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1 Introduction

In this paper, we study the problem of a fair redistribution of resources among agents of an exchange

economy and how restrictions on coalition formation rules may impact the set of allocations judged

fair. The first notion of fairness is due to Foley (1967), according to which an allocation is said to

be fair if it is efficient, in the sense of Pareto optimal, and envy-free, meaning that none prefers or

envies the bundle of anybody else. Whenever the total initial endowment is equally divided among

the agents, the resulting competitive allocation, called equal-income competitive allocation, fulfils ef-

ficiency and envy-freeness. The converse is not true either in large economies unless one strength-

ens the equity criterion as done, among others, by Zhou (1992) (see also Varian (1974), Gabszewicz

(1975), Shitovitz (1992) and Basile, Graziano, and Pesce (2014) for an extension to asymmetric in-

formation economies).
1

Zhou (1992) proposes the notion of strict envy-freeness for which no agent

envies the average bundle of any possible coalition by extending the object of potential envy from

individuals (as in Foley (1967) and Varian (1974)) to coalitions. He shows that, in large economies,

the equal-income Walrasian equilibria are the only strictly fair allocations. On the other hand in

general, a core allocation, defined as an allocation that no coalition can improve upon (or block) by

redistributing among its members their initial endowment and making everybody better off, may be

not strictly envy-free even though so is the initial endowment (see Pazner and Schmeidler (1978)).

Nevertheless, in atomless economies, the three concepts form the same set of allocations. This orig-

inates by combining the seminal Core-Walras Equivalence Theorem of Aumann (1964) with the

identity, proved by Zhou (1992), between the set of equal-income competitive allocations and the

set of strictly fair allocations.

These identities implicity impose no restriction on the set of possible coalitions. However, the for-

mation of coalitions is often subject to very specific rules that allow only certain groups to be con-

sidered. This is the case, for instance, of international environmental agreements that, with the aim

to reduce ozone depletion, climate change and marine pollution, involve only coalitions of a certain

dimension (see Cabon-Dhersin and Ramani (2006)). In addition to possible restrictions on the size

of formable coalitions, the rules may also provide for the exclusion or inclusion of pre-established

coalitions. For example, international agreements may impose the exclusion of a certain State which

has previously violated some common laws, or a research project may exclude groups with homo-

geneous competencies because its achievement needs to involve a team with a variety of skills. The

set of possible coalitions may also be the result of a protocol providing for an enlargement of the

pre-existing coalition in the agreement. Some international treaties may require the non-exclusion

of certain States or if a company wants to expand without laying off any employees, possible new

work groups have necessarily to include the old ones.

In this paper, we consider different kinds of limitations imposed on the coalition formation rules. In

particular, we analyze norms forcing restrictions on the size of groups or on the inclusion/exclusion

1
A different approach consists in imposing strong assumptions on preferences, like the existence of a continuum of

tastes (not just a continuum of agents) as in Varian (1976).
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of pre-established coalitions. We investigate the impact of these rules on the set of envied coali-

tions and, consequently, on the set of strictly fair allocations. Our analysis is conducted in atomless

economies as well as in the so-called mixed markets in which a continuum of negligible individuals

interact with few influential traders.

For the core, the seminal papers Schmeidler (1972), Grodal (1972) and Vind (1972) show that, in

atomless economies, nothing changes if restrictions on the measure of blocking coalitions are im-

posed. Specifically, Schmeidler (1972) proved that an allocation is in the core if and only if it is

not blocked by arbitrarily “small” coalitions. This characterization was further extended by Grodal

(1972), who showed that to get the core, and hence the set of competitive allocations, it is enough to

consider those “small” coalitions represented as a union of finitely many disjoint subgroups, each

of which is arbitrarily “small” and consists of arbitrarily “similar” agents. Similarity derives from

a pseudometric defined on the agents’ measure space and it can be expressed in terms of agents’

characteristics, that is preferences and initial endowments. Vind (1972) completed the analysis by

showing that allocations outside the core can be blocked by arbitrarily “large” coalitions, or even

better, by coalitions of any size. If the society is partitioned into a sufficiently large number of

groups, then Okuda and Shitovitz (1985) show that, in atomless economies, an allocation belongs

to the core if and only if it can not be blocked by any coalition that excludes or includes at least one

element of the partition.

We aim to conduct a similar investigation for the set of envied coalitions and to see how the restric-

tion on the formation of coalitions affects the set of strictly fair allocations. We prove that the set

of strictly fair allocations keeps the same if agents are allowed to compare their bundles only with

the average bundle of coalitions with measures below a certain threshold. Furthermore, nothing

changes if potentially envied coalitions are restricted to those partitioned into finitely many sub-

coalitions with measures and diameters arbitrarily small. In light of the equivalence due to Zhou

(1992), further characterizations of equal-income competitive equilibria are deduced. Namely, we

reformulate and prove Schmeidler (1972) and Grodal (1972) theorems for the strict fairness notion in

atomless economies (Proposition 4.2) and give a weaker formulation in mixed economies (Propo-

sition 4.5). On the contrary, in general, Vind (1972)’s characterization can not be adapted to our

context. We, indeed, show that if the set of potentially envied coalitions limits to those of measure

above a certain threshold 𝜀 > 0, the set of allocations judgeable fair might enlarge so much that it

does not coincide anymore with the set of equal-income competitive equilibria (Remark 5.3). The

positive number 𝜀 can be interpreted as a tolerance threshold, in the sense that the envy of an

agent towards small enough coalitions, that is of measure below 𝜀, can be tolerated and neglected.

From this perspective, the failure of Vind (1972)’s theorem allows the existence of an envy toler-

ance threshold. Finally, we provide a necessary and sufficient condition for an envious agent to

envy coalitions of any size. We show that it is impossible to establish a tolerance threshold if and

only if the allocation is not individually rational (Proposition 4.4). In other words, an envious agent

envies a coalition of arbitrary measures if and only if she values the allocation unacceptable since

she prefers to not trade and to keep her initial endowment.
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We formalize an economy whose set of agents is decomposed into several groups by considering

a countable (finite or infinite) covering of the set of agents 𝑇 , that is a family R = {𝐶𝑖}𝑖∈𝐼 ⊆N of

possible coalitions whose union gives back𝑇 . In Donnini and Pesce (2021a) we allow each agent to

compare her own bundle only with the average bundle of any coalition contained in a group she

belongs to and we impose absence of envy just within each𝐶𝑖 of the covering R. We identify a class

of coverings - the connected coverings2
- for which equity within each𝐶𝑖 is sufficient to characterize

equal-income competitive allocations. In this paper, we consider also non-connected coverings, that

generalize the concept of partitions, and we adapt to strictly fair allocations the exclusion-inclusion

rules introduced by Okuda and Shitovitz (1985) for the core. We prove that if R = {𝐶𝑖}𝑖∈𝐼 ⊆N is a

non-connected covering with |𝐼 | > 2, an allocation is an equal-income competitive allocation if and

only if it is efficient and no agent envies coalitions that exclude at least one element of the covering.

This characterization fails under the inclusion rule, that is if only coalitions including at least one

element of the covering are formable (Theorems 4.7 and 4.8).

This paper aims at contributing to the literature that studies how a limitation on the set of coali-

tions can modify a certain class of allocations. Several papers, extending the seminal results of

Schmeidler (1972), Grodal (1972) and Vind (1972) to different frameworks and for different equilib-

rium concepts, belong to this study branch. For example, Khan (1974) considers the core of a finite

economy, Hervés-Beloso, Moreno-Garcı́a, Núñez, and Pascoa (2000), Evren and Hüsseinov (2008)

study economies with infinite-dimensional commodity space, Hervés-Beloso, Moreno-Garcı́a, and

Yannelis (2005b), Hervés-Beloso, Meo, and Moreno-Garcı́a (2014) examine economies with asym-

metric information, Hervés-Beloso, Moreno-Garcı́a, and Yannelis (2005a), Bhowmik and Cao (2012)

combine asymmetric information and infinite-dimensional commodity space; Gilles (2019) consid-

ers production economies and Basile, Gilles, Graziano, and Pesce (2020) allow also the presence of

collective goods. Shimomura (2022) and Hervés-Estévez and Moreno-Garcı́a (2018) study, instead,

how the restriction on the formation of coalitions affects the bargaining set defined as a weakening

of the core. Okuda and Shitovitz (1985) analyze the core under inclusion/exclusion coalition forma-

tion rules, Bimonte and Graziano (2009) examine economies with asymmetric information, Basile

and Graziano (2001) consider a coalitional approach, while Basile, Donnini, and Graziano (2010)

combine asymmetric information and coalitional approach. This paper, instead, regards the notion

of strict fairness rather than the core, and it considers economies with finitely many private goods,

no uncertainty or asymmetric information. It would be worthwhile to seek if the results presented

here can be extended to the frameworks analyzed in the papers cited above.

The paper is organized as follows. In Section 2 we introduce the model and the main definitions.

Some preliminary results are shown in Section 3. Section 4 contains our main results. All the proofs

are collected in the Appendix also containing some examples that underline the role of each as-

sumption in the proofs of our results.

2
See Section 4.2 for the definition of connected coverings.
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2 The model and the basic notions

We consider a pure exchange economy E = {Rℓ+, (𝑇, Σ, 𝜇), (𝑒 (𝑡), 𝑢𝑡 )𝑡 ∈𝑇 } with a finite number ℓ of

different commodities, in which

- Rℓ+ is the non-negative orthant of the Euclidean spaceRℓ and it denotes the commodity space;

- (𝑇, Σ, 𝜇) is a 𝜎-additive, complete, probability space standing for the space of agents. Elements

in Σ with positive measure are called coalitions;

- each agent 𝑡 ∈ 𝑇 is characterized by the pair (𝑒 (𝑡), 𝑢𝑡 ), where 𝑒 (𝑡) ∈ Rℓ+ is 𝑡 ’s initial endow-

ment and𝑢𝑡 : Rℓ+ → R is 𝑡 ’s utility function representing her preferences. Two agents 𝑡, 𝑠 ∈ 𝑇

are said to be identical or of the same type if they own the same economic characteristics, i.e.

(𝑒 (𝑡), 𝑢𝑡 ) = (𝑒 (𝑠), 𝑢𝑠).

Throughout the paper, we assume that

(𝐻1) for any 𝑡 ∈ 𝑇 , the function 𝑢𝑡 : Rℓ+ → R is continuous, strictly monotone and quasi-concave,

and the map𝑢 : (𝑡, 𝑥) → 𝑢𝑡 (𝑥) is Σ⊗B(Rℓ+)−measurable, where B(Rℓ+) is the 𝜎-field of Borel

subsets of Rℓ+;

(𝐻2) the function 𝑒 : 𝑇 → Rℓ+, assigning to each agent 𝑡 ∈ 𝑇 her initial endowment 𝑒 (𝑡) ∈ Rℓ+, is

𝜇-integrable and

∫
𝑇
𝑒 (𝑡)𝑑𝜇 (𝑡) ≫ 0 is the total initial endowment of the economy E that we

denote, with abuse of notation, by 𝑒 , i.e. 𝑒 =
∫
𝑇
𝑒 (𝑡)𝑑𝜇 (𝑡) ∈ Rℓ++.

We allow the presence of 𝜇-atoms, which are coalitions in Σ with no subset of smaller positive mea-

sure. Formally, an atom of the measure space (𝑇, Σ, 𝜇) is a set 𝐴 ∈ Σ with a positive measure such

that 𝜇 (𝐵) = 𝜇 (𝐴) or 𝜇 (𝐵) = 0 for every other 𝐵 ⊆ 𝐴 and it represents a non-negligible agent in the

market. Being 𝜇 (𝑇 ) = 1 < ∞, according to the atomless-atomic decomposition of measures, 𝑇 can

be partitioned into an atomless component representative of an ocean of negligible traders that we

denote by 𝑇0, and the atomic component 𝑇1 := 𝑇 \ 𝑇0, which is the union of an at most countable

family {𝐴1, 𝐴2, . . . , 𝐴𝑘 , . . . } of disjoint atoms. This allows us to view as a special case both atom-

less economies (once 𝑇1 is empty, 𝑇 = 𝑇0 and 𝜇 is the Lebesgue measure) and finite economies

(when 𝑇0 is null, 𝑇1 is finite and 𝜇 is the counting measure), whereas if 𝑇 = 𝑇0 ∪ 𝑇1 has both com-

ponents, i.e. 𝜇 (𝑇0)𝜇 (𝑇1) > 0, the economy E is called a mixed economy or a mixed market. Since

any atom is treated as a single trader, with abuse of notation we still denote by 𝑇1 the collection

{𝐴1, 𝐴2, . . . , 𝐴𝑘 , . . . } and we write 𝐴 ∈ 𝑇1 instead of 𝐴 ⊆ 𝑇1. A measurable mapping is almost ev-

erywhere constant on an atom then, being 𝑒 : 𝑇 → Rℓ+ and 𝑢 : 𝑇 × Rℓ+ → R measurable, for every

𝐴 ∈ 𝑇1 and 𝑡, 𝑠 ∈ 𝐴 we have that (𝑒 (𝑡), 𝑢𝑡 ) = (𝑒 (𝑠), 𝑢𝑠), that is 𝑡 and 𝑠 are of the same type. This is

consistent with the interpretation of a 𝜇-atom as representative of a group of individuals deciding

to act only together. Given an atom𝐴 ∈ 𝑇1, we denote by 𝑆𝐴 := {𝑡 ∈ 𝑇0 : (𝑒 (𝑡), 𝑢𝑡 ) = (𝑒 (𝐴), 𝑢𝐴)} the

set in𝑇0 whose members are of the same type of the atom 𝐴. If 𝜇 (𝑆𝐴) > 0, then 𝑆𝐴 is called atomless

fringe of 𝐴, and it can be interpreted, roughly speaking, as an atomless copy in 𝑇0 of the atom 𝐴.
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An allocation is a 𝜇-integrable function 𝑥 : 𝑇 → Rℓ+ that assigns to each agent 𝑡 ∈ 𝑇 her bundle

𝑥 (𝑡) ∈ Rℓ+. The set of allocations is denoted by A and, by assumption (𝐻2), 𝑒 ∈ A. An allocation

𝑥 ∈ A is said to be feasible if its aggregate equals the total initial endowment, i.e.

∫
𝑇
𝑥 (𝑡)𝑑𝜇 (𝑡) = 𝑒.

An allocation 𝑥 ∈ A is individually rational if 𝑢𝑡 (𝑥 (𝑡)) ⩾ 𝑢𝑡 (𝑒 (𝑡)) for almost all 𝑡 ∈ 𝑇 , that is if

𝜇 (𝑅𝑥 ) = 0, where 𝑅𝑥 := {𝑡 ∈ 𝑇 : 𝑢𝑡 (𝑒 (𝑡)) > 𝑢𝑡 (𝑥 (𝑡))} defines the set of individuals that prefer

keeping their initial endowment rather than trading and consuming the bundle 𝑥 . A coalition 𝑆

blocks or improves upon an allocation 𝑥 via 𝑦 ∈ A, if 𝑢𝑡 (𝑦 (𝑡)) > 𝑢𝑡 (𝑥 (𝑡)) for almost all 𝑡 ∈ 𝑆

and

∫
𝑆
𝑦 (𝑡)𝑑𝜇 (𝑡) =

∫
𝑆
𝑒 (𝑡)𝑑𝜇 (𝑡). The core of the economy E, denoted by 𝐶 , is the set of feasible

allocations not blocked by any coalition. A feasible allocation 𝑥 is efficient or Pareto optimal if it is

not blocked by the set of all agents𝑇 and it is called competitive or Walrasian if there exists a price

vector 𝑝 ∈ Rℓ+ \ {0} such that for almost all agent 𝑡 ∈ 𝑇 , 𝑝 · 𝑥 (𝑡) ⩽ 𝑝 · 𝑒 (𝑡) and 𝑝 · 𝑦 > 𝑝 · 𝑒 (𝑡)
whenever 𝑢𝑡 (𝑦) > 𝑢𝑡 (𝑥 (𝑡)). If 𝑝 · 𝑒 (𝑡) = 𝑝 · 𝑒 for almost all 𝑡 ∈ 𝑇 , 𝑥 is said to be an equal-income

competitive allocation. We denote by𝑊 and𝑊𝑒𝑖 respectively the set of competitive allocations and

of equal-income competitive allocations of E.

It is well known, since Aumann (1964), that in atomless economies competitive equilibria are the

only allocations in the core, i.e. 𝑊 = 𝐶 . This identity is known as the Core-Walras Equivalence

Theorem, which has been extended to mixed markets if there is enough competition among large

traders. This is possible under the assumption that

(𝐴1) there are at least two atoms and all atoms are of the same type,

as in Theorem B of Shitovitz (1973), or under the assumption that

(𝐴2) any atom has an atomless fringe

as in Gabszewicz and Mertens (1971) (see also Basile, Graziano, and Pesce (2016), Donnini and Pesce

(2020), Graziano, Pesce, and Urbinati (2023) for further generalizations).

3 Strict fairness and some preliminary results

In this section, we recall the main fairness notions and show some preliminary results needed for

our analysis.

A first notion of fairness based on the absence of envy is due to Foley (1967), according to which,

given an allocation 𝑥 ∈ A and two agents 𝑡, 𝑠 ∈ 𝑇 , 𝑡 envies 𝑠 at 𝑥 if 𝑡 prefers 𝑠’s bundle to her own, i.e.

𝑢𝑡 (𝑥 (𝑠)) > 𝑢𝑡 (𝑥 (𝑡)). An allocation in which almost no agent envies any other is known as envy-free

and it is said to be fair if it is both efficient and envy-free. Any equal-income competitive allocation

is fair, because it is efficient by the First Theorem of Welfare Economics, and it is envy-free inasmuch

agents face the same budget set. Conversely, there are fair allocations which are non-supported by

a competitive equilibrium price. Zhou (1992) characterizes the set 𝑊𝑒𝑖 using a stronger notion of

fairness, called strict fairness, for which the supposed envy object of an individual is a coalition

rather than a single agent.
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Definition 3.1 (Strict fairness of Zhou (1992)) Given an allocation 𝑥 ∈ A, a coalition 𝑆 ∈ Σ and

an agent 𝑡 with 𝑡 ∉ 𝑆 , 𝑡 envies 𝑆 at 𝑥 if 𝑢𝑡 (𝑥 (𝑆)) > 𝑢𝑡 (𝑥 (𝑡)), where 𝑥 (𝑆) = 1

𝜇 (𝑆)
∫
𝑆
𝑥 (𝑠)𝑑𝜇 (𝑠).3 The

allocation 𝑥 is called strictly envy-free if the set of envious agents at 𝑥 , denoted by

𝐼𝑥 := {𝑡 ∈ 𝑇 : 𝑢𝑡 (𝑥 (𝑆)) > 𝑢𝑡 (𝑥 (𝑡)) for some 𝑆 ∈ Σ, with 𝑡 ∉ 𝑆 and 𝜇 (𝑆) > 0},

has null measure (i.e. if 𝜇 (𝐼𝑥 ) = 0). The allocation 𝑥 is strictly fair if it is both strictly envy-free and

efficient. We denote by 𝑆𝐹 the set of strictly fair allocations of E.

Zhou (1992) shows that in atomless economies, under the assumption that

(𝐴3) the consumption set is 𝑅ℓ
++ and 𝑢𝑡 : Rℓ++ → R is differentiable for all 𝑡 ∈ 𝑇,

W𝑒𝑖 = 𝑆𝐹 . This equivalence has been extended to mixed economies by Donnini and Pesce (2020).

This fairness notion satisfies a natural fundamental principle of any equity concept, that is equals

are treated equally. Indeed, a strictly envy-free allocation assigns the same bundle to identical agents

with the same strictly quasi-concave utility function𝑢 (see Lemma 3.5 in Donnini and Pesce (2020)).

Whereas, if𝑢 is quasi-concave only, as stated in (𝐻1), agents of the same type get possibly different

bundles lying on the same indifference curve. We denote by A𝑒 the set of allocations assigning

the same bundle to identical agents and we say that an allocation in A𝑒 satisfies the equal-bundle

property.

We show below that, given 𝑥 ∈ A𝑒 , if any atom has an atomless fringe (𝐴2), any envious agent at

𝑥 envies an atomless coalition. The proof is illustrated in the Appendix.

Proposition 3.2 Suppose that (𝐴2) holds and let 𝑥 ∈ A𝑒 . Then, any envious agent at 𝑥 envies an

atomless coalition.

As a consequence of Proposition 3.2 we get that efficient allocations are strictly fair if and only if no

atomless coalition is envied. More is true: under (𝐴2), even the set 𝐼𝑥 of envious agents at 𝑥 contains

an atomless coalition, i.e. 𝜇 (𝐼𝑥 ∩𝑇0) > 0. Thus, under the assumptions of Proposition 3.2, in order to

test whether 𝑥 is strictly envy-free it is enough to check if envy arises within the atomless sector𝑇0,

disregarding the atomic part 𝑇1 (see Section 4.2 for a further interpretation of Proposition 3.2). For

this, the equal-bundle property (i.e. 𝑥 ∈ A𝑒 ) and the assumption (𝐴2) are crucial, as shown in the

Appendix respectively via Examples 5.5 and 5.6, because, in a sense, they allow to move the object

of envy from a coalition containing atoms to an identical atomless coalition. In particular, Example

5.5 illustrates an economy satisfying (𝐴2) and an allocation 𝑥 assigning to agents of the same type

different bundles lying on the same indifference curve (i.e. 𝑥 ∉ A𝑒 ), such that no atomless coalition

is envied even though 𝑥 ∉ 𝑆𝐹 . Similarly, Example 5.6 shows an economy with infinitely countably

many atoms with no atomless fringe (i.e. the assumption (𝐴2) does not hold) in which an allocation

3
Basically, 𝑡 envies the possibility to join the coalition 𝑆 , because she prefers what she would get on average being a

member of 𝑆 (i.e. 𝑥 (𝑆)) rather than what she gets being alone (i.e. 𝑥 (𝑡)). Clearly, the condition that 𝑡 ∉ 𝑆 is irrelevant in

atomless economies.
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𝑥 ∈ A𝑒 is not strictly fair but no atomless coalition is envied.

The equal-bundle property is also needed to prove that, in mixed markets, strictly fair allocations

are individually rational. This is always true in atomless economies. Indeed, assume that the total

initial endowment is equally divided among agents, i.e. 𝑒 (𝑡) = 𝑒 for almost all 𝑡 ∈ 𝑇 - we call

it “equal-endowment assumption” - then, given a feasible allocation 𝑥 , any agent 𝑡 preferring her

initial endowment to 𝑥 (𝑡) envies the coalition 𝑇 at 𝑥 , that is 𝑅𝑥 ⊆ 𝐼𝑥 . This inclusion might be strict

(see Example 5.7 in the Appendix), and it is no longer valid in mixed markets in which, instead, the

additional hypotheses (𝐴1) or (𝐴2), used for the Core-Walras equivalence Theorem, are needed.

The proof of the following Proposition is given in the Appendix.

Proposition 3.3 Let E be a mixed economy satisfying the equal-endowment assumption and let 𝑥 be

a feasible allocation with the equal-bundle property (i.e. 𝑥 ∈ A𝑒 ). If (𝐴1) or (𝐴2) holds, then 𝑅𝑥 ⊆ 𝐼𝑥

and hence any strictly envy-free allocation is individually rational.

Even for the above proposition, we can not dispense of the equal-bundle property, because if an

allocation 𝑥 assigns to identical agents different bundles although lying on the same indifference

curve, nor (𝐴1) neither (𝐴2) ensures the inclusion 𝑅𝑥 ⊆ 𝐼𝑥 as illustrated respectively via Examples

5.8 and 5.5 in the Appendix.

Finally, the equal-bundle property allows us to prove the following theorem that completes the

analysis conducted by Zhou (1992) in mixed markets. Zhou (1992) proves that negligible agents

have equal income at any strictly fair allocations when goods are valued at the supporting price

(see Proposition 4.1 in Zhou (1992)) and this common income is no more than the income of any

atom (see Proposition 4.2 in Zhou (1992)). We now observe that, if atoms have an atomless fringe

(𝐴2), everybody gets the same income at a strictly fair allocation. Conversely, if 𝑥 is an efficient

allocation which is not strictly fair (i.e. 𝑥 ∉ 𝑆𝐹 ), for any envious agent 𝑡 there exists an atomless

coalition 𝑆𝑡 envied by 𝑡 at 𝑥 and the value of the average bundle of 𝑆𝑡 at the supporting price is

greater than the value of 𝑥 (𝑡). The proof of the next theorem is shown in the Appendix.

Theorem 3.4 Let E be an economy satisfying the assumptions (𝐴2) and (𝐴3). Assume that 𝑢𝑡 is

strictly quasi-concave for all 𝑡 ∈ 𝑇1. Let 𝑥 be an efficient allocation in A𝑒 and let 𝑝 be its supporting

price. Then,

(1) if 𝑥 ∈ 𝑆𝐹 ⇒ 𝑝 · 𝑥 (𝑡) = 𝑝 · 𝑥 (𝑇0), for almost all 𝑡 ∈ 𝑇 . Conversely,

(2) if 𝑥 ∉ 𝑆𝐹 ⇒ for any 𝑡 ∈ 𝐼𝑥 , there exists an atomless coalition 𝐹𝑡 ⊆ 𝑇0 such that 𝑡 envies 𝐹𝑡 and

𝑝 · 𝑥 (𝑡) < 𝑝 · 𝑥 (𝐹𝑡 ).

Remark 3.5 The definition of strict fairness strengthens the notion of average fairness (A-fairness)

of Thomson (1982) according to which each individual weakly prefers her own bundle to the av-

erage of what all the others receive, i.e. 𝑆 = 𝑇 \ {𝑡} is the only coalition to be looked at in Defini-

tion 3.1 (see also Thomson (1988)). In a two-agent economy the fairness concepts of Foley (1967),
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Thomson (1982) and Zhou (1992) are equivalent but, in general, strict fairness (Definition 3.1) is

the strongest one, whereas 𝐴-fairness of Thomson (1982) and the fairness notion of Foley (1967)

are not comparable (see Proposition 1 in Thomson (1982) and also Thomson (2011) for an excel-

lent survey on the fair allocation rules). In atomless economies, instead, 𝐴-fairness coincides with

the notion of per-capita-fairness due to Pazner (1977), requiring that none prefers the average bun-

dle of the entire economy to her own bundle. An allocation 𝑥 is said to be per-capita-envy-free if

𝑢𝑡 (𝑥 (𝑡)) ⩾ 𝑢𝑡 (𝑥 (𝑇 )) for almost all 𝑡 ∈ 𝑇 . A feasible allocation 𝑥 is said to be per-capita-fair if it

is efficient and per-capita-envy-free. It is proved that, under the equal-endowment assumption, any

individually rational allocation is𝐴-envy-free, and hence also per-capita-envy-free (see Proposition

2 in Thomson (1982)). In atomless economies, the converse implication also holds and individual

rational allocations are the only A-envy-free (and per-capita-envy-free) allocations. Examples 5.5

and 5.8 show that in mixed economies, even under (𝐴1) and (𝐴2), there might exist agents that are

per-capita-envious but not 𝐴-envious neither strictly-envious.

4 Coalition formation rules and strict fairness

The notion of strict fairness introduced by Zhou (1992) implicity assumes that all coalitions in Σ

are potentially formable. However, agents’ grouping is often forced by precise rules or it is due to

well-defined agreements deemed necessary by agents themselves for the achievement of specific

goals. This leads to the possibility of considering as formable only elements of subfamilies of Σ.

The aim of this section is to investigate the fairness property when the set of potentially envied

coalitions is restricted for some reason. To this end, given an allocation 𝑥 ∈ A and a family of

coalitions S ⊆ Σ, we denote by

𝐼𝑥 (S) := {𝑡 ∈ 𝑇 : 𝑢𝑡 (𝑥 (𝑆)) > 𝑢𝑡 (𝑥 (𝑡)) for some 𝑆 ∈ S, with 𝑡 ∉ 𝑆 and 𝜇 (𝑆) > 0} (1)

the set of agents envying some coalition 𝑆 in S, and by S − 𝑆𝐹 the set of efficient allocations for

which 𝜇 (𝐼𝑥 (S)) = 0. Under this kind of limitation, since the class of potentially envied coalitions

is reduced, the set of strictly fair allocations may enlarge (i.e. 𝑆𝐹 ⊆ S − 𝑆𝐹 ). Consequently, the

equivalence with the set of equal-income competitive allocations,𝑊𝑒𝑖 = 𝑆𝐹 , proved by Zhou (1992)

might fail. In what follows, we investigate specific coalition formation rules and the possibility to

get the equivalence W𝑒𝑖 = S − 𝑆𝐹 .

4.1 The size of envied coalitions

This section deals with coalition formation rules that impose restrictions on the measure of accept-

able coalitions.

The seminal papers of Schmeidler (1972), Grodal (1972) and Vind (1972) show that, in atomless

economies, under constraints involving the measure of the blocking coalition, nothing really changes

for the core and the Core-Walras Equivalence Theorem still holds. Specifically, Schmeidler (1972)

observes that, for arbitrary 𝜀 ∈ (0, 1], the core 𝐶 still coincides with 𝑊 if only coalitions with a
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measure less than 𝜀 are allowed to form. This equivalence is generalized by Grodal (1972) by further

restricting the set of potentially blocking coalitions to those that can be written as the union of at

most ℓ subgroups, each of which has a measure and diameter less than 𝜀. Vind (1972) completes the

analysis by proving that any allocation outside the core can be blocked by an arbitrarily large coali-

tion. We try to conduct a similar investigation in terms of envied coalitions and find out if the iden-

tity𝑊𝑒𝑖 = 𝑆𝐹 proved in Zhou (1992) persists. To this end, in the spirit of Schmeidler (1972) and Vind

(1972) for any 𝜀 ∈ (0, 1], we define the following subfamilies of Σ, S𝜀− := {𝑆 ∈ Σ : 0 < 𝜇 (𝑆) ⩽ 𝜀},
S𝜀+ := {𝑆 ∈ Σ : 𝜇 (𝑆) ⩾ 𝜀} and S𝜀 := {𝑆 ∈ Σ : 𝜇 (𝑆) = 𝜀}. According to (1), given an allocation

𝑥 ∈ A, agents in 𝐼𝑥 (S𝜀−) look at only coalitions with a measure not greater than 𝜀; agents in 𝐼𝑥 (S𝜀+)
consider only coalitions with a measure not less than 𝜀, whereas 𝐼𝑥 (S𝜀) contains agents that envy

only coalitions of measure 𝜀. Since 𝜇 (𝑇 ) = 1, it is straightforward to note that for any 𝑥 ∈ A and

𝜀 ∈ (0, 1]4

(a) 𝐼𝑥 (S𝜀) = 𝐼𝑥 (S𝜀−) ∩ 𝐼𝑥 (S𝜀+);

(b) 𝐼𝑥 = 𝐼𝑥 (S𝜀−) ∪ 𝐼𝑥 (S𝜀+);

(c) 𝐼𝑥 (S1
+) = 𝐼𝑥 (S1) ⊆ 𝐼𝑥 = 𝐼𝑥 (S1

−);

(d) 𝜀1 ⩽ 𝜀2 ⇒ 𝐼𝑥 (S𝜀−
1

) ⊆ 𝐼𝑥 (S𝜀−
2

) and 𝐼𝑥 (S𝜀+
2

) ⊆ 𝐼𝑥 (S𝜀+
1

).

In atomless economies, as a mere consequence of Lyapunov’s convexity theorem, Definition 3.1 is

equivalent to the stronger notion of fairness according to which agents are envious if they prefer

the average bundle of coalitions of measure no more than a certain threshold 𝜀 (see Zhou (1992),

footnote 3 p. 167). Hence, for any 𝜀 ∈ (0, 1], S𝜀− −𝑆𝐹 = 𝑆𝐹 , which can be viewed as a reformulation

of Schmeidler (1972)’s theorem in terms of the envied coalition. Actually, the seminal theorem due

to Schmeidler (1972) proves something more, that is: if 𝑥 is blocked by a coalition 𝑆 via 𝑦 ∈ A
then, for any 𝜀 ∈ (0, 𝜇 (𝑆)], there exists 𝑆 ′ ⊆ 𝑆 with 𝜇 (𝑆 ′) = 𝜀 blocking 𝑥 via the same alternative

allocation 𝑦. In order to restate this theorem in our context, we first observe that, by the Lemma

in Garcia-Cutrin and Herves-Beloso (1993),
5

Definition 3.1 can be equivalently rewritten as follows

(see also Remark 3.1 in Donnini and Pesce (2020)).

Definition 4.1 An agent 𝑡 envies a coalition 𝑆 at an allocation 𝑥, if it is possible to redistribute among

members of 𝑆 the aggregate bundle
∫
𝑆
𝑥 (𝑡) 𝑑𝜇 (𝑡) in such a way that 𝑡 prefers the bundle of almost

every member of 𝑆 to her own, that is if there exists an allocation 𝑦 such that

(𝑖) 𝑢𝑡 (𝑦 (𝑠)) > 𝑢𝑡 (𝑥 (𝑡)) 𝑓 𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙 𝑠 ∈ 𝑆, 𝑎𝑛𝑑

(𝑖𝑖)
∫
𝑆

𝑦 (𝑡) 𝑑𝜇 (𝑡) =
∫
𝑆

𝑥 (𝑡) 𝑑𝜇 (𝑡) .

A feasible allocation is strictly envy-free if the set of envious agents has measure zero, and it is strictly

fair if it is both efficient and strictly envy-free.

4
Similar considerations have been done by Hervés-Beloso and Moreno-Garcı́a (2001) for blocking coalitions.

5
See also Lemma 7.1 in ? and Lemma 2.4 in Donnini and Pesce (2021b).
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In the spirit of Grodal (1972), the equivalence S𝜀− − 𝑆𝐹 = 𝑆𝐹 can be strengthened by further re-

stricting the set of potentially envied coalitions to those partitioned into at most ℓ arbitrarily small

subgroups, each of them containing arbitrarily close agents. Formally, we assume the existence of

a measurable pseudometric 𝑑 defined on 𝑇 , which explains the term close agents. We consider, for

any 𝐶 ⊆ 𝑇 , 𝑑𝑖𝑎𝑚(𝐶) := 𝑠𝑢𝑝{𝑑 (𝑟, 𝑠) : 𝑟, 𝑠 ∈ 𝐶}, and for any 𝜀 ∈ (0, 1], S𝑚
𝜀− := {𝑆 ∈ Σ : 𝑆 =⋃𝑚

𝑖=1
𝑆𝑖 , with𝑚 ≤ ℓ, 0 < 𝜇 (𝑆𝑖) ⩽ 𝜀 and𝑑𝑖𝑎𝑚(𝑆𝑖) ⩽ 𝜀, for each 𝑖 }. Grodal (1972) shows that if an

allocation is blocked by a coalition 𝑆 , then for every 𝜀 ∈ (0, 𝜇 (𝑆)], there exists a subcoalition 𝑆 ′ ⊆ 𝑆

which blocks 𝑥 such that 𝑆 ′ =
⋃𝑚

𝑖=1
𝑆𝑖 with𝑚 ≤ ℓ, 𝜇 (𝑆𝑖) ⩽ 𝜀 and 𝑑𝑖𝑎𝑚(𝑆𝑖) ⩽ 𝜀 for each 𝑖 . We aim to

prove a similar result in terms of strictly fair allocations.

In the light of Definition 4.1, an adaptation of Schmeidler (1972)’s and Grodal (1972)’s theorems to

envied coalitions can be stated in the following way. The proof is shown in the Appendix.

Proposition 4.2 Let 𝑇 = 𝑇0. If 𝑡 envies a coalition 𝑆 at 𝑥 via 𝑦 then, for any 𝜀 ∈ (0, 𝜇 (𝑆)],

𝑖) 𝑡 envies a subcoalition 𝑆 ′ of 𝑆 with 𝜇 (𝑆 ′) = 𝜀 via the same alternative allocation 𝑦;

𝑖𝑖) defined a measurable pseudometric𝑑 on𝑇 such that𝑇 is separable in the corresponding topology,

there exists a subcoalition 𝐷 of 𝑆 envied by 𝑡 at 𝑥 such that 𝐷 =
⋃𝑚

𝑖=1
𝐷𝑖 , with𝑚 ⩽ ℓ , and for

every 𝑖 ∈ {1, . . . ,𝑚}, 𝜇 (𝐷𝑖) ⩽ 𝜀 and 𝑑𝑖𝑎𝑚 𝐷𝑖 ⩽ 𝜀.

Proposition 4.2 implies that, for any 𝑥 ∈ A and 𝜀 ∈ (0, 1], 𝐼𝑥 = 𝐼𝑥 (S𝜀−) = 𝐼𝑥 (S𝑚
𝜀−) and 𝐼𝑥 (S𝜀) =

𝐼𝑥 (S𝜀+). Moreover, under (𝐴3) since 𝑊𝑒𝑖 = 𝑆𝐹 , we get that 𝑊𝑒𝑖 = 𝑆𝐹 = S𝜀− − 𝑆𝐹 = S𝑚
𝜀− − 𝑆𝐹 . Ex-

ample 5.7 in the Appendix shows that the inclusion 𝐼𝑥 (S𝜀) ⊆ 𝐼𝑥 (S𝜀−) might be strict, which means

that Proposition 4.2 (𝑖) can not be reformulated in terms of enlargements of the measure of envied

coalitions and it just holds for arbitrarily threshold 𝜀 below the measure of the envied coalition.

Vind (1972) proves that feasible allocations are outside the core if and only if they can be blocked by a

coalition with arbitrary measure. Our next goal consists in establishing if a similar characterization

holds for strictly fair allocations, that is if given an arbitrary threshold 𝜀 > 0, S𝜀+ − 𝑆𝐹 = 𝑆𝐹 . A

reformulation of Vind (1972)’s theorem in our context is: given 𝑥 ∈ A and 𝜀 ∈ (0, 1],

𝜇 (𝐼𝑥 ) > 0 ⇔ 𝜇 (𝐼𝑥 (S𝜀+)) > 0. (2)

Notice that one implication always holds, whereas if 0 = 𝜇 (𝐼𝑥 (S𝜀+)) < 𝜇 (𝐼𝑥 ), then 𝜀 can be in-

terpreted as a tolerance threshold, meaning that an agent can be considered envious only if she

envies a coalition whose measure exceeds 𝜀. In other words, if 𝑡 envies only coalitions of measure

below the threshold 𝜀, 𝑡 ’s envy can be neglected and an allocation is defined as 𝜀-tolerable envy-free

if 𝜇 (𝐼𝑥 (S𝜀+)) = 0. In a sense, (2) describes the impossibility to fix a tolerance threshold, because

whatever the threshold 𝜀 is, there exists an envied coalition whose measure exceeds it.

By means of the next example, we prove that, actually, (2) in general fails and hence, an adaptation

of Vind’s theorem to envied coalitions can not be proved.

10



Example 4.3 Consider an atomless economy, where 𝑇 = (0, 1) is the set of agents, R2

++ is the con-

sumption set, 𝑒 =
(

5

2
, 3

2

)
is the total initial endowment which is equally divided among agents, whose

utility functions are given by

𝑢𝑡 (𝑥1, 𝑥2) =


𝑥3

1
𝑥2, if 𝑡 ∈

(
0, 3

4

)
𝑥1𝑥

2

2
, if 𝑡 ∈

[
3

4
, 1

)
The feasible allocation 𝑥 : 𝑇 → Rℓ++

𝑥 (𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) =


(3, 1), if 𝑡 ∈

(
0, 3

4

)
(1, 3), if 𝑡 ∈

[
3

4
, 1

)
is 𝜀-tolerable envy-free, with 𝜀 =

√
13+1

12
. Indeed, it can be proved that no agent in

(
0, 3

4

)
is envi-

ous, whereas agents in
[

3

4
, 1

)
can only envy coalitions of measure smaller than

√
13+1

12
. Therefore, 0 =

𝜇 (𝐼𝑥 (S𝜀+)) < 𝜇 (𝐼𝑥 ), for any 𝜀 ⩾
√

13+1

12
, and 𝜀 can be viewed as a tolerance envy threshold. △

The next proposition shows that there exists an envy-tolerance threshold only for individually ratio-

nal allocations, providing a necessary and sufficient condition for envious agents to envy coalitions

of any size. The proof is in the Appendix.

Proposition 4.4 Let E be an atomless economy (i.e. 𝑇 = 𝑇0) satisfying the equal-endowment as-

sumption. If 𝑥 is a feasible non strictly envy-free allocation, then 𝜇 (𝐼𝑥 (S𝜀)) > 0 for any 𝜀 ∈ (0, 1] ⇔
𝜇 (𝑅𝑥 ) > 0.

Proposition 4.4 states that for any individually rational allocation 𝑥 , which is not strictly envy-free,

there exists an envy-tolerance threshold, that is 𝜇 (𝑅𝑥 ) = 0 < 𝜇 (𝐼𝑥 ) implies the existence of an

𝜀 ∈ (0, 1) such that 𝜇 (𝐼𝑥 (S𝜀+)) = 0. This also emerges from Example 4.3 above.

Summing up, in atomless economies, if 𝑡 envies a coalition 𝑆 at 𝑥 , the measure of the envied coali-

tion 𝑆 can be arbitrarily “reduced” (Proposition 4.2 (𝑖)) and, without loss of generality, 𝑆 can be

partitionable into at most ℓ arbitrarily small subgroups of arbitrarily close agents (Proposition 4.2

(𝑖𝑖)) but, on the other hand, the size of 𝑆 cannot be arbitrarily “enlarged” (Example 4.3, see also

Examples 5.7 in the Appendix). Therefore, under (𝐴3), we get the following chain of relationships:

𝑊𝑒𝑖 = 𝑆𝐹 = S𝜀− − 𝑆𝐹 = S𝑚
𝜀− − 𝑆𝐹 ⫋ S𝜀+ − 𝑆𝐹 .

Proposition 3.2 allows getting a weaker formulation of these results for mixed markets. Precisely,

in the presence of large traders, the measure of an envied coalition can be reduced only below a

certain threshold 𝛼 and not arbitrarily as in the case of atomless economies. The proof of the next

proposition is in the Appendix.

Proposition 4.5 Let E be a mixed economy satisfying the assumption (𝐴2) and let 𝑥 ∈ A𝑒 . If 𝑡 ∈
𝐼𝑥 (S𝜀), for some 𝜀 > 0, then
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(𝑖) there exists 𝛼 ∈ (0, 𝜀] such that 𝑡 ∈ 𝐼𝑥 (S𝛼 ) for any 𝛼 in (0, 𝛼];

(𝑖𝑖) given a measurable pseudometric 𝑑 defined on𝑇0 such that𝑇0 is separable in the corresponding

topology, there exist 𝛼 ∈ (0, 𝜀] and a coalition 𝐷 envied by 𝑡 at 𝑥 such that 𝐷 =
⋃𝑚

𝑖=1
𝐷𝑖 , with

𝑚 ⩽ ℓ and for every 𝑖 ∈ {1, . . . ,𝑚}, 𝜇 (𝐷𝑖) ⩽ 𝛼 and 𝑑𝑖𝑎𝑚 𝐷𝑖 ⩽ 𝛼 .

4.2 The inclusion or exclusion structures

In Donnini and Pesce (2021a) we propose a local notion of strict fairness by imposing the absence

of envy only among people that are “related” or “connected” in some way. To formalize the concept

of connection among individuals, we assume that the society is made up of different groups so

that two individuals are related if they are members of the same coalition. Formally, we consider

a countable (finite or infinite) covering of the set of agents 𝑇 , that is a family R = {𝐶𝑖}𝑖∈𝐼 ⊆N of

possible coalitions such that

⋃
𝑖∈𝐼 𝐶𝑖 = 𝑇 , and we impose the absence of envy only within each 𝐶𝑖

of R.

Definition 4.6 (R-Strict fairness of Donnini and Pesce (2021a)) Let R = {𝐶𝑖}𝑖∈𝐼 ⊆N be a cover-
ing of 𝑇 . An allocation 𝑥 is said to be R-strictly envy-free if for any𝐶𝑖 in R and for almost every 𝑡 in

𝐶𝑖 , there does not exist a coalition 𝑆 ⊆ 𝐶𝑖 such that𝑢𝑡 (𝑥 (𝑆)) > 𝑢𝑡 (𝑥 (𝑡)). The allocation 𝑥 is R-strictly
fair if it is both efficient and R-strictly envy-free. The set of R-strictly fair allocations is denoted by

R𝑆𝐹 .

Definition 4.6 generalizes both the notions of Zhou (1992) and Cato (2010) (see also Cato (2012)

for production economy). Borrowing the terminology used in the social network literature, we

can construct a one-to-one correspondence between a covering R = {𝐶𝑖}𝑖∈𝐼 ⊆N of 𝑇 and a social

network, in which the nodes are the elements 𝐶𝑖 of R. An undirected edge connects two nodes 𝐶𝑖

and 𝐶 𝑗 if and only if 𝜇 (𝐶𝑖 ∩ 𝐶 𝑗 ) > 0. In this case, 𝐶𝑖 and 𝐶 𝑗 are said to be connected. A path is a

sequence of elements of R that are connected to each other, and a covering is said to be connected

if for every pair of its elements, there exists a path linking up them. Each covering R designs a

network and vice versa
6
. The covering R is exogenous because for our analysis the reasons that

induce a certain composition of the society are irrelevant. It is not excluded that R is obtained by

a metric on the space of agents’ characteristics, as in Grodal (1972) and in Basile, Gilles, Graziano,

and Pesce (2020) among others, so that for instance each set𝐶𝑖 contains agents with similar tastes;

or by a metric on the space of agents as in Cato (2010) and interpret 𝐶𝑖 as the set of neighbours in

the spatial sense
7
.

In Donnini and Pesce (2021a) it is proved that, under (𝐴3), if R is a connected covering of 𝑇 , R-

strict fairness characterizes equal-income competitive allocations, i.e. 𝑊𝑒𝑖 = 𝑆𝐹 = R𝑆𝐹 , meaning

that once the society is structured in such a way that no group is isolated, it is enough to avoid envy

6
A partition of 𝑇 , for instance, corresponds to an edgeless graph, that is a graph with isolated nodes. Vice versa, a

network with isolated nodes defines a partition of 𝑇 .

7
In these cases R𝑆𝐹 can be viewed as a local version of the strict fairness and thus, even though in principle it is more

general, we use the term “local” to refer to it.
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locally to ensure fairness globally. Here, we complete the analysis by considering also the case of

non-connected coverings.

Following the idea described in Okuda and Shitovitz (1985), we now consider coalition formation

rules involving inclusion or exclusion operations. Okuda and Shitovitz (1985) prove that given any

partition of 𝑇 , {𝐶1, ...,𝐶𝑘 }, with 𝑘 at least equal to one unit more than the number of commodities

in the market (i.e. 𝑘 ≥ ℓ + 1), an allocation belongs to the core if and only if it cannot be improved

upon by any coalition that includes at least one𝐶𝑖 . Furthermore, they prove that the core coincides

with the set of allocations that cannot be blocked by any coalition that excludes at least one 𝐶𝑖 .

In what follows we conduct a similar investigation in terms of envied coalitions. Given a covering,

we require each agent to analyze as potentially enviable only coalitions that exclude or include at

least one element of the covering. Formally, given a covering R = {𝐶𝑖}𝑖∈𝐼 ⊆N, we define

R𝑒 := {𝑆 ∈ Σ : 𝜇 (𝑆 ∩𝐶𝑖) = 0 for almost one𝐶𝑖 ∈ R and 𝜇 (𝑆) > 0}, and

R𝑖 := {𝑆 ∈ Σ : 𝑆 ⊇ 𝐶𝑖 for almost one𝐶𝑖 ∈ R}.

An allocation is R𝑒-strictly fair if it is efficient and almost every agent does not envy any coalition

in R𝑒 . Similarly, an allocation is R𝑖-strictly fair if it is efficient and almost every agent does not

envy any coalition in R𝑖 . We denote by R𝑒𝑆𝐹 and R𝑖𝑆𝐹 respectively the set of R𝑒-strictly fair and

R𝑖-strictly fair allocations.

In mixed markets, a natural covering of 𝑇 is R = {𝑇0,𝑇1}. In this case, Proposition 3.2 returns an

equivalence in terms of exclusion coalition structure. Indeed, define S𝑇1
as the family of coalitions

excluding atoms, i.e. S𝑇1
:= {𝑆 ∈ Σ : 𝜇 (𝑆 ∩ 𝑇1) = 0 and 𝜇 (𝑆) > 0}, and consider only allocations

with the equal-bundle property (i.e. in A𝑒 ) then, under (𝐴2), 𝑆𝐹 ∩A𝑒 = S𝑇1
−𝑆𝐹 ∩A𝑒 . If, in addition,

(𝐴3) holds, we get that W𝑒𝑖 = S𝑇1
− 𝑆𝐹 ∩ A𝑒 .

In an atomless economy E with a finite number of agents’ types, instead, a natural covering of𝑇 is

given by R = {𝑇1, . . . ,𝑇𝑛}, where each𝑇𝑗 consists of agents that share a given utility function𝑢 𝑗 and

a given initial endowment bundle 𝑒 𝑗 , that is 𝑇𝑗 = {𝑡 ∈ 𝑇 : 𝑢𝑡 = 𝑢 𝑗 and 𝑒 (𝑡) = 𝑒 𝑗 } contains agents of

the same type.
8

It is well known that from the atomless economy E it is possible to suitably define

a finite economy E𝑛 , with 𝑛 agents each of them is a representative of a certain type in E, that is

the economic characteristics of each 𝑗 ∈ 𝐼 := {1, . . . , 𝑛} are 𝑢 𝑗 and 𝑒 𝑗 . Given an allocation 𝑥 of the

atomless economy E, one can define a corresponding allocation 𝑥∗ = (𝑥∗
1
, . . . , 𝑥∗𝑛) in E𝑛 that assigns

to any 𝑗 ∈ 𝐼 the average bundle of 𝑇𝑗 , i.e. 𝑥∗𝑗 := 1

𝜇 (𝑇𝑗 )
∫
𝑇𝑗
𝑥 (𝑡)𝑑𝜇 (𝑡). Conversely, given an allocation

𝑥∗ in E𝑛 , one can define a corresponding allocation 𝑥 in E assigning to any agent of type 𝑗 the

bundle 𝑥∗𝑗 . Such an allocation satisfies the equal-bundle property by definition. It can be proved that

given an allocation 𝑥 in E with the equal-bundle property (i.e. 𝑥 ∈ A𝑒 ), then 𝑥 is R𝑒-fair if and only

8𝑇 is partitioned as 𝑇 =
⋃𝑛

𝑗=1
𝑇𝑗 , where each set 𝑇𝑗 can be viewed as a class in the quotient 𝑇 /∼ with respect to a

suitably defined equivalence relation ∼ on 𝑇 .
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if the associated allocation 𝑥∗ in E𝑛 is strictly fair
9
.

We now study the impact that inclusion or exclusion coalition formation structure can have on

the set of strictly fair allocations. We analyse separately atomless economies and mixed markets.

In both cases, we distinguish between connected and non-connected coverings.

In atomless economies with connected coverings, local and global strict fairness coincide. This

is shown in Donnini and Pesce (2021a). However, we prove here that imposing an inclusion or

exclusion restriction on the set of potentially envied coalitions enlarges the set of strictly fair al-

locations. This is consistent with the result of Okuda and Shitovitz (1985) because a partition is a

non-connected covering of 𝑇 . Furthermore, we show that R𝑖𝑆𝐹 and R𝑒𝑆𝐹 are not comparable, in

the sense that both sets R𝑖𝑆𝐹 \ R𝑒𝑆𝐹 and R𝑒𝑆𝐹 \ R𝑖𝑆𝐹 are non-empty. On the other hand, when

the covering is non-connected and it contains more than two elements, then R𝑒𝑆𝐹 collapse to the

set of strictly fair allocations 𝑆𝐹 . The same does not hold for R𝑖𝑆𝐹 and R𝑆𝐹 which are actually

non-comparable notions. Finally, in the case of partitions with just two elements, no equivalence

holds true, because 𝑆𝐹 ⊆ R𝑒𝑆𝐹 ⊆ R𝑆𝐹 and the inclusions might be strict. The proof of the following

theorem is provided in the Appendix.

Theorem 4.7 Let E be an atomless economy (i.e. 𝑇 = 𝑇0) satisfying the assumption (𝐴3) and let

R = {𝐶𝑖}𝑖∈𝐼 be a covering of 𝑇 .

(1) If R is connected, then 𝑆𝐹 = R𝑆𝐹 . Whereas, it might be that 𝑆𝐹 = R𝑆𝐹 ⫋ R𝑖𝑆𝐹 and 𝑆𝐹 =

R𝑆𝐹 ⫋ R𝑒𝑆𝐹 ; moreover R𝑖𝑆𝐹 and R𝑒𝑆𝐹 might be non-comparable.

(2) IfR is non-connected and |𝐼 | > 2, then 𝑆𝐹 = R𝑒𝑆𝐹 . Whereas, it might be that 𝑆𝐹 = R𝑒𝑆𝐹 ⫋ R𝑖𝑆𝐹

and 𝑆𝐹 = R𝑒𝑆𝐹 ⫋ R𝑆𝐹 ; moreover R𝑖𝑆𝐹 and R𝑆𝐹 might be non-comparable.

(3) If R is non-connected and |𝐼 | = 2, then 𝑆𝐹 ⊆ R𝑒𝑆𝐹 ⊆ R𝑆𝐹 and the inclusions might be strict;

moreover R𝑒𝑆𝐹 and R𝑖𝑆𝐹 might be non-comparable.

By combining Theorem 4.7 above and Proposition 3.4 of Zhou (1992), we provide sufficient condi-

tions for further characterizations of the equal-income competitive equilibria in atomless economies.

In mixed markets with non-connected coverings, no equivalence holds. For connected coverings,

instead, we distinguish three different situations. If some element in the covering contains only

atoms then the excluded fairness coincides with the strict fairness provided that only allocations

with equal-bundle property matter. If each element 𝐶𝑖 of the covering R, which includes an atom,

also contains a non-negligible piece of its atomless fringe (i.e. 𝐴 ∈ 𝐶𝑖 ⇒ 𝜇 (𝑆𝐴 ∩ 𝐶𝑖) > 0), then

local and global fairness coincide. Finally, in all the other cases, R𝑒𝑆𝐹 and R𝑆𝐹 are non-comparable

notions. The proof of the following theorem is shown in the Appendix.

9
A similar one-to-one correspondence between the economies E and E𝑛 can be proved in terms of average-fair

allocations.
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Theorem 4.8 Let E be a mixed economy (i.e. 𝜇 (𝑇0)𝜇 (𝑇1) > 0) satisfying the assumption (𝐴3) and let
R = {𝐶𝑖}𝑖∈𝐼 be a covering of 𝑇 .

(1) If R is non-connected, then 𝑆𝐹 ⊆ R𝑒𝑆𝐹 ⊆ R𝑆𝐹 and the inclusions might be strict.

(2) Let R be a connected covering of 𝑇 and assume that (𝐴2) holds.

(2.1) If, for some𝐶𝑖 ∈ R, 𝜇 (𝑇0 ∩𝐶𝑖) = 0, then 𝑆𝐹 ∩A𝑒 = R𝑒𝑆𝐹 ∩A𝑒 . Furthermore, it might be

that R𝑒𝑆𝐹 ⫋ R𝑆𝐹 .

(2.2) If 𝑢𝑡 is strictly quasi-concave for almost all 𝑡 ∈ 𝑇 and if, given 𝐴 ∈ 𝑇1 and 𝐶𝑖 ∈ R,
𝐴 ∈ 𝐶𝑖 ⇒ 𝜇 (𝑆𝐴 ∩ 𝐶𝑖) > 0, then 𝑆𝐹 = R𝑆𝐹 . Furthermore, it might be that 𝑆𝐹 = R𝑆𝐹 ⫋
R𝑒𝑆𝐹 ∩ A𝑒 .

(2.3) If

(𝑎) 𝜇 (𝑇0 ∩𝐶𝑖) > 0 for every 𝐶𝑖 ∈ R, and
(𝑏) there exist 𝐴 ∈ 𝑇1 and 𝐶𝑖 ∈ R, such that 𝐴 ∈ 𝐶𝑖 and 𝜇 (𝑆𝐴 ∩𝐶𝑖) = 0,

then R𝑒𝑆𝐹 and R𝑆𝐹 might be non-comparable.

Remark 4.9 By combining (2.1) and (2.2) of Theorem 4.8 above, we provide sufficient conditions

for the equivalence W𝑒𝑖 = 𝑆𝐹 = R𝑆𝐹 = R𝑒𝑆𝐹 ∩ A𝑒 .

5 Appendix

5.1 Proofs

Proof of Proposition 3.2. 10
Let 𝑥 be an allocation with the equal-bundle property, i.e. 𝑥 ∈ A𝑒 .

Let 𝑡 be an envious agent at 𝑥 , i.e. 𝑡 ∈ 𝐼𝑥 , and 𝑆 be a coalition envied by 𝑡 at 𝑥 . Assume that

𝜇 (𝑆 ∩ 𝑇1) > 0, otherwise the proof is already concluded. From Remark 3.2 of Donnini and Pesce

(2020)
11

, without loss of generality, the set 𝐽 := {𝑛 ∈ N : 𝜇 (𝐴𝑛 ∩ 𝑆) > 0} is finite. For any 𝑛 ∈ 𝐽 ,

let 𝐷𝑛 := {𝑠 ∈ 𝑇 : 𝑢𝑠 = 𝑢𝐴𝑛
}. By assumption (𝐴2), for any 𝑛 ∈ 𝐽 , 𝜇 (𝐷𝑛 ∩ 𝑇0) > 0 and, since

𝑥 ∈ A𝑒 , 𝑥 (𝑠) = 𝑥𝑛 for any 𝑠 ∈ 𝐷𝑛 . Define 𝐷 :=
⋃

𝑛∈𝐽 𝐷𝑛 . By Definition 4.1, let 𝑦 ∈ A be such

that 𝑦 (𝑆) = 𝑥 (𝑆) and 𝑢𝑡 (𝑦 (𝑠)) > 𝑢𝑡 (𝑥 (𝑡)) for almost all 𝑠 in 𝑆 . Without loss of generality, we can

suppose that 𝑦 (𝑠) = 𝑦𝑛 for any 𝑠 ∈ 𝐷𝑛
12

. Thus, we get that

0 =

∫
𝑆

[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠) =
∫
𝑆\𝐷

[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠) +
∑︁
𝑛∈𝐽

[𝑦𝑛 − 𝑥𝑛]𝜇 (𝐷𝑛 ∩ 𝑆) . (3)

10
The proof of Proposition 3.2 contains some arguments used in the demonstration of Theorem 3.6 in Donnini and

Pesce (2020).

11
From Remark 3.2 of Donnini and Pesce (2020), if an agent 𝑡 envies a coalition 𝑆 containing infinitely countably many

atoms, 𝑡 also envies a subcoalition 𝐵 of 𝑆 with finitely many atoms only. A similar result is obtained by Greenberg and

Shitovitz (1994) for blocking coalitions and the core of a mixed economy.

12
Just define the allocation 𝑦 := 𝑦𝜒𝑇 \𝐷 +∑

𝑛∈𝐽 𝑦 (𝐷𝑛 ∩ 𝑆)𝜒𝐷𝑛
, where 𝜒𝐴 denotes the characteristic function of a set 𝐴,

and apply Lemma in Garcia-Cutrin and Herves-Beloso (1993).
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Denote 𝐽1 := {𝑛 ∈ 𝐽 : 𝜇 (𝐷𝑛 ∩ 𝑆) > 𝜇 (𝐷𝑛 ∩𝑇0)}. If 𝐽1 ≠ ∅, define for any 𝑛 ∈ 𝐽1, 𝛼𝑛 :=
𝜇 (𝐷𝑛∩𝑇0)
𝜇 (𝐷𝑛∩𝑆) and

𝛼 := min

𝑛∈𝐽1
𝛼𝑛 ; if 𝐽1 = ∅ define 𝛼 = 1. By (3),

𝛼

∫
𝑆\𝐷

[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠) + 𝛼
∑︁
𝑛∈𝐽

[𝑦𝑛 − 𝑥𝑛]𝜇 (𝐷𝑛 ∩ 𝑆) = 0; (4)

moreover, for all 𝑛 ∈ 𝐽 , 𝛼𝜇 (𝐷𝑛 ∩ 𝑆) ⩽ 𝜇 (𝐷𝑛 ∩𝑇0). Hence, for any 𝑛 ∈ 𝐽 , there exists 𝐵𝑛 ⊆ 𝐷𝑛 ∩𝑇0

such that 𝜇 (𝐵𝑛) = 𝛼𝜇 (𝐷𝑛 ∩ 𝑆). Furthermore, being 𝑆 \ 𝐷 ⊆ 𝑇0 and 𝛼 ⩽ 1, by Lyapunov’s convexity

theorem, there exists 𝐵 ⊆ 𝑆 \𝐷 such that 𝜇 (𝐵) = 𝛼𝜇 (𝑆 \𝐷) and

∫
𝐵
[𝑦 (𝑠) −𝑥 (𝑠)]𝑑𝜇 (𝑠) = 𝛼

∫
𝑆\𝐷 [𝑦 (𝑠) −

𝑥 (𝑠)]𝑑𝜇 (𝑠). Consider the atomless coalition 𝐺 :=
(⋃

𝑛∈𝐽 𝐵𝑛
)
∪ 𝐵 and note that by (4),∫

𝐺

[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠) =
∑︁
𝑛∈𝐽

[𝑦𝑛 − 𝑥𝑛]𝜇 (𝐵𝑛) +
∫
𝐵

[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠)

= 𝛼
∑︁
𝑛∈𝐽

[𝑦𝑛 − 𝑥𝑛]𝜇 (𝐷𝑛 ∩ 𝑆) + 𝛼

∫
𝑆\𝐷

[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠) = 0.

This means that 𝑡 envies the atomless coalition 𝐺 via the allocation 𝑧 = 𝑦𝜒𝐵 +∑
𝑛∈𝐽 𝑦𝑛𝜒𝐵𝑛

+ 𝑥 𝜒𝑇 \𝐺 .

Proof of Proposition 3.3. Let 𝑥 be a feasible allocation with the equal-bundle property and 𝑡 be

in 𝑅𝑥 . Since the economy E satisfies the equal-endowment assumption, this means that

𝑢𝑡 (𝑒 (𝑡)) = 𝑢𝑡 (𝑒 (𝑇 )) = 𝑢𝑡 (𝑥 (𝑇 )) > 𝑢𝑡 (𝑥 (𝑡)) . (5)

If 𝑡 ∈ 𝑇0 then (5) implies that 𝑡 envies 𝑇 \ {𝑡} and then, 𝑡 ∈ 𝐼𝑥 . Whereas, if 𝑡 ∈ 𝑇1 and (𝐴2) holds,

by using the same arguments of the proof of Proposition 3.2, we get that 𝑡 envies an atomless

coalition at 𝑥 . Hence, 𝑡 ∈ 𝐼𝑥 . Finally, if 𝑡 ∈ 𝑇1 and (𝐴1) holds, then pick a different atom 𝐵 ∈ 𝑇1,

whose existence is ensured by (𝐴1), and denote 𝛼 =
𝜇 (𝐵)
𝜇 (𝑇1) ∈ (0, 1). Since 𝑥 ∈ A𝑒 and the equal-

endowment assumption holds, by (𝐴1), it follows that 𝑥 (𝑠) − 𝑒 (𝑠) = 1

𝜇 (𝑇1)
∫
𝑇1

[𝑥 (𝑘) − 𝑒 (𝑘)]𝑑𝜇 (𝑘) for

any 𝑠 ∈ 𝑇1. Moreover, by Lyapunov’s convexity theorem, there exists 𝑆 ⊆ 𝑇0 such that 𝜇 (𝑆) = 𝛼𝜇 (𝑇0)
and

∫
𝑆
[𝑥 (𝑘) − 𝑒 (𝑘)]𝑑𝜇 (𝑘) = 𝛼

∫
𝑇0

[𝑥 (𝑘) − 𝑒 (𝑘)]𝑑𝜇 (𝑘). Therefore, define 𝐷 := 𝑆 ∪ 𝐵 and note that

𝑡 ∉ 𝐷 , moreover∫
𝐷

[𝑥 (𝑘) − 𝑒 (𝑘)]𝑑𝜇 (𝑘) =

∫
𝑆

[𝑥 (𝑘) − 𝑒 (𝑘)]𝑑𝜇 (𝑘) + [𝑥 (𝐵) − 𝑒 (𝐵)]𝜇 (𝐵) =

= 𝛼

∫
𝑇0

[𝑥 (𝑘) − 𝑒 (𝑘)]𝑑𝜇 (𝑘) + 𝛼

∫
𝑇1

[𝑥 (𝑘) − 𝑒 (𝑘)]𝑑𝜇 (𝑘) =

= 𝛼

∫
𝑇

[𝑥 (𝑘) − 𝑒 (𝑘)]𝑑𝜇 (𝑘) = 0.

Finally, by (5), 𝑢𝑡 (𝑒 (𝑠)) > 𝑢𝑡 (𝑥 (𝑡)) for almost all 𝑠 ∈ 𝐷 . This, by Definition 4.1, means that 𝑡 envies

the coalition 𝐷 at 𝑥 and hence 𝑡 ∈ 𝐼𝑥 .

Proof ofTheorem3.4. Let 𝑥 be a strictly fair allocation. By Proposition 4.1 in Zhou (1992), 𝑝 ·𝑥 (𝑡) =
𝑝 ·𝑥 (𝑇0), for almost all 𝑡 ∈ 𝑇0. For any 𝑡 ∈ 𝑇1,

13
let 𝑆𝑡 be its atomless fringe whose existence is ensured

13
Proposition 4.2 in Zhou (1992) ensures that, under the assumption that for each atom there exists another non-
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by (𝐴2). Since 𝑥 ∈ A𝑒 , it follows that for almost all 𝑠 ∈ 𝑆𝑡 , 𝑝 · 𝑥 (𝑡) = 𝑝 · 𝑥 (𝑆𝑡 ) = 𝑝 · 𝑥 (𝑠) = 𝑝 · 𝑥 (𝑇0) .
Conversely, if 𝑥 is not strictly envy-free, by Proposition 3.2, for any 𝑡 ∈ 𝐼𝑥 , there exists an atomless

coalition 𝐹𝑡 , 𝐹𝑡 ⊆ 𝑇0, such that 𝑡 envies 𝐹𝑡 , i.e. 𝑢𝑡 (𝑥 (𝐹𝑡 )) > 𝑢𝑡 (𝑥 (𝑡)). Then, being 𝑝 a supporting

price of 𝑥 , we have that 𝑝 · 𝑥 (𝑡) < 𝑝 · 𝑥 (𝐹𝑡 ). This concludes the proof.

Proof of Proposition 4.2. According to Definition 4.1, 𝑡 envies a coalition 𝑆 at 𝑥 via 𝑦 if

(1) 𝑢𝑡 (𝑦 (𝑠)) > 𝑢𝑡 (𝑥 (𝑡)) for almost all 𝑠 ∈ 𝑆, and

(2)
∫
𝑆

𝑦 (𝑡) 𝑑𝜇 (𝑡) =
∫
𝑆

𝑥 (𝑡) 𝑑𝜇 (𝑡) .

𝑖) Define the vector-valued atomless measure𝜈 on Σ, restricted to 𝑆 , by𝜈 (𝑆 ′) :=

(∫
𝑆′
[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠); 𝜇 (𝑆 ′)

)
∈

Rℓ+1
, with 𝑆 ′ ⊆ 𝑆 . Since 𝜈 (∅) = (0, . . . , 0, 0) and 𝜈 (𝑆) = (0, . . . , 0, 𝜇 (𝑆)), for any 𝜀 ∈ (0, 𝜇 (𝑆)], by

Lyapunov’s convexity theorem, there exists a subcoalition 𝑆 ′ of 𝑆 such that 𝜈 (𝑆 ′) = 𝜀
𝜇 (𝑆)𝜈 (𝑆). Then,

being 𝑆 ′ ⊆ 𝑆 , from (1) we get, in particular, that 𝑢𝑡 (𝑦 (𝑠)) > 𝑢𝑡 (𝑥 (𝑡)) for almost all 𝑠 ∈ 𝑆 ′ and from

(2) that∫
𝑆′
[𝑦 (𝑡) − 𝑥 (𝑡)] 𝑑𝜇 (𝑡) = 𝜀

𝜇 (𝑆)

∫
𝑆

[𝑦 (𝑡) − 𝑥 (𝑡)] 𝑑𝜇 (𝑡) = 0.

Hence, 𝑡 envies 𝑆 ′ at 𝑥 via the same allocation 𝑦 and 𝜇 (𝑆 ′) = 𝜀
𝜇 (𝑆) 𝜇 (𝑆) = 𝜀. This conclude the proof

of 𝑖).

𝑖𝑖) Let {𝑠𝑖}𝑖∈N be a dense subset in 𝑆 on the pseudometric 𝑑 . Then, 𝑇 can be written as 𝑇 =⋃∞
𝑖=1

𝐵
(
𝑠𝑖 ,

𝜀
2

)
, where each 𝐵

(
𝑠𝑖 ,

𝜀
2

)
denotes the ball centered in 𝑠𝑖 with radius

𝜀
2
.

Define 𝑆1 := 𝑆 ∩ 𝐵
(
𝑠1,

𝜀
2

)
and, for each 𝑖 > 1, 𝑆𝑖 :=

(
𝑆 ∩ 𝐵

(
𝑠𝑖 ,

𝜀
2

) )
\ ⋃𝑖−1

𝑗=1
𝑆 𝑗 . Consider the family

{𝑆𝑖}𝑖∈𝐽 , where 𝐽 = {𝑖 ∈ N : 𝜇 (𝑆𝑖) > 0}, which is composed by disjoint subcoalitions of 𝑆 such that

𝜇
(⋃

𝑖∈𝐽 𝑆𝑖
)
= 𝜇 (𝑆). For every 𝑖 ∈ 𝐽 define 𝑎𝑖 :=

∫
𝑆𝑖
[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠) and 𝐶 := 𝑐𝑜𝑛𝑣{𝑎𝑖 , 𝑖 ∈ 𝐽 }14

.

Observe that by (2)∑︁
𝑖∈𝐽

𝑎𝑖 =
∑︁
𝑖∈𝐽

∫
𝑆𝑖

[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠) =
∫
𝑆

[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠) = 0. (6)

Let 𝐻 be the smallest affine subspace containing𝐶 and denote by 𝑖𝑛𝑡𝐻𝐶 the interior of𝐶 relative to

𝐻 , we now show that 0 ∈ 𝑖𝑛𝑡𝐻𝐶 . Assume to the contrary that 0 ∉ 𝑖𝑛𝑡𝐻𝐶 . Then, there exists 𝑝 ∈ 𝐻 ,

with 𝑝 ≠ 0, such that 𝑝 · 𝑎𝑖 ⩾ 0 for every 𝑖 ∈ 𝐽 . From (6) we get that for every 𝑖 ∈ 𝐽

0 ⩽ 𝑝 · 𝑎𝑖 = 𝑝 ·
(∑︁
𝑗 ∈𝐽

𝑎 𝑗

)
− 𝑝 · ©­«

∑︁
𝑗 ∈𝐽 \{𝑖 }

𝑎 𝑗
ª®¬ = −𝑝 · ©­«

∑︁
𝑗 ∈𝐽 \{𝑖 }

𝑎 𝑗
ª®¬ ⩽ 0,

implying that 𝑝 · 𝑎𝑖 = 0 for every 𝑖 ∈ 𝐽 . Therefore, 𝐻 ′ = {𝑎 ∈ 𝐻 : 𝑝 · 𝑎 = 0} is an affine space

containing 𝐶 and it is smaller than 𝐻 . This contradicts the definition of 𝐻 .

negligible trader of the same type, 𝑝 · 𝑥 (𝑡) ⩾ 𝑝 · 𝑥 (𝑇0) for all 𝑡 ∈ 𝑇1.

14𝑐𝑜𝑛𝑣𝑋 denotes the convex hull of 𝑋 .
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Let 𝑑𝑖𝑚𝐻 =𝑚 ⩽ ℓ . By Caratheodory’s theorem there exist𝑚+1 elements of {𝑎𝑖}𝑖∈𝐽 such that 0 can

be written as their convex combination. With abuse of notation we still denote them 𝑎1, . . . , 𝑎𝑚+1,

then 0 =
∑𝑚+1

𝑖=1
𝜆𝑖𝑎𝑖 where 𝜆1, . . . , 𝜆𝑚+1 ∈ [0, 1] and

∑𝑚+1

𝑖=1
𝜆𝑖 = 1. Since 0 ∈ 𝑐𝑜𝑛𝑣{𝑎𝑖 : 𝑖 = 1, . . . ,𝑚+1},

there exists a boundary point of 𝑐𝑜𝑛𝑣{𝑎𝑖 : 𝑖 = 1, . . . ,𝑚 + 1}, 𝑏 ⩽ 0, such that 𝑏 =
∑𝑚

𝑖=1
𝛼𝑖𝑎𝑖 with

𝛼1, . . . , 𝛼𝑚 ∈ [0, 1] and

∑𝑚
𝑖=1

𝛼𝑖 = 1.

Define for every 𝑖 = 1, . . . ,𝑚 the atomless measure𝜈𝑖 : Σ |𝑆𝑖 → R
ℓ+1

as𝜈𝑖 (𝐵) =
(
𝜇 (𝐵),

∫
𝐵
[𝑦 (𝑠) − 𝑥 (𝑠)]𝑑𝜇 (𝑠)

)
.

By Lyapunov’s convexity theorem, for every 𝑖 = 1, . . . ,𝑚 there exists 𝐷𝑖 ⊆ 𝑆𝑖 for which 𝜈𝑖 (𝐷𝑖) =
𝛼𝑖𝜈𝑖 (𝑆𝑖). Let 𝐷 =

⋃𝑚
𝑖=1

𝐷𝑖 and note that

𝜇 (𝐷) =
𝑚∑︁
𝑖=1

𝜇 (𝐷𝑖) =
𝑚∑︁
𝑖=1

𝛼𝑖𝜇 (𝑆𝑖) ⩽ 𝜀

𝑚∑︁
𝑖=1

𝛼𝑖 = 𝜀,

hence 𝜇 (𝐷𝑖) ⩽ 𝜀 for every 𝑖 = 1, . . . ,𝑚. Moreover, for every 𝑖 = 1, . . . ,𝑚, 𝐷𝑖 ⊆ 𝑆𝑖 ⊆ 𝐵

(
𝑎𝑖 ,

𝜀

2

)
, then

𝑑𝑖𝑎𝑚𝐷𝑖 ⩽ 𝜀. Furthermore, 𝐷 ⊆ 𝑆 implies 𝑢𝑡 (𝑦 (𝑠)) > 𝑢𝑡 (𝑥 (𝑡)) for almost all 𝑠 ∈ 𝐷 . Now, let the

assignment 𝑧 be defined on 𝐷 as 𝑧 (𝑠) := 𝑦 (𝑠) − 𝑏

𝜇 (𝐷) . By monotonicity and (1), since 𝑧 (𝑠) ⩾ 𝑦 (𝑠),
𝑢𝑡 (𝑧 (𝑠)) ⩾ 𝑢𝑡 (𝑦 (𝑠)) > 𝑢𝑡 (𝑥 (𝑡)) for all 𝑠 ∈ 𝐷 . Moreover,∫

𝐷

[𝑧 (𝑠)−𝑥 (𝑠)]𝑑𝜇 (𝑠) =
∫
𝐷

[𝑦 (𝑠)−𝑥 (𝑠)]𝑑𝜇 (𝑠)−𝑏 =

𝑚∑︁
𝑖=1

𝛼𝑖

∫
𝑆𝑖

[𝑦 (𝑠)−𝑥 (𝑠)]𝑑𝜇 (𝑠)−𝑏 =

𝑚∑︁
𝑖=1

𝛼𝑖𝑎𝑖−𝑏 = 0.

Hence, 𝑡 envies 𝐷 at 𝑥 .

As already observed, under the equal-endowment assumption, any strictly envy-free allocation 𝑥

is individually rational, because 𝑅𝑥 ⊆ 𝐼𝑥 . Proposition 4.4 derives from the following lemma, which

states that, under the equal-endowment assumption, an envious agent 𝑡 envies at 𝑥 a coalition of

arbitrarily measure if and only if she values 𝑥 unacceptable forasmuch as she would prefer her

initial endowment to 𝑥 .

Lemma 5.1 Let 𝑥 be a feasible non strictly envy-free allocation and assume that 𝑒 (𝑡) = 𝑒 for almost

all 𝑡 ∈ 𝑇 . Then, 𝑡 ∈ 𝐼𝑥,𝜀 for all 𝜀 ∈ (0, 1] ⇔ 𝑡 ∈ 𝐼𝑥,1 ⇔ 𝑡 ∈ 𝑅𝑥 .

Proof. If 𝑡 ∈ 𝐼𝑥,𝜀 for all 𝜀 ∈ (0, 1], in particular it holds for 𝜀 = 1, which means that 𝑡 envies a coalition

𝑆 at 𝑥 with 𝜇 (𝑆) = 𝜇 (𝑇 ) = 1. Being 𝑥 feasible, 𝑥 (𝑆) = 𝑒 and hence 𝑢𝑡 (𝑒) = 𝑢𝑡 (𝑥 (𝑆)) > 𝑢𝑡 (𝑥 (𝑡))
implying that 𝑡 ∈ 𝑅𝑥 . Conversely, if 𝑡 ∈ 𝑅𝑥 then 𝑡 envies at 𝑥 the coalition of all the agents 𝑇 , that

is 𝑡 ∈ 𝐼𝑥,1. Proposition 4.2 ensures that for all 𝜀 ∈ (0, 1], 𝑡 ∈ 𝐼𝑥,𝜀 .

Proof of Proposition 4.4. It directly follows from Lemma 5.1.

Proof of Proposition 4.5. If 𝑡 ∈ 𝐼𝑥 (S𝜀) for some 𝜀 > 0, there exists a coalition 𝑆 ∈ S𝜀 such that

𝑡 envies 𝑆 at 𝑥 and 𝜇 (𝑆) = 𝜀. By Proposition 3.2, we get an atomless coalition 𝑆 ′ ⊆ 𝑇0 such that 𝑡

envies 𝑆 ′ at 𝑥 . Let 𝛼 be the measure of 𝑆 ′. The proof of Proposition 3.2 returns that 𝛼 ⩽ 𝜀. Statements

(𝑖) and (𝑖𝑖) directly follow from Proposition 4.2 applied to 𝑆 ′.
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We now illustrate the following example, obtained with suitable modifications of Example 4.1 of

Donnini and Pesce (2021a)
15

, that is useful to prove different statements of Theorem 4.7.

Example 5.2 Let E be an atomless economy whose consumption set is R2

++, the set of agents is 𝑇 =

(0, 1), the total initial endowment is 𝑒 = (1, 1) which is equally divided among agents whose utility

functions are given by

𝑢𝑡 (𝑥1, 𝑥2) =


𝑥1𝑥2 if 𝑡 ∈ 𝐷1 =

(
0, 1

2

]
𝑥2

1
𝑥2 if 𝑡 ∈ 𝐷2 =

(
1

2
, 1

)
.

Consider the following feasible allocation 𝑥 : 𝑇 → R2

++

𝑥 (𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) =


(

4+2

√
19

15
,

2+2

√
19

9

)
if 𝑡 ∈ 𝐷1(

26−2

√
19

15
,

16−2

√
19

9

)
if 𝑡 ∈ 𝐷2.

Following the computation of Donnini and Pesce (2021a) we get that 𝑥 is efficient and no agent in 𝐷2

is envious, whereas any agent in 𝐷1 envies a coalition 𝑆 if and only if 𝜇 (𝑆∩𝐷1)
𝜇 (𝑆) ∈

(
2

3
, 1

)
, that is if and

only if 𝜇 (𝑆 ∩ 𝐷1) > 2𝜇 (𝑆 ∩ 𝐷2).

Remark 5.3 Note that the efficient allocation 𝑥 , defined above, belongs to S𝜀+ −𝑆𝐹 with 𝜀 = 3

4
and

it is not strictly fair. Thus, Example 5.2 also shows that Proposition 4.2 can not be reformulated in

terms of enlargement of the measure of envied coalition because the equivalence 𝑆𝐹 = S𝜀+ − 𝑆𝐹

might fail.

Proof of Theorem 4.7.
(1) The equivalence 𝑆𝐹 = R𝑆𝐹 in the case of a connected covering R is proved in Donnini and

Pesce (2021a). Consider now, in the economy defined in Example 5.2 above, the connected covering

R = {𝐶1,𝐶2,𝐶3} with 𝐶1 =
(
0, 1

4

]
∪

(
1

2
, 3

4

)
, 𝐶2 =

(
1

4
, 1

2

]
∪

(
5

8
, 7

8

]
and 𝐶3 =

(
1

4
, 1

)
. Observe that for any

𝑖 = 1, 2, 3, and for every 𝑆 ⊇ 𝐶𝑖 , 𝜇 (𝑆 ∩𝐷1) ⩽ 2𝜇 (𝑆 ∩𝐷2), therefore no coalition 𝑆 ⊇ 𝐶𝑖 is envied and

then 𝑥 ∈ R𝑖𝑆𝐹 . However, 𝑥 ∉ R𝑆𝐹 , because, for instance, every 𝑡 in

(
0, 1

4

]
⊆ 𝐶1 envies the coalition

𝑆 =
(
0, 1

4

]
∪

(
1

2
, 9

16

)
⊆ 𝐶1. Hence,

𝑥 ∈ R𝑖𝑆𝐹 \ R𝑆𝐹 .

Moreover, observe that 𝑥 ∉ R𝑒𝑆𝐹 because 𝜇 (𝑆 ∩𝐶2) = 0. Therefore,

𝑥 ∈ R𝑖𝑆𝐹 \ R𝑒𝑆𝐹 .

Consider now, in the same economy of Example 5.2 above, the connected covering R = {𝐶1,𝐶2}
15

Example 4.1 of Donnini and Pesce (2021a) is used for a different purpose.
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with 𝐶1 =
(
0, 1

2

]
and 𝐶2 =

(
1

4
, 1

)
. It is easy to show that 𝑥 ∈ R𝑒𝑆𝐹 . On the other hand, 𝑥 ∉ R𝑖𝑆𝐹,

because every 𝑡 in

[
1

4
, 1

2

]
envies the coalition 𝑆 =

(
0, 9

16

)
⊇ 𝐶1. This implies that

𝑥 ∈ R𝑒𝑆𝐹 \ R𝑖𝑆𝐹 .

Moreover, 𝑥 ∉ R𝑆𝐹 because, for instance, every 𝑡 in

(
1

4
, 1

2

]
⊆ 𝐶2 envies the coalition 𝑆 =

(
1

4
, 9

16

)
⊆ 𝐶2

and hence

𝑥 ∈ R𝑒𝑆𝐹 \ R𝑆𝐹 .

(2) Let R = {𝐶𝑖}𝑖∈𝐼 be a non-connected covering of𝑇 for which |𝐼 | > 2. Let us define an equivalence

relation on R so that two sets 𝐶𝑖 and 𝐶 𝑗 are equivalent if and only if there exists a path linking 𝐶𝑖

and 𝐶 𝑗 . For every 𝑖 ∈ 𝐼 , let [𝐶𝑖] denote the class of sets equivalent to 𝐶𝑖 . This equivalent relation

defines, through equivalence classes, a partition of 𝑇 such that

(𝑎) for every 𝑖 ∈ 𝐼 ,
⋃

𝑗∉𝐽𝑖
𝐶 𝑗 ⊆ 𝑇 \𝐶𝑖 where 𝐽𝑖 := { 𝑗 ∈ 𝐼 : 𝐶 𝑗 ∈ [𝐶𝑖]}; and

(𝑏) since |𝐼 | > 2, for every 𝑖 and 𝑗 in 𝐼 , (𝑇 \𝐶𝑖) and (𝑇 \𝐶 𝑗 ) are connected,

i.e. 𝜇 ((𝑇 \𝐶𝑖) ∩ (𝑇 \𝐶 𝑗 )) > 0.

Define R∗ = {(𝑇 \ 𝐶𝑖)}𝑖∈𝐼 and notice that, by (𝑎), R∗
is a covering of 𝑇 , and by (𝑏), R∗

is

connected. Then, by Donnini and Pesce (2021a), we have that R∗𝑆𝐹 = 𝑆𝐹 ⊆ R𝑒𝑆𝐹 . On the other

hand, by definition, R𝑒𝑆𝐹 ⊆ R∗𝑆𝐹 . Hence the conclusion.

Consider now in the economy described by Example 5.2 above the non-connected covering R =

{𝐶1,𝐶2,𝐶3} with 𝐶1 =
(
0, 1

2

]
, 𝐶2 =

(
1

2
, 3

4

]
, and 𝐶3 =

(
3

4
, 1

)
. Notice that 𝑥 ∈ R𝑆𝐹 ; on the other hand

𝑥 ∉ R𝑒𝑆𝐹 because, for instance, every 𝑡 in

(
0, 1

2

]
envies the coalition 𝑆 =

(
0, 9

16

)
⊆ 𝑇 \𝐶3. Hence,

𝑥 ∈ R𝑆𝐹 \ R𝑒𝑆𝐹 .

Moreover, 𝑥 ∉ R𝑖𝑆𝐹 because the coalition 𝑆 =
(
0, 9

16

)
contains 𝐶1, thence

𝑥 ∈ R𝑆𝐹 \ R𝑖𝑆𝐹 .

Consider now in the same economy E of Example 5.2 the non-connected covering R = {𝐶1,𝐶2,𝐶3}
with 𝐶1 =

(
0, 1

8

)
∪

(
1

2
, 3

4

)
, 𝐶2 =

[
1

8
, 1

4

]
∪

(
1

2
, 3

4

)
, and 𝐶3 =

(
1

4
, 1

2

]
∪

[
3

4
, 1

)
. Notice that, given any 𝐶𝑖

with 𝑖 = 1, 2, 3, any coalition 𝑆 containing𝐶𝑖 is such that 𝜇 (𝑆 ∩𝐷1) ⩽ 2𝜇 (𝑆 ∩𝐷2). This implies that

𝑥 ∈ R𝑖𝑆𝐹 . On the other hand, 𝑥 ∉ R𝑒𝑆𝐹 because, for instance, every 𝑡 in

(
0, 1

2

)
envies the coalition

𝑆 =
(
0, 1

4

)
∪

(
1

2
, 9

16

)
⊆ 𝑇 \𝐶3, i.e.

𝑥 ∈ R𝑖𝑆𝐹 \ R𝑒𝑆𝐹 .

Moreover, 𝑥 ∉ R𝑆𝐹 because every 𝑡 in

(
0, 1

8

)
⊆ 𝐶1 envies the coalition 𝑆 =

(
0, 1

8

)
∪

(
1

2
, 17

32

)
⊆ 𝐶1,

hence

𝑥 ∈ R𝑖𝑆𝐹 \ R𝑆𝐹 .
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(3) Let R = {𝐶1,𝐶2} be a partition of 𝑇 . If 𝑥 is an allocation in R𝑒𝑆𝐹 then, for every𝐶𝑖 ∈ R, almost

every agent envies no coalition 𝑆 ⊆ 𝑇 \𝐶𝑖 = 𝐶 𝑗 , with 𝑗 ≠ 𝑖 . This means that there is no envy inside

any 𝐶𝑖 ∈ R and then 𝑥 ∈ R𝑆𝐹 . Hence, 𝑆𝐹 ⊆ R𝑒𝑆𝐹 ⊆ R𝑆𝐹 .
Consider in the economy E of Example 5.2 the partition R = {𝐶1,𝐶2} of 𝑇 , with 𝐶1 =

(
0, 1

2

]
and

𝐶2 =
(

1

2
, 1

)
. It is easy to show that 𝑥 ∈ R𝑒𝑆𝐹 . Furthermore, since, for instance, every 𝑡 in

(
0, 1

2

]
envies the coalition 𝑆 =

(
0, 9

16

)
which contains 𝐶1, the allocation 𝑥 does not belong to R𝑖𝑆𝐹 and a

fortiori to 𝑆𝐹 . Then,

𝑥 ∈ R𝑒𝑆𝐹 \ R𝑖𝑆𝐹

and the inclusion 𝑆𝐹 ⊆ R𝑒𝑆𝐹 might be strict.

Let us consider in the same economy E of Example 5.2 the partition R = {𝐶1,𝐶2} of 𝑇 , with 𝐶1 =(
0, 1

4

]
∪

(
3

4
, 1

)
and 𝐶2 =

(
1

4
, 3

4

]
. Given any 𝐶𝑖 ∈ R, any coalition 𝑆 containing 𝐶𝑖 is such that 𝜇 (𝑆 ∩

𝐷1) ⩽ 2𝜇 (𝐴 ∩ 𝐷2). Then, the allocation 𝑥 belongs to R𝑖𝑆𝐹 . On the other hand, since every 𝑡 in(
1

4
, 1

2

]
⊆ 𝐶2 envies the coalition 𝑆 =

(
1

4
, 9

16

)
⊆ 𝐶2 = 𝑇 \𝐶1, the allocation 𝑥 does not belong to R𝑆𝐹

and a fortiori nor to R𝑒𝑆𝐹 . Thus,

𝑥 ∈ R𝑖𝑆𝐹 \ R𝑒𝑆𝐹 .

Example 2.3 of Donnini and Pesce (2021a) illustrates an economy in which there exist a partition

R = {𝐶1,𝐶2} of𝑇 and an efficient allocation 𝑥 such that 𝑥 ∈ R𝑆𝐹 \ R𝑒𝑆𝐹 . This completes the proof.

As for the case of atomless economies and Theorem 4.7, in order to prove different statements of

Theorem 4.8, we introduce the following example obtained as a suitable modification of Example

5.2.

Example 5.4 Let E be an economywhere the consumption set isR2

++ and the set of agents is𝑇 = 𝑇0∪𝑇1,

where𝑇0 =
(
0, 3

4

)
and𝑇1 = {𝐴1, 𝐴2} with 𝜇 (𝐴1) = 𝜇 (𝐴2) = 1

8
. The total initial endowment is 𝑒 = (1, 1)

which equally divided among agents whose utility functions are given by

𝑢𝑡 (𝑥1, 𝑥2) =


𝑥1𝑥2 if 𝑡 ∈ 𝐷1 =

(
0, 1

2

]
𝑥2

1
𝑥2 if 𝑡 ∈ 𝐷2 =

(
1

2
, 3

4

)
∪𝑇1.

Consider the following feasible allocation 𝑥 : 𝑇 → R2

++

𝑥 (𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) =


(

4+2

√
19

15
,

2+2

√
19

9

)
if 𝑡 ∈ 𝐷1(

26−2

√
19

15
,

16−2

√
19

9

)
if 𝑡 ∈ 𝐷2.

Notice that 𝑥 ∈ A𝑒 is efficient and every agent 𝑡 in 𝐷2 is not envious, whereas each agent in 𝐷1 envies

a coalition 𝑆 if and only if 𝜇 (𝑆 ∩ 𝐷1) > 2𝜇 (𝑆 ∩ 𝐷2).
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Proof of Theorem 4.8.
(1) Let R = {𝐶𝑖}𝑖∈𝐼 be a non-connected covering of 𝑇 . Note that any 𝐶𝑖 ∈ R is contained in at

least one 𝑇 \ 𝐶 𝑗 with 𝑗 ≠ 𝑖 . Now, if 𝑥 ∈ R𝑒𝑆𝐹 , then there is no envy in each 𝐶𝑖 ∈ R, otherwise

a subcoalition of some 𝑇 \ 𝐶 𝑗 would be envied and this is impossible. Then, 𝑥 ∈ R𝑆𝐹 and hence,

𝑆𝐹 ⊆ R𝑒𝑆𝐹 ⊆ R𝑆𝐹 . In order to show that these inclusions are strict, consider in the economy de-

scribed by Example 5.4 the non-connected covering R = {𝐶1,𝐶2}, with 𝐶𝑖 = 𝐷𝑖 for 𝑖 = 1, 2. It is

easy to show that 𝑥 ∈ R𝑒𝑆𝐹 \ 𝑆𝐹 . Consider now, in the same economy E of Example 5.4, the non-

connected covering R = {𝐶1,𝐶2,𝐶3} with 𝐶1 =
(
0, 1

2

]
, 𝐶2 =

(
1

2
, 3

4

)
, and 𝐶3 = 𝑇1. It is easy to show

that 𝑥 ∈ R𝑆𝐹 \R𝑒𝑆𝐹 because every 𝑡 in

(
0, 1

2

]
envies the coalition

(
1

4
, 9

16

)
which is contained in𝑇 \𝐶3.

(2.1) The inclusion 𝑆𝐹 ∩ A𝑒 ⊆ R𝑒𝑆𝐹 ∩ A𝑒 holds by definition. For the converse, consider an

allocation 𝑥 in R𝑒𝑆𝐹 ∩ A𝑒 and assume to the contrary that it is not strictly fair. Proposition 3.2

ensures that there exists a non-negligible group of agents envying atomless coalitions. Let 𝐶𝑖 be

an element of R such that 𝜇 (𝑇0 ∩𝐶𝑖) = 0, which exists by assumption, and note that any atomless

envied coalition 𝑆 is such that 𝜇 (𝑆 ∩𝐶𝑖) = 0. This implies that 𝑥 ∉ R𝑒𝑆𝐹 which is an absurd.
16

In order to show that the inclusion R𝑒𝑆𝐹 ⊆ R𝑆𝐹 might be strict, consider in the economy E of

Example 5.4 the connected covering R = {𝐶1,𝐶2,𝐶3,𝐶4} with 𝐶1 =
(
0, 1

4

)
∪ 𝐴1, 𝐶2 =

[
1

4
, 1

2

]
∪ 𝐴1,

𝐶3 =
(

1

2
, 3

4

)
∪ 𝐴2, and 𝐶4 = 𝑇1. Note that any coalition 𝑆 included in some 𝐶𝑖 with 𝑖 = 1, 2 is such

that 𝜇 (𝑆 ∩ 𝐷1) ⩽ 2𝜇 (𝑆 ∩ 𝐷2), whereas any 𝐶𝑖 with 𝑖 = 3, 4 contains only agents of the same type.

This implies that 𝑥 ∈ R𝑆𝐹 . On the other hand, every agent in

(
0, 1

2

]
envies the coalition 𝑆 =

(
1

4
, 9

16

)
which is such that 𝜇 (𝑆 ∩𝐶1) = 0 and hence 𝑥 ∉ R𝑒𝑆𝐹, that is 𝑥 ∈ R𝑆𝐹 \ R𝑒𝑆𝐹 .

(2.2) The equivalence 𝑆𝐹 = R𝑆𝐹 in the case of connected covering for which given 𝐴 ∈ 𝑇1 and

𝐶𝑖 ∈ R, 𝐴 ∈ 𝐶𝑖 ⇒ 𝜇 (𝑆𝐴 ∩𝐶𝑖) > 0 is proved in Donnini and Pesce (2021a). In order to show that the

inclusion R𝑆𝐹 ⊆ R𝑒𝑆𝐹 might be strict, consider in the economy E of Example 5.4 the connected

covering R = {𝐶1,𝐶2} with 𝐶1 =
(
0, 1

2

]
and 𝐶2 =

(
1

4
, 3

4

)
∪ 𝐴1 ∪ 𝐴2. Notice that 𝑇 \ 𝐶1 = 𝐷2 and

𝑇 \ 𝐶2 =
(
0, 1

4

]
which is contained in 𝐷1. This implies that 𝑥 ∈ R𝑒𝑆𝐹 ∩ A𝑒 . On the other hand,

every agent in

(
1

4
, 1

2

]
⊆ 𝐶2 envies the coalition 𝑆 =

(
1

4
, 9

16

)
⊆ 𝐶2, meaning that 𝑥 ∉ R𝑆𝐹 . Hence,

𝑥 ∈ R𝑒𝑆𝐹 \ R𝑆𝐹 .

(2.3) Consider in the economy E of Example 5.4 the connected covering R = {𝐶1,𝐶2,𝐶3} with

𝐶1 =
(
0, 1

4

)
∪𝐴1,𝐶2 =

[
1

4
, 1

2

]
∪𝐴2, and𝐶3 =

(
1

2
, 3

4

)
∪𝐴1∪𝐴2. Notice that the assumptions of Theorem

4.8(2.3) are fulfilled. Indeed, 𝜇 (𝐶𝑖 ∩𝑇0) > 0 for every𝐶𝑖 ∈ R and, for instance, the atom 𝐴1 belongs

to 𝐶1 ∈ R, but 𝐶1 contains no piece of its atomless fringe, i.e. 𝜇 (𝐶1 ∩ 𝑆𝐴1
) = 0.

17
Moreover, any

subset 𝑆 of some 𝐶𝑖 with 𝑖 = 1, 2 is such that 𝜇 (𝑆 ∩ 𝐷1) ⩽ 2𝜇 (𝑆 ∩ 𝐷2), and 𝐶3 contains only agents

of the same type. This implies that 𝑥 ∈ R𝑆𝐹 . Note also that, any agent in

(
0, 1

2

]
envies the coalition

𝑆 =
(

1

4
, 9

16

)
which is such that 𝜇 (𝑆 ∩𝐶1) = 0, meaning that 𝑥 ∉ R𝑒𝑆𝐹 and hence 𝑥 ∈ R𝑆𝐹 \ R𝑒𝑆𝐹 .

Consider now in the same economy E of Example 5.4 the connected covering R = {𝐶1,𝐶2} with

𝐶1 =
(
0, 3

4

)
and 𝐶2 =

(
1

2
, 3

4

)
∪𝐴1 ∪𝐴2. Notice that the assumptions of Theorem 4.8(2.3) are fulfilled

16
Notice that the non connection of the covering is not necessary for the proof of (2.1).

17
The same holds true for the atom 𝐴2 and 𝐶2.
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and since𝑇 \𝐶1 = 𝐴1∪𝐴2 and𝑇 \𝐶2 =
(
0, 1

2

]
, 𝑥 ∈ R𝑒𝑆𝐹 . However, every agent in

(
0, 1

2

]
⊆ 𝐶1 envies

the coalition 𝑆 =
(

1

4
, 9

16

)
which is contained in 𝐶1, and hence 𝑥 ∉ R𝑆𝐹 . Thus, 𝑥 ∈ R𝑒𝑆𝐹 \ R𝑆𝐹 . This

completes the proof.

5.2 Examples

The next example underlines the role of the equal-bundle property in Propositions 3.2 and 3.3. We,

indeed, define an economy satisfying (𝐴2) and an allocation𝑥 , assigning to identical agents different

bundles lying on the same indifference curve, at which it is impossible to move the object of envy

from a coalition containing atoms to an atomless coalition and for which the inclusion 𝑅𝑥 ⊆ 𝐼𝑥 fails.

Example 5.5 Consider a mixed economy whose consumption set is R2

++ and the set of agents 𝑇 =

𝑇0 ∪ 𝑇1 is composed by 𝑇0 =
(
0, 1

2

)
and 𝑇1 = {𝐴}, with 𝜇 (𝐴) = 1

2
. The total initial endowment is

𝑒 = (2, 2) and agents’ utility functions are

𝑢𝑡 (𝑥1, 𝑥2) =


𝑥1𝑥2, if 𝑡 = 𝐴 or 𝑡 ∈

(
0, 1

4

)
𝑥2

1
𝑥2, if 𝑡 ∈

[
1

4
, 1

2

)
Consider the following feasible allocation 𝑥 : 𝑇 → R2

++

𝑥 (𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) =


(3, 1), if 𝑡 = 𝐴

(1, 3), if 𝑡 ∈ 𝑇0.

Notice that (𝐴2) is satisfied, while 𝑥 ∉ A𝑒 , since the atom and its fringe receive different bundles lying

on the same indifference curve. Any agent 𝑡 ∈
[

1

4
, 1

2

)
envies the coalition 𝑇 \ {𝑡} at 𝑥 , but no atomless

coalition is envied. Moreover, since 𝑢𝐴 (𝑥 (𝐴)) < 𝑢𝐴 (𝑒 (𝐴)), 𝑥 is not individually rational and𝐴 belongs

to 𝑅𝑥 but not to 𝐼𝑥 . Thus,𝐴 ∈ 𝑅𝑥 \ 𝐼𝑥 and 𝑅𝑥 ⫋ 𝐼𝑥 . Hence, even under (𝐴2), Proposition 3.3 might fail.18

△

In the next example, obtained by suitably modifying Example 4.3, we want to stress that also the

assumption (𝐴2) is crucial for Proposition 3.2.

Example 5.6 Consider amixed economywhose consumption set isR2

++. The set of agents is𝑇 = 𝑇0∪𝑇1,

where 𝑇0 =
(
0, 1

4

)
, 𝑇1 = {𝐴𝑛}𝑛∈N with 𝜇 (𝐴𝑛) = 3

2
𝑛+2

. The total initial endowment is 𝑒 =
(

5

2
, 3

2

)
and

agents’ utility functions are given by

𝑢𝑡 (𝑥1, 𝑥2) =


𝑥3

1
𝑥2, if 𝑡 ∈ 𝑇1

𝑥1𝑥
2

2
, if 𝑡 ∈ 𝑇0

18
Note that agent 𝐴 is also per-capita envious and not average envious nor strictly envious.
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Consider the following feasible allocation 𝑥 : 𝑇 → R2

++,

𝑥 (𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) =


(3, 1), if 𝑡 = 𝑇1

(1, 3), if 𝑡 ∈ 𝑇0.

Notice that 𝑥 ∈ A𝑒 and that the economy satisfies the assumption

(𝐴1
∗) there are infinitely countably many atoms and all atoms are of the same type,

but not (𝐴2). Observe that no atomless coalition is envied, while every agent 𝑡 in𝑇0 envies, for instance,

𝑆 =
[
0, 1

6

]
∪𝐴4.

Then, even under the assumption (𝐴1
∗) used in Donnini and Pesce (2020) to restore the equivalence

𝑆𝐹 =𝑊𝑒𝑖 in mixed economies, Proposition 3.2 might fail. △

The following example shows that, even in atomless economy, the inclusions 𝑅𝑥 ⊆ 𝐼𝑥 and 𝐼𝑥 (S𝜀) ⊆
𝐼𝑥 (S𝜀−) might be strict.

Example 5.7 Consider an atomless economy with two goods, in which 𝑇 = (0, 1), the total initial
endowment is the vector 𝑒 =

(
37

10
, 12

5

)
, and agents’ utility functions are given by

𝑢𝑡 (𝑥1, 𝑥2) =


𝑥2

1
𝑥2, if 𝑡 ∈

(
0, 4

5

]
𝑥1𝑥

3

2
, if 𝑡 ∈

(
4

5
, 9

10

]
𝑥1𝑥2, if 𝑡 ∈

(
9

10
, 1

)
.

Consider the following feasible allocation 𝑥 : 𝑇 → R2

++,

𝑥 (𝑡) =


(4, 2), if 𝑡 ∈

(
0, 4

5

]
(2, 5), if 𝑡 ∈

(
4

5
, 9

10

]
(3, 3), if 𝑡 ∈

(
9

10
, 1

)
,

Notice that any agent in
(

9

10
, 1

)
belongs to 𝐼𝑥 , since, for instance, she envies the coalition 𝑆 =

(
4

5
, 9

10

]
,

but she does not belongs to 𝑅𝑥 .

Moreover agents in
(

9

10
, 1

)
can not envy a coalition of measure 7

8
. Indeed, any coalition 𝑆 of measure 7

8

can be written as the union of the coalitions 𝑆1 := 𝑆 ∩
(
0, 4

5

]
, 𝑆2 := 𝑆 ∩

(
4

5
, 9

10

]
and 𝑆3 := 𝑆 ∩

(
9

10
, 1

)
.

Defined 𝛼 :=
𝜇 (𝑆1)
𝜇 (𝑆) , 𝛽 :=

𝜇 (𝑆2)
𝜇 (𝑆) and 𝛾 :=

𝜇 (𝑆3)
𝜇 (𝑆) , being 𝛾 = 1 − 𝛼 − 𝛽 , we get that 𝛼 ∈

[
27

35
, 32

35

]
, 𝛽 ∈[

0, 4

35

]
, 𝛾 ∈

[
0, 4

35

]
and 𝛼 + 𝛽 ∈

[
31

35
, 1

]
. By easy computation, it can be shown that

𝑥 (𝑆) = 𝛼 (4, 2)+𝛽 (2, 5)+𝛾 (3, 3) = (4𝛼+2𝛽+3(1−𝛼−𝛽), 2𝛼+5𝛽+3(1−𝛼−𝛽)) = (𝛼−𝛽+3,−𝛼+2𝛽+3)
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and for all 𝑡 ∈
(

9

10
, 1

)
𝑢𝑡 (𝑥 (𝑆)) = (𝛼 − 𝛽 + 3) (−𝛼 + 2𝛽 + 3) = −𝛼2 + 3𝛼𝛽 + 3𝛽 − 2𝛽2 + 9 ⩽ 9 = 𝑢𝑡 (𝑥 (𝑡)),

meaning that no agent 𝑡 in
(

9

10
, 1

)
envies a coalition 𝑆 of measure 7

8
. Hence, 𝐼𝑥 (S𝜀) ⫋ 𝐼𝑥 (S𝜀−), with

𝜀 = 7

8
, because

(
9

10
, 1

)
⊆ 𝐼𝑥 (S𝜀−) \ 𝐼𝑥 (S𝜀).

Notice that 𝜇 (𝐼𝑥 (S𝜀+)) > 0 with 𝜀 = 7

8
, since, every agent 𝑡 ∈

(
0, 4

5

]
envies, for instance, 𝑇 \ {𝑡}. Thus

the allocation 𝑥 can not be considered 𝜀-tolerable envy-free, as the one illustrated in Example 4.3. △

In what follows we show that, even in economies with countably many atoms all of the same

type (i.e. under the assumption (𝐴1
∗) stated before), the equal-bundle property is crucial for Propo-

sition 3.3

Example 5.8 Consider a mixed economy whose consumption set is R2

++, 𝑇 = 𝑇0 ∪𝑇1 with 𝑇0 =
(
0, 1

2

)
and 𝑇1 = {𝐴𝑛}𝑛∈N, with 𝜇 (𝐴𝑛) = 1

2
𝑛+1

. The total initial endowment is 𝑒 =
(

7

4
, 5

4

)
and

𝑢𝑡 (𝑥1, 𝑥2) =


𝑥1𝑥2, if 𝑡 ∈ 𝑇1

𝑥2

1
𝑥2, if 𝑡 ∈ 𝑇0

are agents’ utility functions. Consider the following feasible allocation 𝑥 : 𝑇 → R2

++

𝑥 = (𝑥1(𝑡), 𝑥2(𝑡)) =


(1, 2), if 𝑡 = 𝐴1

(2, 1), if 𝑡 ∈ 𝑇0 or 𝑡 = 𝐴𝑛 with 𝑛 ≠ 1

Notice that (𝐴1
∗) is satisfied, while 𝑥 ∉ A𝑒 , since𝐴1 receives a different bundle (but lying on the same

indifference curve) than the other atoms.

Notice that 𝑥 is not individually rational because 𝑢𝐴1
(𝑒 (𝐴1)) > 𝑢𝐴1

(𝑥 (𝐴1)), but 𝐴1 is not envious.

Thus, 𝐴1 ∈ 𝑅𝑥 \ 𝐼𝑥 and 𝑅𝑥 ⫋ 𝐼𝑥 . 19

△

The relevance of the equal-endowment assumption in Theorem 4.4 is now pointed out. In the

next example we indeed show that, in atomless economies in which different agents own different

initial resources, a strictly fair allocation 𝑥 might lose the individual rationality property as the

inclusion 𝑅𝑥 ⊆ 𝐼𝑥 might not hold.

Example 5.9 Consider an atomless economy with 𝑇 = (0, 1) as the set of agents and R2

++ as the

consumption set. Each agent is characterized by the following initial endowment and utility function

𝑒 (𝑡) =


(

31

10
, 1

)
, if 𝑡 ∈

(
0, 3

4

)
(

7

10
, 3

)
, if 𝑡 ∈

[
3

4
, 1

) 𝑢𝑡 (𝑥1, 𝑥2) =


𝑥3

1
𝑥2, if 𝑡 ∈

(
0, 3

4

)
𝑥1𝑥

3

2
, if 𝑡 ∈

[
3

4
, 1

)
.

19
Note that the atom 𝐴1 is per-capita envious and not average envious nor strictly envious.
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Notice that the equal-endowment assumption is not satisfied and the following feasible allocation

𝑥 : 𝑇 → R2

++,

𝑥 (𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) =


(3, 1), if 𝑡 ∈

(
0, 3

4

)
(1, 3), if 𝑡 ∈

[
3

4
, 1

)
is strictly envy-free, since 𝐼𝑥 = ∅, whereas it is not individually rational, because any 𝑡 ∈

(
0, 3

4

)
belongs

to 𝑅𝑥 . Thus, 𝑅𝑥 ⫅̸ 𝐼𝑥 .
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Hervés-Estévez, J., and E. Moreno-García (2018): “Some equivalence results for a bargaining set

in finite economies,” International Journal of Economic Theory, 14, 129–138.

Khan, M. (1974): “Some remarks on the core of a “large” economy,” Econometrica, 42, 633–642.

Okuda, H., and B. Shitovitz (1985): “Core Allocations and the Dimension of the Cone of Efficiency

Price Vectors,” Journal of Economic Theory, 35, 166–171.

Pazner, E. (1977): “Pitfalls in the Theory of Fairness,” Journal of Economic Theory, 14, 458–466.

Pazner, E., and D. Schmeidler (1978): “Egalitarian Equivalent Allocations: A New Concept of Eco-

nomic Equity,” Quarterly Journal of Economics, 92, 671–687.

Schmeidler, D. (1972): “A Remark on the Core of an Atomless Economy,” Econometrica, 40, 579–580.

Shimomura, K. (2022): “The bargaining set and coalition formation,” International Journal of Eco-

nomic Theory, 18, 16–37.

Shitovitz, B. (1973): “Oligopoly in Markets with a Continuum of Traders,” Econometrica, 41, 467–

501.

(1992): “Coalitional fair allocations in smooth mixed markets with an atomless sector,”

Mathematical Social Science, 25, 27–40.

Thomson, W. (1982): “An informationally efficient equity criterion,” Journal of Public Economics, 18,

243–263.

(1988): “A Study of choice correspondences in economies with a variable number of agents,”

Journal of Economic Theory, 46, 237–254.

Thomson, W. (2011): Fair allocation rules. in Handbook of Social Choice and Welfare (K. Arrow, A.

Sen, and K. Suzumura, eds), North-Holland, Amsterdam, New York.

Varian, H. (1974): “Equity, envy and efficiency,” Journal of Economic Theory, 9, 63–91.

(1976): “Two problems in the theory of fairness,” Journal of Public Economics, 5, 249–260.

Vind, K. (1972): “A Third Remark on the Core of an Atomless Economy,” Econometrica, 40, 585–586.

Zhou, L. (1992): “Strictly fair allocations in large exchange economies,” Journal of Economic Theory,

57, 158–175.

28


	wp624 fronte
	Working Paper no. 624
	September 2021
	CSEF - Centre for Studies in Economics and Finance 
	Department of Economics and Statistics – University of Naples Federico II
	Working Paper no. 624

	CSEF_Fairness and formation rules of coalitions
	Introduction
	The model and the basic notions
	Strict fairness and some preliminary results
	Coalition formation rules and strict fairness
	The size of envied coalitions
	The inclusion or exclusion structures

	Appendix
	Proofs
	Examples



