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Abstract 
We consider pure exchange economies with a finite number of private goods and the choice of non-
Samuelsonian public goods. For this type of economies, Basile, Graziano, and Pesce (2016) proposed 
the notion of cost share equilibrium with individual payments for public goods varying according to 
individual benefits. This situation arises naturally when a level of provision is interpreted as a whole 
configuration of public policies or when cost share functions are interpreted as voluntary contributions 
rather than predetermined tax systems (see Mas- Colell (1980)). We establish the equivalence of cost 
share equilibria with cooperative and noncooperative game-theoretic solutions: 1. we characterize cost 
share equilibria as those allocations which cannot be improved upon by society; 2. we characterize 
cost share equilibria as the Nash equilibria of a game with two players. The cooperative solutions 
analyzed in the paper are defined via a contribution scheme which captures the fraction of the total 
cost of collective goods that each coalition of agents is expected to cover. 
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1 Introduction

In this paper we study competitive equilibria and their equivalence with cooperative and non-

cooperative game-theoretic solutions in economies where agents’ private decisions are influenced

by public goods or public projects. Examples include public goods provision (transport, health, ed-

ucation, and international public goods such as the global climate), regulation of private economic

activities (regulation of quality standard, safe working conditions, trade institutions), social rules

(laws, property rights) among the others. To account for different situations, we adopt the general

mathematical framework proposed by Mas-Colell (1980) to represent the public sector of the econ-

omy. We do not limit choice of a public good to a set with Euclidean structure; rather, we allow

public projects to be drawn from a set with no mathematical structure, i.e. a general setting which

includes the case of a finite set of projects and clearly does not exclude Euclidean structure. The

absence of a linear structure on the set of public projects allows treatment in particular of those

public goods for which there is no reason to assume a commonly accepted order by traders. This

applies to public goods that may be perceived differently by different individual, and hence may be

ranked differently. Also, if public projects are understood as public environments, i.e. collections of

variables common to all the agents but determined outside of market mechanisms, we end up with

a general framework incorporating many different economic problems
1
.

In the context described above, we focus on the concept of competitive equilibrium proposed

by Basile, Graziano, and Pesce (2016) which is founded on the distribution of the total cost for the

provision of the selected collective good configuration. This type of cost share equilibrium is more

general than the linear cost share equilibrium notions explored by Mas-Colell (1980), Mas-Colell

and Silvestre (1989), Gilles and Diamantaras (1998), Graziano and Romaniello (2012). In a linear

cost share equilibrium, all the consumers face an equal provision, but they may pay a different con-

tribution according to a given cost share function. Agents maximize their utility over their budget

sets taking into account their share of the cost of the project and changes in the price of private

commodities deriving from changes to the public project. Unlike the previous literature, we do not

assume the same individual contribution for each public project and cost share equilibrium allows

individual payments to vary according to individual benefits. Accordingly, on the cooperative side,

the veto mechanism leading to equilibrium solutions involves a (contribution) measure, defined on

the set of all coalitions, which varies across public projects.

In this paper, we provide cooperative and non-cooperative characterizations of cost share equi-

libria. Our two characterizations are related to each other and respectively rely on the core of the

economy and the Nash equilibria of a game with two players.

In the case of the core, it is well known that in a finite exchange economy with private goods,

1
This interpretation of the Mas-Colell approach was proposed by Hammond and Villar (1998) and Hammond and

Villar (1999) who consider that non-market variables include legal systems (such as assignment of property rights), tax

and benefits systems, and also public sector provided private goods. For further interpretations of non-Samuelsonian

collective goods represented as elements of an unstructured set, see the discussions in Diamantaras and Gilles (1996),

Gilles and Diamantaras (1998), Diamantaras, Gilles, and Scotchmer (1996), Gilles and Scotchmer (1997), Basile, De Simone,

and Graziano (2005), Graziano (2007), Basile, Graziano, and Pesce (2016), Gilles, Pesce, and Diamantaras (2020), Basile,

Gilles, Graziano, and Pesce (2021).
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the intersection of the cores of the sequence of the replications coincides with the set of competitive

equilibrium allocations (Debreu and Scarf, 1963). The classical Debreu-Scarf veto system applied to

replica economies is equivalent to the approach introduced in Aubin (1979), which also leads to a

core that coincides with the competitive equilibria. The Aubin veto mechanism extends the notion

of coalition and the ordinary veto since to form a blocking coalition it allows participation of agents

with a fraction of their endowments.
2

In economies with public goods, both formulation of core

equivalence may fail: replica economies require a large number of agents and the per capita cost

of a public good is decreasing which weakens the influence of small coalitions and makes the core

larger. For this reason, we consider a different veto mechanism from the classical one presented

in Foley (1970). That is, for each individual cost share function, we define a measure on the set

of all coalitions to fix the contribution which each blocking coalition is expected to cover. This

contribution measure depends explicitly on the public project. Also, in line with Aubin’s approach,

we allow agents to block an allocation with a fraction of their endowments. In other words, we

focus on the Aubin core notion proposed by Graziano and Romaniello (2012) for economies with

public goods which turns out to be equivalent to the set of cost share equilibria (see also Basile,

Graziano, and Pesce (2016)).

Our first characterization of cost share equilibria provides a refinement of the core equivalence

theorem. This is achieved by exploiting the veto power of the grand coalition. Specifically, we prove

that for a cost share function and the corresponding contribution measure, the cost share equilibria

are precisely those allocations that cannot be blocked by a coalition in which each agent participates

with a non zero fraction of her initial endowment. However, we show that the contribution of

each member of a blocking coalition can not be chosen arbitrarily close to the total participation,

contrary to the case of economies with no public goods (Hervés-Beloso and Moreno-Garcı́a (2001)).

A blocking coalition with full support is interpreted as the society and the result is proved using

a direct approach that does not rely on Vind’s theorem on the measure of a blocking coalition in

a continuum economy (Vind (1972)).
3

The characterization of cost share equilibria in terms of the

society’s blocking power is key to proving the second characterization in this paper in which cost

share equilibria are connected to Nash equilibria of a two-player game. This equivalence extends to

public goods economies results proved by Hervés-Beloso and Moreno-Garcı́a (2009a) and Hervés-

Beloso and Moreno-Garcı́a (2009b), and is related to work on non-cooperative market games. It

shows the equivalence between cost share equilibria and Nash equilibria of a suitable society game

with implicit use of core equivalence results. The game is played by the society based on two

different roles: as player 1, the society tries to achieve Pareto improvements; as player 2, it chooses

an allocation which is feasible in the Aubin sense. Rather than involving money and prices, the

game involves only the share of the project cost which each coalition is expected to cover. Our

2
The Aubin veto has also been recently used to extend the notion of bargaining set and characterize the competitive al-

locations (see Liu (2017), Hervés-Beloso, Hervés-Estévez, and Moreno-Garcı́a (2018), Hervés-Estévez and Moreno-Garcı́a

(2018b), Hervés-Estévez and Moreno-Garcı́a (2018a), Graziano, Pesce, and Urbinati (2020) among others).

3
Vind (1972) shows that, in a continuum economy, an allocation outside the core can be blocked by coalitions of

arbitrary measure. The veto power of the grand coalition was exploited for pure exchange economies by Hervés-Beloso

and Moreno-Garcı́a (2001); Hervés-Beloso and Moreno-Garcı́a (2008) using Vind’s theorem on the measure of a blocking

coalition in a continuum economy. It has been proved that Vind’s theorem does not hold for economies with public

projects (see Basile, Graziano, and Pesce (2016), Basile, Gilles, Graziano, and Pesce (2021)).
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result contributes to work on strategic approaches to competitive equilibria in markets with public

goods (see Faias, Moreno-Garcı́a, and Wooders (2014), Hervés-Beloso and Moreno-Garcı́a (2020)

for a complete presentation). The generality of the adopted model, which imposes no mathematical

structure on the set of public goods, leads to non-existence results that are discussed in Section 4.

The paper is organized as follows: Section 2 introduces the economic model, and the preliminary

definitions and assumptions; Section 3 presents the main equivalence results; Section 4 discusses

the existence of cost share equilibria, possible extensions of our results and suggests directions for

future research. All the proofs are provided in the Appendix.

2 The economic model

We study an exchange economy E with finite numbers of consumers and private goods. 𝐼 =

{1, 2, . . . , 𝑛} is the set of 𝑛 agents and we take the non-negative orthant of the 𝑚-dimensional Eu-

clidean space, i.e. R𝑚+ , as the consumption space.4 We assume the presence of public projects, rep-

resented as elements of an abstract set Y devoid of any mathematical structure. Mas-Colell (1980)

first considers an abstract set of public goods to generalize Samuelson’s notion of collective good

(see also Diamantaras and Gilles (1996)). The outlay of any public good is expressed in terms only

of private goods, through the so-called cost function 𝑐 : Y → R𝑚+ . Every agent 𝑖 ∈ 𝐼 has an initial

endowment of private goods, denoted 𝜔𝑖 ∈ R𝑚+ , and a utility function which represents her con-

sumption preferences and is denoted𝑢𝑖 : R𝑚+ ×Y → R. Public goods cause widespread externalities

since agents’ utility functions depend not only on the bundle of private goods 𝑥𝑖 ∈ R𝑚+ , but also on

the public project 𝑦 ∈ Y. Throughout the paper we assume that

(A1) Each agent owns a positive initial endowment, 𝜔𝑖 > 0 for all 𝑖 ∈ 𝐼 , and that each private

commodity is present on the market regardless of the cost of the realized project, i.e. 𝜔 ≫
𝑐 (𝑦) for all 𝑦 ∈ Y, where 𝜔 denotes the total initial endowment in the economy E (i.e.

𝜔 =
∑
𝑖∈𝐼 𝜔𝑖 ).

(A2) For any 𝑖 ∈ 𝐼 and any 𝑦 ∈ Y, the restriction 𝑢𝑖 (·, 𝑦) : R𝑚+ → R is continuous, strictly

monotone and quasi-concave.

An allocation for the economy E is the overall amount of the private goods assigned to each

agent and the particular public project. Formally, an allocation is a pair (𝑥,𝑦), with𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈
R𝑚𝑛+ , where 𝑥𝑖 ∈ R𝑚+ is the bundle of private commodities of agent 𝑖 , and𝑦 ∈ Y is the public project.

An allocation (𝑥,𝑦) is feasible if

𝑛∑︁
𝑖=1

𝑥𝑖 + 𝑐 (𝑦) ≤
𝑛∑︁
𝑖=1

𝜔𝑖 .

This means that the initial endowment is used to cover the costs of the realized project and is

redistributed among the agents.

4
We follow the standard vector inequality notation: 𝑥 ≥ 𝑥 ′ if 𝑥ℎ ≥ 𝑥 ′

ℎ
for all commodities ℎ = 1, . . . ,𝑚; 𝑥 > 𝑥 ′ if

𝑥 ≥ 𝑥 ′ and 𝑥 ≠ 𝑥 ′; and 𝑥 ≫ 𝑥 ′ if 𝑥ℎ > 𝑥 ′
ℎ

for all commodities ℎ = 1, . . . ,𝑚.
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The cost distribution is a function 𝜑 : 𝐼 × Y → R+ such that

∑
𝑖∈𝐼 𝜑 (𝑖, 𝑦) = 1 for all 𝑦 ∈ Y,

where 𝜑 (𝑖, 𝑦) describes how much an economic agent 𝑖 must contribute to the cost of public project

𝑦. We use Φ to denote the class of all cost distribution functions.

Let Δ be the simplex of R𝑚+ , i.e. the set Δ =

{
𝑝 ∈ R𝑚+ |

𝑚∑︁
ℎ=1

𝑝ℎ = 1

}
.

Definition 2.1 A feasible allocation (𝑥,𝑦) is a cost share equilibrium in E if there exist a price

system 𝑝 : Y → Δ and a cost distribution function 𝜑 ∈ Φ such that for every 𝑖 ∈ 𝐼 , (𝑥𝑖 , 𝑦) maximizes

𝑢𝑖 on the budget set

𝐵𝑖 (𝑝, 𝜑) =
{
(ℎ, 𝑧) ∈ R𝑚+ × Y | 𝑝 (𝑧) · ℎ + 𝜑 (𝑖, 𝑧)𝑝 (𝑧) · 𝑐 (𝑧) ≤ 𝑝 (𝑧) · 𝜔𝑖

}
.

We denote by 𝐶𝑆𝐸𝜑 (E) the set of all cost share equilibria for the cost distribution function 𝜑 and by

𝐶𝑆𝐸 (E) the set of all cost share equilibria in the economy E, that is 𝐶𝑆𝐸 (E) = ⋃
𝜑 ∈Φ𝐶𝑆𝐸𝜑 (E) .

Definition 2.1 was proposed by Basile, Graziano, and Pesce (2016) as a generalization of the notion

of linear cost share equilibrium developed by Mas-Colell (1980) for economies with a single

private good later extended to the case of multiple private commodities by Diamantaras and Gilles

(1996) (see also Basile, Gilles, Graziano, and Pesce (2021) for a further generalization). A linear cost

share equilibrium is obtained whenever 𝜑 (𝑖, 𝑦) = 𝜑 (𝑖) for all 𝑖 ∈ 𝐼 and all 𝑦 ∈ Y. The equal cost
share equilibrium is a special case in which the cost distribution function 𝜑 is constantly equal

to
1

𝑛
. Thus, using 𝐸𝐶𝐸 (E) and 𝐿𝐶𝐸 (E) to denote the sets of equal and linear cost share equilibria

respectively, we have

𝐸𝐶𝐸 (E) ⊆ 𝐿𝐶𝐸 (E) ⊆ 𝐶𝑆𝐸 (E) . (1)

It should be noted that a price system 𝑝 depends on the public good since it incorporates possible

variations in the private sector due to variations in the public good choice. The price specification

for each possible public good must be known although, in equilibrium, only one public project will

be realized.

The core notion in the context of economies with public goods was proposed initially by Gilles

and Diamantaras (1998) and extended by Basile, Graziano, and Pesce (2016) to include mixed mar-

kets and by Basile, Gilles, Graziano, and Pesce (2021) to include production economies with en-

dogenous social division of labor. The core notion relies on the idea of contribution measure. If

P(𝐼 ) denotes the power set of 𝐼 which contains all possible coalitions, a contribution measure is

a function 𝜎 : P(𝐼 ) × Y → [0, 1] such that for each 𝑦 ∈ Y, 𝜎 (·, 𝑦) is additive on P(𝐼 ); 𝜎 (∅, 𝑦) = 0

and 𝜎 (𝐼 , 𝑦) = 1. Given a coalition 𝑆 ∈ P(𝐼 ) and a public good 𝑦 ∈ Y, the vector 𝜎 (𝑆,𝑦)𝑐 (𝑦) ∈ R𝑚+
indicates the total quantities of the private commodities which must be contributed by the members

of 𝑆 to provide 𝑦. Note that the contribution made by each coalition 𝑆 to realize the public project

𝑦 is not necessarily related to the size of the coalition.

Definition 2.2 Given a contribution measure 𝜎 , a feasible allocation (𝑥,𝑦) is 𝜎-blocked by a coalition
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𝑆 if there exists an alternative allocation (𝑥 ′, 𝑦 ′) such that

(𝑖) 𝑢𝑖 (𝑥 ′𝑖 , 𝑦 ′) > 𝑢𝑖 (𝑥𝑖 , 𝑦), 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑆 𝑎𝑛𝑑

(𝑖𝑖)
∑︁
𝑖∈𝑆

𝑥 ′𝑖 + 𝜎 (𝑆,𝑦 ′)𝑐 (𝑦 ′) ≤
∑︁
𝑖∈𝑆

𝜔𝑖 .

The notion of blocking allows the members of 𝑆 to improve their individual welfare using their

initial endowments and proposing an alternative project 𝑦 ′. Notice that the feasibility over the

coalition 𝑆 , required in the blocking condition (𝑖𝑖), implies that 𝜎 (𝑆,𝑦 ′)𝑐 (𝑦 ′) ≤ ∑
𝑖∈𝑆 𝜔𝑖 , thus the

project 𝑦 ′ is an admissible choice for the coalition 𝑆 because its members are able to cover the cost

of 𝑦 ′ using their own resources. The 𝜎-core of the economy, denoted by𝐶𝜎 (E), is the set of all the

feasible allocations which are not 𝜎-blocked by any coalition of agents.

A feasible allocation is said to be efficient if it is not Pareto blocked by the coalition 𝐼 of all

agents. Clearly, any 𝜎-core allocation is efficient. However, since 𝜎 (𝐼 , 𝑦 ′) = 1 for each project

𝑦 ′ ∈ Y, the efficiency notion does not depend on the contribution measure.

There is a one-to-one relationship between the cost distribution functions and the contribution

measures. In details,

- given a cost distribution function 𝜑 , there is a unique contribution measure associated to 𝜑

defined as the function 𝜎𝜑 : P(𝐼 ) × Y → [0, 1] such that

𝜎𝜑 (𝑆,𝑦) =
∑︁
𝑖∈𝑆

𝜑 (𝑖, 𝑦), for all 𝑆 ∈ P(𝐼 ) and all𝑦 ∈ Y;

- conversely, given a contribution measure 𝜎 , there is a unique cost distribution function 𝜑𝜎

given by

𝜑𝜎 (𝑖, 𝑦) = 𝜎 ({𝑖} , 𝑦), for all 𝑖 ∈ 𝐼 and all𝑦 ∈ Y .

Remark 2.3 The standard arguments make it possible to show that any cost share equilibrium

(𝑥,𝑦) with a cost distribution function 𝜑 belongs to the 𝜎𝜑 -core, i.e. 𝐶𝑆𝐸𝜑 (E) ⊆ 𝐶𝜎𝜑 (E), and a

fortiori is efficient. This inclusion may be strict, as illustrated in the next example.

Example 2.4 Consider an economy with two public goods, Y = {𝑦, 𝑧}, such that 𝑐 (𝑦) = (2, 2)
and 𝑐 (𝑧) = (0, 1). Suppose there are two private goods, R𝑚+ = R2

+, and two agents, 𝐴 and 𝐵, with

characteristics: 𝜔𝐴 = (5, 1), 𝜔𝐵 = (1, 5), and

𝑢𝐴 (𝑓 1, 𝑓 2, 𝑦) = 𝑢𝐵 (𝑓 1, 𝑓 2, 𝑦) =
√︁
𝑓 1 +

√︁
𝑓 2

;

𝑢𝐴 (𝑓 1, 𝑓 2, 𝑧) = 𝑢𝐵 (𝑓 1, 𝑓 2, 𝑧) =
√︁
𝑓 1 +

√︁
𝑓 2 − 2.

Consider the cost distribution 𝜑 (𝐴, 𝑡) = 𝜑 (𝐵, 𝑡) = 1

2
for any 𝑡 ∈ Y, and the feasible allocation

(ℎ,𝑦), with ℎ𝐴 = (1, 1) and ℎ𝐵 = (3, 3). Using computations, it can be proved easily that (ℎ,𝑦)
belongs to the 𝜎𝜑 -core of E, where 𝜎𝜑 is the contribution measure associated to 𝜑 . However, (ℎ,𝑦)
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is not a 𝜑-cost share equilibrium. Indeed, for any price system 𝑝 (𝑦) = (1−𝑞, 𝑞) ∈ Δ, with 𝑞 ∈ [0, 1],
the pair (𝑔,𝑦) defined as

𝑔 = (𝑔1, 𝑔2) =



(
4𝑞,

4(1−𝑞)2

𝑞

)
, if 𝑞 ∈ (0, 1)

(4, 𝑘), if 𝑞 = 0

(4𝑘, 0), if 𝑞 = 1

with 𝑘 > 1, belongs to the budget set 𝐵𝐴 (𝑝, 𝜑) and it is such that 𝑢𝐴 (𝑔,𝑦) > 𝑢𝐴 (ℎ𝐴, 𝑦). Thus, (ℎ,𝑦)
is not a 𝜑-cost share equilibrium, i.e. (ℎ,𝑦) ∈ 𝐶𝜎𝜑 (E) \𝐶𝑆𝐸𝜑 (E) .

♦

3 Cost share equilibria characterizations

In this section we prove two characterizations of cost share equilibria: a cooperative characteriza-

tion in terms of Aubin core allocations and a non-cooperative equivalence of cost share equilibria

as Nash equilibria of a two-player game.

3.1 Cost share equilibria and 𝜎−Aubin core

We consider a weakening of the 𝜎-core, by modifying the veto mechanism and enlarging the set of

coalitions. We follow Aubin (1979)’s approach and allow agents to join a coalition contributing only

with a fraction of their resources. The idea is to assign to each individual 𝑖 a real number𝛾 (𝑖) ∈ [0, 1]
representing her personal portion of endowment she wants to invest in the coalition. Formally, a

generalized or fuzzy coalition is any couple (𝛾, 𝑆) where 𝛾 : 𝐼 → [0, 1] is a non-null function and

𝑆 is its support, i.e. the set {𝑖 ∈ 𝐼 : 𝛾 (𝑖) > 0}. F denotes the set of all generalized coalitions. A

generalized coalition (𝛾, 𝑆) ∈ F is said to have full support if 𝛾 (𝑖) > 0 for all 𝑖 ∈ 𝐼 , that is if 𝑆 = 𝐼 .

We use
˜F to denote the set of generalized coalitions with full support. Any coalition 𝑆 , which in the

remainder of the paper we describe as a standard or crisp coalition, can be viewed as the generalized

coalition (𝜒𝑆 , 𝑆), where 𝜒𝑆 is its corresponding characteristic function, i.e. 𝜒𝑆 : 𝐼 → {0, 1} such that

𝜒𝑆 (𝑖) = 1 if 𝑖 ∈ 𝑆 and 𝜒𝑆 (𝑖) = 0 otherwise. This allows us to enlarge the class of standard coalitions

and therefore to reduce the set of unblocked allocations. We define the 𝜎𝜑-Aubin core notion for

an economy with public projects as follows (see also Graziano and Romaniello (2012), Florenzano

(1990), Noguchi (2000), Basile, Graziano, and Pesce (2016)).

Definition 3.1 Given a contribution function 𝜑 and its corresponding contribution measure 𝜎𝜑 , a

feasible allocation (𝑥,𝑦) is said to be 𝜎𝜑 -blocked by a generalized coalition (𝛾, 𝑆) ∈ F if there exists

an alternative allocation (𝑥 ′, 𝑦 ′) such that

(𝑖) 𝑢𝑖 (𝑥 ′𝑖 , 𝑦 ′) > 𝑢𝑖 (𝑥𝑖 , 𝑦), 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑆 𝑎𝑛𝑑

(𝑖𝑖)
∑︁
𝑖∈𝐼

𝛾 (𝑖)𝑥 ′𝑖 +
∑︁
𝑖∈𝐼

𝛾 (𝑖)𝜑 (𝑖, 𝑦 ′)𝑐 (𝑦 ′) ≤
∑︁
𝑖∈𝐼

𝛾 (𝑖)𝜔𝑖 .

6



The 𝜎𝜑-Aubin core of the economy E, denoted by 𝐶𝐴𝜎𝜑 (E), is the set of all feasible allocations
unblocked by any generalized coalition.

We should point out that in contrast to the classical Aubin core, the feasibility condition also

involves the term

∑
𝑖∈𝐼 𝛾 (𝑖)𝜑 (𝑖, 𝑦 ′)𝑐 (𝑦 ′), representing the contribution of the generalized coalition

(𝛾, 𝑆) to the realization of the project 𝑦 ′ ∈ Y. This contribution takes account of the rate of par-

ticipation of each member of the coalition. More specifically: given a cost distribution function

𝜑 , coherently with the fact that agent 𝑖 actually participates in the blocking coalition using only

the share 𝛾 (𝑖) of initial endowment, we assume that this agent pays towards the realization of the

project in the same proportion. We note also that the feasibility constraint in Definition 2.2 refers

to the contribution measure 𝜎 , while in Definition 3.1 it refers to cost distribution function 𝜑 . In

fact, an extension of 𝜎 from the set of ordinary coalitions P(𝐼 ) to the class of generalized coali-

tions F would allow us to present the feasibility constraint in similar form in both definitions. This

extension is defined for each project 𝑧 ∈ Y as 𝜎 (𝛾, 𝑆, 𝑧) =
𝑛∑︁
𝑖=1

𝛾 (𝑖)𝜎 ({𝑖}, 𝑧) =
𝑛∑︁
𝑖=1

𝛾 (𝑖)𝜑 (𝑖, 𝑧).

Example 2.4 shows that in general, the core based on some contribution measure 𝜎 contains

the set of cost share equilibria in which the individual cost shares are determined by the Radon-

Nikodym derivative of 𝜎 whereas, in economies with an infinite number of agents, under certain

regularity conditions, the two sets coincide (see Basile, Graziano, and Pesce (2016), Theorem 1).

Extending the idea of a contribution scheme to coalitions of a more general type (generalized coali-

tions), a core-equivalence result can be obtained also for the case of finite economies. This leads

to further characterizations of cost share equilibria and it is based on the same idea proposed by

Graziano and Romaniello (2012) for linear cost share equilibria, i.e. the case in which contribution

measures and cost distribution functions do not depend on public projects. Proving equivalence

requires the following essentiality condition (see Diamantaras and Gilles (1996)), which ensures

that any variation in the provision of public goods can be compensated for any agent by a suitable

quantity of private goods.

(𝐴3) Essentiality condition: for any 𝑥 ∈ R𝑚+ , 𝑦, 𝑦 ′ in Y and 𝑖 ∈ 𝐼 there exists 𝑥 ′ ∈ R𝑚+ such that

𝑢𝑖 (𝑥 ′, 𝑦 ′) ≥ 𝑢𝑖 (𝑥,𝑦).5

Theorem 4 of Basile, Graziano, and Pesce (2016): Let 𝜑 be a cost distribution function and 𝜎𝜑
be the corresponding contribution measure. If (𝐴1) − (𝐴3) are satisfied, then 𝐶𝑆𝐸𝜑 (E) = 𝐶𝐴𝜎𝜑 (E).

This equivalence result depends explicitly on the cost distribution function and the correspond-

ing contribution measure. As a particular case, it includes the equivalence between the equal cost

share equilibria and the proportional core. It also generalizes Theorem 4.1 in Graziano and Ro-

maniello (2012) using an approach which dispenses with the so-called second essentiality condition

and the assumption of integrable utilities.
6

If, for some reasons, the set of generalized coalitions F limits to the class of generalized coali-

5
A condition similar to (𝐴3) is assumed in Hammond and Villar (1998) and imposes a suitable restriction on Y which

excludes those public projects that are so bad for some agent to make compensation impossible.

6
Revisiting the proof of Theorem 4.1 in Graziano and Romaniello (2012), we observe that there is no need for the

assumption of integrable utilities borrowed from Gilles and Diamantaras (1998), since the relevant allocations in the

associated continuum economy are step functions and the essentiality condition (𝐴3) is satisfied.
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tions with full support
˜F , the Aubin core tends to increase since

˜F ⊆ F , i.e. 𝐶𝐴𝜎𝜑 (E) ⊆ 𝐶
𝐴𝑓
𝜎𝜑 (E),

where 𝐶
𝐴𝑓
𝜎𝜑 (E) is the set of feasible allocations that cannot be 𝜎𝜑 -blocked by generalized coalition

with full support. In what follows, we prove that the Aubin core actually remains unchanged and

still coincides with the set of cost share equilibria if a stronger version of assumption (𝐴1) holds,

i.e. if the initial endowment allows each agent to cover the cost of any public project, regardless of

the cost distribution function, and to save a positive amount of each good for consumption, i.e.

(𝐴1
∗) 𝜔𝑖 ≫ 𝑐 (𝑦) for all 𝑖 ∈ 𝐼 , and all 𝑦 ∈ Y .

Notice that, since for every 𝑖 ∈ 𝐼 and every 𝑦 ∈ Y, there exists �̃� ∈ Φ with �̃� (𝑖, 𝑦) = 1, assumption

(𝐴1
∗) is equivalent to 𝜔𝑖 − 𝜑 (𝑖, 𝑦)𝑐 (𝑦) ≫ 0 for all 𝑖 ∈ 𝐼 , all 𝑦 ∈ Y and all 𝜑 ∈ Φ.

Theorem 3.2 Let 𝜑 be a cost distribution function and 𝜎𝜑 be the corresponding contribution measure.

If (𝐴1
∗) − (𝐴3) are satisfied, then 𝐶𝑆𝐸𝜑 (E) = 𝐶𝐴𝑓𝜎𝜑 (E).

Proof. See Appendix.

Theorem 4 of Basile, Graziano, and Pesce (2016) and Theorem 3.2 taken together imply that given

a cost distribution function 𝜑 , 𝐶𝐴𝜎𝜑 (E) = 𝐶
𝐴𝑓
𝜎𝜑 (E) because both coincide with the set of cost share

equilibria. Theorem 3.2 rests on less strong assumptions than those in Graziano and Romaniello

(2012) for the linear cost share equilibria case. It also generalizes the equivalence result in Hervés-

Beloso and Moreno-Garcı́a (2001) for economies with no public goods and is used in Subsection 3.2

to characterize the cost share equilibria as the Nash equilibria of a suitably defined associated game.

In economies with no public goods more is true: a feasible allocation is a competitive equilibrium

allocation if and only if it is not blocked by the society in the sense of Aubin with a contribution of

each member arbitrarily close to the total participation. This rests on Vind’s theorem on the measure

of a blocking coalition in an associated continuum economy and, in particular, implies that for any

feasible allocation blocked by a generalized coalition (𝛾, 𝐼 ) with full support, the participation rates

{𝛾 (𝑖)}𝑖∈𝐼 can be chosen arbitrarily close to one (see Hervés-Beloso, Moreno-Garcı́a, and Yannelis

(2005)). In what follows, we show that this equivalence cannot be extended to economies with

public goods. The reason resides in the fact that Vind’s theorem may not hold in our framework

(see Basile, Graziano, and Pesce (2016), Basile, Gilles, Graziano, and Pesce (2021)).

Example 3.3 Consider an economy with one private good, i.e. 𝑚 = 1, two public goods, i.e. Y =

{𝑦, 𝑧} with 𝑐 (𝑦) = 1

2
and 𝑐 (𝑧) = 3

4
; and three agents, i.e. 𝐼 = {𝐴, 𝐵,𝐶}. For all 𝑖 ∈ 𝐼 , let 𝜔𝑖 = 1 and

𝑢𝑖 (𝑓 , 𝑡) = 𝑓 for all 𝑡 ∈ Y. Consider the following cost distribution function

𝜑 (𝑖, 𝑦) =


1, 𝑖 𝑓 𝑖 = 𝐴

0, 𝑖 𝑓 𝑖 ∈ {𝐵,𝐶}
and 𝜑 (𝑖, 𝑧) =


1/9, 𝑖 𝑓 𝑖 = 𝐴

6/9, 𝑖 𝑓 𝑖 = 𝐵

2/9, 𝑖 𝑓 𝑖 = 𝐶,

and the allocation (𝑓 , 𝑦), with 𝑓𝑖 =


0.5, 𝑖 𝑓 𝑖 = 𝐴

1, 𝑖 𝑓 𝑖 ∈ {𝐵,𝐶}.
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Note that (𝑓 , 𝑦) is feasible and it is blocked by the following generalized coalition (𝛾, 𝐼 ) with

full support

𝛾 (𝑖) =


1, 𝑖 𝑓 𝑖 ∈ {𝐴,𝐶}
1

14

, 𝑖 𝑓 𝑖 = 𝐵,
via the allocation (𝑔, 𝑧), with 𝑔𝑖 =


0.6, 𝑖 𝑓 𝑖 = 𝐴

1.2, 𝑖 𝑓 𝑖 = 𝐵

1.1, 𝑖 𝑓 𝑖 = 𝐶.

On the other hand, we now show that, for any 𝛼 ≥ 5

8
, (𝑓 , 𝑦) cannot be blocked in the Aubin

sense by a generalized coalition (𝛾, 𝐼 ) with a participation rate of each member 𝛾 (𝑖) ≥ 𝛼 . Indeed,

assume to the contrary that this is possible via an alternative allocation (𝑔, 𝑡) with 𝑡 = 𝑦. Then, in

particular,



𝑔𝐴 > 0.5 = 𝑓𝐴

𝑔𝐵 > 1 = 𝑓𝐵

𝑔𝐶 > 1 = 𝑓𝐶

𝛾 (𝐴)𝑔𝐴 + 𝛾 (𝐵)𝑔𝐵 + 𝛾 (𝐶)𝑔𝐶 + 1

2
𝛾 (𝐴) ≤ 1(𝛾 (𝐴) + 𝛾 (𝐵) + 𝛾 (𝐶)),

which implies this contraddiction

1

2

𝛾 (𝐴) + 𝛾 (𝐵) + 𝛾 (𝐶) + 1

2

𝛾 (𝐴) < 𝛾 (𝐴) + 𝛾 (𝐵) + 𝛾 (𝐶) .

Similarily, if 𝑡 = 𝑧 then, in particular,

𝑔𝐴 > 0.5 = 𝑓𝐴

𝑔𝐵 > 1 = 𝑓𝐵

𝑔𝐶 > 1 = 𝑓𝐶

𝛾 (𝐴)𝑔𝐴 + 𝛾 (𝐵)𝑔𝐵 + 𝛾 (𝐶)𝑔𝐶 + 3

4
( 1

9
𝛾 (𝐴) + 6

9
𝛾 (𝐵) + 2

9
𝛾 (𝐶)) ≤ 1(𝛾 (𝐴) + 𝛾 (𝐵) + 𝛾 (𝐶)),

which implies this contraddiction

24

36

𝛼 ≤
(
18

36

𝛾 (𝐵) + 6

36

𝛾 (𝐶)
)
<

15

36

𝛾 (𝐴) ⇒ 𝛾 (𝐴) > 24𝛼

15

≥ 1.

♦

3.2 Cost share equilibria as Nash equilibria of a game

For an economy with no public projects, Hervés-Beloso and Moreno-Garcı́a (2009a), Hervés-Beloso

and Moreno-Garcı́a (2009b) provide a characterization of Walrasian equilibria in terms of the Nash

equilibria in an associated two-player game, the society game, in which each player represents a

role of the society, the outcomes are given by the strategies and neither the strategy sets nor the

payoff functions contain prices. It has been shown that, independently of the number of consumers
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and commodities, a Walrasian equilibrium is implementable as a strong Nash equilibrium in the

associated game. We extend this to economies with an abstract set of public projects. Using Theo-

rem 3.2 and similar characterization, we define a two-player game associated to the economy and

we prove that the cost share equilibria are exactly the Nash equilibria of the associated game. To

our knowledge, this is the first attempt to provide a game theoretical interpretation of cost share

equilibria. It implies characterizations for the linear and equal cost share equilibria defined by Gilles

and Diamantaras (1998) in the general setting of Mas-Colell (1980).

Throughout this section, we consider only economies E and cost distribution functions 𝜑 ∈ Φ

which satisfy assumptions (𝐴1
∗), (𝐴2) and (𝐴3). We construct a game𝐺𝜑 associated to E, with two

players 𝑁 = {1, 2}. The strategy set of player 1 denoted 𝑆1, is given by the set of feasible allocations

in E, i.e.

𝑆1 =

{
(𝑥,𝑦) = (𝑥1, . . . , 𝑥𝑛, 𝑦) ∈ R𝑛𝑚+ × Y, such that

𝑛∑︁
𝑖=1

𝑥𝑖 + 𝑐 (𝑦) ≤
𝑛∑︁
𝑖=1

𝜔𝑖

}
.

Assumption (𝐴1), in particular 𝜔 ≫ 𝑐 (𝑦) for all 𝑦 ∈ Y, ensures that 𝑆1 is non-empty since it

contains, for instance, the feasible allocation

(
1

𝑛
(𝜔 − 𝑐 (𝑦)) , 𝑦

)
∈ 𝑆1.

The strategy set of player 2, denoted 𝑆2, is given by

𝑆2 =

{
(𝛾, 𝑥,𝑦) = (𝛾1, . . . , 𝛾𝑛, 𝑥1, . . . , 𝑥𝑛, 𝑦) ∈ (0, 1]𝑛 × R𝑛𝑚+ × Y s.t.

𝑛∑︁
𝑖=1

𝛾𝑖𝑥𝑖 +
𝑛∑︁
𝑖=1

𝛾𝑖𝜑 (𝑖, 𝑦)𝑐 (𝑦) ≤
𝑛∑︁
𝑖=1

𝛾𝑖𝜔𝑖

}
.

The strategy set for player 2 allows an allocation (𝑥,𝑦) ∈ R𝑛𝑚+ × Y to be defined which satisfies

the feasibility (𝑖𝑖) of Definition 3.1 with a participation rate 𝛾𝑖 for every member 𝑖 ∈ 𝐼 . This implies

𝛾𝑖 > 0 for all 𝑖 ∈ 𝐼 and hence also allows definition of a generalized coalition (𝛾, 𝐼 ) with full support.

Observe that 𝑆2 is a non-empty set since

(
1, 1

𝑛
(𝜔 − 𝑐 (𝑦)) , 𝑦

)
∈ 𝑆2, where 1 is the vector inR𝑛 whose

coordinates are constant and equal to 1. Notice also that the society in its two different roles may

choose a different project.

Using 𝑆 for the product set 𝑆1×𝑆2, a strategy profile is any 𝑠 = (𝑥,𝑦,𝛾, 𝑔, 𝑧) ∈ 𝑆 , where (𝑥,𝑦) ∈ 𝑆1

is the player 1 strategy and (𝛾, 𝑔, 𝑧) ∈ 𝑆2 is the player 2 strategy.

Given a strategy profile 𝑠 = (𝑥,𝑦,𝛾, 𝑔, 𝑧) ∈ 𝑆 , the respective payoff functions, 𝐹1 and 𝐹2, for players

1 and 2, are defined as follows

𝐹1(𝑥,𝑦,𝛾, 𝑔, 𝑧) =𝑚𝑖𝑛𝑖=1,...,𝑛 {𝑓 (𝛾𝑖) (𝑢𝑖 (𝑥𝑖 , 𝑦) − 𝑢𝑖 (𝑔𝑖 , 𝑧))}

and

𝐹2(𝑥,𝑦,𝛾, 𝑔, 𝑧) =𝑚𝑖𝑛𝑖=1,...,𝑛 {𝛾𝑖 (𝑢𝑖 (𝑔𝑖 , 𝑧) − 𝑢𝑖 (𝑥𝑖 , 𝑦))} ,

where 𝑓 is a positive differentiable function defined in (0, 1] and such that 𝑓 ′(𝑥)𝑥 > 𝑓 (𝑥). Observe

that
𝑓 (𝑥)
𝑥

is a positive and strictly increasing function and, therefore, max

{
𝑓 (𝑥)
𝑥

}
= 𝑓 (1).

The associated game 𝐺𝜑 then is defined by 𝐺𝜑 ≡ {𝑆1, 𝑆2, 𝐹1, 𝐹2} and the Nash equilibrium is

defined as follows.
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Definition 3.4 A strategy profile 𝑠∗ = (𝑥∗, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) ∈ 𝑆 is a Nash equilibrium for 𝐺𝜑 if

𝐹1(𝑠∗) ≥ 𝐹1(𝑥,𝑦,𝛾∗, 𝑔∗, 𝑧∗), for every (𝑥,𝑦) ∈ 𝑆1, and

𝐹2(𝑠∗) ≥ 𝐹2(𝑥∗, 𝑦∗, 𝛾, 𝑔, 𝑧), for every (𝛾, 𝑔, 𝑧) ∈ 𝑆2.

𝑁𝐸 (𝐺𝜑 ) is the set of Nash equilibria for the game 𝐺𝜑 .

Notice that for any (𝑥,𝑦) ∈ 𝑆1, (1, 𝑥,𝑦) ∈ 𝑆2 and 𝐹1 (𝑥,𝑦,𝛾, 𝑥,𝑦) = 𝐹2 (𝑥,𝑦,𝛾, 𝑥,𝑦) = 0 for any 𝛾 ∈
(0, 1]𝑛 such that (𝛾, 𝑥,𝑦) ∈ 𝑆2. In addition, the following interesting properties listed in the next

proposition hold.

Proposition 3.5 Given 𝑠 ∈ 𝑆 ,

(1) 𝐹𝑛 (𝑠) > 0 ⇒ 𝐹𝑚 (𝑠) < 0 with 𝑛 ≠𝑚.

(2) 𝐹2(𝑠∗) ≥ 0 for any 𝑠∗ ∈ 𝑁𝐸 (𝐺𝜑 ).

(3) If (𝑥,𝑦) is a feasible not Pareto optimal allocation in E, there exists (𝑥 ′, 𝑦 ′) ∈ 𝑆1 such that

𝐹1(𝑥 ′, 𝑦 ′, 𝛾, 𝑔, 𝑧) > 𝐹1(𝑥,𝑦,𝛾, 𝑔, 𝑧) for all (𝛾, 𝑔, 𝑧) ∈ 𝑆2. Vice versa, if (𝑥,𝑦) is Pareto optimal in

E and (𝛾, 𝑥,𝑦) ∈ 𝑆2 for some 𝛾 ∈ (0, 1]𝑛 , then 𝐹1(𝑥 ′, 𝑦 ′, 𝛾, 𝑥,𝑦) ≤ 𝐹1(𝑥,𝑦,𝛾, 𝑥,𝑦) = 0 for all

(𝑥 ′, 𝑦 ′) ∈ 𝑆1.

(4) (𝑥,𝑦) ∈ 𝐶𝐴𝑓𝜎𝜑 (E) ⇐⇒ 𝐹2(𝑥,𝑦,𝛾, 𝑔, 𝑧) ≤ 0 for all (𝛾, 𝑔, 𝑧) ∈ 𝑆2.

(5) (𝑥,𝑦) ∈ 𝐶𝑆𝐸𝜑 (E) ⇒ (𝑥,𝑦, 1, 𝑥,𝑦) ∈ 𝑁𝐸 (𝐺𝜑 ).

Proof. See Appendix.

Condition (1) means that the payoffs for both players can not be simultaneously positive whereas

condition (2) implies that player 2’s payoff is non-negative at any Nash equilibrium. It follows from

(3) that if (𝑥,𝑦) is not Pareto optimal, player 1 can improve upon her payoff whereas if player 2

selects (𝛾, 𝑥,𝑦) ∈ 𝑆2 and (𝑥,𝑦) is Pareto optimal for the economy E, then player 1’s best response

will be the same efficient allocation (𝑥,𝑦). Theorem 3.2 together with condition (4) ensures that if

(𝑥,𝑦) is a cost share equilibria, player 2 gets a non-positive payoff regardless of her strategy. Finally,

condition (5) gives a first relation between the set of the cost share for E and the Nash equilibria

of the associated game 𝐺𝜑 .

The next proposition shows that at a Nash equilibrium both players achieve the same zero payoff

although their chosen public projects might be different.

Proposition 3.6 Assume that for all 𝑖 ∈ 𝐼 , 𝑢𝑖 (0, ·) : Y → R is a constant function and that for

all 𝑖 ∈ 𝐼 and for all 𝑦 ∈ Y, 𝑢𝑖 (·, 𝑦) is concave. If 𝑠∗ is a Nash equilibrium for the game 𝐺𝜑 , then

𝐹1(𝑠∗) = 𝐹2(𝑠∗) = 0.

Proof. See Appendix.

We can now characterize the 𝜑-cost share equilibria for economy E as the Nash equilibria of

the associated game 𝐺𝜑 .
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Theorem 3.7 Let E be an economy with public goods and 𝜑 be a cost distribution function. Assume

that for all 𝑖 ∈ 𝐼 , 𝑢𝑖 (0, ·) : Y → R is a constant function and that for all 𝑖 ∈ 𝐼 and for all 𝑦 ∈ Y,

𝑢𝑖 (·, 𝑦) is concave. Then,

𝑠∗ = (𝑥∗, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) ∈ 𝑁𝐸 (𝐺𝜑 ) ⇒ (𝑥∗, 𝑦∗) ∈ 𝐶𝑆𝐸𝜑 (E).
Reciprocally,

(𝑥∗, 𝑦∗) ∈ 𝐶𝑆𝐸𝜑 (E) ⇒ 𝑠∗ = (𝑥∗, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) ∈ 𝑁𝐸 (𝐺𝜑 ), for any
𝑠∗ = (𝑥∗, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) ∈ 𝑆 with 𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) = 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗) for every 𝑖 ∈ 𝐼 .
In particular,

(𝑥∗, 𝑦∗) ∈ 𝐶𝑆𝐸𝜑 (E) ⇐⇒ (𝑥∗, 𝑦∗, 𝛾∗, 𝑥∗, 𝑦∗) ∈ 𝑁𝐸 (𝐺𝜑 ), with 𝛾∗𝑖 = 𝛾∗ for every 𝑖 ∈ 𝐼 .

Proof. See Appendix.

Propositions 3.5 (1) and 3.6 show that, since for each cost distribution function 𝜑 , the game

𝐺𝜑 has only two players and there are no incentives for the coalition between these two players

to deviate, any Nash equilibrium will be a strong Nash equilibrium in the game 𝐺𝜑 . Therefore,

Theorem 3.7 allows the cost share equilibria to be implemented as a strong Nash equilibrium of the

society game.

4 Extensions and final results

The cost share equilibrium for economies with non-Samuelsonian collective goods studied in our

paper originates from the linear cost share equilibrium proposed by Gilles and Diamantaras (1998).

In a linear cost share equilibrium, all agents optimize given a certain share of the cost of the pro-

vision of public goods in the economy. Each agent pays a fraction of the total costs of the public

goods. In a cost share equilibrium, we also assume that the cost shares depend on the public goods

configuration. This implies that for a certain contribution scheme 𝜑 , the fraction contributed by

agent 𝑖 under the project 𝑧 ∈ Y is defined as 𝜑 (𝑖, 𝑧)𝑝 (𝑧) · 𝑐 (𝑧), where 𝑝 (𝑧) is the conjectural price

system and 𝑐 (𝑧) the cost. Then, for a certain contribution scheme 𝜑 , the corresponding cost share

equilibria are equivalent to Aubin 𝜎𝜑 -core allocations. The contribution measure 𝜎𝜑 defines the

contribution made by the coalition as the sum of the individual cost shares weighted by the share

of participation of the agents in the coalition. We also provided a characterization of more general

cost share equilibria in terms of Nash equilibria in a two-player society game.

Below we discuss implications and extensions of our results.

4.1 Existence of cost share equilibria

The literature does not provide a general existence theorem of cost share equilibrium; however

Gilles and Diamantaras (1998) analyze several examples of economies in which specific linear cost

share equilibria exist. Since cost share equilibria are more general than linear cost share equilibria,

these examples also support the notion of cost share equilibrium. Here, we provide examples of a

well-behaved economy with public projects which, despite the standard assumptions being satis-

fied, exhibits an empty set of cost share equilibria and, consequently, an empty set of linear cost

share equilibria.
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Proposition 4.1 The set of cost share equilibria may be empty, i.e. 𝐶𝑆𝐸 (E) = ⋃
𝜑 ∈Φ𝐶𝑆𝐸𝜑 (E) = ∅.

Proof. See Appendix.

This prompts exploration and provision of conditions that ensure the existence of a cost share

equilibrium. We notice that the Aubin core-cost share equilibrium equivalence theorem combined

with a direct proof of the existence of Aubin core allocations might allow proof of the existence of

cost share equilibrium. Gilles and Scotchmer (1997) suggest a necessary and sufficient condition

for the existence of an equilibrium (see Theorem 2) in terms of efficient scale. Their existence result

is driven by an Edgeworth like equivalence theorem for replica economies and assumes that the

cost of the projects takes the form of a multifunction which cannot be reduced to a function for the

assumptions they make.

Allouch and Predtetchinski (2008) provide an elementary proof of non-emptyness of the Aubin

core in a pure exchange economy. Unlike the Debreu and Scarf (1963) result and its numerous

extensions, their proof does not require any asymptotic intersection and instead of allowing the

economy to become large through replication, they enlarge the set of feasible payoffs for the econ-

omy in the utility space. Hence, the result is established directly using Fan’s coincidence theorem.

We believe that the elementary arguments related to this approach can be adapted and extended to

economies with non-Samuelsonian collective goods. A direct proof of the existence of the Aubin

core is relevant in our framework since it would allow us to exploit the core-equilibrium equivalence

in Theorem 4 of Basile, Graziano, and Pesce (2016) to prove the existence of cost share equilibria.

We leave this issue to future research.

4.2 The case of possibly non-linear cost distribution

In Basile, Gilles, Graziano, and Pesce (2021), the notion of cost share equilibrium and the corre-

sponding core are extended by replacing the scaling cost 𝜑 and the corresponding contribution 𝜎

with a multi-dimensional cost and a multi-dimensional contribution measure. This allows for highly

nonlinear scaling of the costs of individual and coalitional provision, which extends the theory. The

resulting equilibrium notion, which here we describe as generalized, is defined as follows.

A multi-dimensional cost distribution is a function 𝜑 : 𝐼 × Y → R𝑚+ such that∑︁
𝑖∈𝐼

𝜑 (𝑖, 𝑧) = 𝑐 (𝑧), for each 𝑧 ∈ Y .

Similarly, a multi-dimensional contribution measure is defined as an additive function 𝜎 : P(𝐼 ) ×
Y → R𝑚+ such that 𝜎 (𝐼 , 𝑧) = 𝑐 (𝑧), for each 𝑧 ∈ Y. Moreover, as in the scalar case, there is a

one-to-one relationship between the cost distribution functions and the contribution measures.

Definition 4.2 A feasible allocation (𝑥1, . . . , 𝑥𝑛, 𝑦) is a generalized cost share equilibrium in E
if there exist a price system 𝑝 : Y → Δ and a multi-dimensional cost distribution function 𝜑 such that

for every 𝑖 ∈ 𝐼 , (𝑥𝑖 , 𝑦) maximizes 𝑢𝑖 on the budget set

𝐵𝑖 (𝑝, 𝜑) =
{
(ℎ, 𝑧) ∈ R𝑚+ × Y | 𝑝 (𝑧) · ℎ + 𝑝 (𝑧) · 𝜑 (𝑖, 𝑧) ≤ 𝑝 (𝑧) · 𝜔𝑖

}
.
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𝐺𝐶𝑆 (E) is the collection of all generalized cost share equilibria in the economy E and, for a fixed

cost distribution function 𝜑 , 𝐺𝐶𝐸𝜑 (E) the set of generalized cost share equilibria with associated

cost distribution 𝜑 . Then it becomes clear that the inclusions 𝐸𝐶𝐸 (E) ⊆ 𝐿𝐶𝐸 (E) ⊆ 𝐶𝑆𝐸 (E) ⊆
𝐺𝐶𝐸 (E) hold true since each scalar cost distribution 𝜑 generates a multi-dimensional cost distri-

bution based on the product 𝜑 (𝑖, 𝑧)𝑐 (𝑧).

Definition 4.3 Let𝜑 be amulti-dimensional cost distribution function and𝜎𝜑 be the relativemulti-dimensional

contribution measure. A feasible allocation (𝑥1, . . . , 𝑥𝑛, 𝑦) is said to be 𝜎𝜑 -Aubin blocked if it is possible

to find a fuzzy coalition (𝛾, 𝑆) ∈ F and an allocation (𝑔, 𝑧) such that

𝑛∑︁
𝑖=1

𝛾𝑖𝑔𝑖 +
𝑛∑︁
𝑖=1

𝛾𝑖𝜑 (𝑖, 𝑧) ≤
𝑛∑︁
𝑖=1

𝛾𝑖𝜔𝑖

𝑢𝑖 (𝑔𝑖 , 𝑧) > 𝑢𝑖 (𝑥𝑖 , 𝑦), ∀𝑖 ∈ 𝑆.

The generalized 𝜎𝜑 -Aubin core of the economy, denoted 𝐺𝐶𝐴𝜎𝜑 (E) is defined accordingly.

It is easy to verify that all the results proved in Sections 3 and 4.1 hold also for the generalized

cost share equilibria. In particular, given a multi-dimensional cost distribution 𝜑 and the corre-

sponding measure 𝜎𝜑 , the equivalence 𝐺𝐶𝐸𝜑 (E) = 𝐺𝐶𝐴𝜎𝜑 (E) holds true. The proof of the equiva-

lence depends on the same argument in Theorem 4 of Basile, Graziano, and Pesce (2016) and makes

use of the equivalence between generalized 𝜎-core allocations and cost share equilibria proved in

the case of an atomless economy with public goods in Basile, Gilles, Graziano, and Pesce (2021).

Important to note here is that although the set of equilibria is larger under possibly non-linear

cost contributions, existence is still not guaranteed. We demonstrate this below by adapting Propo-

sition 4.1 to generalized cost share equilibria.

Proposition 4.4 The set of generalized cost share equilibria may be empty, i.e.

𝐺𝐶𝐸 (E) = ⋃
𝜑 ∈Φ𝐺𝐶𝐸𝜑 (E) = ∅.

Proof. See Appendix.

4.3 The case of mixed markets

Basile, Graziano, and Pesce (2016) considers models of economies that involve both small and large

traders and the choice of a public project. The main elements in their mixed markets are an atom-

less sector of consumers representing the ocean of negligible traders, a set of atoms representing

the influential agents, and a contribution scheme which specifies the cost of the provision of the

public good for both individual agents and coalitions. Negligible and influential agents are defined

with respect to the size measure in the agents’ space. Small and large contributors are defined sim-

ilarly with respect to the measure underlying the contribution scheme. They do not assume any

mathematical structure for the set of public projects.

Within this framework and using the Aubin approach to cooperation, they establish that the

set of 𝜑-cost share equilibria coincides with the 𝜎-core (in the case of finite economies, our The-

orem 4 of Basile, Graziano, and Pesce (2016)). The equivalence between Walrasian equilibria of a
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pure exchange economy and Nash equilibria of a society game was proved by Hervés-Beloso and

Moreno-Garcı́a (2009a) in the case also of mixed markets. Similarly, we expect that our characteri-

zation in terms of Nash equilibria can be extended to cost share equilibria of mixed economies with

an abstract set of public projects.

Finally, since cost share equilibria of a mixed markets with finitely many atoms are in a one-

to-one correspondence with cost share equilibria of finite economies, our results show also that we

cannot expect a general existence theorem for cost share equilibria in mixed markets.

4.4 The case of infinitely many commodities

Graziano (2007)’s paper deals with the two fundamental theorems of welfare economics for pro-

duction economies with a finite set of agents, infinitely many private goods, and a set of public

projects. The problem of efficiency and decentralization is addressed using very general assump-

tions and the set of public projects does not have a mathematical structure. In particular, the welfare

theorems impose interiority assumptions on the commodity space or classical properness assump-

tions on preferences and production sets, assuming that the commodity space enjoys a Riesz space

structure. This requirement combined with the lattice structure of the price space seems to be in-

dispensable to carry over lattice theoretical arguments connected with properness conditions.

The notion of cost share equilibria can be formulated at the same level of economic generality,

not only on the public goods sector of the model but also on its private goods counterpart. This level

of generality allows among other things investigation of infinite-horizon economies, asset pricing

models, differentiated commodity models, and allocation problems. Aubin core equivalence results

for pure exchange economies with infinitely many commodities are not novel in the literature (see

Noguchi (2000), Khan and Sagara (2022) among others). Hence we expect that the optimality prop-

erties of cost share equilibria will hold true in this more general setting. Clearly in this context the

non-existence problems that emerge are even more severe.

5 Appendix

5.1 Proofs of section 3

Proof of Theorem 3.2. The inclusion 𝐶𝑆𝐸𝜑 (E) ⊆ 𝐶
𝐴𝑓
𝜎𝜑 (E) is always met. In the opposite case,

let (𝑥,𝑦) be an allocation that can not be 𝜎𝜑 -blocked by a generalized coalition with full support

and let us prove that it belongs to 𝐶𝐴𝜎𝜑 (E). The conclusion will follow from Theorem 4 of Basile,

Graziano, and Pesce (2016). Assume, by contradiction, that there exist an allocation (𝑔, 𝑧) and a

generalized coalition (𝛾, 𝑆), with 𝐼 \ 𝑆 ≠ ∅, such that

(𝑖)
𝑛∑︁
𝑖=1

𝛾 (𝑖)𝑔𝑖 +
𝑛∑︁
𝑖=1

𝛾 (𝑖)𝜑 (𝑖, 𝑧)𝑐 (𝑧) ≤
𝑛∑︁
𝑖=1

𝛾 (𝑖)𝜔𝑖

(𝑖𝑖) 𝑢𝑖 (𝑔𝑖 , 𝑧) > 𝑢𝑖 (𝑥𝑖 , 𝑦), ∀𝑖 ∈ 𝑆.
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Notice that, since 𝑆 = {𝑖 ∈ 𝐼 : 𝛾 (𝑖) > 0}, (𝑖) is equivalent to

(𝑖)
∑︁
𝑖∈𝑆

𝛾 (𝑖)𝑔𝑖 ≤
∑︁
𝑖∈𝑆

𝛾 (𝑖)𝜔∗
𝑖 ,

where 𝜔∗
𝑖 = 𝜔𝑖 − 𝜑 (𝑖, 𝑧)𝑐 (𝑧) and 𝜔∗

𝑖 ≫ 0 by (𝐴1
∗). Then, using the standard arguments, without

loss of generality (𝑖) can be rewritten as∑︁
𝑖∈𝑆

𝛾 (𝑖)𝑔𝑖 ≪
∑︁
𝑖∈𝑆

𝛾 (𝑖)𝜔∗
𝑖 . (2)

By (𝐴3), for each 𝑖 ∈ 𝐼 \ 𝑆 there exists 𝑥 ′𝑖 ∈ R𝑚+ such that 𝑢𝑖 (𝑥 ′𝑖 , 𝑧) ≥ 𝑢𝑖 (𝑥𝑖 , 𝑦) and hence, by

monotonicity (𝐴2), given a positive vector 𝐾 ∈ R𝑚++, 𝑢𝑖 (𝑥 ′𝑖 + 𝐾, 𝑧) > 𝑢𝑖 (𝑥𝑖 , 𝑦) for all 𝑖 ∈ 𝐼 \ 𝑆 .

Let 𝑣 =
∑
𝑖∈𝑆 𝛾 (𝑖)𝜔𝑖 −

∑
𝑖∈𝑆 𝛾 (𝑖)𝜑 (𝑖, 𝑧)𝑐 (𝑧) −

∑
𝑖∈𝑆 𝛾 (𝑖)𝑔𝑖 =

∑
𝑖∈𝑆 𝛾 (𝑖)𝜔∗

𝑖 −
∑
𝑖∈𝑆 𝛾 (𝑖)𝑔𝑖 ≫ 0 and

𝑡 =
∑
𝑖∈𝐼\𝑆 [𝑥 ′𝑖 + 𝐾 + 𝜑 (𝑖, 𝑧)𝑐 (𝑧) − 𝜔𝑖]. Let 𝜀 ∈ (0, 1) be such that 𝜀𝑡 ≤ 𝑣 , whose existence follows

from the fact that 𝑣 ≫ 0 (see (2)). Define 𝑔 = 𝑔𝜒𝑆 + (𝑥 ′ + 𝐾)𝜒𝐼\𝑆 and the generalized coalition with

full support (𝛾, 𝐼 ), where 𝛾 = 𝛾 𝜒𝑆 + 𝜀𝜒𝐼\𝑆 . Then, 𝑢𝑖 (𝑔𝑖 , 𝑧) > 𝑢𝑖 (𝑥𝑖 , 𝑦) for all 𝑖 ∈ 𝐼 , and∑︁
𝑖∈𝐼

𝛾 (𝑖)𝑔𝑖 +
∑︁
𝑖∈𝐼

𝛾 (𝑖)𝜑 (𝑖, 𝑧)𝑐 (𝑧) −
∑︁
𝑖∈𝐼

𝛾 (𝑖)𝜔𝑖 = −𝑣 + 𝜀𝑡 ≤ 0.

Therefore, (𝑥,𝑦) is blocked by the generalized coalition with full support (𝛾, 𝐼 ) via the alternative

pair (𝑔, 𝑧), and this is a contradiction.

Proof of Proposition 3.5. Condition (1) follows directly from the definition of players’ payoff

functions. Let us prove (2). Let 𝑠∗ = (𝑥∗, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) ∈ 𝑆 be a Nash equilibrium for the game

𝐺𝜑 . By Definition 3.4, 𝐹2(𝑠∗) ≥ 𝐹2(𝑥∗, 𝑦∗, 𝛾, 𝑔, 𝑧) for all (𝛾, 𝑔, 𝑧) ∈ 𝑆2, and in particular 𝐹2(𝑠∗) ≥
𝐹2(𝑥∗, 𝑦∗, 1, 𝑥∗, 𝑦∗) = 0. To prove (3), let (𝑥,𝑦) be a feasible allocation, i.e. (𝑥,𝑦) ∈ 𝑆1, which is

not Pareto optimal in the economy E, then there exists an alternative feasible allocation (𝑥 ′, 𝑦 ′)
such that 𝑢𝑖 (𝑥 ′𝑖 , 𝑦 ′) > 𝑢𝑖 (𝑥𝑖 , 𝑦) for all 𝑖 ∈ 𝐼 . This means that there exists (𝑥 ′, 𝑦 ′) ∈ 𝑆1 such that

𝑢𝑖 (𝑥 ′𝑖 , 𝑦 ′) − 𝑢𝑖 (𝑔𝑖 , 𝑧) > 𝑢𝑖 (𝑥𝑖 , 𝑦) − 𝑢𝑖 (𝑔𝑖 , 𝑧) for all 𝑖 ∈ 𝐼 and for all (𝛾, 𝑔, 𝑧) ∈ 𝑆2. Hence, since 𝑓

is a positive function, we have 𝐹1(𝑥 ′, 𝑦 ′, 𝛾, 𝑔, 𝑧) > 𝐹1(𝑥,𝑦,𝛾, 𝑔, 𝑧) for all (𝛾, 𝑔, 𝑧) ∈ 𝑆2. Conversely,

if (𝑥,𝑦) is Pareto optimal in E and (𝛾, 𝑥,𝑦) ∈ 𝑆2 for some 𝛾 ∈ (0, 1]𝑛 , then (𝑥,𝑦) ∈ 𝑆1 and 0 =

𝐹1(𝑥,𝑦,𝛾, 𝑥,𝑦) ≥ 𝐹1(𝑥 ′, 𝑦 ′, 𝛾, 𝑥,𝑦) for all (𝑥 ′, 𝑦 ′) ∈ 𝑆1, ortherwise we contradict the efficiency of

(𝑥,𝑦). This concludes the proof of (3). Condition (4) follows from Definition 3.1 and the players’

payoff functions. Finally, to prove (5), let (𝑥,𝑦) be a cost share equilibrium. Then (𝑥,𝑦) is feasible

and hence (𝑥,𝑦) ∈ 𝑆1 and (1, 𝑥,𝑦) ∈ 𝑆2. Since (𝑥,𝑦) is Pareto optimal, it follows from (3) that

𝐹1(𝑥 ′, 𝑦 ′, 1, 𝑥,𝑦) ≤ 𝐹1(𝑥,𝑦, 1, 𝑥,𝑦) = 0 for all (𝑥 ′, 𝑦 ′) ∈ 𝑆1. On the other hand, Theorem 3.2 implies
7

that (𝑥,𝑦) ∈ 𝐶𝐴𝑓𝜎𝜑 (E) and from (4) that 𝐹2(𝑥,𝑦,𝛾, 𝑔, 𝑧, ) ≤ 𝐹2(𝑥,𝑦, 1, 𝑥,𝑦) = 0 for all (𝛾, 𝑔, 𝑧) ∈ 𝑆2.

Therefore, (𝑥,𝑦, 1, 𝑥,𝑦) is a Nash equilibrium for the game 𝐺𝜑 .

The proof of Proposition 3.6 needs the following lemma which exploits the same arguments

used for Lemma 4.2 in Hervés-Beloso and Moreno-Garcı́a (2009b).

7
Recall that throughout Section 3.2 we assume that (𝐴1

∗), (𝐴2) and (𝐴3) hold.
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Lemma 5.1 Assume that for all 𝑖 ∈ 𝐼 , 𝑢𝑖 (0, ·) : Y → R is a constant function and that for all 𝑖 ∈ 𝐼
and for all 𝑦 ∈ Y, 𝑢𝑖 (·, 𝑦) is concave. If 𝑠∗ = (𝑥∗, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) is a Nash equilibrium of the game 𝐺𝜑 ,

then

𝛾∗𝑖 (𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) − 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗)) = 𝛾∗𝑗 (𝑢 𝑗 (𝑔∗𝑗 , 𝑧∗) − 𝑢 𝑗 (𝑥∗𝑗 , 𝑦∗)), for every 𝑖, 𝑗 ∈ 𝐼 .

Proof. Let 𝑠∗ = (𝑥∗, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) be a Nash equilibrium. By (2) of Proposition 3.5, 𝐹2(𝑠∗) ≥ 0.

Define the non-empty set

𝐵(𝑠∗) =
{
𝑖 ∈ 𝐼 : 𝛾∗𝑖 (𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) − 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗)) = min

𝑘∈𝐼
{𝛾∗
𝑘
(𝑢𝑖 (𝑔∗𝑘 , 𝑧

∗) − 𝑢𝑘 (𝑥∗𝑘 , 𝑦
∗))} = 𝐹2 (𝑠∗)

}
.

We need to show that 𝐵(𝑠∗) = 𝐼 . Suppose to the contrary that there exists an agent 𝑗 ∈ 𝐼 \ 𝐵(𝑠∗),
for which 𝛾∗𝑗 (𝑢 𝑗 (𝑔∗𝑗 , 𝑧∗) − 𝑢 𝑗 (𝑥∗𝑗 , 𝑦∗)) > 𝐹2(𝑠∗) ≥ 0. Then, by monotonicity of 𝑢 𝑗 (·, 𝑧∗), we have that

𝑢 𝑗 (𝑔∗𝑗 , 𝑧∗) > 𝑢 𝑗 (𝑥∗𝑗 , 𝑦∗) ≥ 𝑢 𝑗 (0, 𝑦∗) = 𝑢 𝑗 (0, 𝑧∗) ⇒ 𝑔∗𝑗 > 0, whereas, by continuity of 𝑢 𝑗 (·, 𝑧∗), there

exists some 𝜀 ∈ (0, 1) such that 𝛾∗𝑗 (𝑢 𝑗 (𝜀𝑔∗𝑗 , 𝑧∗) − 𝑢 𝑗 (𝑥∗𝑗 , 𝑦∗)) > 𝐹2(𝑠∗). Define 𝛿 =
𝛾∗𝑗 (1−𝜀)𝑔∗𝑗∑
𝑖∈𝐵 (𝑠∗) 𝛾

∗
𝑖
> 0 and

𝑔′ as

𝑔′𝑖 =


𝜀𝑔∗𝑗 , if 𝑖 = 𝑗

𝑔∗𝑖 + 𝛿, if 𝑖 ∈ 𝐵(𝑠∗)

𝑔∗𝑖 , otherwise.

It can easily be proved that (𝛾∗, 𝑔′, 𝑧∗) ∈ 𝑆2 and by monotonicity 𝐹2 (𝑥∗, 𝑦∗, 𝛾∗, 𝑔′, 𝑧∗) > 𝐹2 (𝑠∗) which is an

absurd since 𝑠∗ is a Nash equilibrium. Thus, 𝐵(𝑠∗) = 𝐼 .

We are now ready to prove Proposition 3.6.

Proof of Proposition 3.6. Let 𝑠∗ = (𝑥∗, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) be a Nash equilibrium for the game𝐺𝜑 which

is, by Lemma 5.1, such that

𝐹2(𝑠∗) = 𝛾∗𝑖 (𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) − 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗)) = 𝐶 for all 𝑖 ∈ 𝐼 , (3)

where 𝐶 ≥ 0 according to Proposition 3.5 (2). Then we need to prove that 𝐶 = 0. We proceed

by the way of contradiction and assume that 𝐶 > 0. Note that 𝛾 := max𝑖{𝛾∗𝑖 } = 1, otherwise

𝐹2

(
𝑥∗, 𝑦∗, 𝛾

∗

𝛾
, 𝑔∗, 𝑧∗

)
> 𝐹2(𝑠∗). Since

𝑓 (𝛾 )
𝛾

is a positive and strictly increasing function, by (3), we get

that

𝐹1(𝑠∗) = min

𝑖
{𝑓 (𝛾∗𝑖 ) (𝑢𝑖 (𝑥∗𝑖 , 𝑦∗) − 𝑢𝑖 (𝑔∗𝑖 , 𝑧∗))} = min

𝑖

{
𝑓 (𝛾∗𝑖 )

−𝐶
𝛾∗
𝑖

}
= −𝐶𝑓 (1) < 0, (4)

i.e. 𝐹1(𝑠∗) < 0 < 𝐹2(𝑠∗). Notice that there are 𝑖 ∈ 𝐼 such that 𝛾∗𝑖 < 1, otherwise (𝑔∗, 𝑧∗) ∈ 𝑆1 and

0 = 𝐹1(𝑔∗, 𝑧∗, 𝛾∗, 𝑔∗, 𝑧∗) ≤ 𝐹1(𝑠∗) < 0, which is a contradiction. Furthermore,

𝛾∗𝑖 < 1 ⇒ 𝑓 (𝛾∗𝑖 ) (𝑢𝑖 (𝑥∗𝑖 , 𝑦∗) − 𝑢𝑖 (𝑔∗𝑖 , 𝑧∗)) > 𝐹1(𝑠∗) . (5)
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We now can show that for each 𝛾∗𝑖 < 1 ⇒ 𝑥∗𝑖 ≠ 0. Suppose to the contrary that the set

𝐴 := {𝑖 ∈ 𝐼 : 𝛾∗𝑖 < 1 and 𝑥∗𝑖 = 0} is not empty, and let 𝜀 ∈ (0, 1) be such that
𝛾∗𝑖
𝜀

≤ 1 for all 𝑖 ∈ 𝐴.

Notice that, since 𝑢𝑖 (·, 𝑧) is concave, we have that for all 𝑖 ∈ 𝐴,

𝑢𝑖 (𝜀𝑔∗𝑖 , 𝑧∗) = 𝑢𝑖 (𝜀𝑔∗𝑖 + (1 − 𝜀)𝑥∗𝑖 , 𝑧∗) ≥ 𝜀𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) + (1 − 𝜀)𝑢𝑖 (𝑥∗𝑖 , 𝑧∗) =

= 𝜀𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) + (1 − 𝜀)𝑢𝑖 (0, 𝑧∗) . (6)

Let 𝐾 = 1−𝜀
2𝜀

∑
𝑖∈𝐴 𝛾

∗
𝑖 (𝜔𝑖 − 𝜑 (𝑖, 𝑧∗)𝑐 (𝑧∗)) which is positive because of (𝐴1

∗). Define

𝛾 ′𝑖 =


𝛾∗𝑖
𝜀
, 𝑖 𝑓 𝑖 ∈ 𝐴,

𝛾∗𝑖 , otherwise,
𝑔′𝑖 =


𝜀𝑔∗𝑖 + 𝜀𝐾∑

𝑖∈𝐴 𝛾
∗
𝑖
, 𝑖 𝑓 𝑖 ∈ 𝐴,

𝑔∗𝑖 + 𝐾∑
𝑖∉𝐴 𝛾

∗
𝑖
, otherwise,

and note that (𝛾 ′, 𝑔′, 𝑧∗) ∈ 𝑆2. Indeed, since (𝛾∗, 𝑔∗, 𝑧∗) ∈ 𝑆2 we obtain

𝑛∑︁
𝑖=1

𝛾 ′𝑖𝑔
′
𝑖 +

𝑛∑︁
𝑖=1

𝛾 ′𝑖𝜑 (𝑖, 𝑧∗)𝑐 (𝑧∗) −
𝑛∑︁
𝑖=1

𝛾 ′𝑖𝜔𝑖 =
∑︁
𝑖∈𝐴

𝛾∗𝑖 𝑔
∗
𝑖 + 𝐾 +

∑︁
𝑖∉𝐴

𝛾∗𝑖 𝑔
∗
𝑖 + 𝐾 +∑︁

𝑖∈𝐴

𝛾∗𝑖
𝜀
𝜑 (𝑖, 𝑧∗)𝑐 (𝑧∗) +

∑︁
𝑖∉𝐴

𝛾∗𝑖 𝜑 (𝑖, 𝑧∗)𝑐 (𝑧∗) −
∑︁
𝑖∈𝐴

𝛾∗𝑖
𝜀
𝜔𝑖 −

∑︁
𝑖∉𝐴

𝛾∗𝑖 𝜔𝑖 =

=

𝑛∑︁
𝑖=1

𝛾∗𝑖 𝑔
∗
𝑖 +

1 − 𝜀
𝜀

∑︁
𝑖∈𝐴

𝛾∗𝑖 (𝜔𝑖 − 𝜑 (𝑖, 𝑧∗)𝑐 (𝑧∗)) +
∑︁
𝑖∈𝐴

𝛾∗𝑖
𝜀
𝜑 (𝑖, 𝑧∗)𝑐 (𝑧∗) +

+
∑︁
𝑖∉𝐴

𝛾∗𝑖 𝜑 (𝑖, 𝑧∗)𝑐 (𝑧∗) −
∑︁
𝑖∈𝐴

𝛾∗𝑖
𝜀
𝜔𝑖 −

∑︁
𝑖∉𝐴

𝛾∗𝑖 𝜔𝑖 =

𝑛∑︁
𝑖=1

𝛾∗𝑖 𝑔
∗
𝑖 +

𝑛∑︁
𝑖=1

𝛾∗𝑖 𝜑 (𝑖, 𝑧∗)𝑐 (𝑧∗) +

−
𝑛∑︁
𝑖=1

𝛾∗𝑖 𝜔𝑖 ≤ 0

Furthermore, by monotonicity and (6), we have that for 𝑖 ∈ 𝐴,

𝛾 ′𝑖 [𝑢𝑖 (𝑔′𝑖 , 𝑧∗) − 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗)] =
𝛾∗𝑖
𝜀

[
𝑢𝑖

(
𝜀𝑔∗𝑖 +

𝜀𝐾∑
𝑖∈𝐴 𝛾

∗
𝑖

, 𝑧∗
)
− 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗)

]
>

>
𝛾∗𝑖
𝜀
[𝑢𝑖 (𝜀𝑔∗𝑖 , 𝑧∗) − 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗)] =

𝛾∗𝑖
𝜀
[𝑢𝑖 (𝜀𝑔∗𝑖 , 𝑧∗) − 𝑢𝑖 (0, 𝑧∗)] ≥

≥
𝛾∗𝑖
𝜀
[𝜀𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) + (1 − 𝜀)𝑢𝑖 (0, 𝑧∗) − 𝑢𝑖 (0, 𝑧∗)] = 𝛾∗𝑖 [𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) − 𝑢𝑖 (0, 𝑧∗)] =

= 𝛾∗𝑖 [𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) − 𝑢𝑖 (0, 𝑦∗)] = 𝛾∗𝑖 [𝑢𝑖 (𝑔∗𝑖 , 𝑧∗) − 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗)],

and by monotonicity, we have that for all 𝑖 ∉ 𝐴

𝛾 ′𝑖 [𝑢𝑖 (𝑔′𝑖 , 𝑧∗) − 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗)] > 𝛾∗𝑖 [𝑢𝑖 (𝑔∗𝑖 , 𝑧) − 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗)] .

Hence, 𝐹2(𝑥∗, 𝑦∗, 𝛾 ′, 𝑔′, 𝑧∗) > 𝐹2(𝑠∗) which is an absurd, being 𝑠∗ a Nash equilibrium. Therefore,

denoted by 𝐴′
the set 𝐴′

:= {𝑖 ∈ 𝐼 : 𝛾∗𝑖 < 1}, then we have for all 𝑖 ∈ 𝐴′
, 𝑥∗𝑖 > 0 and, by (5),

𝑓 (𝛾∗𝑖 ) (𝑢𝑖 (𝑥∗𝑖 , 𝑦∗) − 𝑢𝑖 (𝑔∗𝑖 , 𝑧∗)) > 𝐹1(𝑠∗). Let 𝛿 ∈ (0, 1) be such that 𝑓 (𝛾∗𝑖 ) (𝑢𝑖 (𝛿𝑥∗𝑖 , 𝑦∗) − 𝑢𝑖 (𝑔∗𝑖 , 𝑧∗)) >
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𝐹1(𝑠∗) for all 𝑖 ∈ 𝐴′
and consider the pair (𝑥 ′, 𝑦∗) ∈ 𝑆1, given by

𝑥 ′𝑖 =


𝛿𝑥∗𝑖 , 𝑖 𝑓 𝑖 ∈ 𝐴′

𝑥∗𝑖 + 1−𝛿
|𝐼\𝐴′ |

∑
𝑗 ∈𝐴′ 𝑥∗𝑗 > 𝑥

∗
𝑖 , 𝑖 𝑓 𝑖 ∉ 𝐴′,

which, based on monotonicity, gives a higher payoff to player1, i.e. 𝐹1 (𝑥 ′, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) > 𝐹1 (𝑠∗). This

contradicts the assumption that 𝑠∗ is a Nash equilibrium and hence 𝐶 = 0, which concludes the

proof.

Proof of Theorem 3.7. Let 𝑠∗ = (𝑥∗, 𝑦∗, 𝛾∗, 𝑔∗, 𝑧∗) be a Nash equilibrium for the game 𝐺𝜑 and

assume that (𝑥∗, 𝑦∗) is not a 𝜑-cost share equilibrium allocation. Then, by Theorem 3.2 there exists

(𝛾, 𝑔, 𝑧) ∈ 𝑆2 such that 𝐹2(𝑥∗, 𝑦∗, 𝛾, 𝑔, 𝑧) > 0 and, by Proposition 3.6, 𝐹2(𝑥∗, 𝑦∗, 𝛾, 𝑔, 𝑧) > 0 = 𝐹2(𝑠∗),
which is impossible by Definition 3.4.

For the converse, let (𝑥∗, 𝑦∗) be a 𝜑-cost share equilibrium and assume that (𝑥∗, 𝑦∗, 𝛾, 𝑔, 𝑧) is not

a Nash equilibrium, where (𝛾, 𝑔, 𝑧) ∈ 𝑆2 is such that 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗) = 𝑢𝑖 (𝑔𝑖 , 𝑧) for every 𝑖 ∈ 𝐼 . Then,

(𝐼 ) there exists (𝑥,𝑦) ∈ 𝑆1 such that 𝐹1(𝑥,𝑦,𝛾, 𝑔, 𝑧) > 𝐹1(𝑥∗, 𝑦∗, 𝛾, 𝑔, 𝑧) = 0; or

(𝐼 𝐼 ) there exists (𝛾 ′, 𝑔′, 𝑧 ′) ∈ 𝑆2 such that 𝐹2(𝑥∗, 𝑦∗, 𝛾 ′, 𝑔′, 𝑧 ′) > 𝐹2(𝑥∗, 𝑦∗, 𝛾, 𝑔, 𝑧) = 0.

In the first case, (𝑥∗, 𝑦∗) is not efficient, because (𝑥,𝑦) is feasible and 𝑢𝑖 (𝑥𝑖 , 𝑦) > 𝑢𝑖 (𝑔𝑖 , 𝑧) =

𝑢𝑖 (𝑥∗𝑖 , 𝑦∗) for all 𝑖 ∈ 𝐼 , and this is a contradiction (see Remark 2.3).

In the second case, (𝑥∗, 𝑦∗) is a𝜎𝜑 -dominated allocation in the sense of Aubin, because𝑢𝑖 (𝑔′𝑖 , 𝑧 ′) >
𝑢𝑖 (𝑥∗𝑖 , 𝑦∗) for every 𝑖 ∈ 𝐼 and

∑
𝑖∈𝐼 𝛾

′
𝑖𝑔

′
𝑖 +

∑
𝑖∈𝐼 𝛾

′
𝑖𝜑 (𝑖, 𝑧 ′)𝑐 (𝑧 ′) ≤

∑
𝑖∈𝐼 𝛾

′
𝑖𝜔𝑖 , with 𝛾 ′𝑖 > 0 for all 𝑖 . This

contradicts the fact that (𝑥∗, 𝑦∗) is a 𝜑𝜎 -cost share equilibrium (see Theorem 3.2).

5.2 Proofs of section 4

In what follows, we prove that the set of cost share equilibria might be empty even in economies

that satisfy standard assumptions.

First we examine the relation between cost share equilibria in an economy with public goods

and competitive equilibria of an appropriately constructed pure exchange economy without public

goods. Specifically, given an economy

E = {𝐼 ,R𝑚+ ,Y, 𝑐, (𝑢𝑖 , 𝜔𝑖)𝑖∈𝐼 } and a cost distribution function 𝜑 ∈ Φ satisfying assumptions (𝐴1
∗),

(𝐴2) and (𝐴3), for each given 𝑦 ∈ Y, we define the economy E(𝑦, 𝜑) = {𝐼 ,R𝑚+ , (𝑢𝑖 (·, 𝑦), 𝜔
𝑦

𝑖
)𝑖∈𝐼 },

devoid of public goods, with the same set of agents 𝐼 , the same commodity space for private con-

sumption R𝑚+ , and such that, for each agent 𝑖 ∈ 𝐼 , 𝜔𝑦
𝑖
= 𝜔𝑖 − 𝜑 (𝑖, 𝑦)𝑐 (𝑦) and 𝜔

𝑦

𝑖
≫ 0 as the result

of (𝐴1
∗). A competitive equilibrium in the economy E(𝑦, 𝜑) consists of a pair (𝑥, 𝑝) where 𝑥 is

a feasible allocation, i.e.

∑
𝑖∈𝐼 𝑥𝑖 ≤

∑
𝑖∈𝐼 𝜔

𝑦

𝑖
, 𝑝 ∈ Δ is a price vector such that 𝑝 · 𝑥𝑖 ≤ 𝑝 · 𝜔𝑦

𝑖
for all

𝑖 ∈ 𝐼 and 𝑢𝑖 (𝑘,𝑦) > 𝑢𝑖 (𝑥𝑖 , 𝑦) ⇒ 𝑝 · 𝑘 > 𝑝 · 𝜔𝑦
𝑖
.

Proposition 5.2 If (𝑥∗, 𝑦∗) ∈ 𝐶𝑆𝐸𝜑 (E) with price function 𝑝∗ : Y → Δ, then 𝑥∗ is a competitive

equilibrium with price 𝑝∗(𝑦∗) in the economy E(𝑦∗, 𝜑). Conversely if, for each 𝑦 ∈ Y, (𝑥𝑦, 𝑝𝑦) is a
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competitive equilibrium in the economy E(𝑦, 𝜑) and if there exists 𝑦∗ ∈ Y such that 𝑢𝑖 (𝑥𝑖𝑦∗, 𝑦∗) ≥
𝑢𝑖 (𝑥𝑖𝑧, 𝑧) for all 𝑖 ∈ 𝐼 and all 𝑧 ∈ Y, then (𝑥𝑦∗, 𝑦∗) is a cost share equilibrium for the economy E with

the equilibrium price 𝑝∗ : Y → R𝑚+ given by 𝑝∗(𝑧) := 𝑝𝑧 .

Proof. If (𝑥∗, 𝑦∗) ∈ 𝐶𝑆𝐸𝜑 (E), 𝑥∗ is feasible and it satisfies the budget set in E(𝑦∗, 𝜑), i.e. 𝑝∗(𝑦∗)·𝑥∗𝑖 ≤
𝑝∗(𝑦∗) · 𝜔𝑦

∗

𝑖
. To conclude, we show that it is also maximal in the budget set. Let 𝑔 be an allocation

such that 𝑢𝑖 (𝑔𝑖 , 𝑦∗) > 𝑢𝑖 (𝑥∗𝑖 , 𝑦∗) and 𝑝∗(𝑦∗) · 𝑔𝑖 ≤ 𝑝∗(𝑦∗) · 𝜔𝑦
∗

𝑖
for some 𝑖 ∈ 𝐼 . This implies that

𝑝∗(𝑦∗) · 𝑔𝑖 + 𝜑∗(𝑖, 𝑦∗)𝑝∗(𝑦∗) · 𝑐 (𝑦∗) ≤ 𝑝∗(𝑦∗) · 𝜔𝑖 , which is a contradiction since (𝑥∗, 𝑦∗) is a cost

share equilibrium.

Conversely, let (𝑥𝑦, 𝑝𝑦) be a competitive equilibrium in each economy E(𝑦, 𝜑) and 𝑦∗ ∈ Y be

such that 𝑢𝑖 (𝑥𝑖𝑦∗, 𝑦∗) ≥ 𝑢𝑖 (𝑥𝑖𝑧, 𝑧) for all 𝑧 ∈ Y. Assume to the contrary that (𝑥𝑦∗, 𝑦∗) is not a cost

share equilibrium for the economy E with the equilibrium price 𝑝∗ : Y → R𝑚+ given by 𝑝∗(𝑧) := 𝑝𝑧 .

Since, (𝑥𝑦∗, 𝑦∗) is feasible and satisfies the budget constraint in E, it means that there exist an agent

𝑖 ∈ 𝐼 and an alternative allocation (𝑔𝑖 , 𝑧) such that

(𝑖) 𝑢𝑖 (𝑔𝑖 , 𝑧) > 𝑢𝑖 (𝑥𝑖𝑦∗, 𝑦∗) and

(𝑖𝑖) 𝑝∗(𝑧) · 𝑔𝑖 + 𝑝∗(𝑧) · 𝜑 (𝑖, 𝑧)𝑐 (𝑧) ≤ 𝑝∗(𝑧) · 𝜔𝑖 .

From (𝑖𝑖) it follows that 𝑝𝑧 · 𝑔𝑖 ≤ 𝑝𝑧 · 𝜔𝑧𝑖 , and hence, since (𝑥𝑧, 𝑧) is a competitive equilibrium

allocation for E(𝑧, 𝜑), it follows that 𝑢𝑖 (𝑔𝑖 , 𝑧) ≤ 𝑢𝑖 (𝑥𝑖𝑧, 𝑧) ⇒ 𝑢𝑖 (𝑥𝑖𝑦∗, 𝑦∗) < 𝑢𝑖 (𝑔𝑖 , 𝑧) ≤ 𝑢𝑖 (𝑥𝑖𝑧, 𝑧) ≤
𝑢𝑖 (𝑥𝑖𝑦∗, 𝑦∗), a contradiction.

A cost share equilibrium (𝑥∗, 𝑦∗) is a competitive equilibrium in the economy with no public

goods E(𝑦∗, 𝜑), constructed on the basis of the public project𝑦∗ arisen in equilibrium. Furthermore,

by the strict monotonicity assumption, 𝑝∗(𝑦∗) ≫ 0. Conversely, if there is a competitive equilib-

rium that is preferred by all the agents over all the other competitive equilibria (i.e. which Pareto

dominates), then this constitutes a cost share equilibrium in the economy E with public projects.

The mere existence of a competitive equilibrium in each economy E(𝑦, 𝜑) as defined above, does

not ensure the existence of a cost share equilibrium in the economy E with public goods, because

there may not be a competitive equilibrium which Pareto dominates all the other equilibria. This

applies to the Proposition 4.1 whose proof is shown below.

Proof of Proposition 4.1. Consider an economy with two public goods, i.e. Y = {𝑦, 𝑧}, two

agents, i.e. 𝐼 = {𝐴, 𝐵}, and two private goods, i.e. R𝑚+ = R2

+. The primitives of the economy are

given by:

𝑢𝐴 (𝑓 1, 𝑓 2, 𝑦) = 𝑢𝐵 (𝑓 1, 𝑓 2, 𝑧) =
√︁
𝑓 1 +

√︁
𝑓 2

𝑢𝐴 (𝑓 1, 𝑓 2, 𝑧) = 𝑢𝐵 (𝑓 1, 𝑓 2, 𝑦) =
√︁
𝑓 1 +

√︁
𝑓 2 + 5;

𝑐 = 𝑐 (𝑦) = 𝑐 (𝑧) =
(
2

3

,
2

3

)
;

𝜔𝐴 = (1, 3) 𝜔𝐵 = (3, 1).
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First we observe that for any (𝜑𝐴 (·), 𝜑𝐵 (·)) ≥ 0 such that 𝜑𝐴 (·) + 𝜑𝐵 (·) = 1,

𝜔𝐴 − 𝜑𝐴 (·)𝑐 = (1, 3) − 𝜑𝐴 (·)
(
2

3

,
2

3

)
=

(
1 − 2

3

𝜑𝐴 (·), 3 −
2

3

𝜑𝐴 (·)
)
≫ 0

𝜔𝐵 − 𝜑𝐵 (·)𝑐 = (3, 1) − 𝜑𝐵 (·)
(
2

3

,
2

3

)
=

(
3 − 2

3

𝜑𝐵 (·), 1 −
2

3

𝜑𝐵 (·)
)
≫ 0.

Moreover,

𝜔𝐴 + 𝜔𝐵 = (4, 4) ≫
(
2

3

,
2

3

)
= 𝑐.

We want to show that there is no cost share equilibrium. We proceed by the way of contradiction.

Let (𝑥, 𝑡) be a cost share equilibrium with price function 𝑝∗ : Y → Δ and 𝜑∗
: 𝐼 × Y → R+, where

𝑡 ∈ {𝑦, 𝑧}. Thanks to Proposition 5.2, we have that 𝑝∗(𝑡) ≫ 0 and it can be shown that 𝑥𝑖 ≫ 0 for

any 𝑖 ∈ {𝐴, 𝐵}, which allows us to focus on the economies

E(𝑦, 𝜑∗) = {{𝐴, 𝐵}, (𝑢𝑖 (·, 𝑦), 𝜔𝑦,𝜑
∗

𝑖
)𝑖∈{𝐴,𝐵 }} and E(𝑧, 𝜑∗) = {{𝐴, 𝐵}, (𝑢𝑖 (·, 𝑧), 𝜔𝑧,𝜑

∗

𝑖
)𝑖∈{𝐴,𝐵 }},

where 𝜔
𝑦,𝜑∗

𝑖
= 𝜔𝑖 − 𝜑∗

𝑖 (𝑦)𝑐 and 𝜔
𝑧,𝜑∗

𝑖
= 𝜔𝑖 − 𝜑∗

𝑖 (𝑧)𝑐 , for any 𝑖 ∈ {𝐴, 𝐵}. In the economy E(𝑡, 𝜑∗)
described above, regardless of 𝑡 ∈ {𝑦, 𝑧}, for any price (𝑝1, 𝑝2) ≫ 0 the agents’ demand functions

are

(𝑓 1

𝐴 , 𝑓
2

𝐴 )=
(

𝑝2

𝑝1 (𝑝1 + 𝑝2)

[
𝑝1 + 3𝑝2 −

2

3

𝜑∗
𝐴 (𝑡) (𝑝1 + 𝑝2)

]
;

𝑝1

𝑝2 (𝑝1 + 𝑝2)

[
𝑝1 + 3𝑝2 −

2

3

𝜑∗
𝐴 (𝑡) (𝑝1 + 𝑝2)

] )
(𝑓 1

𝐵 , 𝑓
2

𝐵 )=
(

𝑝2

𝑝1 (𝑝1 + 𝑝2)

[
3𝑝1 + 𝑝2 −

2

3

𝜑∗
𝐵 (𝑡) (𝑝1 + 𝑝2)

]
;

𝑝1

𝑝2 (𝑝1 + 𝑝2)

[
3𝑝1 + 𝑝2 −

2

3

𝜑∗
𝐵 (𝑡) (𝑝1 + 𝑝2)

] )
.

Then, being

𝜔𝑡𝐴 + 𝜔𝑡𝐵 = (1, 3) − 𝜑∗
𝐴 (𝑡)

(
2

3

,
2

3

)
+ (3, 1) − 𝜑∗

𝐵 (𝑡)
(

2

3

,
2

3

)
= (4, 4) −

(
2

3

,
2

3

)
=

(
10

3

,
10

3

)
,

the aggregate excess demand of both economies E(𝑡, 𝜑∗) is

𝑧 (𝑝1, 𝑝2) = [𝑓𝐴 (𝑝1, 𝑝2) + 𝑓𝐵 (𝑝1, 𝑝2)] − [𝜔𝑡𝐴 + 𝜔𝑡𝐵] =
(
10

3

𝑝2

𝑝1

− 10

3

;

10

3

𝑝1

𝑝2

− 10

3

)
, (7)

which satisfies the so-called gross substitute (GS) property (see Definition 17.F.2 in Mas-Colell,

Whinston, and Green (1995)) since

𝜕𝑧1

𝜕𝑝2

=
10

3𝑝1

> 0

𝜕𝑧2

𝜕𝑝1

=
10

3𝑝2

> 0.

Proposition 17.F.3 in Mas-Colell, Whinston, and Green (1995) ensures the uniqueness of the

equilibrium price
8

and therefore the uniqueness of the equilibrium allocation.

8
If there were two prices, then they must be collinear, but if 𝑝 (𝑦) ∈ △, i.e. it is normalized, it must be unique.
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If 𝑡 = 𝑦, the unique competitive equilibrium in the economy E(𝑦, 𝜑∗) is

(𝑓 ∗1

𝐴 , 𝑓 ∗2

𝐴 ) =

(
2 − 2

3

𝜑∗
𝐴 (𝑦), 2 −

2

3

𝜑∗
𝐴 (𝑦)

)
,

(𝑓 ∗1

𝐵 , 𝑓
∗2

𝐵 ) =

(
2 − 2

3

𝜑∗
𝐵 (𝑦), 2 −

2

3

𝜑∗
𝐵 (𝑦)

)
, with

𝑝∗
1
(𝑦) = 𝑝∗

2
(𝑦),

and, according to Proposition 5.2, (𝑥, 𝑡) = (𝑓 ∗, 𝑦). Consider, the allocation (𝑔, 𝑧) such that

(𝑔1

𝐴, 𝑔
2

𝐴, 𝑧) =
(
1 − 2

3

𝜑∗
𝐴 (𝑧), 3 −

2

3

𝜑∗
𝐴 (𝑧), 𝑧

)
,

and notice that

(𝑔1

𝐴, 𝑔
2

𝐴) ≫ (0, 0),

𝑢𝐴 (𝑔1

𝐴, 𝑔
2

𝐴, 𝑧) =

√︂
1 − 2

3

𝜑∗
𝐴
(𝑧) +

√︂
3 − 2

3

𝜑∗
𝐴
(𝑧) + 5 > 5 > 2

√
2

≥ 2

√︂
2 − 2

3

𝜑∗
𝐴
(𝑦) = 𝑢𝐴 (𝑓 ∗1

𝐴 , 𝑓 ∗2

𝐴 , 𝑦) = 𝑢𝐴 (𝑥1

𝐴, 𝑥
2

𝐴, 𝑦),

and for any (𝑝1, 𝑝2) ∈ R2

+ \ {0}, 𝑝1𝑔
1

𝐴
+ 𝑝2𝑔

2

𝐴
+ 𝜑∗

𝐴
(𝑧) (𝑝1 + 𝑝2)𝑐 ≤ 𝑝1𝜔

1

𝐴
+ 𝑝2𝜔

2

𝐴
.

In particular, it holds for (𝑝∗
1
(𝑧), 𝑝∗

2
(𝑧)) whatever the pair. This is inconsistent with (𝑥,𝑦) being

a cost share equilibrium.

On the other hand, if 𝑡 = 𝑧 the unique competitive equilibrium in the economy E(𝑧, 𝜑∗) is given

as:

(𝑓 ∗1

𝐴 , 𝑓 ∗2

𝐴 ) =

(
2 − 2

3

𝜑∗
𝐴 (𝑧), 2 −

2

3

𝜑∗
𝐴 (𝑧)

)
,

(𝑓 ∗1

𝐵 , 𝑓
∗2

𝐵 ) =

(
2 − 2

3

𝜑∗
𝐵 (𝑧), 2 −

2

3

𝜑∗
𝐵 (𝑧)

)
, with

𝑝∗
1
(𝑧) = 𝑝∗

2
(𝑧),

and, based on Proposition 5.2, (𝑥, 𝑡) = (𝑓 ∗, 𝑧). Notice that the allocation (𝑔,𝑦) given by

(𝑔1

𝐵, 𝑔
2

𝐵, 𝑦) =
(
3 − 2

3

𝜑∗
𝐵 (𝑦), 1 −

2

3

𝜑∗
𝐵 (𝑦), 𝑦

)
,

is such that

(𝑔1

𝐵, 𝑔
2

𝐵) ≫ (0, 0)

𝑢𝐵 (𝑔1

𝐵, 𝑔
2

𝐵, 𝑦) =

√︂
3 − 2

3

𝜑∗
𝐵
(𝑦) +

√︂
1 − 2

3

𝜑∗
𝐵
(𝑦) + 5 > 5 > 2

√
2

≥ 2

√︂
2 − 2

3

𝜑∗
𝐵
(𝑧) = 𝑢𝐵 (𝑓 ∗1

𝐵 , 𝑓
∗2

𝐵 , 𝑧) = 𝑢𝐵 (𝑥1

𝐵, 𝑥
2

𝐵, 𝑧),

and for any (𝑝1, 𝑝2) ∈ R2

+ \ {0}, 𝑝1𝑔
1

𝐵
+ 𝑝2𝑔

2

𝐵
+ 𝜑∗

𝐵
(𝑦) (𝑝1 + 𝑝2)𝑐 ≤ 𝑝1𝜔

1

𝐵
+ 𝑝2𝜔

2

𝐵
.

In particular, it holds for (𝑝∗
1
(𝑦), 𝑝∗

2
(𝑦)) whatever the pair, which is a contradiction. Therefore,
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in this economy there is no cost share equilibrium.

Remark 5.3 Above we have described an economy that satisfies the “standard” assumptions and

which has an empty set of cost share equilibria. Similar computations could provide another exam-

ple with two public goods and different costs, as 𝑐 (𝑦) = (1, 1) and 𝑐 (𝑧) =
(

2

3
, 2

3

)
.

Remark 5.4 The above example includes only two economies without public goods E(𝑦, 𝜑∗) and

E(𝑧, 𝜑∗), and in both cases a competitive equilibrium. These two competitive equilibrium alloca-

tions differ only in 𝜑 and since 𝜑𝐴 (𝑦) > 𝜑𝐴 (𝑧) ⇒ 𝜑𝐵 (𝑦) = 1 − 𝜑𝐴 (𝑦) < 1 − 𝜑𝐴 (𝑧) = 𝜑𝐵 (𝑧), neither

of the two Pareto dominates the other. This is consistent with Proposition 5.2.

Remark 5.5 In the light of Proposition 4.1 and Theorem 3.2, for any given cost distribution func-

tion 𝜑 ∈ Φ, the 𝜎𝜑 -Aubin core may be empty too. In what follows, we illustrate a direct proof

by using the same economy described in the proof of Proposition 4.1. We show that, given an

arbitrarily cost distribution function 𝜑 ∈ Φ, any feasible allocation is 𝜎𝜑 -blocked by a general-

ized coalition (𝛾,𝑇 ) ∈ ˜F with full support, and hence the 𝜎𝜑 -Aubin core is empty. Consider the

economy described in the proof of Proposition 4.1 and note that any feasible allocation (𝑓 , 𝑡), with

𝑡 ∈ Y, is such that 𝑓
𝑗

𝐴
+ 𝑓

𝑗

𝐵
+ 2

3
= 4 for any 𝑗 ∈ {1, 2} and hence 𝑓

𝑗

𝑖
≤ 10

3
for any 𝑖 ∈ {𝐴, 𝐵}

and any 𝑗 ∈ {1, 2}. Given 𝜑 ∈ Φ, if 𝑡 = 𝑦 then (𝑓 , 𝑦) is 𝜎𝜑 -blocked by (𝛾,𝑇 ) ∈ ˜F , where

𝛾𝐴 = 𝐾
𝐾+1

and 𝛾𝐵 = 1

𝐾+1
with 𝐾 > 15, via the alternative allocation (𝑔, 𝑧) defined as 𝑔𝐴 = (0, 0)

and 𝑔𝐵 =
(
𝐾
(
1 − 2

3
𝜑𝐴

)
+
(
3 − 2

3
𝜑𝐵

)
;𝐾

(
3 − 2

3
𝜑𝐴

)
+
(
1 − 2

3
𝜑𝐵

) )
. Similarly, if 𝑡 = 𝑧 then (𝑓 , 𝑧) is 𝜎𝜑 -

blocked by (𝛾 ′,𝑇 ) ∈ ˜F , where 𝛾 ′
𝐴
= 1

𝐾+1
and 𝛾 ′

𝐵
= 𝐾

𝐾+1
with 𝐾 > 15, via the alternative allocation

(ℎ,𝑦), where ℎ𝐴 =
(
𝐾
(
3 − 2

3
𝜑𝐵

)
+
(
1 − 2

3
𝜑𝐴

)
;𝐾

(
1 − 2

3
𝜑𝐵

)
+
(
3 − 2

3
𝜑𝐴

) )
and ℎ𝐵 = (0, 0).

Proof of Proposition 4.4. Consider the same economy described in the proof of Proposition 4.1

and observe that for any 𝜑 : 𝐼 × Y → R2

+ we have that

𝜑 (𝐴, ·) + 𝜑 (𝐵, ·) = 𝑐 (·) =
(
2

3

,
2

3

)
⇐⇒ 0 ≤ 𝜑 (·, ·) ≤

(
2

3

,
2

3

)
.

Therefore

𝜔𝐴 − 𝜑 (𝐴, ·) ≥ (1, 3) −
(
2

3

,
2

3

)
≫ 0

𝜔𝐵 − 𝜑 (𝐵, ·) ≥ (3, 1) −
(
2

3

,
2

3

)
≫ 0.

Moreover,

𝜔𝐴 + 𝜔𝐵 = (4, 4) ≫
(
2

3

,
2

3

)
= 𝑐.

We want to show that there is no generalized cost share equilibrium. We proceed by the way of

contradiction. Thus, let (𝑥, 𝑡) be a generalized cost share equilibrium with price function 𝑝∗ : Y →
△ and 𝜑∗

: 𝐼 × Y → R𝑚+ , where 𝑡 ∈ {𝑦, 𝑧}. As before, 𝑥𝑖 ≫ 0 for any 𝑖 ∈ {𝐴, 𝐵} and because of

Proposition 5.2, we focus on the economies E(𝑦, 𝜑∗) and E(𝑧, 𝜑∗) which have a unique competitive
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equilibrium given respectively by

(𝑓 ∗1

𝐴 , 𝑓 ∗2

𝐴 ) =
4 − 𝜑∗

1
(𝐴,𝑦) − 𝜑∗

2
(𝐴,𝑦)

2

· (1, 1),

(𝑓 ∗1

𝐵 , 𝑓
∗2

𝐵 ) =
4 − 𝜑∗

1
(𝐵,𝑦) − 𝜑∗

2
(𝐵,𝑦)

2

· (1, 1), with

𝑝∗
1
(𝑦) = 𝑝∗

2
(𝑦),

and

(𝑓 ∗1

𝐴 , 𝑓 ∗2

𝐴 ) =
4 − 𝜑∗

1
(𝐴, 𝑧) − 𝜑∗

2
(𝐴, 𝑧)

2

· (1, 1),

(𝑓 ∗1

𝐵 , 𝑓
∗2

𝐵 ) =
4 − 𝜑∗

1
(𝐵, 𝑧) − 𝜑∗

2
(𝐵, 𝑧)

2

· (1, 1), with

𝑝∗
1
(𝑧) = 𝑝∗

2
(𝑧).

Now, if 𝑡 = 𝑦, then (𝑥, 𝑡) = (𝑓 ∗, 𝑦). Consider, the allocation (𝑔, 𝑧) defined as

(𝑔1

𝐴, 𝑔
2

𝐴, 𝑧) =
(
1 − 𝜑∗

1
(𝐴, 𝑧), 3 − 𝜑∗

2
(𝐴, 𝑧), 𝑧

)
,

and notice that

(𝑔1

𝐴, 𝑔
2

𝐴) ≫ (0, 0),

𝑢𝐴 (𝑔1

𝐴, 𝑔
2

𝐴, 𝑧) =
√︃

1 − 𝜑∗
1
(𝐴, 𝑧) +

√︃
3 − 𝜑∗

2
(𝐴, 𝑧) + 5 > 5 > 2

√
2 ≥

≥ 2

√︂
4 − 𝜑∗

1
(𝐴, 𝑧) − 𝜑∗

2
(𝐴, 𝑧)

2

= 𝑢𝐴 (𝑓 ∗1

𝐴 , 𝑓 ∗2

𝐴 , 𝑦) = 𝑢𝐴 (𝑥1

𝐴, 𝑥
2

𝐴, 𝑦),

and for any (𝑝1, 𝑝2) ∈ R2

+ \ {0}

𝑝1𝑔
1

𝐴 + 𝑝2𝑔
2

𝐴 + 𝑝1𝜑
∗
1
(𝐴, 𝑧) + 𝑝2𝜑

∗
2
(𝐴, 𝑧) = 𝑝1 + 3𝑝2 = 𝑝1𝜔

1

𝐴 + 𝑝2𝜔
2

𝐴 .

In particular, it holds for (𝑝∗
1
(𝑧), 𝑝∗

2
(𝑧)) whatever the pair. This contradicts the fact that (𝑥,𝑦) is a

generalized cost share equilibrium. On the other hand, if 𝑡 = 𝑧, then (𝑥, 𝑡) = (𝑓 ∗, 𝑧). Then by the

same argument, by considering the allocation (𝑔,𝑦) such that

(𝑔1

𝐵, 𝑔
2

𝐵, 𝑦) =
(
3 − 𝜑∗

1
(𝐵,𝑦), 1 − 𝜑∗

2
(𝐵,𝑦), 𝑦

)
,

in this case also we obtain a contradiction. Therefore, there is no cost share equilibrium in this

economy.

Finally, as in Remarks 5.3 and 5.5, there are examples with different costs in which the set of

generalized cost share equilibria is empty and the generalized 𝜎-Aubin core is empty too.
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