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Abstract 

We address the numerical approximation of bilevel problems consisting of one Nash equilibrium 
problem in the upper level and another Nash equilibrium problem in the lower level. These problems, 
widely employed in engineering and economic applications, are a generalization of the well-known 
Stackelberg (or bilevel optimization) problem. In this paper, we define a numerical method for bilevel 
Nash equilibrium problems where in the lower level there is a ratio-bounded game (introduced in 
Caruso, Ceparano, Morgan [CSEF Working Papers, 593 (2020)]) and in the upper level there is a 
potential game (introduced in Monderer, Shapley [Games Econ. Behav., 14 (1996)]). The method, 
relying on a derivative-free unconstrained optimization technique called local variation method, is 
shown to globally converge towards a solution of the problem and also allows to obtain error 
estimations.  
 
Keywords: Bilevel Nash equilibrium problem, Stackelberg problem, multi-leader-follower game, ratio-
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1 Introduction

Bilevel problems involving a Nash equilibrium problem both in the upper level and in the lower level

are broadly used to model a wide range of situations in engineering and economics frameworks; for

example in electric power markets ([9, 26, 29, 24, 2]), networks ([52, 30]), forward markets ([1, 48]),

two-period Cournot competitions ([44, 41]), contract theory ([40, 14]). This kind of hierarchical

structure, which dates back to the multi-leader-follower model proposed in [46], represents a natural

generalization of the bilevel (or two-level) optimization problem where an optimization problem

appears in the upper level and another one with a unique solution appears in the lower level (see,

for example, [8, 4, 33]). Such a problem is also referred as Stackelberg problem (see, for example,

[47, 37, 3]), since originally introduced by H. von Stackelberg in 1934 ([51]) to analyze single

leader-follower duopolies. Concerning the issue of numerical approximation, whilst a large amount

of results have been obtained for the latter problem (see, for example, [13] for approximation and

regularization methods, [20, Chapter 6] and [21, Section 20.6] for solution algorithms), literature

on numerical methods for bilevel problems involving equilibrium problems in both levels is more

recent and less developed due to the higher complicated nature of the problem. As far as we know:

in [49] a sequential nonlinear complementarity method is proposed for finding stationary points of

equilibrium problems with equilibrium constraints; in [19] a sample average approximation method

is shown to converge with probability 1 in stochastic multi-leader-follower oligopolies; in [28] a

forward-backward splitting method has been applied for a particular class of multi-leader-follower

games; in [25] the unique solution to quadratic multi-leader-follower games is approached via a

smoothing technique combined with gradient and Newton methods.

In this paper, our aim is to define a manageable numerical method which guarantees global

convergence and error estimations for bilevel Nash equilibrium problems. In order to achieve such

a goal, we will deal with a class of bilevel problems where the lower level problem is non-parametric.

More precisely, we consider

• a two-player game Ω := {J, Y1, Y2, f1, f2} in the lower level, where J = {1, 2}, Yj is the

strategy set of player j and fj : Y1 × Y2 → R is the payoff function of player j for any j ∈ J ;

• a parametric two-player game Θy := {I,X1, X2, l1(·, y), l2(·, y)} in the upper level, where

y ∈ Y1 × Y2, I = {1, 2}, Xi is the strategy set of player i and li : X1 ×X2 × Y1 × Y2 → R is

the payoff function of player i for any i ∈ I.

Called X = X1 ×X2 and Y = Y1 × Y2, we are interested in the following bilevel Nash equilibrium

problem

(BNP)


Find (x̄, ȳ) ∈ X × Y
such that x̄ is a Nash equilibrium of Θȳ

where ȳ is a Nash equilibrium of Ω

If (x̄, ȳ) is a solution to (BNP) then it satisfies, by definition of Nash equilibrium,

x̄i ∈ Arg min
xi∈Xi

li(xi, x̄−i, ȳ) for any i ∈ I,

ȳj ∈ Arg min
yj∈Yj

fj(yj , ȳ−j) for any j ∈ J,
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where {−i} = I \ {i} and {−j} = J \ {j} (for example, both (y1, y−1) and (y2, y−2) mean (y1, y2)).

The solution concept above presented naturally arises in a game theory perspective. In fact, a

solution to (BNP) generates a subgame perfect Nash equilibrium (introduced in [45], see also for

example [34]) of a two-stage game where the two upper-level players act as leaders and the two

lower-level players react as followers. More precisely, if (x̄, ȳ) is a solution to (BNP), then the

strategy profile (x̄, ϕ̄(·)) where ϕ̄(x) = ȳ for any x ∈ X is a subgame perfect Nash equilibrium of

such a two-stage game. Moreover, we emphasize that the concept of solution to (BNP) extends

the Stackelberg strategy pair concept defined in [31, Definition 1.1] (also denoted as Stackelberg

equilibrium in [32]) for Stackelberg problems. Hence, from now on, the upper-level players and the

lower-level players in (BNP) are referred as the leaders and the followers, respectively.

Remark 1.1 As regards the comparisons with other existing solution concepts, we point out that

the set of solutions to (BNP) include the set of solutions to equilibrium problems with equilibrium

constraints (EPEC for short, see [49, 50] for definitions), meaning that, when adapting the solution

concept in [49] to our framework, it represents a particular selection of our concept (note that the

existence of EPECs’ solutions is guaranteed only for specific classes of problems, as for example

in [44, 1, 48]). Instead, in general the solution to (BNP) is not connected with the L/F Nash

equilibrium introduced in [42] for multi-leader-follower games.

When the lower-level game has a unique Nash equilibrium, the theoretical procedure to deter-

mine a solution to (BNP) is straightforward: first one finds the Nash equilibrium of Ω, then one

replaces it in the upper-level game and solves the resulting Nash equilibrium problem. Nevertheless,

the numerical procedure to determine a solution to (BNP) remains a crucial issue since the analytic

expression of the lower-level Nash equilibrium is generally not available.

In this paper, we introduce a numerical method, called bilevel local variation method (BLVM), that

globally converges to a solution to (BNP) for a class of bilevel Nash equilibrium problems where

the uniqueness of the lower-level Nash equilibrium is ensured. More precisely, we consider bilevel

Nash equilibrium problems such that the lower-level game is ratio-bounded (see [11] where the class

of ratio-bounded games has been introduced in order to investigate the global convergence towards

Nash equilibria of the affine relaxations of the best response algorithm). Such a ratio-boundedness

property actually guarantees that the lower-level game has a unique Nash equilibrium. Moreover,

the upper-level game Θy is assumed to be a potential game (see [35]) for any y ∈ Y , as frequently

considered in many applications and computations. The BLVM is defined by making use of a

derivative-free optimization technique, called local variation method (LVM), introduced in [15] for

variational problems and exploited in [16] for function minimization problems, in [17, 36, 18] for

zero-sum games and in [10] for non-zero-sum games. In particular such a technique allows us to

obtain also error estimations for BLVM.

The paper is structured as follows. Section 2 concerns the issue of the existence and uniqueness

of a solution to (BNP): we state the assumptions on the games in the lower and upper level, recall

the class of ratio-bounded games and show relevant properties of problem (BNP). Section 3 provides

the key preparatory results for the approximation of the solution to (BNP). Section 4 is devoted

to the main purpose of the paper: the numerical approximation of the solution to (BNP). First,

we recall the LVM and its associated convergence analysis (Section 4.1); then we define the BLVM

and we show its global convergence towards the solution to (BNP) together with error estimations

2



and rate of convergence (Section 4.2).

2 Existence and uniqueness of a solution to (BNP)

In this section we illustrate the assumptions on the games in the upper level and in the lower level

which allow to show the existence and the uniqueness of a solution to (BNP).

Throughout the paper we assume that Xi = Rpi for any i ∈ I and Yj = Rqj for any j ∈ J , so

X = Rp and Y = Rq with p = p1 + p2 and q = q1 + q2, and denote with ‖·‖ the Euclidean norm

and with 〈·, ·〉 the usual inner product.

Let us start with the lower-level game Ω = {J, Y1, Y2, f1, f2}.

(F1) fj is strongly convex on Yj uniformly on Y−j , for any j ∈ J ;

i.e. there exists mj > 0 such that for any y′j , y
′′
j ∈ Yj , any y−j ∈ Y−j and any s ∈ [0, 1]

fj(sy
′
j+(1−s)y′′j , y−j) ≤ sfj(y′j , y−j)+(1−s)fj(y′′j , y−j)−mjs(1−s)‖y′j−y′′j ‖2, for any j ∈ J.

By assumption (F1), the function bj : Y−j → Yj

{bj(y−j)} = Arg min
yj∈Yj

fj(yj , y−j) (1)

is well-defined for any j ∈ J and the Nash equilibria of Ω can be characterized in terms of fixed

points of the function b : Y1 → Y1 defined by

b := b1 ◦ b2, (2)

that is (ȳ1, ȳ2) ∈ Y is a Nash equilibrium of Ω if and only if ȳ1 = b(ȳ1) and ȳ2 = b2(ȳ1).

Remark 2.1 Assumption (F1) is properly more demanding than the strong convexity of fj(·, y−j)
and it is not connected with the convexity of fj on Y (see [10, Remark 4.1] for further discussion).

Note that the well-definedness of bj in (1), as well as all the results that will be shown in this and

the next section, hold even by assuming just the strong convexity of fj(·, y−j). We chose to state

at once the assumption (F1) for the sake of readability, since it will play a role in the numerical

approximation analysis.

(F2) fj is twice continuously differentiable on Y , the Hessian matrix D2
yjfj(y) ∈ Rpj×pj is invertible

for any y ∈ Y and

λj := sup
y∈Y
‖[D2

yjfj(y)]−1 ·Dy−j (Dyjfj)(y)‖ ∈ R, (3)

for any j ∈ J .

Assumption (F2) allows to define, for any y′1, y
′′
1 ∈ Y1 and y2 ∈ Y2, the q1 × q1 matrix

H(y′1, y
′′
1 , y2) = [D2

y1f1(y′1, y2)]−1 ·Dy2(Dy1f1)(y′1, y2) · [D2
y2f2(y′′1 , y2)]−1 ·Dy1(Dy2f2)(y′′1 , y2), (4)

which is needful for the definition of the class of games we are interested in the lower level.
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Definition 2.1 [11, Definition 2.1] Let (α, β) ∈ R2. The game Ω is (α, β)-ratio-bounded if for any

y′1, y
′′
1 ∈ Y1 and y2 ∈ Y2

α ≤ yT1 [H(y′1, y
′′
1 , y2)]y1

‖y1‖2
≤ β for any y1 ∈ Y1 \ {0}.

The class of (α, β)-ratio-bounded games contains games widely used in literature as for example

quadratic potential games, quadratic zero-sum games and non-quadratic games with a bilinear

strategic term (see [11, Section 3] for further discussion). For such a class, the existence of a unique

Nash equilibrium has been proved, suitable affine relaxations of the best response dynamics have

been shown to globally converge towards the Nash equilibrium and related error estimations have

been obtained; this will be argued more in detail in the next section.

Moreover, assumption (F2) guaranteed the well-definedness of the real number

λ := λ1λ2, (5)

and of the set

Sλ := {(α, β) ∈ R2 | α > 1 or min{β, λ} < 1}. (6)

which are crucial for the statement of the following assumption and for the uniqueness of the Nash

equilibrium of Ω.

(G1) Ω is (α, β)-ratio-bounded with (α, β) ∈ Sλ.

Proposition 2.1. Assume (F1)-(F2) and (G1). Then Ω has a unique Nash equilibrium (ȳ1, ȳ2),

where ȳ1 is the unique fixed point of b1 ◦ b2 and ȳ2 = b2(ȳ1).

Proof. The thesis follows by applying results showed by the authors in [10, 11], which exploit

contraction properties of suitable affine combinations involving the function b. More precisely,

depending on the value of λ ∈ R, the set Sλ in (6) becomes

Sλ =

{
R2, if λ < 1

{(α, β) ∈ R2 | α > 1} ∪ {(α, β) ∈ R2 | β < 1}, if λ ≥ 1.

Hence, we distinguish two cases: λ < 1 and λ ≥ 1.

When λ < 1, the result holds by [11, Theorem 4.1(i)]. When λ ≥ 1, since it must be α ≤ β by

Definition 2.1, only one of the following situations happens: Ω is (α, β)-ratio-bounded with α > 1 or

Ω is (α, β)-ratio-bounded with β < 1. In the first situation, the thesis follows from [10, remarks 2.1

and 2.8 and Theorem 2.10]. In the second one, from [11, Theorem 4.4(i)].

Remark 2.2 The set Sλ in (6) plays a key-role for the uniqueness result above illustrated. In fact,

if Ω is (α, β)-ratio-bounded with (α, β) ∈ R2 \ Sλ (i.e. α ≤ 1 ≤ min{β, λ}), then in general neither

the existence nor the uniqueness of Nash equilibria of Ω can be guaranteed; see [11, examples 4.4

to 4.6].

Let us consider now the parametric upper-level game Θy = {I,X1, X2, l1(·, y), l2(·, y)}, where

y ∈ Y .

(G2) for any y ∈ Y , the game Θy is a potential game with potential P (·, y) : X → R.
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By definition of potential game (see [35]), assumption (G2) means that for any y ∈ Y

li(x
′
i, x−i, y)− li(x′′i , x−i, y) = P (x′i, x−i, y)− P (x′′i , x−i, y)

for any x′i, x
′′
i ∈ Xi, x−i ∈ X−i and i ∈ I. For characterizations of the potential games see [22,

7], whereas for the relations between Nash equilibria of potential games and minimizers of the

potential see [35, 38, 12].

The next assumption involves directly the potential P .

(L1) P is strongly convex on X uniformly on Y ;

i.e. there exists mP > 0 such that for any x′, x′′ ∈ X, any y ∈ Y and any s ∈ [0, 1]

P (sx′ + (1− s)x′′, y) ≤ sP (x′, y) + (1− s)P (x′′, y)−mP s(1− s)‖x
′ − x′′‖2.

By assumption (L1), the function r : Y → X

{r(y)} = Arg min
x∈X

P (x, y), (7)

is well-defined and the Nash equilibria of Θy are connected with r(y), as provided in the following

result.

Proposition 2.2. Assume (G2), (L1) and that P (·, y) is continuously differentiable on X for any

y ∈ Y . Then, for any y ∈ Y the game Θy has a unique Nash equilibrium, which is r(y).

Proof. Let y ∈ Y . It is worth to preliminarily note that the set of Nash equilibria of Θy coincides

with the set of equilibria of {I,X1, X2, P (·, y), P (·, y)} and that any miminizer of P (·, y) is a Nash

equilibrium of Θy, by [35, Lemma 2.1]. By the first order characterization of the convexity of

P (·, x2, y) and P (x1, ·, y), the set of Nash equilibria of {I,X1, X2, P (·, y), P (·, y)} equals the set Z :=

{x ∈ X | (Dx1P (x, y), Dx2P (x, y)) = (0, 0)}. Moreover, assumption (L1) and the differentiability

of P (·, y) guarantee that Z = {r(y)}, as r(y) is the unique minimizer of P (·, y) over X. Therefore

r(y) is the unique Nash equilibrium of the game Θy.

Remark 2.3 We point out that the result on the uniqueness of the Nash equilibrium of Θy in

Proposition 2.2 cannot be obtained either via [43, Theorem 2], since X1 and X2 are not compact,

or via [38, Corollary p.226], as l1(·, y) and l2(·, y) are not assumed to be bounded. Furthermore,

the continuous differentiability of P (·, y) in Proposition 2.2 cannot be dropped, as shown in the

following example based on [38, Remarks].

Example 2.1 Let X = R2 and P (x, y) = x2
1 + x2

2 + 2|x2 − x1|. The function P (·, y) has a unique

minimizer over R2, namely (0, 0), and the game Θy has infinitely many Nash equilibria, namely

{(x1, x2) ∈ [−1, 1]2 | x1 = x2}. Note that the function P satisfies assumption (L1) but P (·, y) is

not differentiable on the set {(x1, x2) ∈ R2 | x1 = x2}.

Remark 2.4 The strong convexity of P (·, y) (instead of the additional uniformity requirement

stated in (L1)) would suffice to prove Proposition 2.2, as well as the results in this and the next

section. We chose to state at once the assumption (L1) for the same reasons discussed in Remark 2.1.

The existence of a unique solution to (BNP) is illustrated in the following result, where we

denote by NE(Ω) the set of Nash equilibria of the game Ω.
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Theorem 2.1. Assume (F1)-(F2), (G1)-(G2), (L1) and that the function P (·, y) is continuously

differentiable on X for any y ∈ Y . Then the problem (BNP) has a unique solution (x̄, ȳ) ∈ X × Y ,

which satisfies:

x̄ = r(ȳ), where {ȳ} = NE(Ω).

Proof. By Proposition 2.1 the game Ω has a unique Nash equilibrium ȳ ∈ Y . Then the thesis

follows by applying Proposition 2.2 for y = ȳ.

Remark 2.5 If assumption (L1) and the continuous differentiability of P (·, y) in Theorem 2.1 are

replaced with the following weaker assumption:

(L′1) P (·, y) is convex and coercive on X for any y ∈ Y ,

then the existence of solutions to (BNP) still holds. In fact, denoted by ȳ ∈ Y the unique Nash

equilibrium of Ω (see Proposition 2.1), assumption (L′1) implies that P (·, ȳ) has a minimizer over

X (see, e.g., [5, Proposition 11.14]). Since any miminizer of P (·, ȳ) is a Nash equilibrium of Θȳ (by

[35, Lemma 2.1]), the problem (BNP) has at least one solution. However, in general the uniqueness

of a solution to (BNP) is no longer guaranteed. To show this, it is sufficient to consider the function

P defined by

P (x, y) =

{
0, if x2

1 + x2
2 ≤ 1

x2
1 + x2

2 − 1, if x2
1 + x2

2 > 1.

as the potential function in the upper-level game Θy. It satisfies assumption (L′1), but P (·, y) has

infinitely many minimizers over R2.

3 Preliminary results for the approximation

Here we show fundamental results on the games in the upper level and in the lower level which will

be employed for the approximation of a solution to (BNP).

Let us start again with the lower-level game Ω, by displaying some properties of the functions

bj and b defined in (1) and (2), respectively.

Lemma 3.1 (Lemma 2.5 in [10]). Assume (F1)-(F2) and let λj and λ be the real numbers defined

in (3) and (5), respectively. Then

(i) the function bj is continuously differentiable and Lipschitz continuous with Lipschitz constant

no greater than λj, for any j ∈ J ;

(ii) the function b is continuously differentiable and Lipschitz continuous with Lipschitz constant

no greater than λ.

The next results involves the affine combinations of b and of the identity map of Y1, namely the

function tδ : Y1 → Y1 defined by

tδ(y1) := δy1 + (1− δ)b(y1), where δ ∈ R. (8)

In particular, we illustrate contraction properties of tδ when Ω is ratio-bounded. Such properties

rely on results proved by the authors in [10, 11].
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Lemma 3.2. Assume (F1)-(F2) and (G1). Let λ be the real number defined in (5) and (α, β) such

that (G1) holds. Denote by ∆λ
α,β the interval

∆λ
α,β =



]
λ2−1

λ2−2α+1
, 1
[
, if λ < 1]

1, λ2−1
λ2−2α+1

[
, if α > 1]

λ2−1
λ2−2β+1

, 1
[
, if λ ≥ 1 and β < 1.

(9)

Then, the function tδ is a contraction for any δ ∈ ∆λ
α,β.

Proof. See [10, Theorem 2.10(i)] and the proofs of [11, theorems 4.1(iii) and 4.4(iii)].

Lemma 3.3. Assume (F1)-(F2) and (G1). Let λ be the real number defined in (5) and (α, β) such

that (G1) holds. Then, the contraction constant of tδ is minimal for δ = ν, where

ν =


λ2−α

λ2−2α+1
, if λ <

√
α or 1 < α ≤ λ

λ2−β
λ2−2β+1

, if β < 0 or (0 ≤ β < 1 and
√
β < λ)

0, if
√
α ≤ λ < 1 or λ ≤

√
β < 1,

(10)

and the corresponding contraction constant is

κ =


(

λ2−α2

λ2−2α+1

)1/2
, if λ <

√
α or 1 < α ≤ λ(

λ2−β2

λ2−2β+1

)1/2
, if β < 0 or (0 ≤ β < 1 and

√
β < λ)

λ, if
√
α ≤ λ < 1 or λ ≤

√
β < 1.

(11)

Proof. See [10, Theorem 2.10(ii)] and the proofs of [11, theorems 4.2 and 4.4(iv)].

As regards the parametric upper-level game Θy, we illustrate smoothness properties of the

function r defined in (7). Before showing the result, let us introduce the following assumption on

the function P defined in (G2).

(L2) P is twice continuously differentiable on X × Y , the Hessian matrix D2
xP (x, y) ∈ Rp×p is

invertible for any (x, y) ∈ X × Y and

ρ := sup
(x,y)∈X×Y

‖[D2
xP (x, y)]−1 ·Dy(DxP )(x, y)‖ ∈ R; (12)

Lemma 3.4. Assume (G2), (L1) and (L2). Then the function r is continuously differentiable and

Lipschitz continuous with Lipschitz constant no greater then ρ.

Proof. In light of Proposition 2.2, the function r satisfies DxP (r(y), y) = 0 for any y ∈ Y . Hence,

by assumption (L2), the Implicit Function Theorem ensures that the function r is continuously

differentiable on Y and that Dr(y) = [D2
xP (r(y), y)]−1 ·Dy(DxP )(r(y), y) for any y ∈ Y . Moreover,

from the Mean Value Inequality we have

‖r(y′)− r(y′′)‖ ≤ sup
y∈Y
‖Dr(y)‖‖y′ − y′′‖ ≤ ρ‖y′ − y′′‖ for any y′, y′′ ∈ Y.

Therefore, r is Lipschitz continuous with Lipschitz constant no greater than ρ.
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4 Numerical approximation

In order to numerically approximate a solution to (BNP), in this section we define the bilevel

local variation method (BLVM for short) and we show its global convergence and related error

estimations. Such a method exploits an optimization technique introduced in [15] for variational

problems, called the local variation method (LVM for short). For the sake of completeness, we

preliminarily illustrate the LVM and recall its associate convergence and errors estimation results.

4.1 The local variation method LVM

The LVM is a direct unconstrained optimization method that allows both to approach the unique

minimizer of a strongly convex function and to obtain an estimation of the distance between the

approximation calculated and the (exact) minimizer, by using only the values of the function.

The LVM is illustrated in Algorithm 1 for a function g : RN → R. The well-definedness of Algo-

Algorithm 1: Local Variation Method (LVM)

Data: Function g : RN → R, range ε > 0, initial point zε0 := (zε0,1, . . . , z
ε
0,N ) ∈ RN .

Result: Stable point zε of g.

1 begin

2 k ← 0;

3 repeat

4 k ← k + 1;

5 for i = 1 to N do

6 define:

7 ∆k,i := g(zεk,1, . . . , z
ε
k,i−1, z

ε
k−1,i, z

ε
k−1,i+1, . . . , z

ε
k−1,N ),

8 ∆+
k,i := g(zεk,1, . . . , z

ε
k,i−1, z

ε
k−1,i + ε, zεk−1,i+1, . . . , z

ε
k−1,N ),

9 ∆−k,i := g(zεk,1, . . . , z
ε
k,i−1, z

ε
k−1,i − ε, zεk−1,i+1, . . . , z

ε
k−1,N );

10 find Arg min
{zεk−1,i,z

ε
k−1,i+ε,z

ε
k−1,i−ε}

{∆k,i,∆
+
k,i,∆

−
k,i} and denote it by zεk,i;

11 end

12 zεk := (zεk,1, z
ε
k,2, . . . , z

ε
k,N );

13 until g(zεk) ≤ g(zεk,1, . . . , z
ε
k,i−1, z

ε
k,i ± ε, zεk,i+1, . . . , z

ε
k,N ) for any i ∈ {1, . . . , N};

14 zε := (zεk,1, z
ε
k,2, . . . , z

ε
k,N );

15 end

rithm 1 and the convergence towards a minimizer of g have been shown in [16]. For the sake of

completeness we give below the proofs of such results.

Lemma 4.1 (Lemma 1.1 in [16]). Assume that g : RN → R is strongly convex and let ε > 0. Then

Algorithm 1 ends after a finite number of steps and gives a stable point zε ∈ RN , that is a point

satisfying

g(zε) ≤ g(zε1, . . . , z
ε
i−1, z

ε
i ± ε, zεi+1, . . . , z

ε
N ) for any i ∈ {1, . . . , N}. (13)

Proof. By contradiction, suppose that Algorithm 1 does not end after a finite number of steps

and let (zεk)k be the sequence where zεk := (zεk,1, z
ε
k,2, . . . , z

ε
k,N ) is the vector obtained at line 12
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of Algorithm 1. Then, the sequence (zεk)k is necessarily bounded. In fact, if it was not bounded,

limk→+∞‖zεk‖ = +∞ would imply limk→+∞ g(zεk) = +∞, as g is strongly convex and so coercive.

But this is not possible since (g(zεk))k is a decreasing sequence, by construction. Hence (zεk)k is

bounded.

Let C > 0 such that |zεk,i| ≤ C for any i ∈ {1, . . . , N} and k ∈ N. Consequently, since zεk,i =

zε0,i + mk,iε for some mk,i ∈ Z, there exists k̄ ∈ N such that zεk = zε
k̄

for any k > k̄ and zε
k̄

necessarily satisfies (13). Therefore, Algorithm 1 ends after a finite number of steps and gives a

stable point.

Note that the LVM belongs to the class of multidimensional search methods without using

derivatives and, in particular, it can be recognized as a pattern search method with discrete steps

(originally introduced in [27]; see for example [6, Section 8.5] for further discussion).

Theorem 4.1 (Theorem 2.1 in [16]). Assume that g : RN → R is continuously differentiable and

strongly convex. Let (εn)n ⊆]0,+∞[ be a sequence decreasing to zero and zεn be the stable point

obtained by Algorithm 1 with range εn. Then, the sequence (zεn)n converges to the unique maximizer

of g and (g(zεn))n converges to the minimum of g.

Proof. For the sake of readability, we show the result for N = 2. Fixed n ∈ N, let zεn = (zεn1 , zεn2 )

be the stable point obtained by applying the LVM to g with range εn, which is well-defined by

Lemma 4.1, and zmin = (zmin1 , zmin2 ) be the unique minimizer of g over R2, whose existence is

ensured by the strong convexity of g (see, for example, [5, Corollary 11.16]).

In light of inequality (13) and the Mean Value Theorem,

0 ≤ g(zεn1 + εn, z
εn
2 )− g(zεn1 , zεn2 ) = εnDgz1(zεn1 + γ1εn, z

εn
2 )

0 ≤ g(zεn1 − εn, z
εn
2 )− g(zεn1 , zεn2 ) = −εnDgz1(zεn1 − γ

′
1εn, z

εn
2 )

0 ≤ g(zεn1 , zεn2 + εn)− g(zεn1 , zεn2 ) = εnDgz2(zεn1 , zεn2 + γ2εn)

0 ≤ g(zεn1 , zεn2 − εn)− g(zεn1 , zεn2 ) = −εnDgz2(zεn1 , zεn2 − γ
′
2εn),

where γ1, γ
′
1, γ2, γ

′
2 ∈]0, 1[ are depending on εn. Hence

Dgz1(zεn1 + γ1εn, z
εn
2 ) ≥ 0, Dgz1(zεn1 − γ

′
1εn, z

εn
2 ) ≤ 0,

Dgz2(zεn1 , zεn2 + γ2εn) ≥ 0, Dgz2(zεn1 , zεn2 − γ
′
2εn) ≤ 0.

(14)

Now, note that the sequence (g(zεn))n is decreasing by construction, so the sequence (zεn)n is

bounded (by arguing as in the proof of Lemma 4.1). Let (z
εnk
1 )k ⊆ (zεn1 )n and (z

εnk
2 )k ⊆ (zεn2 )n two

subsequences which converge to z̄1 ∈ R and z̄2 ∈ R as k goes to +∞, respectively. Thus, replacing

εn with εnk in (14) and letting k to +∞, the continuity of the partial derivatives of g implies that

Dgz1(z̄1, z̄2) = 0 and Dgz2(z̄1, z̄2) = 0,

i.e. (z̄1, z̄2) is a critical point for g. In light of the strong convexity of g, such a critical point

is unique and coincides with the minimizer of g over R2, that is z̄1 = zmin1 and z̄2 = zmin2 . The

boundedness of (zεn)n and the uniqueness of the minimizer of g guarantees that the whole sequence

(zεn)n converges to zmin. Finally, the last part of the thesis follows by the continuity of g.

9



Before showing the error estimations of the LVM, we preliminarily recall that, if g : RN → R is

differentiable and z ∈ RN , the Taylor’s theorem guarantees

∃ Iz ⊆ RN s.t. g(z + h)− g(z) = 〈∇g(z), h〉+ w(z, h) ∀h ∈ Iz, (15)

where Iz is a neighbourhood of 0 depending on z, ∇g(z) ∈ RN is the gradient of g at z, and the

remainder w(z, h) satisfies limh→0w(z, h)/‖h‖RN = 0. Moreover, if in addition g is strongly convex,

then there exists m > 0 such that

g(z′′)− g(z′) ≥ 〈∇g(z′), z′′ − z′〉+m‖z′′ − z′‖2, (16)

for any x′, x′′ ∈ RN . The error estimations of the LVM illustrated in the next result are obtained

by exploiting the proofs of [16, Theorem 3.1] and [36, Theorem 2.3].

Proposition 4.1. Assume that g : RN → R is differentiable and strongly convex and that there

exist C1 > 0, C0 ≥ 0 and τ > 1 such that

|w(z, h)| ≤ C1‖h‖τ + C0‖h‖τ+1 for any z ∈ RN and h ∈ Iz, (17)

where w and Iz are defined in (15). Let ε > 0 and let zε be the stable point obtained by Algorithm 1.

Then

‖zε − zmin‖ ≤
√
N(C1 + εC0)

m
ετ−1, (18)

where zmin is the unique minimizer of g over RN and m is the constant related to the strong

convexity of g, defined in (16).

Proof. Firstly, note that zε is well-defined in light of Lemma 4.1. Let {e1, . . . , eN} be the standard

basis of RN and let us fix i ∈ {1, . . . , N}. Since zε verifies (13), by (15) we have

0 ≤ g(zε − εei)− g(zε) = −ε〈∇g(zε), ei〉+ w(zε,−εei),
0 ≤ g(zε + εei)− g(zε) = ε〈∇g(zε), ei〉+ w(zε, εei).

(19)

So, by (19) and (17)

〈∇g(zε), ei〉 ≤
w(zε,−εei)

ε
≤ C1‖−εei‖τ + C0‖−εei‖τ+1

ε
,

〈∇g(zε), ei)〉 ≥ −
w(zε, εei)

ε
≥ −C1‖εei‖τ + C0‖εei‖τ+1

ε
.

(20)

Since ‖ei‖ = 1, we get

|〈∇g(zε), ei)〉| ≤ ετ−1(C1 + εC0). (21)

Let m be the constant related to the strong convexity of g, as defined in (16). In light of the

10



definition of zmin and inequalities (16) and (21), then

m‖zmin − zε‖2 ≤ [g(zmin)− g(zε)]− 〈∇g(zε), zmin − zε〉
≤ |〈∇g(zε), zmin − zε)〉|

=

∣∣∣∣∣〈∇g(zε),
N∑
i=1

(zmin − zε)iei)〉

∣∣∣∣∣
≤

N∑
i=1

|(zmin − zε)i||〈∇g(zε), ei〉|

≤ ετ−1(C1 + εC0)‖zmin − zε‖1
≤
√
N(C1 + εC0)ετ−1‖zmin − zε‖,

where ‖·‖1 is the 1-norm of RN and the last inequality follows from the equivalence of norms

in RN , more precisely from the inequality ‖z‖p ≤ N (1/p−1/q)‖z‖q holding for any z ∈ RN and

p, q ∈ [1,+∞[. Therefore, the error estimation in (18) is proved and the proof is complete.

A further result on the error estimations of the LVM can be derived from Proposition 4.1 by

means of the Taylor’s theorem with Lagrange’s form of the remainder.

Corollary 4.1. Assume that g : RN → R is twice differentiable and strongly convex and that there

exists C > 0 such that

‖D2g(z)‖ ≤ C for any z ∈ RN . (22)

Let ε > 0 and let zε be the stable point obtained by Algorithm 1. Then

‖zε − zmin‖ ≤
√
NC

2m
ε,

where zmin is the unique minimizer of g over RN and m is the constant related to the strong

convexity of g, defined in (16).

4.2 The bilevel local variation method BLVM

In order to numerically approximate a solution to (BNP), now we define the bilevel local variation

method (BLVM). At each step of BLVM the current strategy profile of all players is updated by

employing the LVM presented in Section 4.1 three times: firstly, one time for each follower’s payoff

function fj in the lower-level game Ω and then, going up, one time for the potential function P

in the upper-level game Θy (where y comes from the approximation obtained in the lower-level

game).

Assumed that (BNP) satisfies (F1)-(F2), (G1)-(G2) and (L1), the BLVM is illustrated in Algo-

rithm 2, where ν is the real number defined in (10). Figure 1 provides a graphical representation

of Algorithm 2, by highlighting the order whereby the elements of the sequence are generated. In

the next result, the global convergence of the bilevel local variation method towards a solution to

(BNP) is shown.
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Algorithm 2: Bilevel Local Variation Method (BLVM)

Data: Initial range ε0 > 0, initial point (w̃0, ũ0, v0) ∈ X × Y1 × Y2.

Result: Numerical approximation of the solution to (BNP).

1 begin

2 Apply Algorithm 1 to the function f1(·, v0) with range ε0, initial point ũ0 and get the

stable point u∗0;

3 Apply Algorithm 1 to the function P (·, u∗0, v0) with range ε0, initial point w̃0 and get

the stable point w∗0;

4 n← 0;

5 repeat

6 n← n+ 1;

7 Apply Algorithm 1 to the function f2(u∗n−1, ·) with range ε0/2
n, initial point v∗n−1

and get the stable point v∗
n;

8 Apply Algorithm 1 to the function f1(·, v∗n) with range ε0/2
n, initial point u∗n−1 and

get the stable point ũ∗n;

9 u∗
n := νu∗n−1 + (1− ν)ũ∗n;

10 Apply Algorithm 1 to the function P (·, u∗n, v∗n) with range ε0/2
n, initial point w∗n−1

and get the stable point w∗
n;

11 end

Theorem 4.2. Assume (F1)-(F2), (G1)-(G2), (L1)-(L2), and that there exist A > 0, B1 > 0 and

B2 > 0 such that

‖D2
y1f1(y)‖ ≤ B1 for any y ∈ Y, (23a)

‖D2
y2f2(y)‖ ≤ B2 for any y ∈ Y, (23b)

‖D2
xP (x, y)‖ ≤ A for any (x, y) ∈ X × Y. (23c)

Let ε0 > 0 and (w̃0, ũ0, v0) ∈ X×Y1×Y2. Then, the sequence (w∗n, u
∗
n, v
∗
n)n ⊆ X×Y1×Y2 generated

by Algorithm 2 is convergent to the unique solution to the problem (BNP).

Proof. Preliminarily, note that the sequence (w∗n, u
∗
n, v
∗
n)n ⊆ X × Y1 × Y2 is well-defined and that

problem (BNP) has a unique solution (x̄, ȳ1, ȳ2) by Theorem 2.1.

We start by proving the convergence of the sequence (u∗n)n to ȳ1. To show this, let us define the

following auxiliary points

vn := b2(un−1) ∈ Y2 (24a)

un := νun−1 + (1− ν)b1(vn) = tν(un−1) ∈ Y1 (24b)

zn := b2(u∗n−1) ∈ Y2 (24c)

s̃n := b1(zn) ∈ Y1 (24d)

sn := νu∗n−1 + (1− ν)s̃n = tν(u∗n−1) ∈ Y1 (24e)

h̃n := b1(v∗n) ∈ Y1 (24f)

hn := νu∗n−1 + (1− ν)h̃n ∈ Y1, (24g)

12



(w̃0, ũ0, v0)

u∗0

LVM
[f1(·,v0),ũ0,ε0]

w∗0
LVM

[P (·,u∗0,v0),w̃0,ε0]

v∗
1

LVM
[f2(u∗0,·),v0,ε0/2]

ũ∗1

LVM
[f1(·,v∗1),u∗0,ε0/2]

u∗
1

νu∗0 + (1− ν)ũ∗1

w∗
1

LVM
[P (·,u∗1,v∗1),w∗0 ,ε0/2]

u∗
n−1

w∗
n−1

LVM
[P (·,u∗n−1,v

∗
n−1),w∗n−2,ε0/2

n−1]

v∗
n

LVM
[f2(u∗n−1,·),v∗n−1,ε0/2

n]

ũ∗n

LVM
[f1(·,v∗n),u∗n−1,ε0/2

n]

u∗
n

νu∗n−1 + (1− ν)ũ∗n

w∗
n

LVM
[P (·,u∗n,v∗n),w∗n−1,ε0/2

n]

Figure 1: Scheme of Algorithm 2

for any n ∈ N, where the functions b1 and b2 are defined in (1), u0 := b1(v0), u∗0 is defined in

line 2 of Algorithm 2 and tν is defined in (8) (the connections among such auxiliary points and the

sequences (u∗n)n and (v∗n)n are depicted in Figure 2). For any n ∈ N

(ũ0, v0) u0
b1 v1

b2 u1
νu0 + (1− ν)b1(v1)

un−1 vn
b2 un

νun−1 + (1− ν)b1(vn)

u∗0

LVM

z1
b2

s̃1
b1 s1

νu∗0 + (1− ν)s̃1

v∗1

LVM

h̃1

b1
h1

νu∗0 + (1− ν)h̃1

ũ∗1

LVM

u∗1
νu∗0 + (1− ν)ũ∗1

u∗n−1 zn
b2

s̃n
b1 sn

νu∗n−1 + (1− ν)s̃n

v∗n

LVM

h̃n
b1

hn
νu∗n−1 + (1− ν)h̃n

ũ∗n

LVM

u∗n
νu∗n−1 + (1− ν)ũ∗n

Figure 2: Representation of vk, uk, zk, s̃k, sk, h̃k, hk, for k = 1, . . . , n.

‖u∗n − ȳ1‖ ≤ ‖u∗n − un‖+ ‖un − ȳ1‖
≤ ‖u∗n − hn‖+ ‖hn − sn‖+ ‖sn − un‖+ ‖un − ȳ1‖.

(25)

Let us analyze the last four addends in the right-hand side of (25).

1. By definition of u∗n in line 9 of Algorithm 2 and by (24g), we get

‖u∗n − hn‖ = |1− ν|‖ũ∗n − h̃n‖. (26)

Note that ũ∗n is the approximation of the minimizer of f1(·, v∗n) over Y1 generated by applying

Algorithm 1 to f1(·, v∗n) with initial point u∗n−1 and range ε0/2
n (as represented in Figure 1), whereas
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h̃n is actually such a minimizer, by (24f). So, in light of assumption (23a), from Corollary 4.1 we

have

‖ũ∗n − h̃n‖ ≤
√
q1B1

2n+1m1
ε0, (27)

where m1 is the constant related to the concavity of f1, as defined in assumption (F1).

2. In light of (24d)–(24g) and Lemma 3.1(i), we have

‖hn − sn‖ =|1− ν|‖h̃n − s̃n‖
=|1− ν|‖b1(v∗n)− b1(zn)‖ ≤ λ1|1− ν|‖v∗n − zn‖.

(28)

Similarly to the previous case, v∗n is the approximation of the minimizer of f2(u∗n−1, ·) over Y2 come

up by applying Algorithm 1 to f2(u∗n−1, ·) with initial point v∗n−1 and range ε0/2
n (as represented

in Figure 1), whereas zn is effectively such a minimizer, by (24c). In light of assumption (23b),

from Corollary 4.1 it follows that

‖v∗n − zn‖ ≤
√
q2B2

2n+1m2
ε0, (29)

where m2 is the constant related to the concavity of f2, as defined in assumption (F1).

3. By (24b) and (24e), we get

‖sn − un‖ = ‖tν(u∗n−1)− tν(un−1)‖.

Since the function tν is a contraction and the corresponding contraction constant is κ defined in

(11), from Lemma 3.3 we have

‖sn − un‖ ≤ κ‖u∗n−1 − un−1‖. (30)

Hence, from (26)-(30), we have

‖u∗n − un‖ ≤ |1− ν|
√
q1B1

2n+1m1
ε0 + λ1|1− ν|

√
q2B2

2n+1m2
ε0 + κ‖u∗n−1 − un−1‖. (31)

Let dn = ‖u∗n − un‖ for any n ∈ N ∪ {0} and D = |1 − ν|
[√

q1B1

m1
+ λ1

√
q2B2

m2

]
ε0. Then by (31) it

follows that

dn ≤ κdn−1 +
D

2n+1
≤ κ

[
κdn−2 +

D

2n

]
+

D

2n+1
≤ · · · ≤ κnd0 +

D

2

n−1∑
σ=0

κσ

2n−σ
. (32)

The summation
∑n

σ=0
κσ

2n−σ is the n-th term of the Cauchy product of the two series
∑+∞

i=0 κ
i and∑+∞

j=0
1
2j

, that is (
+∞∑
i=0

κi

)
·c

+∞∑
j=0

1

2j

 =
+∞∑
n=0

n∑
σ=0

κσ

2n−σ
, (33)

where ·c denotes the Cauchy product. The two series in the left-hand side of (33) are geometric

series with ratio less than 1 (recall that κ < 1 in light of Lemma 3.3), so they are convergent.

Therefore, in light of the Cauchy theorem (see, for example, [23, Theorem 160]), the series in the
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right-hand side of (33) is convergent, hence limn→+∞
∑n

σ=0
κσ

2n−σ = 0. Given the above and since

limn→+∞ κ
n = 0, by (32) we have

lim
n→+∞

‖u∗n − un‖ = lim
n→+∞

dn = 0. (34)

4. In order to analyze the fourth addend, first recall that ȳ1 is the unique fixed point of b in

light of Proposition 2.1. Moreover, as ν 6= 1, the set of fixed points of b coincides with the set of

fixed points of tν . Hence, ȳ1 is the unique fixed point of tν , that is ȳ1 = tν(ȳ1). So, by (24b) and

Lemma 3.3 we get

‖un − ȳ1‖ = ‖tν(un−1)− tν(ȳ1)‖ ≤ κ‖un−1 − ȳ1‖ ≤ · · · ≤ κn−1‖u1 − ȳ1‖,

and, consequently, as κ < 1:

lim
n→+∞

‖un − ȳ1‖ = 0. (35)

Therefore, in light of (25),(34) and (35), the sequence (u∗n)n converges to ȳ1.

Now, we prove that the sequence (v∗n)n converges to ȳ2. For any n ∈ N

‖v∗n − ȳ2‖ ≤ ‖v∗n − zn‖+ ‖zn − vn‖+ ‖vn − ȳ2‖. (36)

Let us analyze the three terms in the right-hand side of (36).

1. By (29), we get

lim
n→+∞

‖v∗n − zn‖ ≤ lim
n→+∞

√
q2B2

2n+1m2
ε0 = 0. (37)

2. From (24a), (24c), Lemma 3.1(i) and (34) it follows that

lim
n→+∞

‖zn − vn‖ = lim
n→+∞

‖b2(u∗n−1)− b2(un−1)‖ ≤ λ2 lim
n→+∞

‖u∗n−1 − un−1‖ = 0. (38)

3. Since ȳ2 = b2(ȳ1) (see Proposition 2.1), by (24a), Lemma 3.1(i) and (35) we have

lim
n→+∞

‖vn − ȳ2‖ = lim
n→+∞

‖b2(un−1)− b2(ȳ1)‖ ≤ λ2 lim
n→+∞

‖un−1 − ȳ1‖ = 0. (39)

Hence, in light of (36)-(39) the sequence (v∗n)n is convergent to ȳ2.

Finally, we show that the sequence (w∗n)n converges to x̄. For any n ∈ N,

‖w∗n − x̄‖X ≤ ‖w∗n − r(u∗n, v∗n)‖+ ‖r(u∗n, v∗n)− r(un, vn)‖+ ‖r(un, vn)− x̄‖, (40)

where r is the function defined in (7). Let us analyze the three terms in the right-hand side of (40).

1. By line 10 in Algorithm 2, w∗n is the approximation of the minimizer of P (·, u∗n, v∗n) over

X generated by applying Algorithm 1 to P (·, u∗n, v∗n) with initial point w∗n−1 and range ε0/2
n (as

represented in Figure 1), whereas r(u∗n, v
∗
n) is actually such a minimizer. So, in light of assumption

(23c), from Corollary 4.1 we get

‖w∗n − r(u∗n, v∗n)‖ ≤
√
pA

2n+1mP

ε0, (41)

where m
P

is the constant related to the concavity of P , as defined in assumption (L1).
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2. From Lemma 3.4 it follows that

‖r(u∗n, v∗n)− r(un, vn)‖ ≤ ρ‖(u∗n, v∗n)− (un, vn)‖ ≤ ρ‖u∗n − un‖+ ρ‖v∗n − vn‖, (42)

where ρ is defined in (12).

3. Since x̄ = r(ȳ1, ȳ2), in light of Lemma 3.4 we have

‖r(un, vn)− x̄‖ = ‖r(un, vn)− r(ȳ1, ȳ2)‖ ≤ ρ‖(un, vn)− (ȳ1, ȳ2)‖ ≤ ρ‖un − ȳ1‖+ ρ‖vn − ȳ2‖. (43)

By (37)-(39) and (34)-(35), the terms in the right-hand sides of (41)-(43) converge to 0 as n goes

to +∞ . Therefore, by (40), the sequence (w∗n)n converges to x̄.

Remark 4.1 Assumptions (23a)-(23c) in Theorem 4.2 can be weakened. In fact, let Rj(yj , aj , y−j)

and RP (x, a, y) be the remainders of the Taylor expansion of fj(·, y−j) and P (·, y) at yj and x,

respectively, which satisfy

fj(yj + aj , y−j) = fj(yj , y−j) + 〈∇yjfj(yj , y−j), aj〉+Rj(yj , aj , y−j) ∀aj ∈ U jyj ,y−j and ∀j ∈ J

P (x+ a, y) = P (x, y) + 〈∇xP (x, y), a〉+RP (x, a, y) ∀a ∈ Ux,y,

where U jyj ,y−j ⊆ Yj and Ux,y ⊆ X are neighbourhoods of 0 in Yj and X, respectively. By replacing

(23a)-(23c) with the following conditions:

‖R1(y1, a1, y2)‖ ≤ A′1‖a1‖τ
′
+A′0‖a1‖τ

′+1 for any y1 ∈ Y1, a1 ∈ U1
y1,y2 , y2 ∈ Y2

‖R2(y2, a2, y2)‖ ≤ A′′1‖a2‖τ
′′

+A′′0‖a2‖τ
′′+1 for any y2 ∈ Y2, a2 ∈ U2

y2,y1 , y1 ∈ Y1

‖RP (x, a, y)‖ ≤ A1‖a‖τ +A0‖a‖τ+1 for any x ∈ X, a ∈ Ux,y, y ∈ Y,

where A′1 > 0, A′′1 > 0, A1 > 0, A′0 ≥ 0, A′′0 ≥ 0, A0 ≥ 0, τ ′ > 1, τ ′′ > 1, τ > 1, and

by using Proposition 4.1 instead of Corollary 4.1 in the proof of Theorem 4.2, the convergence

of Algorithm 2 still holds. We preferred to assume the stronger conditions (23a)-(23c) for mere

reasons of readability.

In the next result, the error estimation of the sequence (w∗n, u
∗
n, v
∗
n)n generated by Algorithm 2

is shown.

Theorem 4.3. Suppose that the assumptions of Theorem 4.2 hold. Then, there exist F,G ∈ R
such that

‖(w∗n, u∗n, v∗n)− (x̄, ȳ1, ȳ2)‖ ≤ Fκn +
G

2n
for any n ∈ N,

where κ is defined in (11).

Proof. Let n ∈ N, then

‖(w∗n, u∗n, v∗n)− (x̄, ȳ1, ȳ2)‖ ≤ ‖w∗n − x̄‖+ ‖u∗n − ȳ1‖+ ‖v∗n − ȳ2‖. (44)

We start by proving the error estimation for the sequence (u∗n)n. Since

‖u∗n − ȳ1‖ ≤ ‖u∗n − un‖+ ‖un − ȳ1‖, (45)

where un is defined in (24b), let us analyze the two terms in the right-hand side of (45).
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1. In light of (32) we know that

‖u∗n − un‖ ≤
D

2

n−1∑
σ=0

κσ

2n−σ
+ κn‖u∗0 − u0‖, (46)

where D = |1− ν|
[√

q1B1

m1
+ λ1

√
q2B2

m2

]
ε0. By definition of u∗0 in line 2 of Algorithm 2 and u0 (recall

that u0 = b1(v0)), Corollary 4.1 ensures that

‖u∗0 − u0‖ ≤
√
q1B1

2m1
ε0. (47)

So, exploiting the sum of the first n terms of geometric series of ratio 2k in (46), we have

‖u∗n − un‖ ≤
D

2n+1

[
1− (2κ)n

1− 2κ

]
+

√
q1B1

2m1
ε0κ

n. (48)

2. By (24b) and Lemma 3.3, for any s ∈ N we get

‖un+s − un‖ ≤
s∑
j=1

‖un+j − un+j−1‖

=

s∑
j=1

‖tν(un+j−1)− tν(un+j−2)‖

≤
s∑
j=1

κn+j−1‖u1 − u0‖

=
κn(1− κs)

1− κ
‖u1 − u0‖.

(49)

As s goes to +∞, by definition of u1 and u0 and Lemma 3.1, from (49) it follows that

‖un − ȳ1‖ ≤
κn

1− κ
‖u1 − u0‖

=
κn

1− κ
‖(1− ν)(b1(v1)− b1(v0))‖

≤ λ1|1− ν|κn

1− κ
‖v1 − v0‖

≤ λ1|1− ν|κn

1− κ
[‖v1 − z1‖+ ‖z1 − v∗1‖+ ‖v∗1 − v0‖].

(50)

In light of (24a), (24c), Lemma 3.1(i) and (47) we have ‖y1 − z1‖ ≤
λ2
√
q1B1

2m1
ε0. Moreover, by

definition of v∗1 in Algorithm 2 and of z1 in (24c), Corollary 4.1 guarantees that ‖v∗1−z1‖ ≤
√
q2B2

4m2
ε0.

Hence, from (50) it follows that

‖un − ȳ1‖ ≤
λ1|1− ν|κn

1− κ

[
λ2
√
q1B1

2m1
ε0 +

√
q2B2

4m2
ε0 + ‖v∗1 − v0‖

]
. (51)
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Finally, by using (48) and (51), from (45) we get

‖u∗n − ȳ1‖ ≤
D

2n+1

[
1− (2κ)n

1− 2κ

]
+

√
q1B1

2m1
ε0κ

n

+
λ1|1− ν|κn

1− κ

[
λ2
√
q1B1

2m1
ε0 +

√
q2B2

4m2
ε0 + ‖v∗1 − v0‖

]
= F ′κn +

G′

2n
,

(52)

where we set

F ′ =
D

2(1− 2κ)
+

√
q1B1

2m1
ε0 +

λ1|1− ν|
1− κ

[
λ2
√
q1B1

2m1
ε0 +

√
q2B2

4m2
ε0 + ‖v∗1 − v0‖

]
, G′ =

D

2(1− 2κ)
.

(53)

Now, we show the error estimation for the sequence (v∗n)n. Recalling that ȳ2 = b2(ȳ1), by (29),

(24c), Lemma 3.1(i) and (52) we have

‖v∗n − ȳ2‖ ≤ ‖v∗n − zn‖+ ‖zn − ȳ2‖

≤
√
q2B2

2n+1m2
ε0 + λ2‖u∗n−1 − ȳ1‖

≤ F ′′κn +
G′′

2n

(54)

where

F ′′ =
λ2F

′

κ
and G′′ = 2λ2G

′ +

√
q2B2

2m2
ε0, (55)

with F ′ and G′ given in (53).

Finally, we prove the error estimation for the sequence (w∗n)n. Recalling that x̄ = r(ȳ1, ȳ2), by

(41), Lemma 3.4, (52) and (54) it follows that

‖w∗n − x̄‖ ≤ ‖w∗n − r(u∗n, v∗n)‖+ ‖r(u∗n, v∗n)− r(ȳ1, ȳ2)‖

≤
√
pA

2n+1mP

ε0 + ρ[‖u∗n − ȳ1‖+ ‖v∗n − ȳ2‖]

≤ F ′′′κn +
G′′′

2n

(56)

where

F ′′′ = ρF ′
(

1 +
λ2

κ

)
and G′′′ = ρ

[
(1 + 2λ2)G′ +

√
q2B2

2m2
ε0

]
+

√
pA

2n+1mP

ε0, (57)

with F ′ and G′ given in (53).

Therefore, by using (52), (54) and (56) in (44) we obtain

‖(w∗n, u∗n, v∗n)− (x̄, ȳ1, ȳ2)‖ ≤ Fκn +
G

2n
, (58)

with F = F ′ + F ′′ + F ′′′ and G = G′ +G′′ +G′′′.

The error estimation proved in Theorem 4.3 allows to derive the rate and the order of conver-

gence of the sequence (w∗n, u
∗
n, v
∗
n)n.
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Proposition 4.2. Suppose that the assumptions of Theorem 4.2 hold and let T = min{κ−1, 2}.
Then the sequence (w∗n, u

∗
n, v
∗
n)n exhibits O(T−n)-rate of convergence and converges R-linearly to

(x̄, ȳ1, ȳ2).

Proof. First it is worth noting that T > 1 since κ ∈]0, 1[ by Lemma 3.3. Denoted by ζn :=

(|F |+ |G|)T−n for any n ∈ N, from Theorem 4.3 we have

‖(w∗n, u∗n, v∗n)− (x̄, ȳ1, ȳ2)‖ ≤ ζn for any n ∈ N,

so (w∗n, u
∗
n, v
∗
n)n has O(T−n)-rate of convergence. Moreover, since T > 1,

lim
n→+∞

ζn = 0 and lim
n→∞

ζn+1

ζn
=

1

T
∈]0, 1[,

that is, the sequence (‖(w∗n, u∗n, v∗n)− (x̄, ȳ1, ȳ2)‖)n is dominated by a sequence converging linearly

to 0. Therefore, (w∗n, u
∗
n, v
∗
n)n converges R-linearly to (x̄, ȳ1, ȳ2) (see, e.g., [39, pp. 28–30]).

Remark 4.2 The error estimation and the rate of convergence proved in Theorem 4.3 and Propo-

sition 4.2 are essentially affected by the sequence of ranges considered in Algorithm 2, namely ε0/2
n

for any n ∈ N. We point out that, for any decreasing sequence of ranges (εn)n such that the series∑+∞
n=0 εn is convergent, the convergence of Algorithm 2 still holds. Hence, improvements in the

error estimations and in the rates of convergence could be achieved by choosing suitable sequences

of ranges (εn)n.

Remark 4.3 It is worth noting that Algorithm 2 can be also exploited as a numerical approxi-

mation scheme for the class of ratio-bounded games introduced in [11]. In fact, if one considers

only the lower-level game Ω and deletes line 3 and line 10 in Algorithm 2, assumptions (F1), (F2)

and (G1) guarantee the convergence of the sequence (u∗n, v
∗
n)n towards the unique Nash equilibrium

(ȳ1, ȳ2) of Ω, as well as error estimation and rate of convergence analogous to the ones proved in

Theorem 4.3 and Proposition 4.2.
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