic application to

the consumption of network goods. In this case, a condition on primitives ensures that

2Indeed, full extraction at the first-best quantities is feasible even when consumers can misreport but
only over-report their payoff-types, since it is the downward constraints that are violated in the first-best.
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the optimal contract exhibits rents for influental consumers:3 Even when influencers

have no market power, they can gain from their position. For such gains to emerge

it is however necessary that influence is verifiable, and even in that case it emerges

indirectly as a reward for higher payoff types.

The paper proceeds as follows. We conclude this introductory section by discussing

the relevant literature. Section 2 presents the general model and three applications

which will also be used as running examples to illustrate our results. As a benchmark,

we characterize the decentralized equilibrium of the game if the technology is available

to every agent and the efficient allocation in Section 3, and show that the efficient

allocation is implementable as long as the payoff-type is observed. We then analyze the

full screening problem in Section 4. Section 5 analyses the problem when influence is

observed but payoff-types are private information, Section 6 concludes. We gather all

proofs in Appendix A and derivations for the examples in Appendix B.

1.1 Literature

Our model relates to the classic literature on contracting with network effects (Segal,

1999). Jadbabaie and Kakhbod (2016) compare bilateral and multilateral contracting

in this setting when there are finitely many consumers and consequently, there is

aggregate uncertainty about the realized distribution of types. This literature focuses

on the externality of contracting in a setting with finitely many agents, in particular

on the effect on the outside option of the agents, while we focus on a continuum of

consumers with public contracting in a setting where the outside option of the agents

is independent of the contract accepted by others. Sundararajan (2004) and Csorba

(2008) study screening with externalities in consumption when consumers have private

information about their valuation of the good. We study screening on the payoff-type

and influence to the externality.

The application to the sale of a network good relates to the classic literature on

externalities in consumption following the seminal Farrell and Saloner (1985) and Katz

and Shapiro (1985). A recent literature focuses on the use of network information by a

monopolist, both in the case of an explicit finite network (e.g. Bloch and Quérou, 2013;

Candogan et al., 2012) and when consumers only know their level of susceptibility and

influence (Fainmesser and Galeotti, 2016a,b). We adopt the demand and interaction

specification developed in the latter in our example, but focus on the screening problem

and arrive at different implications for pricing.

There is a growing literature on monopolist screening for these characteristics.

Zhang and Chen (2017) consider an explicit stochastic network formation model,

where the out-degree of agents is fixed and consider screening along the in-degree.

They consider two specifications, susceptibility is either a consumers’ in- or out-degree.

3In particular, the condition puts an upper bound on the affiliation between the payoff- and influence-
type.
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Depending on this choice, their model can generate both quantity discounts and

premia. Gramstad (2016) consider screening in a undirected network when network

effects only depend on the number of neighbors that adopted the good, not their

intensity of consumption. We analyze both dimensions of private information –

payoff type and influence – at the same time and study their interaction in screening.

In a contemporaneous paper, Shi and Xing (2018) study screening with the same

demand specification as our application to network goods and assume a continuum

type space. Consequently, the optimal allocation is constant in influence and the

solution is one-dimensional. They focus on the implications for the value of network

information, while we focus on how the allocation and rents depend on influence

(and its observability) with discrete types and general single-crossing utility and

externality specification. Galeotti et al. (2020) use a principal component approach

to characterize optimal interventions (like taxes and consumption subsidies) when

local externalities flow on a known finite network. We focus on screening of a global

externality when agents types are private information. Weber (2006) characterizes the

implementable allocations in a general multidimensional model with externalities and

provides a set of necessary conditions for the optimal control problem characterizing

the optimal screening contract. We focus on a setting where despite its underlying

multidimensionality, the problem can be reduced to a single-dimensional screening

problem and use this tractablity to provide a tight charaterization of the solution and

its properties.

2 Model and Applications

We construct a parsimonious model of screening with externalities and two dimensions

of (potentially unobserved) heterogeneity: an influence type and a payoff type. Agents

choose actions which have aggregate effects. The influence type determines the

impact of individual action in the creation of this externality, while the payoff type

parametrizes the surplus from the individual action and the aggregate effect.

2.1 Setup and Primitives

There is a unit mass of agents characterized by a type θ ∈Θ distributed according to a

full support distribution F. Each agent takes an action x ∈R+ whose payoff is subject

to network (or aggregate) effects: The attractiveness of the action is dependent on an

aggregate variable, x̄. For a given x̄, an agent of type θ derives utility

u (θ,x,x)− t (1)

from a action x and transfer t ∈ R. The aggregate effect x̄ is a weighted average of

individual actions

x̄ =
∫

v (x (θ) ,θ)dF(θ) (2)
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We assume that the individual payoff characteristics and externality production

can each be summarized by a one-dimensional type. On other words, we can write

u (θ,x,x) = u (x,k (θ) ,x) (3)

v (x,θ) = v (x, l (θ)) (4)

for a pair of functions (l,k) : Θ → [k0,K] × [l0,L] ⊂ R
2. We assume concavity in the

agents action ( uxx < 0) to ensure the existence of an interior optimum and the following

properties

uk ≥ 0, ukx ≥ 0, uxxk ≥ 0 (5)

ux̄ ≥ 0, ux̄x̄ ≤ 0, uxx̄ ≥ 0,ux̄x̄k ≥ 0 (6)

The payoff-type k behaves as in a standard screening model with single-crossing and

the usual condition ensuring convexity of the information rent.4 The global externalty

x̄ describes a (weakly) positive externality with diminishing returns that also increases

the marginal payoff from the activity x. For the influence function v, we maintain

vxx < 0, vl > 0, vxl > 0 (7)

This setup allows us to encompass both negative and positive externalities from the

agents’ actions in a common framework. If vx > 0, the activity produces a positive shift

in individual payoffs (per ux̄ ≥ 0) and we assume that this technology is concave. If

vx < 0, we have a negative externality of the activity with convex costs (vxx < 0). In

either case, agents with high influence type l are the "good types", either because they

produce a larger positive or smaller negative externality as vxl > 0.

Even though our type-space is two-dimensional in principle, only one of the

coordinates enters the agents utility. As we will show, the principal can implement

different contracts along this payoff-irrelevant dimension, indeed, this will be optimal

in many cases. To satisfy incentive compatibility in the full screening problem, however,

the allocation is required to be increasing the in agents payoff type k. Therefore, we

have

Lemma. Suppose k(Θ) is uncountable and the induced distribution F ◦ k−1 is atomless.
Then, for almost all k, x(k, l) is constant in l.

To see why, consider x(k) = minl x(k, l). This has to be an increasing function and

has an upwards jump wherever x(k, l) is not constant in l. As an increasing function

can have at most countably many points of discontinuity, we have the result.

As our interest is in exploring the impact of heterogeneous influence on screening,

we rule out this case. Let K×L denote the induced types space. By abuse of notation,

4Since the function k(θ) is a derived objects, this assumption simply implies that there exists such a
linear order on Θ, which implicitly defines k.
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we denote the induced distribution by F. We assume that K×L is finite and, as a

normalization, let K×L = {k0, k0 + 1, . . . ,K} × {l0, l0 + 1, . . . ,L}.5 Hence, we write fk,l for

the probability mass and xk,l for the allocation of type k, l, etc. Apart from full support,

we make no restriction on fk,l . Importantly, we don’t impose any correlation structure,

though we will explore the consequences of correlation between payoff and influence

type.

Principal

The agents action is produced at zero marginal cost to the planner. The planner offers

a menu of contracts
{(
xk,l , tk,l

)}
k,l∈K×L to maximize expected transfers plus possibly

a direct payoff from the aggregate action, κ(x̄), subject to sorting and participation

constraints.6 We assume that κ′ ≥ 0 and κ′′ ≤ 0. This aggregate term captures the

impact of the externality that is not mediated through the payoffs of the agents, for

example the impact of pollution on society at large. Finally, we assume as a non-

triviality condition that the externality has an impact on the principal’s problem, either

directly or indirectly through some type’s utility,

∀x, max
{
max
k∈K
{ux(0, k,x)} ,κ′ (x)

}
> 0. (NT)

We will consider several monopolist problems, each corresponding to a different

assumption on which consumer characteristics are observable. Throughout these

problems, the objective, the aggregate network effect and the participation constraints

will remain the same. Depending on the misreports that are feasible (i.e. on what

characteristics are verifiable), the problem will have different sorting constraints. We

identify the sorting constraint with the associated (pair of) types. That is, denote the

set of feasible deviations by A ⊂ (K×L)2, where (k, l), (k′ , l′) ∈ A means that type k, l

can imitate type k′ , l′ and consequently a feasible allocation must satisfy the sorting

constraint

u
(
xk,l , k,x

)
− tk,l ≥ u

(
xk′ ,l′ , k,x

)
− tk′ ,l′ . (ICk,l→k′ ,l′ )

The problem corresponding to a set of feasible deviations A is

π(A) := max
x̄,{(xk,l ,tk,l )}k,l∈K×L

∑
fk,ltk,l +κ(x̄) (8)

s.t. x̄ =
∑

fk,lv
(
xk,l , l

)
(ANE)

∀k, l : u
(
xk,l , k,x

)
− tk,l ≥ 0 (Pk,l)

5Note that this is for simplicity, we could allow for continuum L and - assuming a distribution with
atoms – even continuum K at the cost of more complex notation.

6Note that every set of contracts induces a game among the consumers at the consumption stage, as
aggregate consumption is endogenous. Without loss of generality, we restrict attention to menus inducing
a pure strategy equilibrium. This is implied by the concavity of the planer problem, which we impose
throughout.
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∀ ((k, l) , (k′ , l′)) ∈ A : u
(
xk,l , k,x

)
− tk,l ≥ u

(
xk′ ,l′ , k,x

)
− tk′ ,l′ ≥ (ICk,l→k′ ,l′ )

To save on notation, we suppress the non-negativity constraints xk,l ≥ 0. Table

1 specifies the set of feasible deviations associated to each observability assumption.

Throughout the paper, we will let ζ denote the Lagrange multiplier associated to the

payoff type observable payoff type not observable
influence observable ∅

⋃
l∈L (K× l)2

influence not observable
⋃

k∈K (k ×L)2 (K×L)2

Table 1: Four different observability assumptions as sets of feasible deviations.

ANE constraint, i.e. marginal increase in the principal’s objective associated to an

exogenous increase in the externality.

2.2 Applications

We now present three economic applications that fit our general framework. We will

return to simple 2-by-2 examples of these models to illustrate our results and their

implications throughout the paper.

2.2.1 Sale of a Network Good

Consider a good with externalities in consumption, like the internet services discussed

in the introduction. We follow the network formation model formulated and applied in

Galeotti and Goyal (2009) and Fainmesser and Galeotti (2016a,b). There is a continuum

of consumers connected by a directed network. When there is a link from i to j we say

that consumer i is influenced by agent j. A consumer’s marginal utility of consumption

increases as others who influence her increase their consumption. Formally, let Ii be

the set of consumers who influence i; the utility of consumer i is given by

ui

((
xj

)
j∈[0,1]

, ti

)
= xi + γxi

∑
j∈Ii

xj −
1
2
x2
i − ti (9)

where γ is the intensity of network effects.

The influence parameter l coincides with the agent’s in-degree, while the payoff
parameter k is his out-degree. When making consumption choices, consumers don’t

know the network structure, but only their in- and out-degree. They take expectations

over their realized utility conditional on this information alone.7 So, the utility can be

expressed as

7Formally, we model the network formation as follows: There is a unit interval of consumers, ordered
by in-degree l. Denote the in-degree of consumers at i ∈ [0,1] by l(i), an increasing step function with
finite range. After consumption decisions are made, a consumer with out-degree k draws k consumers

independently from the unit interval with density l(i)
E[l] and links to them. In expectation, a consumer is

drawn and linked to by l other consumers.
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ui(xi ,pi ,x) = xi + γki x̄xi −
1
2
x2
i − pi (10)

where

E

[
xj |j ∈ Ii

]
=

∑
k,l

fk,l
l

E[l]
xk,l = x̄. (11)

When forming expectations, individuals take account of the fact that they are more

likely to link to influential individuals which consequently need to be over-counted

relative to their frequency in determining the expected consumption of a neighbor.8

Clearly, equations (10) and (11) fit into our general framework with

u (k,xi ,x) = (1 + γxk)x − 1
2
x2, v (x, l) =

l
E (l)

x, κ ≡ 0 (12)

Since the payoff type k also parametrizes the returns from the aggregate action, it can

be interpreted as an agent’s susceptibility to the network effect.

The reduced from can also be interpreted as an aggregate network effect: Agents

directly care about the weighted population average of x, e.g. because of a desire to

conform. Agents differ both in their desire to conform k and their intensity of creating

network effects for others l (visibility or social status).

2.2.2 Nonlinear taxation of externality producing goods

Firms produce goods using a polluting process. They differ both in their productivity

and in their pollution intensity. A regulator desiring to control the aggregate level of

externality while raising tax revenue designs nonlinear production taxes.

A firm of type k produces quantity x employing a perfect complement decreasing

returns technology x =
(
min

{
1
θ1
z1,

1
θ2
z2

}) 1
2 , where z1 is a clean factor and z2 is a

pollutant factor. Let w1,w2 denote the factor prices, we normalize the price of output

to one. Hence, profits are given by x − (w1θ1 +w2θ2)x2, and the externality is −θ2x
2

. The planner faces a disutility of pollution κ(x̄) = κx̄ for κ > 0. This fits our

framework with k(θ) = 2
w1θ1+w2θ2

− 1, u(x,k, x̄) = x − 1
2(k+1)x

2, l(θ) = max{θ2} − θ2, and

v(x, l) = − (max{θ2} − l)x2.9 Notice that “fundamental” parameters of the production

function determine payoff and influence type. In particular, the pollutant factor

requirement θ2 determines not only the impact on the externality but also a firm’s

payoff type. Even if fundamental parameters θ are independently distributed, factor

prices determine a correlation structure between payoff and influence types in the

rewriting that fits our general framework. Since we have no restriction on the (joint)

distribution over the two dimensional type space, such induced correlation can be

analyzed as a comparative statics over the distribution primitive. The DRS perfect

8For discussion of further effects of this “friends paradox”, see Jackson (2017).
9Note that this joint definition of k, l rules out a rectangular type space with full support unless

w2 = 0. Factor prices determine the correlation between types. What is crucial for our analysis is that we
keep single dimensionality which requires a perfect complements production function.
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complement production function is instead needed to fit the general framework: DRS

to have concavity and no substitutability to keep single dimensionality of the payoff
type.10

2.2.3 Human capital

Consider a steady state model of a labor market in with firms and workers are

matched randomly for only one period. Work at time t produces human capital that is

carried over into the next period (but then is forgotten: only last period employment

determines human capital).

Let h the average human capital in an economy. By random matching, the effective

labor units of a firm with productivity k employing a measure h of workers are khh.

The firm operates a Cobb-Douglas technology, generating profits

u(h,k, h̄) =
(
khh

)α
−wh (13)

for a given wage w.11 Human capital formation depends on the type of employment,

we parameterize human capital by worker by l, v (h, l) = hl. It is easy to see that this

specification fits our general setting as long as production has decreasing returns, α < 1.

The ministry of economic development chooses a nonlinear employment subsidy to

maximize human capital subject to a cost of funds λ, i.e. we write κ(h̄) = h̄
λ

.12

3 Benchmark Allocations

We first characterize the decentralized solution. We then turn to the efficient allocation.

Clearly, this allocation is implemented by a principal who can observe the payoff and

influence types, i.e. it solves π (∅). Finally, we show that this solution is implemented

even if the principal can observe only the payoff type. The unobservability of influence

does not create any rents and distortions in this case.

3.1 The Decentralized Solution

As a benchmark, consider the case where every agent has access to the production

technology and chooses xD
k,l to maximize u(x,k, x̄).13 Observe that xD

k,l = xD
k , as influence

does not enter utility. A decentralized allocation solves

ux(xD
k , k, x̄) = 0, x̄D =

∑
fk,lv(xD

k , l) (14)

10Under a more permissive functional form, we would obtain π (θ,w,x) =
∑
wizi (θ,w,x) which cannot

in general be written as π (k (θ) ,x,w) for a single dimensional type k (θ). Indeed this fails if w1 ·w2 , 0
whenever any substitutability across factors is permitted.

11The wage rate is fixed, as there is a reserve army of the unemployed working in the traditional sector.
12To ensure that condition (NT) is met even at h = 0, we must ensure κ′ is bounded away from zero.
13Equivalently, consider n > 1 firms competing in price-schedules.
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For any given x̄, the privately optimal allocation is unique by concavity. An equilibrium(
xD, x̄D

)
exists but may not be unique. All equilibria are Pareto-ranked in x̄, as higher

aggregate activity increases private utility.

Example (Human Capital). In the setting of Section 2.2.3, the decentralized condi-

tional labor demand is given by

hD
k =

(
α

w

) 1
1−α (

kh
) α

1−α (15)

notice that the non-triviality condition (NT) does not rule out a degenerate decentral-

ized equilibrium; a non-trivial equilibrium exists if α < 1
2 and is given by

h =
(
α

w

) 1
1−α

E

[
lk

α
1−α

] 1−α
1−2α (16)

Example (Network Good). In the setting of Section 2.2.1, there is a unique decentral-

ized equilibrium given by14

xD
k = 1 + γkx̄D, x̄D =

1

1− γE[kl]
E[l]

(17)

The externality in the decentralized case is merely a byproduct of privately chosen

consumption. Fixing the marginal distribution over k and l, it is increasing in the

covariance of payoff- and influence-type. The first-best (which we characterize in

the subsequent section) coincides with the decentralized solution if γ = 0. Aggregate

consumption and total surplus in the first best exceed their decentralized values when

γ > 0.

3.2 The First Best

The efficient allocation solves the principal’s problem without incentive compatibility

constraints, π (∅). In order to guarantee the existence of a solution it is not sufficient

to assume concavity of the agents utility function. Instead, concavity of the planner’s

problems arises jointly from the agents utility and the aggregate externality. The

following Lemma leverages the fact that we can focus the attention only on two

dimensions of the allocation, the subspace along which externalities are produced

and consumed.

14When κ ≡ 0, condition (NT) ensures that even when the aggeregate externality is 0 some agents are
willing to act, effectively excluding a degenerate decentralized equilibrium.
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Lemma 1. Let Φ = [
√
f ][

√
f ]T ∈ R

|K×L|2 with typical element
√
fk,lfk′ ,l′ . The first-best

planner problem is globally concave if and only if the value of the maximization problem15

max yT
(
dg([uxx] + (Eux̄ +κ′) [vxx]) + (Eux̄x̄ +κ′′) [vx]Φ [vx]T + 2Sym

(
[ux̄x]Φ [vx]T

))
y

(18)

s.t. y ∈ span
([√

f
]
� [ux̄x] ,

[√
f
]
� [vx]

)
,

∥∥∥y∥∥∥ = 1

is negative for all x ≥ 0. Then, the first-best contract induces a pure strategy equilibrium
among agents.

Note that the all the expressions in (18) depend implicitly on the full allocation

x. The condition provides a tight bound for the general nonparametrized case and

simplifies to a familiar upper bound on the degree of complementarities in the

application to network good

γ <
E[l](√

E[k2]E[l2] +E[kl]
) (19)

From now on, we assume that the condition of Lemma 1 is met.

Proposition 1. The efficient allocation (x?k,l)k,l∈K×L solves

0 = ux
(
k,x?k,l ,x

?
)

+ vx
(
x?k,l , l

)
ζ? (20)

ζ? =
∑

fk,lux̄
(
k,x?k,l ,x

?
)

+κ′(x̄?) (21)

x̄? =
∑

fk,lv(x?k,l , l) (22)

The effecient allocation maximizes individual utility with the adjustment term

vx
(
x?k,l , l

)
ζ? taking the spillover into account. This adjustment is proportional to the

shadow value of x̄, which corresponds to the surplus generated by the externality.

A monopolist observing both the payoff- and influence-type implements the effi-

cient allocation and extracts all surplus. Agents receive the same level of utility (zero)

in the optimal contract, in particular, influence is neither rewarded nor punished.

Example (Network Good cont’d). For the sale of a network good, we can solve (20) in

closed form

x?k,l = 1 + γx̄?k + ζ?
l

E[l]
. (23)

In order to produce the efficient level of x̄, the planner induces all types to overconsume

relative to their privately optimal level 1 + γx̄k. This is especially pronounced at high

levels of influence. Such "influencers" are not compensated with higher utility, but they

15dg(a) denotes the diagonal matrix with entries provided by the vector a, Sym(A) = A+AT

2 and �
denotes element-wise multiplication of vectors.
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are held indifferent through lower unit prices,

t?k,l
x?k,l

=
1
2

(
1 + γx?k − l

E[l]
ζ?

)
. (24)

3.3 Observable Payoff-Type

We now turn to the case where to principal observes the payoff-type of all agents while

their influence is private information. The revenue maximization problem needs to

satisfy the sorting constraints
⋃

k∈K (k ×L)2.16 Note that l does not directly enter the

utility function. Consequently, sorting is equivalent to the requirement that the utility

of type (k, l) in their respective contract is independent of the level of influence l;

Should this condition fail, every consumer with a given k would mimic the type k, l′

whose contract delivers the highest level of utility.

Lemma 2. A menu of contracts satisfies the
⋃

k∈K (k ×L)2 sorting constraints if and only if
for each k, l, l′

u(xk,l , k, x̄)− tk,l = u(xk,l′ , k, x̄)− tk,l′ (H)

Influence doesn’t interact with the contract terms, so it can not introduce distortions

in the form of information rents. Because the principal observes the only dimension

in which she can actively screen, eliciting influence does not create any rents by itself.

Even though the problem has a full dimension of incomplete information, it collapses

for given k. Henceforth, let Uk B u(xk,l , k, x̄) − tk,l denote the utility of agents with

payoff-type k as a (usually implicit) function of the contract.

The first best contract with full rent-extraction satisfies condition (H) since all types

receive zero utility, so by Lemma 2 above it is feasible and hence optimal.

Proposition 2. The efficient allocation with full extraction solves the problem with known
payoff-type.

No Underreporting of Payoff-Type

Suppose agents cannot underreport their payoff type. This may occur because of a

technological constraint or because the seller has correct information about a lower

bound of their payoff type. Such a constraint is reasonable in social media if the payoff
type is tightly linked to the time spent on the social network which is identifiable by

the provider and cannot be easily hidden or split across multiple accounts.

Agents can still exaggerate their payoff type or misreport their influence which must

therefore be ruled out by sorting constraints. That is, the monopolist faces the problem

π (
⋃

k∈K (k ×L)× (k+ ×L)) where k+ B {k′ ∈ K : k′ ≥ k}. As in a standard model without

an externality, only the downward sorting constraints will bind in the second best

16Recall we identify sorting constraints with pairs of types.
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problem of Section 4. Prohibiting this deviation makes the first best implementable

and allows the principal to extract all surplus just as with observable k.

Remark 1. The first-best allocation also solves π (
⋃

k∈K (k ×L)× (k+ ×L)).

4 Full Screening

We now turn to the case in which both payoff- and influence-type are not observed.

The principal then solves the 2-dimensional screening problem with consumption

externality π (K×L)2. We call this the full screening problem.

We first characterize the implementable allocations. Following the usual argument

combining upward and downward incentive compatibility between two types, any

implementable allocation has to satisfy monotonicity along the payoff type. Impor-

tantly, this is required for any combination of influence types. Conversely, for any

such allocation, we can find transfers that satisfy the incentive compatibility and

participation constraints.

Proposition 3. There exists a vector of transfers implementing x if and only if it satisfies
k-monotonicity; that is, for every k,k′ , l, l′,

(
xk,l − xk′ ,l′

)
(k − k′) ≥ 0 (25)

In contrast to a well-behaved screening problem without externalities, the first-best

may fail to be implementable in our setting. In the first, the allocation of agents with

high influence but low payoff-type is inflated in order to create the externality. The

allocation may violate k-monotonicity as a result. To illustrate, consider

Example (Pollution 2 × 2). Consider the setting of Section 2.2.2 with K = {0,1} and

L = {0,1}: Apart from differences in productivity, there is one polluting sector l = 0 and

one green sector l = 1. Let max{θ2} = 1, i.e. the green sector does not pollute at all. As

x̄ does not enter firm profits and the marginal social cost of pollution is constant, we

have ζ? = κ and the first best is given by

(
x0,0,x0,1,x1,0,x1,1

)? =

 1
1 +κ

,1,
1

1
2 +κ

,2

 (26)

The first best is implementable if and only if κ ≤ 1
2 . Intuitively, when damage from

pollution is limited, dirty high productivity firms are allowed to produce more than

clean low productivity firms, which is required by incentive compatibility in the full

screening problem.

Remark 2. The decentralized solution, by contrast, is always implementable as it is flat

in l and increasing in k.
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Extremal Sorting

Towards characterizing the full screening allocation, we start by simplifying the set

of constraints. Since the problem contains all sorting constraints along the influence

dimension, Lemma 2 implies that utility has to be constant along the l dimension:

Condition H remains necessary in the full screening problem. Then, a slice k ×L of the

type space can be treated as a single type for the purpose of outward deviations. In

addition, we can rank the attractiveness of contracts in each k×L slice by the level of the

allocation: Higher payoff types will prefer the highest allocation contract, while lower

payoff types will prefer the lowest allocation contract (higher transfer). Furthermore,

we can restrict attention to local misrepresentation of the payoff-type. Consequently,

for types in k ×L, the relevant downward deviation is towards the contract giving the

highest consumption in the k − 1×L slice, whereas the relevant upward deviation is

towards the contract giving the lowest consumption in the k + 1×L slice. If it is not

profitable to deviate to the contract with the largest (smallest) level of consumption in

the slice, it isn’t profitable to deviation into the slice at all.

Definition 1. A menu of contracts {(xkl ,pk,l)}kl∈K×L satisfies extremal sorting (ES) if,

for each k,

Uk ≥ u(min
l

xk+1,l , x̄, k)− tk+1,argminl xk−1,l
(ES-Ak)

Uk ≥ u(max
l

xk−1,l , x̄, k)− tk−1,argmaxl xk−1,l
(ES-Bk)

Finally, by the sorting constraints, it is sufficient to consider the participation

constraint of the lowest payoff type as all other participation constraints will be implied.

Uk0
≥ 0 (P)

Formalizing this discussion, we have

Proposition 4. An allocation satisfies k-monotonicity, (H), (P), and extremal sorting if and
only if it satisfies all participation and incentive constraints (K×L)2.

Lexicographic Monotonicity

The next step is to identify the extremal types (i.e. those that have highest and lowest

allocation in an optimal contract) within a slice k ×L. Let �L on K×L where K is the

dominant dimension, i.e.

(k, l) �L (k′ , l′) ⇐⇒ k > k′ or k = k′ , l > l′ (27)

and denote by M := {x ≥ 0 : x is weakly increasing in �L} denote the set of lex-monotonic

allocations.

Theorem 1 (Lexicographic Monotonicity). If x solves π (K×L)2, then x ∈M.
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Figure 1: The Lexicographic Order �L.

The proof of the theorem proceeds

in three steps. First, we show that the

upward sorting constraints are implied

in the optimal allocation. We then write

the problem in utility space (anticipating

Proposition 5 below) and establish that

the principal always benefits from a

marginal (windfall) increase in x̄, all

other things equal. In other words, the

associated increase in surplus dominates

the increase in information rents and we

have ζ > 0 .17 Consequently, we establish

with a variational argument that within a k ×L slice, the principal always desires to

allocate higher levels of consumption to more influential types – a change that increases

x̄ while even increasing the surplus generated within the slice. Since Proposition 4

implies that only the largest xk,l for a slice k × L is relevant for deviation, adding

the sorting constraints does not alter this property. Combining this fact with k-

monotonicity we have that the optimal allocation has to be lexicographic monotonic.

The Relaxed Problem

Using the results derived in the previous section, we can rewrite the principal’s problem

as a monotonicity constrained optimization in terms of virtual values. This problem is

one-dimensional along the lexicographic order.

Proposition 5. The problem π (K×L)2 is equivalent to

max
x∈M

∑
fk,l

[
u
(
k,xk,l ,x

)
−χl=L

{
1− Fk
fkl

∫ k+1

k
uk

(
j,xk,l ,x

)
dj

}]
+κ(x̄) (UP)

s.t.x̄ =
∑

fk,lv
(
xk,l , l

)
(ζ)

In the appendix, we provide general conditions that ensure that the principal’s

problem is strictly concave. As for the first best (Lemma 1), they involve maximizing

a two-dimensional quadratic form. Under this condition, the full screening contract

induces a pure strategy equilibrium between agents. In the sale of a network good

17A positive marginal value of aggregate consumption for the monopolist is a natural though not
immediate result. In contrast to the symmetric information benchmark, under asymmetric information
aggregate consumption x̄ impacts revenues in two opposing ways: On the one hand, increasing x̄ increases
total surplus; on the other hand, it increases the information rents paid to consumers. We show that
the first force dominates. Hence consumption is increasing in l: this increases aggregate consumption x̄,
counteracting some of the downward distortion due to screening.
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from Section 2.2.1, we get a bound on the degree of complementarities

γ <
E [l]√[∑

k
(1−Fk)2

fk,L
+E [k]

]
E

[
l2
]

+ [E [kl]− L(E [k]− k0)]

(28)

From now on, we assume that the concavity condition is satisfied. Therefore, we have a

unique solution to our program which we denote by xFS.

To achieve a closer characterization of the optimal allocation we need to deal

with the monotonicity constraints. As opposed to the textbook screening model, a

simple condition on primitives is not sufficient to rule out violations of monotonicity.

Instead, by the nature of our problem, there are two sources of monotonicity violations

in this candidate allocation. First, sorting constraints only affect types with l = L

directly: screening distortions on the whole k ×L slice accumulate on the k,L type. The

resulting downward distortion will typically be propagated along the l-dimension by

lexicographic monotonicity. This would happen even if single-crossing and a monotone

hazard rate are satisfied. The second source of violations of monotonic virtual values

is the jump between type k,L and k + 1, l0: One the one hand, the latter has a higher

payoff type, on the other hand, he is less influential, which depresses his virtual

value. The strength of those distortions depends on the endogenous objects ζ, x̄ and no

general conditions consistent with our analysis can ensure the lex-monotonicity of the

candidate allocation.

Example (Pollution 2× 2). Let us illustrate these issues in the pollution setting where

we can solve for the allocation in closed form. The pointwise maximizer of the objective

(UP) is (
x̌0,0, x̌0,1, x̌1,0, x̌1,1

)
=

 1
1 +κ

,1−
1− f0,0 − f0,1

1− f0,0 + f0,1
,

1
1
2 +κ

,2

 (29)

The pointwise maximum violates lexicographic monotonicity between (0,0) and (0,1)

if

f0,1 <
1− f0,0

2κ
(30)

i.e. whenever the downward distortion due to sorting constraints is larger than the

reduction in output due to pollution for type (0,0). This condition is always met if

κ ≈ 0 or if the downward distortion is large as f0,1 ≈ 0. In this case, the two lowest

types will be bunched.

There is a non-monotonicity induced by the downward jump in influence between

(0,1) and (1,0) if

f0,1 >
1− f0,0

1 + 2κ
(31)

i.e. whenever the downward distortion due to sorting is smaller than the reduction in

output due to pollution for type (1,0). Combining both inequalities, we see that the
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pointwise maximizer x̌ solves the full screening problem if and only if

κ ∈
[

1− f0,0

2f0,1
− 1

2
,
1− f0,0

2f0,1

]
. (32)

(0,1)

(0,0)

(1,0)

0.5 1 1.5 2
κ

Production

Screening

Efficient

0.5 1 1.5 2
κ

Pollution

Figure 2: Production and aggregate pollution as a function of social cost κ.

The resulting ironing procedure has important consequences for the impact of

screening on pollution, as illustrated in the second panel of Figure 2. In the uncon-

strained case, the downward distortion only affects the "green" type (0,1). Therefore,

the pollution mitigation and rent extraction motive are (locally) independent and

x̄? and x̄FS coincide. When the monotonicity constraint between (0,0) and (0,1) is

binding, the "dirty" type is distorted downwards and the rent extraction motive leads

to pollution lower than in the first best. When instead the monotonicity constraint

between (0,1) and (1,0) is binding, the need for screening high from low productivity

types depresses the output of the inefficient green type in favor of the efficient dirty

type, leading to pollution in excess of the first-best level.

In general, the ironing conditions depend not only on primitives, but the endoge-

nous objects x̄ and ζ.18 In the sale of a network good, for example, the solution requires

ironing unless for all k

ζ
L− l0
E[l]

< γx̄

(
1 +

1− F(k)
fk,L

)
< γx̄+ ζ

1
E[l]

. (33)

4.1 The Ironing Procedure

The ironing procedure therefore proceeds in two steps. We first solve for the candidate

allocation for fixed aggregate variables (x̄,ζ) and then solve for the aggregate quantities.

18In the pollution example, ζ is pinned down exogenously since we have a constant (marginal) social
benefit of x and x̄ does not affect agents’ returns.
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We write the objective function as the weighted sum of virtual values J(xk,l , k, l,x,ζ).

∑
k,l

fk,l

[
u
(
k,xk,l ,x

)
−χl=L

{
1− Fk
fkl

[
u
(
k + 1,xk,l ,x

)
−u

(
k,xk,L,x

)]}
+ ζv

(
xk,l , l

)]
︸                                                                                        ︷︷                                                                                        ︸

:=J(xk,l ,k,l,x,ζ)

(34)

which defines a set of proposed allocations x̌k,l maximizing the (rescaled) virtual value

J. By concavity of the virtual value, x̌k,l (x,ζ) solves Jx
(
x̌k,l , k, l,x,ζ

)
= 0. Clearly, if x̌ ∈M,

then it is the solution, x̌ (x,ζ) = xFS (x,ζ). As discussed above, this generally won’t be

the case.

Allocation Conditional on Aggregate Variables

We adapt standard techniques from Toikka (2011) to the problem rendered one

dimensional in the lexicographic order by virtue of Theorem 1.

Let k(q), l(q) : [0,1] 7→ K×L trace out the distribution f on K×L along the lexico-

graphic order. In other words, if q ∈
[∑

i,j≺Lk,l
fi,j ,

∑
i,j-Lk,l

fi,j
)
, we have k(q) = k and

l(q) = q. Denote an inverse by q(k, l) =
∑

i,j≺Lk,l
fi,j . The cumulative virtual value is

given by

H(x,q) =
∫ q

0
Jx(x,k(r), l(r), x̄,ζ)dr (35)

It follows from Toikka (2011) that ironing the original problem is equivalent to con-

vexifying H. For every x, let G(x, ·) := Conv H (x, ·) := max{g (x, ·) ≤ H (x, ·) |g is convex}
which is continuously differentiable almost everywhere on [0,1].

J (x,k, l,x,ζ) = J(0, k, l,x,ζ) +
∫ x

0
Gq (y,q (k, l))dy (36)

The conditionally optimal allocation then solves

xFS(x̄,ζ)B argmax
x

∑
J (x,k, l,x,ζ) (37)

Remark 3. As our type space is finite, the convexification is easy to compute. A simple

algorithm proceeds downwards in the lexicographic order and “greedily” irons out

violations of convexity as it encounters them. It finishes in at most |K ×L|+ 1 steps.

If H(xk,l ,q) < G(xk,l ,q), the lex-monotonicity constraints are active at the correspond-

ing type and there is bunching. Indeed, since H is piecewise linear, with kinks where

k(q), l(q) jumps between types, we obtain an intuitive characterization of xFS(x̄,ζ).

Lemma 3. The ironing procedure induces a partition of types B, with typical element B,
ordered by �L. The optimal allocation for a given (x̄,ζ) is constant within cells and strictly
increasing across cells. For (k, l) ∈ B, xk,l = xB, solving

ux (kB,xB,x) + ζE[vx (xB, l) |B]−
∑

k,l�LB fk,l∑
k,l∈B fk,l

[
ux

(
kB + 1,xB,x

)
−ux

(
kB,xB,x

)]
= 0 (38)
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where kB = min(k,l)∈Bk and kB = max(k,l)∈Bk.

In the network good application, types coincide with marginal utility and the

marginal externality and hence condition (38) simplifies to

xB = max
{

1 + γx

(
E [k |B]−

∑
k,l�LB fk,l∑
(k,l)∈B fk,l

)
+ ζ

E [l |B]
E [l]

,0
}

(39)

Agents are allocated consumption according to the expected payoff-type and expected

externality in their partition cell.

The bunching regions have the following properties

Proposition 6.

1. There is no bunching at the top of the lexicographic order: {(K,L)} ∈ B.

2. Every nontrivial cell of B contains a switching type in �L: |B| > 1 =⇒ ∃ (k,L) ∈ B.

3. There is active influence tilting within a payoff slice only if the highest influence type
consumes more than his decentralized allocation: xFS

k,l > xFS
k,l−1 =⇒ ux

(
k,xFS

k,l ,x
)
< 0.

The first property provides a weak analogue to the “no distortion at the top” results

common across screening models: For a given externality x̄ and value of the externality

ζ, the highest type is not affected by the ironing procedure. His consumption, however,

is distorted relative to the decentralized and first-best consumption, even given x̄, as the

value of the externality for the monopolist generally differs from ζ? .19 Agents with the

highest payoff-type but lower influence, by contrast, can be affected by ironing as shown

in the above example.The second property says every bunching region includes an agent

with the highest influence. It is around these types that the nonmonotonic virtual values

can arise: Either their action is heavily downward distorted (to reduce information

rents of higher types) and they are bunched with less influential agents of the same

(or lower) payoff-type, or their action is distorted upward (to promote the externality)

and they are bunched with less influential agents of higher payoff-type. Bunching

regions “strictly” within a payoff slice are never optimal as virtual values are locally

increasing. As for the third property, notice that ux
(
k,xFS

k,l ,x
)
< 0 ⇐⇒ xFS

k,l > xD
k (x)

where the latter is the decentralized solution associated to aggregate activity from full

screening. Whenever the principal discriminates based on influence alone, the more

influential agents consume more than their privately optimal level. In other words,

such tilting is only optimal if the provision of the externality overpowers the usual

downward-distortion motive.

19In the pollution example, we have ux̄ ≡ 0 and linear κ, and therefore always ζ = κ. Hence, if x̄FB = x̄FS

– which is the case for an open set of parameters, see (32) – the higest type produces at the (unconditionally)
efficient level.
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Figure 3: A typical ironing region.

Endogenizing Aggregate Variables

The final step in the derivation of the optimal contract is to endogenize x. We solve

for the aggregate variables in a fixed point problem. We do not establish that the fixed

point mapping is a contraction. However, since a solution in this two-step procedure

corresponds to the solution of the relaxed problem, there exists a unique fixed point.

Therefore, the original problem and the two-step procedure lead to the same solution.

Theorem 2. The allocation xFS solving π (K×L)2 satisfies

xFS = xFS(x̄FS,ζFS) (40)

where (x̄FS,ζFS) is the unique fixed point of the self-map Γ : R2 7→R
2 given by

Γ

 x̄

ζ

 =


∑
fk,lv

(
xFS
k,l (x̄,ζ) , l

)
∑
fk,l

(
ux̄(xFS

k,l (x̄,ζ) , k, x̄)−χl=L
1−Fk
fkl

∫ k+1
k

ukx̄
(
j,xFS

k,l (x̄,ζ) ,x
)

dj
)

+κ′(x̄)

 (41)

Establishing that the two step procedure yields the unique solution of the general

problem π (K×L)2 proves that all properties of the optimal allocation conditional

on aggregate variables x,ζ also characterize the solution to π (K×L)2. In particular,

Proposition 6 characterizes unconditionally optimal bunching regions. We illustrate

those properties in a 2× 2 network good application, detailed derivations are given in

B.2.

Example (Network Good 2× 2). Consider the setting of Section 2.2.1 with K = {0,1}
and L = {0,1}: agents with payoff type 0 are not susceptible at all to the network good,

ux (0, ·) ≡ 0; agents with influence type 0 do not create any consumption externality,

v (0, ·) ≡ 0.20 Given this parametrization three cases emerge as a full screening solu-

20The first best is implementable if and only if f0,1 > f1,0, i.e. there are influential but not susceptible
agents then susceptible but not influential ones.
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tion,21 depending on the residual primitives (complementarities γ and the distribution

of types f ).

1. Low susceptibility agents are bunched and excluded, x1,1 > x1,0 > x0,1 = x0,0 = 0.

2. Low susceptibility agents are bunched at a positive level of consumption, x1,1 >

x1,0 > x0,1 = x0,0 > 0

3. The allocation satisfies strict monotonicity along the lexicographic order, x1,1 >

x1,0 > x0,1 > x0,0 = x?0,0 = 1.

Figure 4 displays these possible regions. For every distribution, at γ = 0 every type

consumes 1 (the first best allocation) as there are effectively no externalities. For low

γ, there is always bunching of the non-susceptible agents; local to γ = 0, this level is

decreasing in the degree of complementarity. As γ approaches his upper bound γSB,

given in (28), two things can happen (depending on the distribution of types): either

the bunching level drops to 0 and the non-susceptible agents are excluded, or it bends

back to 1 and the allocation is strictly monotonic. The latter case occurs if γ > 1, and is

therefore relevant only if the bound (28) exceeds 1. Notice all properties of Proposition

6 hold: Type (1,1) is never bunched. The second property holds vacuously in a 2× 2

example. To check the third property, recall from Example 3.1 that xD
k (x) = 1 + kγx.

Agents that are not susceptible are separated in the full screening solution if and only

if x1,0 > 1 = xD
0 , that is for large γ in the right panel of Figure 4. Agents that are

susceptible are always separated since

xFS
1,1 > 1 + γx+

ζ

E [l]
> 1 + γx = xFS

1,0 = xD
1 (x) (42)
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(1,1)

0.1 0.2 0.3 0.4
γ
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1.5
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Eventual Exclusion
0 0.5 1 1.2

γ

1

2

3

xFS

Eventual Strict Monotonicity

Figure 4: Consumption in the 2 × 2 example as a function of complementarities. Type distributions
f = (.1, .1, .2, .6) (left, switching from region 2 to 1) and f = (.3, .3, .3, .1) (right, from region 2 to 3).

As for aggregate variables and welfare, recall that aggregate consumption is inef-

ficiently low in the decentralized outcome. The ranking of total surplus between the

21The {0,1}2 type space is restrictive: for example, it prevents inter-payoff bunching the would
otherwise emerge.
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decentralized and second best allocation is ambiguous. On the one hand, the screening

motive of the principal induces a downward distortion, on the other hand, the principal

internalizes the aggregate externality. We show by means of example (Figure 5) that

the decentralized solution dominates the screening solution in terms of total surplus

and consumer surplus for low γ, but screening performs better for sufficiently high γ,

even in terms of consumer surplus.22

FS
D
*

0.5 0.65
γ

0.65

0.75

0.85

Total Surplus
0.5 0.65

γ

1.2

1.5

1.8

Aggregate Consumption
0.75 1

γ

0.5

1.5

Consumer Surplus

Figure 5: The 2x2 consumption example with f = (.45, .3, .05, .2).

5 Observable Influence

Neither the efficient nor the full screening contract produce influence rents: either

agents are fully extracted or the horizontal sorting condition, (H), implies that utility

has to be constant in a payoff-type slice. Influence rents, however, seem to characterize

some markets, especially network goods where celebrities often get lucrative deals

to promote products. In a model where such influential agents have market power

those rents can emerge as a result of bargaining. We investigate now whether a model

like ours where such market power is excluded (as there is a continuum of agents

in each type), can still generate rents from influence. To this end we investigate the

final observability assumption, i.e. the influence type l is observed but the payoff type

is private information. Motivated by the application, and to simplify the exposition

we will focus on the pricing of a network good with linear quadratic utility (Section

(2.2.1)).

Now, the monopolist can condition consumption on the observable l but has to

ensure types k sort into their contract. Therefore – for a given x – the planner is solving

a sequence of L one-dimensional screening problems. Per the standard arguments, we

can rewrite each of these problems as the maximization of virtual value subject to a

monotonicity constraint. The components for different l are however coupled through

aggregate consumption x̄.
22Clearly, the latter result depends crucially on the distribution of types. No matter the externality, if

the type of the agent is almost known there will be almost full extraction. In the example, type (0,1) is
relatively abundant, linking information rents to the creation of the externality.
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Proposition 7. The maximization problem π
(⋃

l∈L (K× l)2
)

is equivalent to

max
x,x̄

∑
k,l

fk,l

{(
1 + γx̄

(
k − F(K|l)− F(k|l)

f (k|l)

))
xkl −

1
2
x2
kl

}
(43)

subject to the aggregate effect, non-negativity and monotonicity conditional on l.

In this case, violations of monotonicity are solely the mechanical consequence of

a nonmonotonic inverse hazard rate of the conditional type distribution. We hence

restrict attention to the regular case in which the monotonicity constraints are slack.

Assumption 1. For every l, the virtual value k − F(K|l)−F(k|l)
f (k|l) is increasing in k.

Analogous to the full information case, the first-order conditions of this problem

have two components. The first part is the familiar screening formula, the second

adjusts consumption upward for influential individuals in order to provide a stronger

network effect.

xOI
k,l = max

{
0,1 + γx̄OI

(
k − F(K|l)− F(k|l)

f (k|l)

)
︸                               ︷︷                               ︸

optimal screening for fixed x̄

+
l

E[l]
ζOI

︸   ︷︷   ︸
provide public good x̄

}
(44)

Agents receive information rents for their level of susceptibility k. The magnitude

of these rents depends on the level of consumption of agents with the same l but lower

k. Therefore, the rent of type k, l is dependent on his (observable) level of influence.

We say that there are rents from influence if, for every fixed k, the information rent is

increasing in l. There are expected rents from influence, if the expected rent is increasing

in l.

The information rent of type k, l can be written as γx̄
∑

j<k x
OI
j,l . Influence affects

optimal consumption and hence information rents through two channels. First, more

influential individuals consume more and high levels of consumption cause high rents.

Second, influence has an effect on the downward distortion of consumption by the

monopolist. If susceptibility and influence are affiliated, high influence makes it

more likely that the agent also has high susceptibility and the monopolist distorts

consumption downwards more. The outcome depends on the balance of these two

forces whose relative strength is determined by a moment Ξ of the type-distriution

measuring both the scale of externalities and the (unsigned) association between k, l,

i.e. how informative the observable influence is about the payoff type of the agent.

Formally, the rents of type k, l are proportional to

ξ(k, l) := k
l

E[l]︸︷︷︸Ξ

provision of x̄

−
∑k−1

j=0
1− F(j |l)
f (j |l)︸           ︷︷           ︸

screening distortion

, (45)
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where Ξ := γ

E[k] +E[
(

1− F(k|l)
f (k|l)

)2

]

 > 0. (46)

Proposition 8. Suppose the nonnegativity constraints are slack.

1. There are rents from influence if and only if, for all k, ξ(k, l) is increasing in l.

2. There are expected rents from influence if and only if E[ξ(k, l)|l] is increasing in l.

If k and l are independent, the screening distortion is independent of l and we

have both rents from influence and expected rents from influence. In general, one can

happen without the other, as we will illustrate in our running example.

Example (Network Good 2×2 cont’d). We further parameterize the 2×2 network good

setting by the covariance of k and l, letting f0,0 = f1,1 = .25 +ρ, f0,1 = f1,0 = .25−ρ.23 We

highlight some features of the solution (detailed in B.2) in Fig. 6.

In the first two panels we compare the full screening contract with the observable

influence contract. Aggregate consumption is smaller with observable influence when

there is moderate positive correlation. This results from the large downward distortion

of x0,1 chosen in order to depress the information rents of the relatively common type

(1,1), a motive that is attenuated when l is not observed. Clearly, the profit of the seller

is weakly higher when influence is observable, with equality only when xOI
0,0 = xOI

0,1, i.e.

when the observable-l contract is incentive compatible in the full screening problem

(the tangency point in the top right panel).

In the bottom panels we plot rents and expected rents from influence. For ρ <

0, there are always (pointwise) rents from influence. Both the relative abundance

of low payoff types and the motive to provide the consumption externality push

towards a relatively high xOI
0,1 which results in these rents. There is a cutoff ρ̄ > 0

above which the high-payoff low-influence type obtains a higher rent. The question of

expected influence rents is more subtle, as there is the additional composition effect:

as ρ increases, the influential agents also become more abundant relative to the non

influential one (in the slice of high payoff agents that receive some rents). As long as γ

is not too large, this composition effect dominates for moderately negative correlation.

Even though type (1,1) obtains a higher rent, the relative abundance of (0,1) types

means that on average high influence consumers have a lower rent. This highlights the

interaction of the conditional rent above (which is positive if correlation is negative)

and the shift in relative mass from low to high payoff types (which favors rents for high

influence types if there is positive correlation, at least initially). The relative strength

of these effects is mediated by γ as it scales up the magnitude of rents: For large γ

expected rents are in line with pointwise rents.

23Note that Assumption 1 is satisfied trivially in a two payoff-type example and that

Cov (k, l) = f11 −
(
f0,1 + f1,1

)(
f1,0 + f1,1

)
= .25 + ρ− (.5)2 = ρ
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Figure 6: Observable influence in the 2x2 consumption example.

Comparing the results in this section to the previous one, we see that influence

affects an agent’s utility only if it is observable and only indirectly, through its impact on
information rents.

6 Conclusion

We analyze a screening problem with externalities. Agents have private information

about their payoff-type and their influence on the externality. A monopolist principal

provides a menu of actions and trades off revenues with the direct payoff from the

externality. Several problems fall into this framework, for example a monopolist firm

using nonlinear pricing when there are consumption externalities or a government

designing a tax when there are externalities between firms, positive through external

economies of scale or negative through pollution. Even though the problem is two-

dimensional at the surface and contracts are linked “globally” through the externality,

we show that it is nevertheless tractable. The principal screens along the payoff-

type while tilting the allocation along the influence-type to correct for the externality.

Eliciting influence is for free: As long as the payoff-type is observable, the principal

can implement the first-best. If both characteristics are unobservable, we show that the

problem can be transformed into a one-dimensional problem along the lexicographic

order, with the payoff-type as the dominant dimension. There are rents for high payoff-

types, but no rents for influence. If influence is observable, the problem is equivalent

to a family of one-dimensional screening problems coupled through the externality.

Influence affects utility only if it is observed and even then only indirectly, through its
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effect on information rents. Highly influential consumers obtain higher rents if payoff-

and influence-type are not too affiliated.
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A Proof Appendix

Proof of Lemma 1: Consider the Hessian of total surplus.

HFB = dg[f � (uxx +E[ux̄ +κ′]vxx)] +E[ux̄x̄ +κ′′] [f � vx] [f � vx]T + 2Sym
(
[f �ux̄x] [f � vx]T

)
Let S = dg[

√
f ]. Then HFB = SĤFBS, where

ĤFB = dg[(uxx +E[ux̄ +κ′]vxx)]+E[ux̄x̄ +κ′′]
[√

f � vx
] [√

f � vx
]T

+2Sym
([√

f �ux̄x
] [√

f � vx
]T

)
Since S is positive definite, the Hessian is negative definite whenever the inner sum is n.d.. The
first two summands are n.d. since uxx < 0, ux̄ ≥ 0, κ′ ≥ 0 vxx ≤ 0, ux̄x̄ ≤ 0, and κ′′ ≤ 0. Hence, the
only threat to concavity comes from the two final terms. Note that the two matrices annihilate
the component of any vector outside of span

([√
f �ux̄x

]
,
[√

f � vx
])

. To establish concavity it is
hence sufficient to show that the quadratic form defined by HFB is negative for unit vectors of
the form x = α

[√
f �ux̄x

]
+ β

[√
f � vx

]
.

First, note that
||x|| = α2

E[u2
x̄x] + β2

E[v2
x ] + 2αβE[ux̄xvx]

The quadratic form evaluates to

Q(α,β)By(α,β)TĤFBy(α,β)

=α2
E[u2

x̄x (uxx +E[ux̄ +κ′]vxx)] + 2αβE[ux̄xvx (uxx +E[ux̄ +κ′]vxx)]

+ β2
E[v2

x (uxx +E[ux̄ +κ′]vxx)] +E[ux̄x̄ +κ′′]
{
α2

E[uxx̄vx]2 + 2αβE [uxx̄vx]E
[
v2
x

]
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+β2
E

[
v2
x

]2}
+ 2

{
α2

E[u2
x̄x]E[ux̄xvx] +αβ

[
E[u2

x̄x]E[v2
x ] + (E[ux̄xvx])2

]
+ β2

E[ux̄xvx]E[v2
x ]
}

and we have concavity if the value of

max
α,β

Q(α,β)

s.t.α2
E[u2

x̄x] + β2
E[v2

x ] + 2αβE[ux̄xvx] = 1 (47)

is negative. The solution to this problem is conceptually simple as we are maximizing a
quadratic form over an elliptic constraint, but analytically cumbersome. We hence restrict
attention to our examples where we can derive meaningful bounds on the parameters.

In the consumption example, we have (uxx +E[ux̄ +κ′]vxx) = −1 and E[ux̄x̄ +κ′′] = 0. Hence
we get

Q(α,β) =−
(
α2

E[u2
x̄x] + β2

E[v2
x ] + 2αβE[ux̄xvx]

)
+ 2

{
α2

E[u2
x̄x]E[ux̄xvx] +αβ

[
E[u2

x̄x]E[v2
x ] + (E[ux̄xvx])2

]
+ β2

E[ux̄xvx]E[v2
x ]
}

=− 1 + 2
{
E[ux̄xvx] +αβ

[
E[u2

x̄x]E[v2
x ]− (E[ux̄xvx])2

]}
by plugging in the constraint. Note that the coefficient of αβ is nonnegative by Cauchy-Schwartz.
Hence, it is sufficient to find maxαβ subject to the constraint. It follows from straightforward
computation that

max
s.t.47

αβ =
1

2
(√

E[u2
x̄x]E[v2

x ] +E[ux̄xvx]
)

Plugging back and using that E[u2
x̄x] = γ2

E[k2], E[v2
x ] = E[l2]

E[l]2 , E[ux̄xvx] = γ
E[kl]
E[l] , after straight-

forward manipulation we get

γ <
E[l](√

E[k2]E[l2] +E[kl]
) .

In the pollution case, we have ux̄ = 0 and hence

Q(α,β) =β2
(
E[v2

x (uxx +κ′vxx)] +κ′′E
[
v2
x

]2)
=

1

E[v2
x ]
E[v2

x (uxx +κvxx)] < 0

which is always satisfied.

Proof of Proposition 1: As the problem is concave, differentiation of the objective – treating x̄ as
a constraint – yields the desired conditions.

For the derivation of the unit price in the network good application, note that solving
u(x?k,l , k, x̄

?) = 0 yields

t?k,l =
1
2

(
1 + γx̄?k

)2
− 1

2

(
l

E[l]
ζ?

)2

=
1
2
x?k,l

(
1 + γx̄?k − l

E[l]
ζ?

)
.

Proof of Lemma 2: Fix an arbitrary k and suppose the set of contracts
{
xk,l ,pk,l

}
l∈L delivers

the same utility u ((k, l) ,x,x) for all l ∈ L. Clearly, there is no incentive to misrepresent the
influence-type.
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That this is necessary is immediate from ICk,l→k,l′ and ICk,l′→k,l :

u(xk,l , k, x̄)− tk,l ≥ u(xk,l′ , k, x̄)− tk,l′ ≥ u(xk,l , k, x̄)− tk,l

Proof of Lemma 2: Recall that the relevant set of constraints for this problem are given by⋃
k∈K (k ×L). Consider the first-best allocation. The participation constraints are satisfied and

the uk,l is independent of l. Hence, by Lemma (2), the sorting constraints of this problem are
satisfied. Clearly, this is the maximal profit the principal can achieve and hence the first-best
allocation is the optimal menu of contracts.

Proof of Remark 1: Suppose an agent with type k, l deviates to k′ , l′ with k′ > k. Since we have
full extraction (Uk = 0), the utility under this deviation is

Uk′ +u(xFB
k′ ,l′ , k, x̄)−u(xFB

k′ ,l′ , k
′ , x̄) = −

∫ k′

k
uk < 0 = Uk

Hence, it is not profitable. Similarly, there is also no incentive to misrepresent only influence.

Proofs for the Full Screening Problem

Proof of Proposition 3: Consider the constraints ICk,l→k′ ,l′ and ICk′ ,l′→k,l :

u(xk,l , x̄, k)− pk,l ≥ u(xk′ ,l′ , x̄, k)− pk′ ,l′

u(xk′ ,l′ , x̄, k
′)− pk′ ,l′ ≥ u(xk,l , x̄, k

′)− pk,l

Taking differences we arrive at

u(xk,l , x̄, k)−u(xk′ ,l′ , x̄, k) ≥ u(xk,l , x̄, k
′)−u(xk′ ,l′ , x̄, k

′)

which implies k′ < k ⇐⇒ xk′ ,l′ < xk,l since u has increasing differences in x,k.

Notation. Fix a menu of contracts {(xkl ,pk,l)}kl∈K×L and, for each k, pick

lk ∈ argmin
l̃

xk,̃l , lk ∈ argmax
l̃

xk,̃l .

Proof of Proposition 4: Consider the sorting constraint from type k, l to type k′ , l′ , where k > k′ .
It is implied since

u(k,xk,l ,x)− pk,l = Uk ≥ u(k,xk−1,lk−1 ,x)− tk−1,lk−1

= Uk−1 +u(k,xk−1,lk−1 ,x)−u(k − 1,xk−1,lk−1 ,x)

≥ · · · ≥ Uk′ +
k∑

j=k′+1

(
u(j,xj−1,lj−1 ,x)−u(j − 1,xj−1,lj−1 ,x)

)
≥ Uk′ +

k∑
j=k′+1

(
u(j,xk′ ,l′ ,x)−u(j − 1,xk′ ,l ,x)

)
≥ u(k,xk′ ,l′ ,x)− tk′ ,l′
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where the first inequality is the extremal downward sorting constraint (ES-Bk) and the equalities
follow from condition H. We apply this argument iteratively and estimate the sum of differences
using that x in k-monotonic and u has increasing differences. An analogous argument
leveraging (ES-Ak) establishes the upward IC. Hence, all IC constraints are implied. The
sufficiency of P for all participation constraints follows from the above argument, noting that
the LHS of the penultimate line for k′ = k0 is nonnegative by P and uk ≥ 0.

Lemma 4. Consider an allocation satisfying the conditions of Proposition (4). If the downward
ES-constraints (ES-Bk) are binding, the upward ES-constraints (ES-Ak) are inactive. Furthermore,
in any second best contract, the downward ES-constraints (ES-Bk) and participation for k0, P, are
binding.

Proof of Lemma: Consider k, l and k′ , l′ with k < k′ . Then

u(k,xk′ ,l′ ,x)− pk′ ,l′ = Uk′ +u(k,xk′ ,l′ ,x)−u(k′ ,xk′ ,l′ ,x)

= Uk +
k
′∑

j=k+1

(
u(j,xj−1,lj−1 ,x)−u(j − 1,xj−1,lj−1 ,x)

)
−
(
u(k′ ,xk′ ,l′ ,x)−u(k,xk′ ,l′ ,x)

)
≥ Uk +

k
′∑

j=k+1

(
u(j,xk′ ,l′ ,x)−u(j − 1,xk′ ,l′ ,x)

)
−
(
u(k′ ,xk′ ,l′ ,x)−u(k,xk′ ,l′ ,x)

)
= Uk

where the second line follows by expressing Uk′ via the binding downward IC and the inequality
follows by (i) increasing differences and (ii) k-monotonicity as xk′ ,l′ ≥ xj−1,lj−1 for all j ≤ k′.
Hence, we have the downward IC.

Furthermore, suppose that a downward ES-constraint is strictly slack. We can increase the
transfer from all affected types without implicating any other constraints, which increases the
principal’s objective. The same holds if Uk0

> 0.

Lemma 5. If x,t, x̄,ζ solves the Lagrangian associated to π (K×L)2, then ζ > 0.

Proof of Lemma. By the previous lemma, the downward ES constraints and P are binding and
hence we have that

Uk = u(max
l

xk−1,l , k, x̄)− tk−1,argmaxxk−1,l

= Uk−1 +u(max
l

xk−1,l , k, x̄)−u(max
l

xk−1,l , k − 1, x̄)

=
k−1∑
j=k0

u(max
l

xj,l , j + 1, x̄)−u(max
l

xj,l , j, x̄)

Then, we can rewrite the principal’s objective as

∑
fk,l

(
u(xk,l , k, x̄)−Uk

)
=

∑
fk,l

u(xk,l , k, x̄)−
k−1∑
j=k0

u(max
l

xj,l , j + 1, x̄)−u(max
l

xj,l , j, x̄)
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Consider the Lagrangian with this objective, k-monotonicity, and the ζ constraint. Then, in a
candidate optimum, we have

0 =
∂L
∂x̄

=
∑

fk,l

ux̄(xk,l , k, x̄)−
k−1∑
j=k0

ux̄(max
l

xj,l , j + 1, x̄)−ux̄(max
l

xj,l , j, x̄)

− ζ+κ′(x̄)

ζ =
∑

fk,l

ux̄(xk,l , k, x̄)−
k−1∑
j=k0

ux̄(max
l

xj,l , j + 1, x̄)−ux̄(max
l

xj,l , j, x̄)

+κ′(x̄)

=
∑

fk,l

ux̄(xk,l , k, x̄)−ux̄(max
l

xk−1,l , k, x̄)︸                                   ︷︷                                   ︸
≥0 k-mono and uxx̄≥0

+
k−1∑
j=k0

ux̄(max
l

xj,l , j, x̄)−ux̄(max
l

xj−1,l , j, x̄)︸                                         ︷︷                                         ︸
≥0 k-mono and uxx̄≥0

+κ′(x̄)

> 0

where strictness follows from nontriviality of the allocation and the condition (NT) that either
ux̄ > 0, uxx̄ > 0 for a positive measure of types, or κ′ > 0.

Proof of Theorem 1: Suppose x <M. Then, there exists a k, l′ > l such that xk,l′ < xk,l . Consider

xεk,l = xk,l − ε, tεk,l = tk,l − εux(xk,l , k, x̄)

xεk,l′ = xk,l′ + ε
fk,l
fk,l′

, tεk,l′ = tk,l + ε
fk,l
fk,l′

ux(xk,l′ , k, x̄)

To the first order, this change keeps the utility of agents k, l and k, l′ unchanged (for fixed
x̄). Furthermore, this does not tighten any constraints since the range of xk,· contracts while
utilities are held constant for type k. Furthermore, consider the expected transfers. we have

fk,lt
ε
k,l + fk,l′ t

ε
k,l′ = fk,ltk,l + fk,l′ tk,l′ + εfk,l

(
ux(xk,l′ , k, x̄)−ux(xk,l , k, x̄)

)
> fk,ltk,l + fk,l′ tk,l′

by concavity of u. For x̄, we get

x̄ε = x̄+ ε

(
fk,l
fk,l′

fk,l′vx(xk,l′ , l
′)− fk,lvx(xk,l , l)

)
= x̄+ εfk,l

(
vx(xk,l′ , l

′)− vx(xk,l , l)
)
> x̄

and hence the principal, by judicious adjustment of transfers, can obtain an additional payoff
ζεfk,l

(
vx(xk,l′ , l′)− vx(xk,l , l)

)
, establishing that the original allocation was not optimal.

Proof of Proposition 5: By Lemma 4 and Theorem 1we can write

Uk =
k∑

j=k0+1

(
u(j,xj−1,L,x)−u(j − 1,xj−1,L,x)

)
and hence the objective of the principal reads

∑
fk,l

u(xk,l , k, x̄)−
k∑

j=k0+1

(
u(j,xj−1,L,x)−u(j − 1,xj−1,L,x)

)+κ(x̄) = (48)
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∑
fk,l

[
u(xk,l , k, x̄)−χl=L

1− Fk
fk,l

(
u(xk,L, k + 1,x)−u(xk,L, k,x)

)]
+κ(x̄)

where Fk =
∑

j>k
∑

l fk,l . Note that this objective subsumes all participation and sorting con-
straints, subject to monotonicity and x̄, which establishes the proposition.

Lemma 6. The relaxed problem UP has a unique solution if the value of the quadratic form defined
by the matrix

ĤSB =diag[(uxx −∆xx + (E[ux̄]−E[∆x̄])vxx)]

+ (E[ux̄x̄]−E[∆x̄x̄]) [vx]Φ [vx]T + 2Sym
(
[(ux̄x −∆x̄x)]Φ [vx]T

)
along span

([√
f � (ux̄x −∆x̄x)

]
,
[√

f � vx
])

is strictly bounded above by 0, where

∆xx := χl=L
(1−Fk )
fl,k

∫ k+1
k

ukxxds ∈ R|K×L|, ∆x̄ := χl=L

(
1−Fk
fk,l

)∫ k+1
k

ukx̄ds, ∆x̄x̄ := χl=L

(
1−Fk
fk,l

)∫ k+1
k

ukx̄x̄ds

and ∆x̄x := χl=L
(1−Fk )
fl,k

∫ k+1
k

ukx̄xds ∈R|K×L|.

Proof of Lemma: Using the same approach as for the first best above, the Hessian of the
principals objective in where we have substituted for x̄ is given byHSB = SĤSBS . Note that we
have ukxx ≥ 0 and ukx̄x̄ ≥ 0. Therefore E[∆x̄x̄] ≥ 0. Furthermore E[ux̄]−E[∆x̄] > 0 is implied by
our conditions and lex-monotonicity: We have by (48) and the proof of Lemma (5)

E[ux̄]−E[∆x̄] =
∑

fk,l

[
ux̄(xk,l , k, x̄)−χl=L

1− Fk
fk,l

(
ux̄(xk,L, k + 1,x)−ux̄(xk,L, k,x)

)]
=

∑
fk,l

ux̄(xk,l , k, x̄)−
k∑

j=k0+1

(
ux̄(j,xj−1,L,x)−ux̄(j − 1,xj−1,L,x)

) = ζ−κ′(x̄) ≥ 0

Hence, the first two matrices are negative semi-definite. As in the first-best, we can restrict
attention to the subspace span

([√
f � (ux̄x −∆x̄x)

]
,
[√

f � vx
])

as the terminal matrix annihilates

all others. Let y(α,β) = α
[√

f � (ux̄x −∆x̄x)
]
+ β

[√
f � vx

]
. We have concavity if the value of

max
α,β

y(α,β)TĤSBy(α,β)

s.t.α2
E[(ux̄x −∆x̄x)2] + β2

E[v2
x ] + 2αβE[(ux̄x −∆x̄x)vx] = 1

is negative (for all x).
In the linear case, we can proceed similar to the first-best

ĤSB = −I + 2Sym

[√f �
(
γk −χl=Lγ

(1− Fk)
fl,k

)][√
f � l

E[l]

]T
so that the quadratic form evaluates to

−1 + 2E
[(
γk −χl=Lγ

(1− Fk)
fl,k

)
l

E [l]

]α2
E

(γk −χl=Lγ
(1− Fk)
fl,k

)2+ β2
E

( l
E [l]

)2
+ 2αβ

E
(γk −χl=Lγ

(1− Fk)
fl,k

)2E( l
E [l]

)2+E

[(
γk −χl=Lγ

(1− Fk)
fl,k

)
l

E [l]

]2
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Using the constraint and simplifying, we arrive at

y(α,β)TĤSBy(α,β) =− 1 + 2E
[(
γk −χl=Lγ

(1− Fk)
fl,k

)
l

E [l]

]
+

+ 2αβ


E

(γk −χl=Lγ
(1− Fk)
fl,k

)2E( l
E [l]

)2−E[(
γk −χl=Lγ

(1− Fk)
fl,k

)
l

E [l]

]2

︸                                                                                        ︷︷                                                                                        ︸
≥ 0 by Cauchy-Schwarz


Maximizing, we get

max
α,β:||y||=1

αβ =
1

2

√
E[

(
γk −χl=Lγ

(1−Fk )
fl,k

)2
]E

[(
l

E[l]

)2
]

+ 2E
[(
γk −χl=Lγ

(1−Fk )
fl,k

)
l

E[l]

]
which implies the bound√

E

(γk −χl=Lγ
(1− Fk)
fl,k

)2E( l
E [l]

)2+E

[(
γk −χl=Lγ

(1− Fk)
fl,k

)
l

E [l]

]
< 1

Simplifying by using

E

(
k ·χl=L

(1− Fk)
fL,k

)
=

∑
k

k · (1− Fk) =
1
2

[
E

[
k2

]
−E [k]

]
and

E

[(
γk −χl=Lγ

(1− Fk)
fl,k

)
l

E [l]

]
=

γ

E [l]

[
E [kl]−E

[(
χl=L

(1− Fk)
fl,k

)
l

]]
=

γ

E [l]

E [kl]− L
∑
k

(1− Fk)

 =
γ

E [l]
[E [kl]− L(E [k]− k0)]

we arrive at equation 28 in the text.

γ <
E [l]√[∑

k
(1−Fk )2

fk,L
+E [k]

]
E

[
(l)2

]
+ [E [kl]− L(E [k]− k0)]

Lemma 7. The virtual value J is concave in x for all x̄,ζ > 0.

Proof of Lemma: By direct computation, we have

∂2

∂x2 J = uxx −χl=L

{
1− Fk
fkl

[uxx (k + 1,x,x)−uxx (k,x,x)]
}

+ ζvxx < 0

since uxx < 0, vxx ≤ 0 and uxxk ≥ 0.

Proof. Since we have a finite type space, H(x,q) is piece-wise linear in q. Therefore, the
convexification induces a partition of q which is a coarsening of the partition induced by the
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map q(k, l). Therefore, we obtain an induced partition of types, which we denote by B in both
spaces by abuse of notation. For q ∈ B, we have

Gq(x,q) =
∫
r∈B

Hq(x,r)dr =
∫
r∈B

Jx(x,k(r), l(r), x̄,ζ)dr

Since xk,l is constant on B, it solves

0 =
1
|B|

∑
k,l∈B

J (x,k, l,x,ζ) =
1
|B|

∑
k,l∈B

Gq (x,q (k, l)) =
∫
r∈B

Jx(x,k(r), l(r), x̄,ζ)dr

=
∑
k,l∈B

fk,l

[
ux

(
k,xk,l ,x

)
−χl=L

{
1− Fk
fkl

[
ux

(
k + 1,xk,l ,x

)
−ux

(
k,xk,L,x

)]}
+ ζvx

(
xk,l , l

)]

Finally, we divide by
∑

k,l∈B fk,l and rearrange

1∑
k,l∈B fk,l

∑
k,l∈B

fk,l

{
ux

(
k,xk,l ,x

)
−χl=L

{
1− Fk
fkl

[
ux

(
k + 1,xk,l ,x

)
−ux

(
k,xk,L,x

)]}}
=

ux (kB,xB,x) +
1∑

k,l∈B fk,l


∑

k,l∈B fk,l
[
ux

(
k,xk,l ,x

)
−ux (kB,xB,x)

]
−
∑

k,L∈B (1− Fk)
[
ux

(
k + 1,xk,l ,x

)
−ux

(
k,xk,L,x

)]  =

ux (kB,xB,x) +
1∑

k,l∈B fk,l


∑

k,l∈B fk,l
[
ux

(
k,xk,l ,x

)
−ux (kB,xB,x)

]
−
(
1− FkB

)[
ux

(
kB + 1,xk,l ,x

)
−ux

(
kB,xk,L,x

)]
−
∑

k,L∈B\{kB,L} (1− Fk)
[
ux

(
k + 1,xk,l ,x

)
−ux

(
k,xk,L,x

)]
 =

ux (kB,xB,x) +
1∑

k,l∈B fk,l


∑

k,l∈B:k,l�LkB,L fk,l
[
ux

(
k,xk,l ,x

)
−ux (kB,xB,x)

]
−
∑

k,l�LkB,L fk,l
[
ux

(
kB + 1,xk,l ,x

)
−ux

(
kB,xk,L,x

)]
−
∑

k,L∈B\{kB,L} (1− Fk)
[
ux

(
k + 1,xk,l ,x

)
−ux

(
k,xk,L,x

)]
 =

ux (kB,xB,x) +
1∑

k,l∈B fk,l


∑

k,l∈B:k,l�LkB+1,L fk,l
[
ux

(
k,xk,l ,x

)
−ux (kB + 1,xB,x)

]
−
∑

k,L∈B\{kB,L} (1− Fk)
[
ux

(
k + 1,xk,l ,x

)
−ux

(
k,xk,L,x

)]  =
(induction)

ux (kB,xB,x)−
∑

k,l�LB fk,l∑
k,l∈B fk,l

[
ux

(
kB + 1,xB,x

)
−ux

(
kB,xB,x

)]
which establishes the first order condition in the text. By Toikka (2011), the solution to the
FOC solves the monotonicity constrained problem.

Proof of Proposition 6: Part 1: By single crossing, Jx(x,K,L, x̄) dominates all other types and
hence there is no bunching and no distortion (in the weak sense) at the top.

Part 2: Consider a nontrivial cell that does not contain a type k,L. Then, this cell is
contained in one k ×L slice. Within such a slice, except at the switching type, however,

Jx = ux
(
k,xk,l ,x

)
+ ζvx

(
xk,l , l

)
is increasing in l and decreasing in x, so no ironing is required, a contradition.

Part 3: Notice that ux(x,k, x̄) < 0 ⇐⇒ x > xD
k (x̄). Suppose towards a contradiction that

xD
k (x̄) ≥ xk,l > xk,l−1. Then, we know that the lex-monotonicity constraint is slack at xk,l−1 and

hence
∂L

∂xk,l−1
= fk,l−1Jx(xk,l−1, k, l − 1, x̄,ζ) > 0

since x̌k,l−1 > xD
k (x̄). This contradicts the optimality of xk,l−1 given x̄,ζ.
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Proof of Theorem 2: Let x̄T,ζT be a fixed point of Γ and denote xT = xFS(x̄T,ζT). Then, since xT

solves maxx∈ML(x, x̄T,ζT) and this problem is concave-convex (since the objective is concave
(by Lemma 7) and M is convex), we have ∇xL(xT, x̄T,ζT) ∈ NM(xT) where NM(x) denotes the
outward normal cone to M at x.24

Consider now the plugin problem and denote its objective by L̂. By assumption, this is a
concave-convex problem and therefore a vector x solves this problem if and only if ∇xL̂(x) ∈
NM(x). We have

∇xL̂(xT) = f �
(
∇x

(
u(xT, x̄T) +∆(xT, x̄T)

)
+E[ux̄(xT, x̄T) +∆x(xT, x̄T) +κ′(x̄)]∇xv(xT, x̄T)

)
= f �

(
∇x

(
u(xT, x̄T) +∆(xT, x̄T)

)
+ ζT∇xv(xT, x̄T)

)
= ∇xL(xT, x̄T,ζT) ∈ NM(xT)

Hence, the solution to the fixed point problem induces a solution to the plugin problem. By
uniqueness of this solution, it is unique.

Conversely, let xFS be the solution to ∇xL̂(xFS) ∈ NM(xFS) and x̄FS =
∑
fk,lv(xFS

k,l , l) and

ζFS =
∑

fk,l

(
ux̄(xFS

k,l , k, x̄
FS)−χl=L

1− Fk
fkl

∫ k+1

k
ukx̄

(
j,xFS

k,l x̄
FS

)
dj

)
+κ′(x̄FS)

Then, following the above chain of equalities backwards it is easy to see that ∇xL(xFS, x̄FS,ζFS) ∈
NM(xFS). Hence, xFS(x̄FS,ζFS) = xFS and Γ (x̄FS,ζFS) = (x̄FS,ζFS) by construction.

Proofs for Observable Influence

Proof of Proposition 7: We can rewrite the problem in utility space, noting that ukl = (1 + γxk)xk,l−
1
2x

2
k,l −pk,l or equivalently pkl = (1 + γxk)xk,l − 1

2x
2
k,l −ukl . Then, P is equivalent to uk0l = 0 where

equality follows from by the usual argument. IC is equivalent to uk,l ≥ uk′ l + γx (k − k′)xk′ ,l .
Again, by the usual arguments, local downward IC and monotonicity are sufficient and IC are
binding, hence uk,l = γx̄

∑k−1
i=k0

xi,l . Plugging this into the objective and applying summation by
parts to the double sum, we arrive at the Proposition.

Proof of Proposition 8: Note that ζ = γ
∑
fk,l

(
k − Fl (K)−Fl (k)

fkl

)
xk,l(ζ, x̄). Solving further yields

x̄ =
∑

fk,l
l

E[l]

(
1 + γx̄

(
k − Fl(K)− Fl(k)

fkl

)
+

l
E[l]

ζ

)
= 1 + γx̄

E[kl]
E[l]

− γx̄E[kl − k0l]
E[l]

+ ζ
E[l2]
E[l]2

= 1 + γx̄k0 + ζ
E[l2]
E[l]2

where we use that
∑

k,l l (Fl(K)− Fl(k)) =
∑

l lFl(K)
∑

k (1− F(k|l)) =
∑

l lFl(K)E[k−k0|l] = E[kl−k0l]

ζ = γ
∑

fk,l

(
k − Fl(K)− Fl(k)

fkl

)(
1 + γx̄

(
k − Fl(K)− Fl(k)

fkl

)
+

l
E[l]

ζ

)
= γ

k0 + γk0ζ+ γx̄

E [k]− k2
0 − 2k0 +E[

(
Fl(K)− Fl(k)

fkl

)2

]


24Formally, z ∈ NM(x) if < z,m− x >≤ 0 for all m ∈M.
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where we used25

∑
fk,l

(
k − Fl(K)− Fl(k)

fkl

)2

= E[k2]− 2
∑

k (Fl(K)− Fl(k)) +E[
(

Fl(K)− Fl(k)
fkl

)2

]

= E[k2]−
(
E

[
k2

]
−E [k] + k2

0 + 2k0

)
+E[

(
Fl(K)− Fl(k)

fkl

)2

]

= E [k]− k2
0 − 2k0 +E[

(
Fl(K)− Fl(k)

fkl

)2

]

Now, we can solve

x̄ = 1 + γx̄k0 + ζ
E[l2]
E[l]2

ζ = γ

k0 + γk0ζ+ γx̄

E [k]− k2
0 − 2k0 +E[

(
Fl(K)− Fl(k)

fkl

)2

]


=

γ

1− γk0

k0 + γx̄

E [k]− k2
0 − 2k0 +E[

(
Fl(K)− Fl(k)

fkl

)2

]


Solving this equation, we get

ζ

γx̄
= Ξ =

k0 + γ

(
E[k]− 2k0 (1 + k0) +E[

( Fl (K)−Fl (k)
fkl

)2
]
)

1−
(
1− E[l2]

E[l]2

)
γk0

then x·,l is increasing in l if

l
E[l]

ζ− γx̄
Fl

K − Fl
k

fkl
∝ l

E[l]
Ξ− Fl(K)− Fl(k)

fkl
=

l
E[l]

Ξ− 1− F(k|l)
f (k|l)

is increasing in l. Furthermore, rents are simply γx̄
∑k−1

j=0 xj,l , so the fact that x·,l is increasing

25Where we used∑
k

(k − k0) · (1− Fk) =
1
2

[
E

[
(k − k0)2

]
−E [k − k0]

]
∑
k

k · (1− Fk) =
∑
k

(k − k0) · (1− Fk) + k0E[k − k0]

=
1
2

[
E

[
(k − k0)2

]
−E [k − k0]

]
+ k0E[k − k0]

=
1
2

[
E

[
k2

]
−E [k]− 2k0E[k] + k2

0 + k0
]
+ k0E[k − k0]

=
1
2

[
E

[
k2

]
−E [k]

]
+

1
2
k2

0 + k0

and ∑
k (Fl (K)− Fl (k)) =

∑
l

Fl (K)
∑
k

k(1− F(k|l))

=
∑
l

Fl (K)
[1

2

[
E

[
k2|l

]
−E [k|l]

]
+

1
2
k2

0 + k0

]
=

1
2

[
E

[
k2

]
−E [k]

]
+

1
2
k2

0 + k0
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in l is sufficient for this to hold. A necessary condition has all cumulative sums increasing.
Whenever l1 > l2 for every k,

k∑
j=0

(
l1
E[l]

Ξ−
1− F(kj |l1)

f (kj |l1)

)
>

k∑
j=0

(
l2
E[l]

Ξ−
1− F(kj |l2)

f (kj |l2)

)
=

k
l1 − l2
E[l]

Ξ+
k∑

j=0

1− F(kj |l2)

f (kj |l2)
−

1− F(kj |l1)

f (kj |l1)

In particular, if k0 = 0, we have Ξ = γ

(
E[k] +E[

( Fl (K)−Fl (k)
fkl

)2
]
)
.

For expected rents from influence, we require that the following is increasing in l

∑
k

f (k|l)
(

l
E[l]

Ξ− 1− F(k|l)
f (k|l)

)
=

l
E[l]

Ξ−E[k − k0|l]

B Examples

B.1 Network Good: Decentralized vs Efficient

For the decentralized case, note that xk = 1 + γx̄Dk and hence

x̄D =
1

1− γ E[kl]
E[l]

.

For the first best, plugging x?k,l into the definition of x̄? and ζ? , we arrive at

ζ =
∑
k,l

fklγk

(
1 + γx̄k +

l
E[l]

ζ

)
= γE[k] + γ2

E[k2]x̄+ ζγ
E[kl]
E[l]

x̄ =
∑
k,l

fkl
l

E[l]

(
1 + γx̄k +

l
E[l]

ζ

)
= 1 + γx̄

E[kl]
E[l]

+ ζ
E[l2]
E[l]2

Solving this 2x2 linear system gives

x̄? =

1 + E[l2]

E[l]2
[
1−γ E[kl]

E[l]

]γE[k]

1− γ E[kl]
E[l] −

γ2
E[l2]E[k2]

E[l]2
[
1−γ E[kl]

E[l]

] .

B.2 Network Good: 2x2

Consider the setting of Section (2.2.1) with K = L = {0,1}.

B.2.1 Benchmark Allocations

The decentralized solution has
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xD
0 = 1, xD

1 = 1 + γx

with

x =
f0,1 + f1,1 (1 + γx)

f0,1 + f1,1
=⇒ x =

f0,1 + f1,1(
f0,1 + f1,1 (1− γ)

)
A decentralized equilibrium exists for every γ < 1 + f0,1

f1,1
.

Computing the efficient allocation is straighforward but yields unwieldy expressions.
However, it holds

x?0,1 − x
?
1,0 =

γ
(
f1,0 − f0,1

)
1− f0,0 − (1− γ)f1,0

Therefore, the first best is implementable if and only if f0,1 ≥ f1,0.

B.2.2 Full Screening

We fully solve for the optimal screening contract in a Mathematica notebook, available upon
request. There, we go through all possible bunching scenarios. Only the following scenarios 1,
2, and 5 are possibly optimal.26

0 < x0,0 < x0,1 < x1,0 < x1,1 (SC1)

0 < x0,0 = x0,1 < x1,0 < x1,1 (SC2)

0 = x0,0 = x0,1 < x1,0 < x1,1 (SC5)

It can be shown that the candidate solution is �L+-monotonic if and only if x2 > x1 ⇐⇒ γ > 1.
This condition is inconsistent with existence (of the first best) for, say, a uniform distribution,
but distributions where it is consistent and we have no bunching can be constructed.27

B.2.3 Observable Influence

We have

xOI
0,0 = 1−

f1,0

f0,0
γx̄, xOI

0,1 = 1−
f1,1

f0,1
γx̄+ ζ

1
f0,1 + f1,1

xOI
1,0 = 1 + γx̄, xOI

1,1 = 1 + γx̄+ ζ
1

f0,1 + f1,1

26The fact that always x0,1 < x1,0 < x1,1 – in other words that only the information rent distortion
induces bunching – is aconsequence of this particular example in which ζ · L is proportional to γx̄. If we
had a generic network sale we could make the l→ l jump large relative to the expectation and make this
relevant.

Because of this bunching structure, the value of x1 tells us everything: If = 1 we are in strictly monotonic
allocation, else the k = 0 slice is bunched (sometimes with the 0 bound binding).

27Clearly, strict concavity of the first-best problem implies existence of the second best solution. The
second-best can exist even if the FB does not but we have

γ <
f0,1

f0,1f1,0 −
√

(1− f0,0)f0,1(1− f0,0 − f1,0)(1− f0,0 − f0,1)

In particular, this is the case when xFB
0,1 diverges: The resulting divergence of information rents can reign

in the second best value. We use this region to demonstrate that consumer surplus in the screening
solution can exceed the decentralized surplus.
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The aggregate variables are

ζOI = γ
∑

fk,l

(
k − Fl (K)− Fl (k)

fkl

)
xOI
k,l

= γx̄OI

γ f1,0 + f1,1 + f0,0

(
f1,0

f0,0

)2

+ f0,1

(
f1,1

f0,1

)2 = γx̄OIΞ

x̄OI = 1 + ζOI 1
f0,1 + f1,1

which we solve for

x̄OI =
1

1− γΞ 1
f0,1+f1,1

, ζOI =
γΞ

1− γΞ 1
f0,1+f1,1

> 0.

By direct substitution of fi,j = 1
4 + (−1)χi,j ρ, we see that there are rents from influence if

xOI
0,0 < xOI

0,1 which is the case if γ − 8ρ+ 16γρ2 < 0 or, equivalently for ρ ∈ [−.25, .25] if ρ < ρ̄ =
1−
√

1−γ2

4γ .

B.3 Pollution 2× 2

B.3.1 Benchmark Allocations

Since the aggregate externality does not affect firms’ profits, we have xD
0 = 1,xD

1 = 2. The
equations characterizing the first best are given by

0 = 1−
xk,l
k + 1

− xk,l (1− l)ζ?(x̄)

where

0 =
∑

fk,lux̄
(
k,x?k,l ,x

)
+κ′(x̄)− ζ?(x̄).

implies κ = ζ?(x̄) and by definition x̄? = −1
2

[
f0,0x

2
0,0 + f1,0x

2
1,0

]
. Plugging those conditions in the

FOC delivers x? =
[

1
1+κ ,1,

1
1
2 +κ

,2
]
.

B.3.2 Full Screening

The full screening problem reads

max
x∈M

∑
fk,l

[
u
(
k,xk,l ,x

)
−χl=L

{
1− Fk
fkl

∫ k+1

k
uk

(
κ,xk,l ,x

)
dκ

}
−κ (1− l)

2
x2
k,l

]

max
x∈M

f0,0

[
x0,0 −

1
2

[1 +κ]x2
0,0

]
+ f0,1

[
x0,1 −

1
2
x2

0,1 −
{

1− f0,0 − f0,1

f0,1

[1
4
x2

0,1

]}]
+

+ f1,0

[
x1,0 −

1
2

[1
2

+κ

]
x2

1,0

]
+ f1,1

[
x1,1 −

1
4
x2

1,1

]
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First order conditions give the vector of candidate solutions x̌ =
[

1
1+κ ,

2f0,1
1−f0,0+f0,1

, 1
1
2 +κ

,2
]
. x̌ ∈M if

and only if
1

1 +κ
<

2f0,1

1− f0,0 + f0,1
<

1
1
2 +κ

which can be rearranged to deliver the conditions on κ given in the text.
Now suppose x̌0,1 = 1 < 1

1+κ = x̌0,0 so low productivity sectors have to be bunched at level
x0,0 = x0,1 = x0. We know that x1,· = x̌1,· from Lemma 3. Dropping constant terms, the objective
reads

f0,0

[
x0 −

1
2

[1 +κ]x2
0

]
+ f0,1

[
x0 −

1
2
x2

0 −
{

1− f0,0 − f0,1

4f0,1
x2

0

}]
that delivers

x0 =
f0,0 + f0,1[

κf0,0 + 1
2
(
1 + f0,0 + f0,1

)] , x1,· = x̌1,·

Finally suppose x̌0,1 = 1 > 1
1
2 +κ

= x̌1,0 so low productivity green sector has to be bunched

with the high productivity dirty sector at level x0,1 = x1,0 = xB that maximizes

f0,1

[
xB −

1
2
x2

B −
{

1− f0,0 − f0,1

4f0,1
x2

B

}]
+ f1,0

[
xB −

1
2

[1
2

+κ

]
x2

B

]
that delivers

xB =
f0,1 + f1,0

1
2
(
1− f0,0 + f0,1 + f1,0

)
+ f1,0κ

B.3.3 Observable Influence

Notice that in this case we are effectively solving two independent screening problems since
the coupling through x is missing as the latter does not enter utility. For l = 1 (green sector)
we have a standard screening contract with 2 types that we omit, while for l = 0 we have a
screening with externality with objective

max
x0,0,x0,1

f0,0

[
x0,0 −

1
2
x2

0,0

]
+ f1,0

[
x1,0 −

1
4
x2

1,0 −
1
4
x2

0,0

]
−κ1

2

[
f0,0

(
x0,0

)2 + f1,0
(
x1,0

)2
]

that gives

f1,0

[
1−

(1
2

+κ

)
x1,0

]
= 0 =⇒ x1,0 =

1(
1
2 +κ

) = x?1,0

2f0,0

f1,0 + 2f0,0 (1 +κ)
= x0,0

and

x = −1
2

f0,0

(
2f0,0

f1,0 + 2f0,0 (1 +κ)

)2

+ f1,0

 1(
1
2 +κ

)
2 > x?

there is suboptimally low pollution since the 0,1 agent produces its efficient level while the 0,0
agent is downward distorted.28

28Here we have solved assuming that the seller cares about pollution. If she doesn’t then she will select

(as if κ = 0 in the previous solution) x1,0 = 2 and x0,0 = 2f0,0
f1,0+2f0,0

, inducing a level of the externality that

can either exceed (for small κ) or fall short of x? .
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