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Abstract 

We consider a two-stage game with k leaders having pessimistic attitude and one follower 
common to all leaders. Such a game, called CF game, may fail to have pessimistic solutions, 
even if the leader payoffs are linear and the optimal reaction of the follower to the leaders 
strategies is unique. So, we introduce two classes of games, called weighted value-potential 
and weighted potential CF games, and we illustrate their inherent difficulties and properties. 
For the more tractable class of weighted potential CF games, suitable approximate and 
viscosity solutions are introduced and are proven to exist under appropriate conditions, in line 
with what done for one-leader-one-follower games. 
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In this note, we consider Multi-Leader-Common-Follower games (see, for example, [17]), CF
games for short, that is two-stage games with a k-players non-cooperative game at the first
stage and a parametric one-player game at the second stage, a particular case of the so-
called Multi-Leader-Multi-Follower games [23]. Their hierarchical nature leads to introduce
different concepts of solution depending on the behavior of the leader, in particular on the
extreme attitudes optimistic or pessimistic [16], in line with what proposed for One-Leader-
One-Follower two-stage games (see [8] for an overview). However, the existence of such
solutions is hard to be obtained, even if the set of the optimal solutions in the second stage
is a singleton and the leaders payoffs are linear. Therefore, to our knowledge, only a few
number of papers is concerned by existence results for CF games and, except the review [5],
they can be divided into three groups:

� papers regarding a specific situation, derived from the real-world, which is solved by
explicitly computing the solutions set [2], [3], [4];
� papers considering the mathematical problems associated to these concepts as special
cases of equilibrium problems with equilibrium constraints [17], [12], [13];
� papers considering classes of CF games satisfying specific conditions [14], [15].

We aim to investigate the case of non-unique solution at the second stage, considered in
[17], [14], [15], [5], assuming a pessimistic behavior of the leaders. In fact, in Section 2, a
pessimistic solution concept for CF games is presented and, in Section 3, existence of such
solutions is established for the class of Weighted Value-Potential CF games. The limit of
considering this class being that the relative results cannot be formulated in terms of explicit
conditions on the data, we also consider the less general class of Weighted Potential CF
games, which anyway enlarges the ones considered in [14] and [15] in the case of one common
follower. Then, we investigate the results which can be obtained in these new classes together
with their difficulties, which are in line with those arisen when investigating One-Leader-
One-Follower two-stage games with a pessimistic leader (also called weak Stackelberg games
[19],[8]). Indeed, pessimistic solutions to weighted potential games may fail to exist even for
nice data, so, suitable regularizations and related approximate solutions for CF games with
pessimistic leaders are introduced and investigated. This leads to the introduction of suitable
approximate and viscosity solutions, in line with what we did for One-Leader-Multi-Follower
games in [18] and for One-Leader-One-Follower games in [20].

1 Setting, Preliminaries and Basic Results

Let E be a real Banach space, let V1,...,Vk, k ≥ 1, be real Banach spaces and let V =
V1× ...× Vk. If Hi is a nonempty closed subset of Vi, we consider H =

∏
i=1,..,k

Hi and, given

x̄̄x̄x = (x̄1, ..., x̄k) ∈ H, we denote by x̄̄x̄x−i the point (x̄1, ..., x̄i−1, x̄i+1, ..., x̄k) ∈ H−i =
∏
j 6=i

Hj

and by (xi, x̄̄x̄x−i) the point (x̄1, , .., x̄i−1, xi, x̄i+1, ..., x̄k) ∈ H.
Let Y be a nonempty subset of E and let L1, ..., Lk be real-valued functions defined on
H × Y . Given xxx = (x1, ..., xk) ∈ H, we assume that, for any i = 1, ..., k, xi corresponds to
a strategy profile of k leaders playing first non-cooperatively, and that the follower response
y ∈ Y is common to all leaders. Then, we consider a model in which the follower aims to
minimize with respect to y his objective function F : (xxx, y) ∈ H×Y → F (xxx, y) ∈ R∪{+∞} ,
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knowing that y is constrained in K(xxx), where K : xxx ∈ V ⇒ K(xxx) ⊆ Y is a set-valued map
with nonempty values, so that he solves, for any xxx ∈ H, the problem

P (xxx) find ȳ ∈ K(xxx) such that F (xxx, ȳ) ≤ F (xxx, y) ∀ y ∈ K(xxx).

The argmin map

M : xxx ∈ H ⇒M(xxx) = {y ∈ K(xxx) : F (xxx, y) ≤ F (xxx, z) ∀ z ∈ K(xxx)}

comes to be defined and, in general, could be set-valued.
The case where the follower aims to maximize with respect to y his objective function F can
be easily analized observing that max

y∈K(xxx)
F (xxx, y) = − min

y∈K(xxx)
−F (xxx, y).

All leaders, when prepared for the worst, consider the functions

Pi : xxx ∈ H → Pi(xxx) = sup
y∈M(xxx)

Li(xxx, y), for i = 1, ..., k (1)

and modelize the following classical Nash Equilibrium Problem [22]

find x̄̄x̄x ∈ H such that Pi(x̄̄x̄x) = inf
xi∈Hi

Pi(xi, x̄̄x̄x−i) for i = 1, .., k.

This leads to formulate the Pessimistic Multi-Leader-Common-Follower problem, pessimistic
CF problem in short:

(PCF ) find x̄̄x̄x ∈ H such that

sup
y∈M(x̄̄x̄x)

Li(x̄̄x̄x, y) = inf
xi∈Hi

sup
y∈M(xi,x̄̄x̄x−i)

Li(xi, x̄̄x̄x−i, y) ∀ i = 1, .., k (2)

A solution to (PCF ) is called a pessimistic solution to the CF game .

When the leaders have an optimistic attitude, the optimistic version of (PCF )

(OCF ) find x̄̄x̄x ∈ H such that

inf
y∈M(x̄̄x̄x)

Li(x̄̄x̄x, ȳ) = inf
xi∈Hi

inf
y∈M(xi,x̄̄x̄x−i)

Li(xi, x̄̄x̄x−i, y) ∀ i = 1, .., k

has been considered and has been more investigated (see, for example: [17], [12], [13], [5]).
In this case, the leaders consider a Nash equilibrium problem with payoffs given by

Oi : xxx ∈ H → Oi(xxx) = inf
y∈M(xxx)

Li(xxx, y), for i = 1, ..., k (3)

A solution to (OCF ) is called an optimistic solution to the CF game.

The next example, considered by Pang and Fukushima in [23], shows that CF games may
fail to have optimistic or pessimistic solutions even if the map M is single-valued and the
leaders’ payoffs are linear.
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Example 1.1 [23, Example 4] Let V = R2, E = R, Y = [0,+∞[, H1 = H2 = [0, 1],
H = [0, 1]2, and consider the real-valued functions:

L1 : (x1, x2, y) = (xxx, y) ∈ H×Y −→ 1

2
x1+y, L2 : (x1, x2, y) = (xxx, y) ∈ H×Y −→ −

(
1

2
x2 + y

)
,

F : (x1, x2, y) = (xxx, y) ∈ H × Y −→ y(x1 + x2 − 1) +
1

2
y2.

The argmin map M of the follower is single-valued:

M : xxx = (x1, x2) ∈ H ⇒ M(xxx) = {max (0, 1− x1 − x2)} ⊆ Y,

so that Pi = Oi and one can see that the normal form game (P1,P2, H1, H2), where

P1(x1, x2) = max
(
1

2
x1, 1− 1

2
x1 − x2

)
P2(x1, x2) = min

(
−1

2
x2,−1 + x1 +

1

2
x2

)
,

does not have any Nash equilibrium and the CF game does not have any pessimistic nor
optimistic solution.

In this paper, in order to get our results easy to use in concrete applications, we assume
that:
• E = Rh, h ∈ N;
• Vi = Rmi for i = 1, ..., k;

• m =
k∑

i=1

mi and H =
∏

i=1,..,k

Hi ⊆ Rm;

• M(xxx) 6= ∅, ∀ xxx ∈ H.
Nevertheless, our results could be naturally extended to infinite dimensional Banach spaces
by appropriately balancing the use of strong and weak convergence in the hypotheses, as
already done in [20].
Now, we review some basic definitions of set-valued analysis that we will use in the following
section.
If (Cn)n is a sequence of nonempty subsets of Rp, the Painlevé-Kuratowski upper and lower
limits [1] of the sequence (Cn)n are defined by :
• z ∈ lim sup

n
Cn if there exists (zk)k converging to z such that, for a subsequence (Cnk

)k

of (Cn)n, zk ∈ Cnk
for any k ∈ N;

• z ∈ lim inf
n

Cn if there exists (zn)n converging to z such that zn ∈ Cn for n sufficiently

large.
A set-valued map T from H ⊆ Rm to Y ⊆ Rh is:
• lower semicontinuous over H if for every xxx ∈ H and every sequence (xxxn)n converging
to xxx in H and every y ∈ T (xxx) there exists a sequence (yn)n converging to y such that
yn ∈ T (xxxn) for n sufficiently large, i.e.

T (xxx) ⊆ lim inf
n

T (xxxn);

• closed over H if for any xxx ∈ H and any (xxxn)n converging to xxx in H, if (yk)k converges
to y in Y and yk ∈ T (xxxnk

) for any k ∈ N, then we have that y ∈ T (xxx), i.e.:
lim sup

n
T (xxxn) ⊆ T (xxx);
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• concave over H if the set H is convex and for any xxx1 and xxx2 in H and any λ ∈ [0, 1]
one has:

T (λxxx1 + (1− λ)xxx2) ⊆ λT (xxx1) + (1− λ)T (xxx2).

Here we present a simple version of the existence theorem of Nash equilibria for normal form
games, but, as well known, several results allow to use less restrictive assumptions.

Theorem 1.1 [22] Let Gi, i = 1, ..., k, be real-valued functions defined in H ⊆ Rm and
assume that:
N1) the set Hi is compact and convex for any i = 1, ..., k;
N2) the function Gi(·,xxx−i) is quasi-convex over Hi, for any i = 1, ..., k and any xxx−i ∈ H−i;
N3) the function Gi(xi, ·) is upper semicontinuous over H−i, for any i = 1, ..., k and any
xi ∈ Hi;
N4) the function Gi is lower semicontinuous over H, for any i = 1, ..., k.
Then, there exists a Nash equilibrium point for the normal form game (G1, ..., Gk, H1, ...,Hk).

Therefore, bearing in mind the formulation of problem (PCF ), it is clear that semicontinuity
and quasi-convexity properties of the so called marginal functions of the sup-type are crucial
for proving the existence of pessimistic solutions to CF games. Classical conditions for
achieving such properties are briefly recalled below.

Proposition 1.1 Let g be a real-valued function defined in U ×W ⊆ Rm × Rh, where U
and W are nonempty closed sets, and let T be a set-valued map from U to W .
1. If we assume that:
S1) the set-valued map T is lower semicontinuous over U ;
S2) the function g is lower semicontinuous over U ×W ;
then, the marginal function

s : u ∈ U → s(u) = sup
w∈T (u)

g(u,w) (4)

is lower semicontinuous over U .
2. If we assume that:
S3) the set W is compact and the set-valued map T is closed over U ;
S4) the function g is upper semicontinuous over U ×W ;
then, the marginal function s is upper semicontinuous over U .
3. If we assume that:
S5) the sets U and W are convex and the set-valued map T is concave over U ;
S6) the function g is quasi-convex over U ×W ;
then, the marginal function s is quasi-convex over U .

Proof The proof of points 1. and 2. can be found in [7] or in [1], the proof of 3. can be
found in [11]. 2

However, it is well known that conditions S1) and S5) can be not satisfied when the con-
straints map is the argmin map M. Thus, in Section 3, we consider particular classes of
CF games, having in mind that the search of a Nash equilibrium for a normal form game
(G1, ..., Gk, H1, ...,Hk) can be reduced to the search of a minimum point whenever we deal
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with a weighted potential game in the sense of Monderer and Shapley [21].
We recall that in [10, Theorem 2.1] it has been proven that the game (G1, ..., Gk, H1, ...,Hk)
is weighted potential if and only if there exist a function P , defined on H and called weighted
potential of the normal form game, a vector ααα = (α1, ..., αk) ∈ Rk

++ = {(α1, ..., αk) ∈ Rk :
αi > 0 for i = 1, ..., k} and k real-valued functions pi, defined on H−i, such that

Gi(xxx) = αiP (xxx) + pi(xxx−i), ∀ i = 1, ..., k.

Weighted potential normal form games are tractable since the set of their Nash equilibria
contains the set of the minimum points for the weighted potential function, so that exis-
tence of Nash equilibria is guaranteed by the lower semicontinuity of the function P and
no convexity condition on the payoffs is needed; note that new existence and uniqueness
results of Nash equilibria for such games can be found in [9]. Then, exploiting this feature
of weighted potential normal form games, one is induced to consider suitable classes of CF
games in order to overcome the lack of pessimistic solutions, which may fail to exist even for
linear payoffs (see Example 2.1). First investigations in this direction can be found in [14],
[15]. In the next section, two classes of CF games satisfying a potentiality-like property are
considered and their peculiarities are investigated.

2 Weighted Value-Potentials and Weighted Potentials
for a CF Game

With same notations as in Section 2, we start this section by introducing the concept of
weighted value-potential for a CF game.

Definition 2.1 A CF game is said to be Weighted Value-Potential if there exists a real-
valued function P (called weighted value-potential of the CF game) defined on H and, for
any i = 1, ..., k, there exist αi ∈ R++ and a real-valued function hi defined on H−i, such
that, for all xxx ∈ H, one has:

Pi(xxx) = sup
y∈M(xxx)

Li(xxx, y) = αiP (xxx) + hi (xxx−i) ,

i.e. the game (P1, ..,Pk, H1, ..,Hk) is a weighted potential normal form game as defined in
the end of Section 2.

For what concerning the pessimistic solutions to weighted value-potential CF games, the
next existence result holds.

Theorem 2.1 Assume that a CF game with pessimistic leaders is weighted value-potential
with P as a weighted value-potenital and that
P1) the set Hi is compact for any i = 1, ..., k;
P2) the weighted value-potential P is lower semicontinuous over H.
Then, there exists a Nash equilibrium for the normal form game (P1, ...,Pk, H1, ...,Hk), i.e.
there exists a pessimistic solution to the CF game
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Proof Assumptions P1) and P2) imply that the function P has a minimum point in H, which
turns out to be a Nash equilibrium for the game (P1, ...,Pk, H1, ...,Hk). 2

Although the property of being a weighted value-potential game is not very restrictive, we
are aware that it presents inherent difficulties:
• the above class of games is not easy to be described since a constrained marginal function
has to be explicitly computed;
• Theorem 3.1 does not contain direct assumptions on the payoffs of the leaders as well on
the constraints and the payoff of the follower.

Thus, we consider a smaller but more tractable class of CF games.

Definition 2.2 A CF game is said to be Weighted Potential if there exists a real-valued
function π (called weighted potential of the CF game) defined on H and, for any i = 1, ..., k,
there exists βi ∈ R++ such that, for all (xxx, y) ∈ H × Y , one has:

Li(xi,xxx−i, y)− Li(x
′
i,xxx−i, y

′) = βi [π(xi,xxx−i, y)− π(x′i,xxx−i, y
′)] ∀ (x′i, y

′) ∈ Hi × Y. (5)

The following proposition says that the weighted potential property for CF games can be
equivalently expressed in a more handy way.

Proposition 2.1 A CF game is weighted potential if and only if there exists a real-valued
function Π defined on H×Y, and, for any i = 1, ..., k, there exist βi ∈ R++ and a real-valued
function Φi, defined on H−i, such that, for all (xxx, y) ∈ H × Y one has:

Li(xxx, y) = βi Π(xxx, y) + Φi(xxx−i). (6)

Moreover, the function Π is a weighted potential of the game CF.

Proof If the game is weighted potential, then, for any i = 1, ..., k, equality (5) implies that
the difference function Li − βiπ depends only on xxx−i, so that condition (6) is satisfied by
taking Π = π and Φi = Li − βiπ.
Conversely, from (6) we get (5) by considering π = Π. 2

We now show that the class of weighted potential CF games is strictly included in the class
of weighted value-potential CF games.

Proposition 2.2 Any weighted potential CF game is also weighted value-potential. If Π is
a weighted potential for CF then P(x) = sup

y∈M(xxx)

Π(xxx, y) is a weighted value-potential for CF.

Proof If a CF game satisfies condition (6), then it satisfies Definition 3.1 by setting, for any
i = 1, ..., k, αi = βi, P(xxx) = P(x) = sup

y∈M(xxx)

Π(xxx, y) and hi = Φi. 2

The converse of the above result does not hold in general.
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Example 2.1 Consider the CF game defined by:

E = V1 = V2 = R, H1 = H2 = [0, 1], Y = [0, 1], F (x1, x2, y) = 0,K(x1, x2) = [0, 1],

L1(x1, x2, y) = −x1 + y − yx2, L2(x1, x2, y) = −x1y + y − x1.

It is clearly not weighted potential, but it is weighted value-potential since

P1(x1, x2) = 1− x1 − x2, P2(x1, x2) = 1− 2x1,

and we can take α1 = 1, α2 = 1, P(xxx) = 1− x1, h1(x2) = −x2, h2(x1) = −x1.

Remark 2.1 In [14, Definition 2.2] and in [15, Definition 3.2], potential and quasi-potential
Multi-Leader-Multi-Follower games have been respectively defined and we remark that:
• the concept of weighted potential game generalizes both of them, when a single follower is
common to all leaders;
• weighted value-potential games may be not quasi-potential, in general. Indeed, the game
presented in Example 3.1 is not quasi-potential but it is weighted value-potential.

For what concerning weighted potential CF games, the next existence result holds.

Theorem 2.2 Assume that a CF game is weighted potential with Π as a weighted potential
and that
P1) the set Hi is compact for any i = 1, ..., k;
P3) the function P(x) = sup

y∈M(xxx)

Π(xxx, y) is lower semicontinuous over H.

Then, there exists a Nash equilibrium point for the normal form game (P1, ...,Pk, H1, ...,Hk),
i.e. there exists a pessimistic solution to the CF game.

The proof of this theorem is straightforward and it is omitted.

However, even if the leader’s payoffs are linear, assumption P3) may fail to be satisfied and
weighted potential games may fail to have equilibria, as in the next example.

Example 2.2 Consider the CF game defined by:

E = V1 = V2 = R, H1 = H2 = [0, 1], Y = [0, 1], F (x1, x2, y) = x1y,K(x1, x2) = [0, 1],

L1(x1, x2, y) = x1 + y − x2, L2(x1, x2, y) =
1

2
(x1 + y).

Then, the CF game is weighted potential (so, it is weighted value-potential too) and a

weighted potential is Π(xxx, y) = x1 + y with β1 = 1 and β2 =
1

2
. However, the problem

(PCF ) does not have pessimistic solutions.
Indeed, the second stage argmin map M is defined by:

M(x1, x2) = [0, 1] when x1 = 0 and M(x1, x2) = {0} when x1 > 0 ,

so we have:
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P1(x1, x2) = 1− x2, P2(x1, x2) =
1

2
when x1 = 0,

P1(x1, x2) = x1 − x2, P2(x1, x2) =
x1

2
when x1 > 0.

The normal form game (P1,P2, H1, H2) does not have Nash equilibria since, for any (x1, x2) ∈
H, P1(x1, x2) > −x2 = inf

x′1∈H1

P1(x′1, x2) and the best reply of leader 1 is empty-valued.

Moreover, by taking α1 = 1, α2 =
1

2
, one can check that this game is weighted value-potential

with weighted value-potential P(xxx) = sup
y∈M(xxx)

Π(xxx, y) and that P does not have any minimum

point in H since P(xxx) = 1 if x1 = 0 and P(xxx) = x1 if x1 ∈ ]0, 1].

In spite of the previous example, the following one shows that a weighted value-potential
game may have pessimistic solutions even if the weighted value-potential P in Definition 3.1
does not have any optimal point.

Example 2.3 Consider the CF game defined by:

E = V1 = V2 = R, H1 = H2 = [0, 1], Y = [0, 1], F (x1, x2, y) = x1x2 y,K(x1, x2) = [0, 1],

L1(x1, x2, y) = x1x2 + y + x2, L2(x1, x2, y) = x1x2 + y + x1.

Then, the CF game is weighted potential with potential Π(x1, x2, y) = x1x2 + y, so, in
light of Proposition 3.2, it is also weighted value-potential and a weighted value-potential is
P(xxx) = sup

y∈M(xxx)

Π(xxx, y).

The argmin map M is defined by M(x1, x2) = [0, 1] when x1x2 = 0 and M(x1, x2) = {0}
when x1x2 6= 0, so we get that P(x1, x2) = 1, when x1x2 = 0, P(x1, x2) = x1x2, when
x1x2 6= 0 and P does not have any minimum point in H.
However, since we have:

P1(x1, x2) = 1 + x2, P2(x1, x2) = 1 + x1 when x1x2 = 0

P1(x1, x2) = x1x2 + x2, P2(x1, x2) = x1x2 + x1 when x1x2 6= 0,

the point (0, 0) is a Nash equilibrium for the normal form game (P1,P2, H1, H2), i.e. the CF
game has (0, 0) as a pessimistic solution.

Therefore, we can conclude that, for both classes of CF games previously considered, the
existence of solutions is not necessarily guaranteed. Then, in line with what has been done for
one-leader-multi-followers games [18] and for one-leader-one-follower games with pessimistic
behavior of the leaders [20], we will face a weighted potential CF game with pessimistic
behavior of the leaders through appropriate regularizations of the optimal response map of
the common follower.
We start by illustrating this regularization method considering the CF game in Example 3.2.
Let ε be a positive number smaller than 1/4 and consider the ε-minimum map

Mε : xxx ∈ H ⇒Mε(xxx) =

{
y ∈ K(xxx) : F (xxx, y) ≤ inf

z∈K(xxx)
F (xxx, z) + ε

}
.
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With data of Example 3.2, we get:

Mε(x1, x2) = [0, 1] if x1 ∈ [0, ε], Mε(x1, x2) =

[
0,

ε

x1

]
if x1 ∈ [ε, 1].

Then, the marginal function of Π over this regularized map, denoted by Pε, is continuous
on H since

Pε(xxx) = sup
y∈Mε(xxx)

Π(xxx, y) = x1+1 if x1 ∈ [0, ε], Pε(xxx) = sup
y∈Mε(xxx)

Π(xxx, y) = x1 +
ε

x1
if x1 ∈ [ε, 1].

One can check that, for any ε ∈ ]0, 1/4[, the minimum points of Pε are (
√
ε, x2) for any

x2 ∈ [0, 1]; so, the minimum value of Pε is 2
√
ε.

Therefore, even if the considered CF game does not have pessimistic solutions, we can bypass
this lack by considering the limits when ε tends to zero of the above approximate pessimistic
solutions, i.e. points (0, x2), as reasonable solutions to the problem (PCF ), since we have
that:

lim
ε→0

Pε(
√
ε, x2) = lim

ε→0
inf
xxx∈H

sup
y∈Mε(xxx)

Π(xxx, y) = 0 = inf
xxx∈H

sup
y∈M(xxx)

Π(xxx, y),

and points (0, x2) allow both the leaders to realize the security value of a new two-stage
game, with only one leader, having as a strategy xxx ∈ H, namely:

find x̄̄x̄x ∈ H such that sup
y∈M(x̄̄x̄x)

Π(x̄̄x̄x, y) = inf
xxx∈H

sup
y∈M(xxx)

Π(xxx, y).

Thus, in line with the terminology we adopted in One-Leader-Multi-Follower games [18] or
in Bilevel Optimization problems [20], we can introduce the concept of pessimistic viscosity
solution to (PCF ) in the class of weighted CF potential games.

Definition 2.3 Let the CF game be weighted potential with Π as weighted potential. A
point x̄̄x̄x ∈ H is a pessimistic viscosity solution to the problem (PCF ) if for every sequence
of positive numbers (εn)n decreasing to zero there exists a sequence (x̄̄x̄xn)n, x̄̄x̄xn ∈ H for any
n ∈ N, such that:

V1) a subsequence (x̄̄x̄xnk
)k converges towards x̄̄x̄x;

V2) for any n ∈ N, x̄̄x̄xn is a minimum point for the function

Pεn : xxx ∈ H → Pεn(xxx) = sup
y∈Mεn (xxx)

Π(xxx, y)

i.e. Pεn(x̄̄x̄xn) ≤ Pεn(xxx) ∀ xxx ∈ H;

V3) lim
n

Pεn(x̄̄x̄xn) = inf
xxx∈H

sup
y∈M(xxx)

Π(xxx, y).

Roughly speaking, a pessimistic viscosity solution to a weighted potential CF game is a
cluster point of a sequence of minimum points of suitable regularizations Pεn of the function
P, as defined in Proposition 3.2, whose values approach the security value of a one-leader-one-
follower two-stage game with an hypothetic pessimistic leader having the weighted potential
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Π as payoff.
Therefore, in order to investigate such a concept, it is primarily interesting to determine
conditions which guarantee that for any fixed positive number ε, the function Pε defined by

Pε(xxx) = sup
y∈Mε(xxx)

Π(xxx, y),

and called approximate weighted value-potential, has a minimum point in H.

Theorem 2.3 Assume that a CF game is weighted potential with Π as a weighted potential.
If the following assumptions hold:
i) the sets Hi and Y are compact for any i = 1, .., k;
ii) the set-valued map K is closed, lower semicontinuous and convex-valued over H;
iii) the function F is continuous over H × Y ;
iv) the function F (xxx, ·) is strictly quasi-convex [6] over K(xxx) for every xxx ∈ H ;
v) the weighted potential Π is lower semicontinuous over H × Y ;
then, for every ε > 0, there exists a minimum point, called ε-pessimistic solution to the CF
game, for the approximate weighted value-potential Pε.

Proof Due to compactness of the set H, we have only to prove that the function Pε is lower
semicontinuous over H. Since also the set Y is assumed to be compact, assumptions ii)-iv)
imply that the map Mε is lower semicontinuous over H (see, for example, [20, Prop. 2.5])
and, by point 1. in Proposition 2.1, assumption v) guarantees that Pε is lower semicontinuous
on H. 2

Finally, we present an existence result for pessimistic viscosity solutions of weighted potential
CF games.

Theorem 2.4 Assume that the CF game is weighted potential with Π as a weighted potential.
If assumptions in Theorem 3.3 and the following hold:
vi) for every xxx ∈ H there exists a sequence (xxxn)n converging yo xxx in H such that for every
y ∈ Y and every sequence (yn)n converging to y in Y one has

lim sup
n

Π(xxxn, yn) ≤ Π(xxx, y);

then, there exists a pessimistic viscosity solution for the CF game.

Proof Let (εn)n be a sequence of positive numbers decreasing to zero and let (x̄̄x̄xn)n be a
sequence of points of H, existing by Theorem 3.3, such that x̄̄x̄xn is a minimum point of Pεn

for any n ∈ N. Such a sequence has a subsequence converging towards a point x̄̄x̄x ∈ H. In
order to prove that x̄̄x̄x is a pessimistic viscosity solution to the CF game, we need only to
prove condition V3), that is

lim
n

Pεn(x̄̄x̄xn) = lim
n

inf
xxx∈H

sup
y∈Mεn (xxx)

Π(xxx, y) = inf
xxx∈H

sup
y∈M(xxx)

Π(xxx, y).

We note that, for any n ∈ N and xxx ∈ H, sup
y∈M(xxx)

Π(xxx, y) ≤ sup
y∈Mεn (xxx)

Π(xxx, y), so that

inf
xxx∈H

sup
y∈M(xxx)

Π(xxx, y) ≤ lim
n

Pεn(x̄̄x̄xn).
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If a is a real number such that

inf
xxx∈H

sup
y∈M(xxx)

Π(xxx, y) < a < lim
n

Pεn(x̄̄x̄xn),

there exists a point x̃xx ∈ H such that

Π(x̃xx, y) < a for any y ∈M(x̃xx). (7)

Due to condition vi), there exists a sequence (x̃xxn)n converging to x̃xx in H such that for every
y ∈ Y and every sequence (yn)n converging to y in Y one has lim sup

n
Π(x̃xxn, yn) ≤ Π(x̃xx, y).

Condition V2) implies that Pεn(x̄̄x̄xn) ≤ Pεn(x̃xxn) for any n, so that, being

a < lim
n

Pεn(x̄̄x̄xn) ≤ lim
n

Pεn(x̃xxn),

there exists a sequence (yn)n in Y such that yn ∈Mεn(x̃xxn) and Π(x̃xxn, yn) > a for any n ∈ N.
A subsequence of (yn)n has to converge to ỹ ∈ M(x̃xx) (see, for example, [20, Prop 2.2]) so,
by assumption vi), we get Π(x̃xx, ỹ) ≥ a, which contradicts (7). 2

It is worth noting that condition vi) is satisfied whenever the function Π(xxx, ·) is upper semi-
continuous over Y for every xxx ∈ H.

Finally, in the case of a general CF game we emphasize that one could regularize the set-
valued map M in the same way as above and look for approximate and viscosity solutions
of the CF game, but nor the concavity of the approximate set-valued mapMε nor the exis-
tence of approximate solutions could be guaranteed, even under nice conditions on the data,
differently to what happened for weighted potential CF games.
Moreover, concerning a weighted value-potential CF game, note that to regularize the set-
valued map M in the same way as above does not guarantee that the normal form game
(Pε

1, ..,P
ε
k, H1, ..,Hk), where Pε

i (xxx) = sup
y∈Mε(xxx)

Π(xxx, y) for any i = 1, .., k, is a weighted poten-

tial normal form game with lower semicontinuous weighted potential.
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