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I. Introduction

Most early studies on implementation theory focused on (Bayes–)Nash equilibrium

and its refinements (see, for instance, Maskin and Sjöström, 2002). These solution

concepts rely on two implicit common-knowledge assumptions. (1) No strategic un-

certainty: each player correctly predicts the strategic play of her opponents. (2) No

higher-order uncertainty: the underlying type space, based on the set of states Θ,

is assumed to be common knowledge among players. By adopting the notion of ro-

bustness of Weinstein and Yildiz (2007) in a mechanism design setting, Oury and

Tercieux (2012) show that this notion is tightly connected to (full) implementation

in rationalizable strategies. A social choice function (SCF) f is rationalizably imple-

mentable if there exists a mechanism such that every rationalizable strategy profile

leads to the realization of f .

In a fundamental paper, Bergemann et al. (2011) (BMT) study the implementation

of SCFs under complete information in rationalizable strategies. They show that a

strict version of the monotonicity condition introduced by Maskin (1999) is sufficient

for implementation under a no worst alternative (NWA) condition.1 Recently, Xiong

(2022) presents necessary and sufficient conditions for implementation in rationaliz-

able strategies.

However, these studies have two significant limitations. The first is related to the

fact that their conditions are not sufficient to implement two-player SCFs.2 Indeed,

in Section III, we construct an SCF that is Nash implementable and that satisfies

the sufficient conditions of BMT, but that fails to be implementable in rationalizable

strategies when there are two players. Therefore, two-player rationalizable implemen-

tation problems require a fundamentally different solution from that provided by the

1This condition, called strict Maskin monotonicity∗, is also necessary under a mild restriction on
the class of implementing mechanisms. NWA requires that a player never receives his worst outcome
under the SCF.

2The two-person problem is an important one in the theory of incentives. Indeed, the two-player
model is the leading case for contracting or bargaining applications (see, for instance, Moore and
Repullo, 1990 and Dutta and Sen, 1991).
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existing characterization results.

The second is related to the fact that their implementing conditions are stated

in terms of the existence of a partition of the set Θ. However, no rules for how

to prove or disprove its existence are given. This absence makes it challenging to

conceptualize its existence from a game-theoretical standpoint. From a practical

standpoint, the condition becomes difficult to check as the number of partitions of Θ

grows exponentially with the size of Θ.3

Motivated by these limitations, we develop an approach to fully characterize the

class of rationalizably implementable SCFs with two or more players. Our approach

is constructive and is based on the idea of deceptions (Jackson (1991), Oury and

Tercieux (2012)).4 More importantly, it allows us to solve two-player implementation

problems and construct the partition specified by the existing characterization results

from the primitives of the implementation model. More precisely, our necessary and

sufficient condition is based on an algorithm that identifies the required partition by

using the limit point of an increasing sequence of deceptions. The sequence has a

game-theoretical interpretation. Without the guidance provided by our algorithm,

one is forced to search over a larger number of partitions.5

Our necessary and sufficient condition for rationalizable implementation is termed

Iterative Monotonicity (IM). Player i’s deception is a correspondence βi : Θ −→

2Θ \ {∅} such that θ ∈ βi(θ). We denote a profile of deceptions by β and the set of

all profiles by Bt. The main novelty of our approach is that, for a given SCF f and a

player i, we define a functionRi from Bt to Bti . The self-mapR ≡ R1×....×RI allows

3In combinatorial mathematics, the number of partitions of a set of size n is referred to as bell
number. Bell numbers can be recursively defined as follows: for every n+ 1,

B(n) =

n∑
k=0

(
n

k

)
B(k)

where B(1) = 1.
4Traditionally, the idea of deceptions is used to analyze implementation problems with incom-

plete information. However, there are notable excepts such as Mezzetti and Renou (2017).
5For concreteness, when |Θ| = 6, the total number of partition is 216 but our algorithm checks

at most 6 partitions.
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us to recursively define an increasing sequence {βk}k≥0, where βk = R(βk−1) and the

deception β0—where θ ∈ β0
i (θ) for all θ ∈ Θ and every player i. This sequence has a

clear game-theoretical interpretation, which is discussed in Section IV. The limit of

this sequence which we name as β∗ is the least (fixed-point) deception.6

An SCF f satisfies IM provided that for all θ, θ′ ∈ Θ, β∗(θ) ∩ β∗(θ′) is empty

whenever f(θ) 6= f(θ′). When f satisfies IM, β∗ pins down the partition of Θ re-

quired by the existing characterization results. It is worth mentioning that IM is a

measurability type condition, which is reminiscent of the classical Abreu–Matsushima

measurability (Abreu and Matsushima, 1992).7

The rest of the paper is organized as follows. Section II presents the implementation

model. Section III presents our motivating example for the two-player case. Section

IV discusses our implementing condition and present our characterization result. Sec-

tion V briefly concludes by connecting our analysis with the existing characterization

results. Appendices include proofs not in the main body.

II. Setup

The environment consists of I ≥ 2 players (we write I = {1, ..., I} for the set of

players), a finite set of states Θ and a countable set of pure outcomes X. Let Y ≡

∆ (X) denote the set of lotteries over X. Player i’s preferences over lotteries are

described by a utility function ui : Y ×Θ 7→ R, with

ui (y, θ) =
∑
x∈X

yxui (x, θ) ,

where yx is the probability of pure outcome x. For all θ ∈ Θ, ui (·, θ) satisfies the

expected utility hypothesis. To save writing, for all i ∈ I, we write −i for player i’s

6Since R is monotone (i.e., increasing) on Bt and Bt is a complete lattice, Tarski’s fixed-point
theorem implies that there is a least fixed-point of R.

7Abreu and Matsushima (1992) proposed a measurability condition, now referred to as Abreu–
Matsushima measurability, to characterize virtual rationalizable implementation when there is in-
complete information.
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opponents. For all i ∈ I, let Θ−i ≡ Θ× ....×Θ︸ ︷︷ ︸
I−1-times

, with θ−i = (θ1, ..., θi−1, θi+1, ..., θI)

as a typical element of Θ−i.

Given a state θ ∈ Θ, a player i ∈ I, and a lottery x ∈ Y , the lower contour set of

ui (·, θ) at x is Li (x, θ) = {y ∈ Y |ui (x, θ) ≥ ui (y, θ)}; the strict lower contour set of

ui (·, θ) at x is SLi (x, θ) = {y ∈ Y |ui (x, θ) > ui (y, θ)}; and the strict upper contour

set of ui (·, θ) at x is SUi (x, θ) = {y ∈ Y |ui (y, θ) > ui (x, θ)}.

A mechanismM is a pairM ≡ (M, g), where M ≡
∏
i∈I

Mi, with each Mi being a

nonempty countable set, and g : M −→ Y . As usual, we refer to Mi as the (pure)

strategy space of i ∈ I, to a member ofM , denoted by m, as a (pure) strategy profile,

and to g as an outcome function. As usual, M−i ≡
∏

j∈I\{i}
Mj, with m−i as a typical

element. The same notational convention will be followed for any profile of objects.

For all M ′ ⊆M , let g [M ′] = {g (m) ∈ Y |m ∈M ′}.

The environment, when combined with the mechanism, describes a game (of com-

plete information) for all state θ ∈ Θ, which is denoted by (M, θ). We will use (cor-

related) rationalizability as a solution concept. Bernheim (1984) and Pearce (1984)

provide a definition of rationalizability in which players’ conjectures over their op-

ponents’ play are independent. In this paper, we follow the convention of some of

the recent literature (e.g., Osborne and Rubinstein (1994) in using “rationalizability”

for the correlated version of rationalizability (we refer the reader to Brandenburger

and Dekel (1987)). Our definition of rationalizability coincides with the standard

definition when strategy spaces are compact. However, our definition allows for in-

finite, non-compact strategy spaces. In this case, our definition is equivalent to one

introduced by Lipman (1994).

Formally, let S be the set of all strategy-set profiles, defined by S ≡
∏
i∈I
Si, where

Si ≡ 2Mi for all i ∈ I, with S = (Si)i∈I as a typical profile of S. The family S is a

lattice with the natural ordering of the set inclusion: S ≤ S ′ if Si ⊆ S ′i for all i ∈ I.

The smallest element of S is denoted by S ≡ (∅, ..., ∅), whereas the largest element is

denoted by S̄ ≡M .
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Fix any game (M, θ). The strategy mi ∈Mi is player i’s best-response to his belief

λi ∈ ∆ (M−i) at θ if

mi ∈ arg max
m′i∈Mi

∑
m−i∈M−i

λi (m−i)ui (g (m′i,m−i) , θ) .

Let us define an operator bM,θ : S −→ S to iteratively eliminate never best responses

with bM,θ ≡
(
bM,θ
i

)
i∈I

, where bM,θ
i : S −→ Si is defined, for all S ∈ S, by

bM,θ
i (S) =


there exists λmi,θi ∈ ∆ (M−i) such that

mi ∈Mi (1) λmi,θi (m−i) > 0 =⇒ m−i ∈ S−i,

(2) mi is a best response to λmi,θi at θ

 .

Note that bM,θ is increasing (that is, S ≤ S ′ =⇒ bM,θ (S) ≤ bM,θ (S ′).

By Tarski’s fixed point theorem, there exists a largest fixed point of bM,θ, which is

denoted by SM,θ. That is, (1) bM,θ
(
SM,θ

)
= SM,θ and (2) bM,θ (S) = S =⇒ S ≤

SM,θ. Alternatively, the fixed point SM,θ can be constructed by starting with the

largest element of the lattice, S̄, and by iteratively applying the operator bM,θ. If the

strategy sets are finite, we have that

SM,θ
i ≡

⋂
k≥0

bM,θ
i

([
bM,θ
i

]k (
S̄
))

.

In this case, the solution concept is equivalent to deletion of strictly dominated

strategies (Brandenburger and Dekel (1987)). When the strategy sets are infinite

sets, transfinite induction may be necessary to reach the fixed point (Lipman (1994)).

Sometimes, we will use the following notation

SM,θ
i,k ≡ bM,θ

i

([
bM,θ
i

]k−1 (
S̄
))

to denote the kth step of the iterative process. The set SM,θ
i is the set of strategies
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surviving (transfinite) iterated deletion of never best responses.

We refer to mi ∈ SM,θ
i as a player i’s rationalizable strategy inM at state θ, and

to a member of SM,θ as a rationalizable strategy profile inM at state θ.

We say that a profile S ∈ S has the best-response property in state θ if S ≤ bM,θ (S),

or equivalently, if for all i ∈ I and all mi ∈ Si, there exists λi ∈ ∆ (M−i) such that

λi (m−i) > 0 =⇒ mj ∈ Sj for all j ∈ I\ {i}, and mi is a best-response to λi at θ. It

can be checked that S ≤ SM,θ when S has the best-response property in state θ.

Player i’s mixed-strategy σi is a probability distribution over Mi. The space of

player i’s mixed-strategy is denoted by Σi, where σi (mi) is the probability that σi

assigns to mi. The space of mixed-strategy profiles is denoted by Σ =
∏
i∈I

Σi, with

element σ as a typical strategy profile. A mixed-strategy may assign probability one

to a single strategy mi, that is, σi (mi) = 1. We refer to such a mixed-strategy as

a (pure) strategy and denote it by mi. The support of a mixed-strategy σi is the

set of pure strategies that are played with positive probability, that is, supp(σi) =

{mi ∈Mi|σi (mi) > 0}. A mixed-strategy profile σ is a Nash equilibrium of (M, θ) if

for all i ∈ I,

ui (g (σi, σ−i) , θ) ≥ ui (g (σ′i, σ−i) , θ) ,

for all σ′i ∈ Σi. Write NE (M, θ) for the set of Nash equilibrium profiles of (M, θ),

and write g (NE (M, θ)) for the set of Nash equilibrium outcomes of (M, θ).

An SCF f is a function f : Θ −→ Y .

Definition 1. A mechanismM implements f : Θ −→ Y in rationalizable strategies

if for all θ ∈ Θ, SM,θ 6= ∅ and m ∈ SM,θ =⇒ g (m) = f (θ). If such a mechanism

exists, f is said to be rationalizably implementable.

A partition of Θ is a correspondence P : Θ ⇒ Θ satisfying the following require-

ments: (i) θ ∈ P (θ) for all θ ∈ Θ, (ii) ∪θ∈ΘP (θ) = Θ, and (iii) P (θ) ∩ P (θ′) = ∅

if P (θ) 6= P (θ′). Given an SCF f , Pf is the partition of Θ induced by f , that is,

Pf = {Θy}y∈f(Θ) where Θy = {θ ∈ Θ|f (θ) = y}. A partition P of Θ is at least as fine

7



as Pf , or equivalently, Pf is coarser than P if P (θ) ⊆ Pf (θ) for all θ ∈ Θ. Let Pf
denote the set of partitions that are at least as fine as Pf , that is,

Pf = {P |P is a partition of Θ such that P (θ) ⊆ Pf (θ) for all θ ∈ Θ} .

III. Contextualizing the problem

When there are at least three players, BMT show that Maskin monotonicity∗ and a

strengthening of the NWA condition, referred to as NWA∗, is sufficient for rational-

izable implementation. The requirements can be stated as follows.8

Definition 2. f : Θ→ Y is Maskin monotonic∗ provided that there exists a partition

P ∈ Pf such that for all θ, θ′ ∈ Θ,

 for all i ∈ I and all θ̂ ∈ P (θ′),

Li

(
f (θ′) , θ̂

)
⊆ Li (f (θ′) , θ)

 =⇒ θ′ ∈ P (θ) .

Definition 3. Suppose that f : Θ → Y is Maskin monotonic∗ with respect to the

partition P ∈ Pf . f : Θ → Y is NWA∗ provided that for all (i, θ) ∈ I × Θ, there

exists ỹi (P (θ)) ∈ Y such that

ui (f (θ) , θ) > ui (ỹi (P (θ)) , θ) .

BMT show that Nash implementation of f is equivalent to its rationalizable imple-

mentation when there are at least three players and f satisfies both NWA∗ and MM∗.

In what follows, we show below that when there are two players, this equivalence

breaks down, though the constructed f satisfies both NWA∗ and MM∗, moreover, it

is Nash implementable. Indeed, the constructed f satisfies MM∗ with respect to the

finest partition.

Suppose that I = {1, 2}, X = {a, b, c, d, e, f, g} and Θ = {θ, θ′, θ′′}. Players’
8Under NWA∗, Maskin monotonic∗ is equivalent to strict Maskin monotonicity∗.
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utilities from pure outcomes are summarized in the table below, where ε ∈
(

1
2
, 1
)
.

u1 (·, θ) u2 (·, θ) u1 (·, θ′) u2 (·, θ′) u1 (·, θ′′) u2 (·, θ′′)

a 1 − (1− ε) 1 −1 1 −1

b 0 0 0 0 0 0

c −1 1 − (1 + ε) 1 −1 1

d 1 −2 −2 −1 1 −1

e 2 −(2− ε) 2 −2 −2 −2

f 3 −3 −3 −3 3 −3

g 0 0 0 0 −3 −3

The planner wants to implement f , which is defined by

f (θ) = f (θ′) = {b} and f (θ′′) = {a} .

It can easily be checked that f satisfies NWA∗. Moreover, it can be checked that f

satisfies MM∗ with respect the finest partition vacuously.9 Finally, it can be checked

that f is Nash implementable.10 However, f is not rationalizable implementable.

The easiest way to make this point without being distracted by boring details is to

suppose thatM implements f in rationalizable strategies and in (pure strategy) Nash

equilibria.

For each state θ̄ ∈ Θ, let m
(
θ̄
)

=
(
m1

(
θ̄
)
,m2

(
θ̄
))

be a Nash equilibrium strategy

profile for the game
(
M, θ̄

)
. Since SL1 (f (θ) , θ) ∩ L2 (f (θ′) , θ′) is nonempty, by

construction, and since, moreover, M rationalizable implements f , it follows that

9Indeed, it can be checked that 1
2a+ 1

2c ∈ L2 (f (θ′) , θ′)∩SU2 (f (θ′) , θ), 1
2a+ 1

2c ∈ L1 (f (θ) , θ)∩
SU1 (f (θ) , θ′), 1

2a + 1
2d ∈ L1 (f (θ′) , θ′) ∩ SU1 (f (θ′) , θ′′), e ∈ L1 (f (θ′′) , θ′′) ∩ SU1 (f (θ′′) , θ′),

e ∈ L1 (f (θ′′) , θ′′) ∩ SU1 (f (θ′′) , θ) and 2
3c+ 1

3d ∈ L2 (f (θ) , θ) ∩ SU2 (f (θ) , θ′′).
10Indeed, f satisfies the necessary and sufficient condition of Moore and Repullo (1990) under the

specifications that the set B = ∆ (X), Ci
(
f
(
θ̄
)
, θ̄
)

= Li
(
f
(
θ̄
)
, θ̄
)
for all i ∈ I and all θ̄ ∈ Θ, and

the punishment outcomes are e
(
f
(
θ̄
)
, θ̄, f

(
θ̄
)
, θ̄
)

= f
(
θ̄
)
for all θ̄ ∈ Θ, e (f (θ) , θ, f (θ′) , θ′) =

e (f (θ′′) , θ′′, f (θ′) , θ′) = e (f (θ′′) , θ′′, f (θ) , θ) = g, e (f (θ) , θ, f (θ′′) , θ′′) = 0.1c + 0.9g and
e (f (θ′) , θ′, f (θ) , θ) = e (f (θ′) , θ′, f (θ′′) , θ′′) = 0.1d+ 0.9g.
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g (m1 (θ′) ,m2 (θ)) = f (θ). Since L1 (f (θ) , θ) ⊆ L1 (f (θ) , θ′′) and L2 (f (θ) , θ′) ⊆

L2 (f (θ) , θ′′), it follows that (m1 (θ′) ,m2 (θ)) is a Nash equilibrium strategy profile

for (M, θ′′). However, since M Nash implements f , it follows that f (θ) = f (θ′′),

which is a contradiction.

f is Nash implementable because we can assign to the strategy profile (m1 (θ′) ,m2 (θ))

the outcome g and this allows us to satisfy the necessary and sufficient conditions for

Nash implementation (Moore and Repullo, 1991). Rationalizable implementation does

not allow us to make this assignment. The reason is that any mechanism that ratio-

nalizable implements f has to assign the outcome f (θ) to the rationalizable strategy

profile (m1 (θ′) ,m2 (θ)). Therefore, when there are two players, rationalizable imple-

mentation imposes restrictions in the mechanism design exercise that are not available

in the case of Nash implementation.

IV. Iterative Monotonicity

Fix any i ∈ I and any SCF f . Let

Θf
i = {θ ∈ Θ|SLi (f (θ) , θ) = ∅} . (1)

In words, θ ∈ Θf
i if f (θ) is the worst outcome for i at θ. Note that if θ ∈ Θf

i and f

is rationalizably implementable, every strategy of player i is a rationalizable strategy

at θ.

When I = 2, for every θ ∈ Θ, we define Ai(θ) by

Ai (θ) =
{
θ′
∣∣∣SLi (f (θ) , θ)

⋂
L−i (f (θ′) , θ′) = ∅

}⋃
{θ} . (2)

Let us call any map βi : Θ −→ 2Θ\ {∅} as player i’s deception. A special deception

for player i is the truth-telling deception, βti , defined by βti (θ) = {θ} for all θ ∈ Θ.
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Another special deception is denoted by β0
i and it is defined, for all θ ∈ Θ, by

β0
i (θ) =



Ai (θ) if I = 2

βti (θ) if i ∈ Iθ and I ≥ 3

Θ if i /∈ Iθ and I ≥ 3.

(3)

Note that θ ∈ β0
i (θ) for all θ ∈ Θ.

For any βi and β′i, we write βi ⊆ β′i if βi (θ) ⊆ β′i (θ) for all θ ∈ Θ. Let Bti denote

the set of player i’s deceptions containing the truth-telling deception, that is,

Bti ≡
{
βi ∈ Bi

∣∣∣β0
i ⊆ βi

}
. (4)

Let Bt ≡
∏
i∈I
Bti , with β = (βi)i∈I as a typical deception profile of Bt. For all β, β′ ∈ Bt,

we write β ⊆ β′ if βi ⊆ β′i for all i ∈ I. The collection Bt is a complete lattice with the

natural ordering set inclusion: β ≤ β′ if β ⊆ β′. The largest element is β̄ = (Θ, ...,Θ).

The smallest element is βt.

Let us define the function Ri : Bt 7→ Bti as follows, where for all β ∈ Bt, we use

Ri (β) and Rβ
i interchangeably. For all β ∈ Bt, all θ ∈ Θ and all i ∈ I, let Rβ

i be

defined by

Rβ
i (θ) =

⋃
Ei∈2Θ\{∅}



there exists E−i ∈
(
2Θ\ {∅}

)I−1 such that

for all (`, θ′) ∈ I × E`, there exists

Ei

(
θ̃, θ̂
)
∈ E` ×

⋂
j∈I\{`}

Ej such that(
θ′, θ̂

)
∈ β`

(
θ̃
)
×

⋂
j∈I\{`}

βj

(
θ̃
)
and

either θ̃ ∈ Θf
` or L`

(
f
(
θ̂
)
, θ̂
)
⊆ L`

(
f
(
θ̃
)
, θ
)


(5)
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For all β ∈ Bt, let R (β) =
∏
i∈I
Ri (β).11

To proceed further, we present some useful properties of R. To this end, we need

additional notation. Let E(R) denote the set of fixed points of R, which is defined

by

E(R) =
{
β ∈ Bt|R(β) = β

}
.

The function R : Bt 7→ Bt is monotone (or, increasing) on Bt if for all β, β′ ∈ Bt,

β ⊆ β′ implies R(β) ⊆ R(β′). For each θ ∈ Θ, let us define Iθ by Iθ = {i ∈

I|SLi(f(θ), θ) 6= ∅}. Finally, let {βk}k≥0 be an increasing sequence (in the sense of

set inclusion) of elements of Bt, which is defined recursively as follows. The initial

point is the special deception profile β0, where β0
i (θ) is defined in (10) for all i ∈ I

and all θ ∈ Θ, whereas for all k ≥ 1, βk is the computation of the mapping R at the

profile βk−1; that is,

βk = R
(
βk−1

)
. (6)

The first property is that βi (θ) ⊆ Rβ
i (θ) for all β ∈ Bt, all θ ∈ Θ and all i ∈ I.

This property follows directly from (5) by setting Ei = Ej = {θ} for all i, j ∈ I and

θ̂ = θ′ = θ. The second property is that R is monotone on Bt.12 The third property

is that the set E (R) is a complete lattice and that the limit point of the sequence{
βk
}
k≥0

is the smallest element of E (R). This property comes from the fact that

since Bt is a complete lattice and since R is monotone, Tarski fixed point-theorem

implies that R has a greatest and a least fixed point and that E(R) is a complete

lattice. Moreover, since Bt is finite, the mapping R is continuous. Therefore, by

applying Echenique (2005), we can conclude that the limit point of the sequence{
βk
}
k≥0

, denoted by β∗, is the smallest fixed point of E (R). The last property says

that when if
⋂
j∈I\{i} β

∗
j (θ)

⋂
Θf
i 6= ∅, then β∗i (θ) = Θ.13

11Alternatively, Rβ can be defined via an iterative elimination notion that reflects the notion of
iterative elimination of never best-responses. For such an approach, we refer the reader to Jain et al.
(2021).

12It directly follows from (5) and the assumption that β ⊆ β′.
13To see it, let θ∗ ∈

⋂
j∈I\{i}

β∗j (θ) ∩ Θf
i . Then, it follows from (10) that β0

i (θ∗) = Θ. Since
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Since the arguments from the previous paragraph clarify why the mapping R has

the above-discussed properties, we summarize them in the following lemma, whose

proof is omitted.

Lemma 1. R : Bt 7→ Bt has the following properties.

(i) For all β ∈ Bt, β ⊆ R (β).

(ii) R is monotone on Bt.

(iii) E (R) is a complete lattice and {β∗} = min E (R) where β∗ ≡ supk≥0 β
k.

(iv) For all i ∈ I and all θ ∈ Θ, if
⋂
j∈I\{i} β

∗
j (θ)

⋂
Θf
i 6= ∅, then β∗i (θ) = Θ.

The following condition is at the heart of our characterization result.

Definition 4. f : Θ 7→ Y satisfies Iterative Monotonicity (henceforth, IM) if for all

θ, θ′ ∈ Θ,

f (θ) 6= f (θ′) =⇒ β∗ (θ)
⋂

β∗ (θ′) = ∅. (7)

Let us here briefly explain IM and its relationship with rationalizable implementa-

tion. Recall that Maskin monotonicity ensures the elimination of undesirable Nash

equilibrium. Similarly, IM ensures the elimination of undesirable ‘best-response sets.’

This is done by computing players’ largest best-response sets via the fixed point

deception profile β∗.

To see it, suppose thatM rationalizable implements f , so that SM,θ is the set of

rationalizable strategy profiles for θ. Recall that β∗ is the limit point of the sequence{
βk
}
k≥0

and that this sequence is an increasing sequence (in the sense of set inclusion)

of elements of Bt, which is defined recursively. Its starting deception is β0, where β0
i

is defined in (10) for all i ∈ I and all θ ∈ Θ, whereas for all k ≥ 1, βk is computed

by R
(
βk−1

)
as in (6).

β∗ ∈ Bt, it follows that β∗i (θ∗) = Θ. To show that β∗i (θ) = Θ, it suffices to show that Θ ⊆ Rβ
∗

i (θ).
This follows from (5) by setting Ei = Θ and Ej = β∗j (θ) for all j ∈ I\ {i} and by setting θ̃ = θ̂ = θ∗

for all θ′ ∈ Ei and setting θ̃ = θ̂ = θ for all θ′ ∈ Ej .

13



For every θ ∈ Θ and every player i, implementability requires that the set β0 (θ)

generates a best-response set at θ that cannot be eliminated; that is, for each i ∈ I,⋃
θ̄∈β0

i (θ)

SM,θ̄
i ⊆ SM,θ

i .

By applying (5), it is possible to compute Rβ0
(θ) = β1 (θ). Since, by construction,

β1 (θ) is computed in a way that it generates a best-response set at θ that cannot be

eliminated, it holds, for each i ∈ I, that
⋃

θ̄∈β1
i (θ)

SM,θ̄
i ⊆ SM,θ

i .

This reasoning can be repeated to derived a best-response set at θ generated by

Rβ1
(θ) = β2 (θ). And so on. After a finite number of iterations, the largest best-

response set at θ that cannot be eliminated is obtained by the limit point deception

β∗; that is, for each i ∈ I, it holds that

⋃
θ̄∈β∗i (θ)

SM,θ̄
i ⊆ SM,θ

i . (8)

From this perspective, β∗ can be viewed as the largest deception that is not refutable

given the mechanism M. To see that f satisfies IM if it is rationalizable imple-

mentable by the mechanism M, fix any θ, θ′ ∈ Θ such that f (θ) 6= f (θ′). Let us

show that the intersection β∗ (θ) ∩ β∗ (θ′) is empty. To see it, suppose that it is not

empty. This implies that for each player i, it holds that θ (i) ∈ β∗i (θ) ∩ β∗i (θ′). Since

M rationalizable implements f , it follows from (8) that the intersection SM,θ
i ∩SM,θ′

i

is nonempty for every player i, which leads to the contradiction that f (θ) 6= f (θ′).

The following theorem shows that IM is necessary and sufficient for rationalizable

implementation.

Theorem 1. f : Θ 7→ Y is rationalizably implementable if and only if f satisfies IM.

For the proof, see Appendices A and B.
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V. Connection With The Partition Based Approach

In this section, we connect our approach with the partition-based approach followed

by BMT and Xiong (2022). For this reason, we restrict our discussion below to the

case of three or more players. Recall that the implementing conditions in the existing

literature rely on the existence of a partition P of Θ. To make a connection between

the two approaches, let Bf denote the set of deceptions that satisfy (7). Our approach

can be summarized as follows: An SCF f is rationalizably implementable if, and only

if, the deception β∗ ∈ Bf . When f satisfies IM, we can construct a partition P ∈ Pf
by using β∗ as follows:

P (θ) =
{
θ̃ ∈ Θ

∣∣∣β∗(θ) = β∗(θ̃)
}

(9)

for all θ ∈ Θ. If f satisfies IM, it can be checked that P is finer than Pf .14

Let us first connect our approach with that used by BMT. These authors discuss

the role of partition in their characterization result. In particular, they show that the

required partition must be as fine as Pf and as coarse as the partition obtained by

their Lemma 1, which BMT call "pairwise inclusion property" (See BMT, p. 1266 for

a discussion). 15 BMT show that f is rationalizably implementable if f satisfies the

NWA condition and Maskin monotonicity and, moreover, it is responsive.16 When f

satisfies these conditions, it can be shown that the truth-telling deception, β∗ = β0 =

βt.

Xiong (2022) shows that rationalizable implementation of an SCF is equivalent to

the Strict Event Monotonicity∗∗ (SEM∗∗). We show below that SEM∗∗ is equivalent

to IM.

14Formal arguments can be found in Appendix C, where we prove that IM is equivalent to the
necessary and sufficient conditions of Xiong (2022).

15Indeed, BMT argue that the pairwise inclusion property is insufficient to pin down the partition
by stating“We finally observe that the partition P may yet have to be coarser than is indicated by
the pairwise inclusion property", BMT, p. 1266.

16f is responsive provided that for all θ, θ′ ∈ Θ such that θ 6= θ′, it holds that f(θ) 6= f(θ′).
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Theorem 2. Assume that I ≥ 3 and that that IΘ 6= ∅. f satisfies IM if and only if

it is SEM∗∗.

The proof of the above theorem can be found in Appendix C. Let us briefly discuss

it below. When f satisfies IM, the partition used to show that f is SEM∗∗ is defined

in (9). For the converse result, we show that the partition P appearing in SEM∗∗

specifies a deception βP such that R(βP ) = βP and βP ∈ Bf . More precisely, βP is

defined by:

βPi (θ) =

 P (θ) if i ∈ IP (θ)

Θ if i /∈ IP (θ).
(10)

where i ∈ IP (θ) provided that P (θ)
⋂

Θf
i = ∅; otherwise, i /∈ IP (θ). When f is SEM∗∗,

the limit deception β∗ of our iterative procedure is explicitly defined by (10).

In summary, the fundamental novelty of our approach is to uncover the mapping

R, which is implicitly used in the existing characterizations. This mapping plays a

critical role in the analysis of two-player implementation problems. Indeed, when we

focus on partitions in Pf , we implicitly restrict the set of deceptions in Bf to the set

Bf (Pf ) =
{
β ∈ Bf

∣∣∣β = βP for someP ∈ Pf
}
. When there are three or more players,

this restriction is without loss of generality. The reason is that for any partition

P ∈ Pf such that βP ∈ E(R), implementation requires that β0 ⊆ βP . It is clear from

the definition of β0 that this constraint is vacuously satisfied, when there are three or

more players.17 However, this is not the case for studying two-player implementation

problems. Indeed, in what follows, we present an example in which there does not

exist any partition P ∈ Pf such that β0 ⊆ βP ∈ E(R), though f is rationalizably

implementable (that is, f satisfies IM with respect to β∗ = β0).

The example has two players, denoted by 1 and 2, three states, denoted by θ, θ′

and θ′′, and six outcomes, denoted by a, b, c, d, e and f . Players’ utilities from pure

17Indeed, β0 = βP .
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outcomes are summarized in the table below, where ε ∈
(

1
2
, 1
)
.

u1 (·, θ) u2 (·, θ) u1 (·, θ′) u2 (·, θ′) u1 (·, θ′′) u2 (·, θ′′)

a 1 − (1− ε) 1 −1 1 − (1− ε)

b 0 0 0 0 0 0

c −1 1 − (1− ε) 1 − (1− ε) 1

d 1 −2 −2 −1 −2 −2

e 2 −3 −2 −2 −2 −3

f −3 −3 −3 3 −3 −3

The planner wants to implement f , which is defined by

f (θ) = f (θ′) = {b} and f (θ′′) = {a} .

It can be easily checked that f is NWA. Let us note that Pf is such that Pf (θ) =

Pf (θ′) = {θ, θ′} and Pf (θ′′) = {θ′′}. Also, the finest partition P is P (θ) = {θ},

P (θ′) = {θ′} and P (θ′′) = {θ′′}. It can be checked that Pf = {Pf , P}. In Appendix

??, we show that f is rationalizably implementable.

Finally, let us show that there does not exist any partition P ∈ Pf such that

β0 ⊆ βP ∈ E(R). To this end, we need to consider only the partition βPf .18 Observe

that, by construction, β0 ⊆ βPf . We show that βPf /∈ E(R). Assume, to the contrary,

that βPf ∈ E(R). This implies that for each i ∈ I, it holds that Pf (θ)
⋂
RβPf
i (θ′′) = ∅.

Note that, by construction, u1 (·, θ′) = u1 (·, θ′′) and u2 (·, θ) = u2 (·, θ′′). This im-

plies that SL1 (f (θ) , θ′) ⊆ L1 (f (θ) , θ′′) and SL2 (f (θ) , θ) ⊆ L2 (f (θ) , θ′′). Thus,

in our environment, it is equivalent to L1 (f (θ) , θ′) ⊆ L1 (f (θ) , θ′′) and θ′ ∈ Pf (θ)

and to L2 (f (θ) , θ) ⊆ L2 (f (θ) , θ′′) and θ ∈ Pf (θ). Applying (5) under the speci-

fication that E1 = E2 = Pf (θ), we can conclude that for each i ∈ I, it holds that

Pf (θ) ⊆ R
βPf
i (θ′′), yielding a contradiction.19

18The reason is that, by construction, β0
1(θ) = {θ, θ′} but βP1 = {θ}.

19To see it, we need to set θ̃ = θ̂ = θ′ for player 1 and θ̃ = θ̂ = θ for player 2, and observe that
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Appendices

A. Proof of “only if” part of Theorem 1

Suppose thatM implements f in rationalizable strategies. To save writing, we show

below that f satisfies IM when I = 2. The proof for the case I ≥ 3 is available upon

request. Thus, let us assume that I = 2. To show that f satisfies IM, we need the

following useful results and notation.

For all i ∈ I, let λi be any player i’s belief. The support of λi is defined by

supp(λi) = {m−i ∈M−i|λi (m−i) > 0}.

Lemma 2. For all i ∈ I and all θ ∈ Θ, there exists λθi ∈ ∆
(
SM,θ
−i

)
such that for all

mi ∈ SM,θ
i , mi is a best-response to λθi at θ.

Proof. Take any θ ∈ Θ and any i ∈ I. Since f is rationalizably implementable by

M, it follows that SM,θ 6= ∅ and f (θ) = g (m) for all m ∈ SM,θ.

Fix any mi ∈ SM,θ
i . Then, mi is a best-response to some λmi,θi ∈ ∆

(
SM,θ
−i

)
at θ.

Let λmi,θi = λθi . Fix any m∗i ∈ S
M,θ
i . Since f is rationalizably implementable byM,

we have that

ui (f (θ) , θ) =
∑

m−i∈M−i

λθi (m−i)ui (g (m∗i ,m−i) , θ)

≥
∑

m−i∈M−i

λθi (m−i)ui (g (m′i,m−i) , θ)

for all m′i ∈Mi. Thus, m∗i is a best-response to λθi at θ. Since the choice of m∗i ∈ S
M,θ
i

is arbitrary, the statement follows. �

To show that f satisfies IM, we show that (7) is satisfied with respect to β̂, which

is define below, and then we show that β∗ ⊆ β̂.

For all i ∈ I, let β̂i be defined, for all θ ∈ Θ, by

β
Pf
i (θ) = β

Pf
i (θ′) = {θ, θ′} for all i ∈ I.
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β̂i(θ) =
{
θ′ ∈ Θ

∣∣∣supp(λθ′−i) ⊆ SM,θ
i

}
. (11)

Let us first show that β̂ ∈ Bt. Specifically, by (10), we need to show that β0
i (θ) ⊆

β̂i(θ) for all i ∈ I and all θ ∈ Θ. To this end, fix any i ∈ I, any θ ∈ Θ and any

θ′ ∈ β0
i (θ) = Ai(θ). Let us show that θ′ ∈ β̂i(θ). Since θ ∈ β̂i(θ), by (11), let us

suppose that θ′ 6= θ. Since M implements f in rationalizable strategies, it follows

that

g
[
supp

(
λθ
′

−i

)
× supp

(
λθi
)]
⊆ Li (f (θ) , θ)

⋂
L−i (f (θ′) , θ′) . (12)

Fix any m∗i ∈ supp
(
λθ
′
−i
)
. Assume, to the contrary, that m∗i is not a best-response

to λθi at θ. Since m∗i ∈ supp
(
λθ
′
−i
)
but it is not a best-response to λθi at θ, it follows

from (12) that

g
[
m∗i × supp

(
λθi
)]
⊆ SLi (f (θ) , θ)

⋂
L−i (f (θ′) , θ′) .

(2) implies that θ′ /∈ Ai (θ), which is a contradiction. Thus, we have established that

every element of supp
(
λθ
′
−i
)
is a best-response to λθi at θ if θ′ ∈ β0

i (θ) = Ai (θ). Thus,

supp
(
λθ
′
−i
)
⊆ SM,θ

i , and so θ′ ∈ β̂i(θ), by (11).

Let us now show that (7) is satisfied with respect to β̂. To this end, take any

θ, θ′ ∈ Θ such that f (θ) 6= f (θ′). We show that β̂ (θ)
⋂
β̂ (θ′) = ∅. Assume, to

the contrary, that β̂ (θ)
⋂
β̂ (θ′) 6= ∅. This implies that for all i ∈ I, there exists

θi ∈ Θ such that θi ∈ β̂i (θ)
⋂
β̂i (θ

′). Since θi ∈ β̂i (θ)
⋂
β̂i (θ

′) for all i ∈ I, it follows

from (11) that SM,θ
i

⋂
SM,θ′

i 6= ∅ for all i ∈ I, so that SM,θ
⋂
SM,θ′ 6= ∅. Since

M implements f in rationalizable strategies, we have that f (θ) = f (θ′), which is a

contradiction.

Next, let us show that β∗ ⊆ β̂. To this end, we first show that R
(
β̂
)

= β̂. The

following lemmata establishes that R
(
β̂
)
⊆ β̂.

Lemma 3. For all i ∈ I, all θ, θ′, θ̃ ∈ Θ, all θ−i ∈ Θ−i and all β ∈ Bt, if β ⊆ β̂,
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θ−i ∈ β−i
(
θ̃
)
, and either

 θ′ ∈ βi
(
θ̃
)
, Li (f (θ−i) , θ−i) ⊆ Li

(
f
(
θ̃
)
, θ
)

and θ̃ /∈ Θf
i

 (13)

or

θ̃ ∈ Θf
i ,

then every element of supp
(
λθ
′
−i
)
is a best-response to λθ−ii at θ.

Proof. Fix any i ∈ I, any θ, θ′, θ̃ ∈ Θ, any θ−i ∈ Θ−i and any β ∈ Bt such that β ⊆ β̂

and θ−i ∈ β−i
(
θ̃
)
. Since θ−i ∈ β−i

(
θ̃
)
and since β

(
θ̃
)
⊆ β̂

(
θ̃
)
, it follows from (11)

that supp
(
λ
θ−i
i

)
⊆ SM,θ̃

−i . We proceed according to whether (13) holds or θ̃ ∈ Θf
i .

Case 1: (13) holds

Since θ′ ∈ βi
(
θ̃
)
and since βi

(
θ̃
)
⊆ β̂i

(
θ̃
)
, it follows from (11) that supp

(
λθ
′
−i
)
⊆

SM,θ̃
i . Therefore, we have that supp

(
λθ
′
−i
)
×supp

(
λ
θ−i
i

)
⊆ SM,θ̃. SinceM implements

f , it follows that

g
[
supp

(
λθ
′

−i

)
× supp

(
λ
θ−i
i

)]
= f

(
θ̃
)
. (14)

Finally, fix any m∗i ∈ supp
(
λθ
′
−i
)
. Assume, to the contrary, that m∗i is not a best-

response to λθ−ii at θ. It follows that there exists m̃i ∈Mi such that

∑
m−i∈M−i

λ
θ−i
i (m−i)ui (g (m̃i,m−i) , θ) >

∑
m−i∈M−i

λ
θ−i
i (m−i)ui (g (m∗i ,m−i) , θ) .

Since g (m∗i ,m−i) = f
(
θ̃
)
for all m−i ∈ supp

(
λ
θ−i
i

)
, by (14), it follows that

∑
m−i∈M−i

λ
θ−i
i (m−i)ui (g (m̃i,m−i) , θ) > ui

(
f
(
θ̃
)
, θ
)
. (15)

The lottery

( ∑
m−i∈M−i

λ
θ−i
i (m−i) g (m̃i,m−i)

)
/∈ Li (f (θ−i) , θ−i) because Li (f (θ−i) , θ−i) ⊆

20



Li

(
f
(
θ̃
)
, θ
)
, by our initial supposition that (13) holds. However, since M imple-

ments f , Lemma 2 implies that it must be the case that

( ∑
m−i∈M−i

λ
θ−i
i (m−i) g (m̃i,m−i)

)
∈

Li (f (θ−i) , θ−i), which is a contradiction.

Case 2: θ̃ ∈ Θf
i

Then, SM,θ̃
i = Mi. Recall that supp

(
λ
θ−i
i

)
⊆ SM,θ̃

−i . Since M implements f , it

follows that

g
[
Mi × supp

(
λ
θ−i
i

)]
= f

(
θ̃
)
.

Therefore, every mi ∈ supp
(
λθ
′
−i
)
is a best-response to λθ−ii at θ. �

To proceed further, we need additional notation. For all i ∈ I, all θ ∈ Θ and all

β ∈ Bt, let us define the set Ψβ
i (M, θ) by

Ψβ
i (M, θ) =

⋃
θ′∈Rβi (θ)

supp(λθ
′

−i). (16)

Lemma 4. For all β ∈ Bt and all θ ∈ Θ, if β ⊆ β̂, then Ψβ(M, θ) ⊆ SM,θ.

Proof. Take any θ ∈ Θ and any β ∈ Bt such that β ⊆ β̂. To show that Ψβ(M, θ) ⊆

SM,θ, it suffices to show that the set Ψβ(M, θ) satisfies the best-response property

at θ; that is, it suffices to show that for all i ∈ I and all m∗i ∈ Ψβ
i (M, θ), there

exists λm
∗
i

i ∈ ∆ (M−i) such that λm
∗
i

i (m−i) > 0 =⇒ m−i ∈ Ψβ
−i (M, θ), and m∗i is a

best-response to λm
∗
i

i at θ.

Fix any i ∈ I and any m∗i ∈ Ψβ
i (M, θ). Since m∗i ∈ Ψβ

i (M, θ), (16) implies that

there exists Ei ∈ 2Θ\ {∅} such that θ′ ∈ Ei ⊆ Rβ
i (θ). (5) implies that there exists

E−i ∈ 2Θ\ {∅} such that for each ` ∈ I and each θ` ∈ E`, there exist θ̃ ∈ E` and

θ−` ∈ β−`
(
θ̃
)
∩ E−` such that θ` ∈ β`

(
θ̃
)
and either θ̃ ∈ Θf

` or L` (f (θ−`) , θ−`) ⊆

L`

(
f
(
θ̃
)
, θ
)
. By (5), it also follows that E−i ⊆ Rβ

−i (θ), and so θ−i ∈ Rβ
−i (θ). Since

θ−i ∈ Rβ
−i (θ), (16) implies that supp

(
λ
θ−i
i

)
⊆ Ψβ

−i (M, θ). Moreover, since β ⊆ β̂
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and θ−i ∈ β−i
(
θ̃
)
, and since, moreover, either θ̃ ∈ Θf

i or

θ′ ∈ βi
(
θ̃
)
, Li (f (θ−i) , θ−i) ⊆ Li

(
f
(
θ̃
)
, θ
)

and θ̃ /∈ Θf
i ,

it follows from Lemma 3 that every element of supp
(
λθ
′
−i
)
is a best-response to λθ−ii

at θ. Thus, m∗i is a best-response to λθ−ii at θ and supp
(
λ
θ−i
i

)
⊆ Ψβ

−i (M, θ), as we

sought. �

Lemma 5. For all β ∈ Bt, if β ⊆ β̂, then R(β) ⊆ β̂.

Proof. Fix any β ∈ Bt such that β ⊆ β̂. Fix any i ∈ I and any θ, θ′ ∈ Θ such

that θ′ ∈ Rβ
i (θ). We show that θ′ ∈ β̂i(θ). (16) implies that supp(λθ′−i) ⊆ Ψβ

i (M, θ).

Since β ⊆ β̂, Lemma 4 implies that Ψβ
i (M, θ) ⊆ SM,θ

i . Thus, supp(λθ′−i) ⊆ SM,θ
i . By

definition of β̂, in (11), it follows that θ′ ∈ β̂i(θ), as we sought. �

Since β̂ ⊆ β̂, Lemma 5 implies that R
(
β̂
)
⊆ β̂. Since part (i) of Lemma 1

implies that R
(
β̂
)
⊇ β̂, it follows that R

(
β̂
)

= β̂, and so β̂ ∈ E (R). Since

{β∗} = min E (R), by part (iii) of Lemma 1, we have that β∗ ⊆ β̂, as we sought.

Thus, f satisfies IM.

B. Proof of “if” part of Theorem 1

Suppose that f : Θ → Y satisfies IM. Below we provide the proof for I = 2. The

reason is that the case I ≥ 3 can be proved similarly. The details are available from

authors. However, indirect arguments can be found in Section ??. Therefore, in what

follows, we suppose that I = 2.

For each i ∈ I, recall the definition of Θf
i in (1). The complement of Θf

i is denoted

by Θ̄f
i . For each i ∈ I, yi : Θ̄f

i → Y is a function such that for each θ ∈ Θ̄f
i ,

yi (θ) ∈ SLi (f (θ) , θ) . (17)
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Given the set {yi (θ)}θ∈Θ̄fi
, we define the average lotteries by setting

y
i

=
1∣∣∣Θ̄f
i

∣∣∣
∑
θ∈Θ̄fi

yi (θ) and y =
1

I

∑
i∈I

y
i
. (18)

For each i ∈ I, y∗i : Θ̄f
i → Y is a function defined, for all θ ∈ Θ by

y∗i (θ) ∈ arg max
y∈Y

ui (y, θ) . (19)

For each θ ∈ Θ, let us define Iθ by Iθ = {i ∈ I|SLi(f(θ), θ) 6= ∅} and IΘ by

IΘ =
⋂
θ∈Θ Iθ. To save notation, we omit below the proof for the trivial case IΘ = ∅.20

The following results will be used in constructingM.

Lemma 6. For all i ∈ I and all θ ∈ Θ̄f
i , ui (y∗i (θ) , θ) > ui

(
y, θ
)
.

Proof. Formal arguments can be found in Bergemann et al (2011; Lemma 2, p. 1260).

�

Lemma 7. For each i ∈ I, there exists a function zi : Θ×Θ→ Y such that for each

(θ, θ′) ∈ Θ̄f
i × Θ̄f

i ,

ui (f (θ′) , θ′) > ui (zi (θ, θ
′) , θ′) , (20)

and for θ 6= θ′,

ui (zi (θ, θ
′) , θ) > ui (zi (θ

′, θ′) , θ) . (21)

Proof. Formal arguments can be found in Bergemann et al (2011; Lemma 2, p. 1260).

�

Whereas the above results will be used in the construction of both Rule 3 and Rule

4, the following result will be used in the construction of Rule 2.

20The reason is that f is a constant function when IΘ = ∅. See Appendix A of Jain et al. (2021).
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Lemma 8. For all θ, θ′, θ′′ ∈ Θ, if (θ′, θ′′) /∈ β∗i
(
θ̄
)
× β∗−i

(
θ̄
)
for all θ̄ ∈ Θ, then:

(i) There exists e (θ′, θ′′) ∈ Y such that

e (θ′, θ′′) ∈ SLi (f (θ′′) , θ′′) ∩ SL−i (f (θ′) , θ′) . (22)

(ii) For all i ∈ I, if θ ∈ Θ̄f
i , then there exists yθi (θ′, θ′′) ∈ Y such that

ui
(
yθi (θ′, θ′′) , θ

)
> ui (e (θ′, θ′′) , θ) (23)

yθi (θ′, θ′′) ∈ SLi (f (θ′′) , θ′′) . (24)

Proof. Fix any θ, θ′, θ′′ ∈ Θ. Suppose that (θ′, θ′′) /∈ β∗i
(
θ̄
)
× β∗−i

(
θ̄
)
for all θ̄ ∈ Θ.

Since β∗ ∈ E (R), we have that (θ′, θ′′) /∈ Rβ∗

i

(
θ̄
)
× Rβ∗

−i
(
θ̄
)
for all θ̄ ∈ Θ. Since

θ′′ ∈ Rβ∗

−i (θ
′′), it holds that θ′ /∈ Rβ∗

i (θ′′). Part (i) of Lemma 1 implies that β∗i (θ′′) ⊆

Rβ∗

i (θ′′). Since θ′ /∈ Rβ∗

i (θ′′), it follows that θ′ /∈ β∗i (θ′′). Since β∗ ≡ supk≥0 β
k

and since β0
i ⊆ β∗i , by (6), it follows that θ′ /∈ β0

i (θ′′). Since β0
i (θ′′) = Ai (θ

′′), by

(10), it follows from (2) that x ∈ SLi (f (θ′′) , θ′′) ∩ L−i (f (θ′) , θ′) for some x ∈ Y .

Similarly, we have that θ′′ /∈ A−i (θ′), and so y ∈ Li (f (θ′′) , θ′′) ∩ SL−i (f (θ′) , θ′) for

some y ∈ Y . Hence, there exists a small, but positive, number p ∈ (0, 1) such that

z = (px+ (1− p) y) ∈ SLi (f (θ′′) , θ′′) ∩ SL−i (f (θ′) , θ′). Define

e (θ′, θ′′) = (1− ε) z + εy (25)

with y as defined in (18). Since Θ is finite, we can find a sufficiently small, but positive,

ε > 0 such that for all θ′, θ′′ ∈ Θ, e (θ′, θ′′) ∈ SLi (f (θ′′) , θ′′)∩SL−i (f (θ′) , θ′), which

proves (22).

Fix any i ∈ I. Suppose θ ∈ Θ̄f
i . Define

yθi (θ′, θ′′) = (1− ε) z + εy∗i (θ) , (26)
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with y∗i (θ) as defined in (19).

Since Θ and Θ̄f
i are finite, we can find a sufficiently small, but positive, ε > 0 such

that for all θ′, θ′′ ∈ Θ and all θ ∈ Θ̄f
i , e (θ′, θ′′) ∈ SLi (f (θ′′) , θ′′) ∩ SL−i (f (θ′) , θ′),

which establishes (22), and yθi (θ′, θ′′) ∈ SLi (f (θ′′) , θ′′), which establishes (24). Since

the only difference between e (θ′, θ′′) and yθi (θ′, θ′′) is that y in (25) is replaced by

y∗i (θ) in (26), and since Lemma 6 implies that ui (y∗i (θ) , θ) > ui
(
y, θ
)
, it follows that

(23) is proved for all θ, θ′, θ′′ such that θ ∈ Θ̄f
i . �

For all i ∈ I and all θ, θ′ ∈ Θ, let Di (θ
′, θ) be defined by

Di (θ
′, θ) = {y ∈ Y |y ∈ Li (f (θ′) , θ′) ∩ SUi (f (θ′) , θ)} , (27)

where for all x ∈ Y , SUi (x, θ) = {y ∈ Y |ui (x, θ) < ui (y, θ)}. For every i ∈ I and

every θ ∈ Θ̄f
i , let αθi : Θ×Θ→ Y be a function such that for every θ′, θ′′ ∈ Θ,

αθi (θ′, θ′′) ∈ Li (f (θ′) , θ′) ∩ SUi (f (θ′′) , θ) (28)

if Li (f (θ′) , θ′) ∩ SUi (f (θ′′) , θ) 6= ∅.

For every i ∈ I and every θ, θ′ ∈ Θ, let D̄i (θ
′, θ) be any finite subset of Di (θ

′, θ)

satisfying the following requirements:

(i) If θ, θ′ ∈ Θ̄f
i and zi (θ, θ′) ∈ Di (θ

′, θ), then zi (θ, θ′) ∈ D̄i (θ
′, θ).

(ii) For all θ′′ ∈ Θ, if θ ∈ Θ̄f
i , (θ′, θ′′) /∈ β∗i

(
θ̄
)
×β∗−i

(
θ̄
)
for all θ̄ ∈ Θ and yθi (θ′, θ′′) ∈

Di (θ
′′, θ), then yθi (θ′, θ′′) ∈ D̄i (θ

′′, θ).

(iii) For all θ′′ ∈ Θ, if θ ∈ Θ̄f
i and Li (f (θ′) , θ′)∩SUi (f (θ′′) , θ) 6= ∅, then αθi (θ′, θ′′) ∈

D̄i (θ
′, θ).

For every i ∈ I and every θ, θ′ ∈ Θ, fix any D̄i (θ
′, θ) satisfying the above require-
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ments. Let Bi (θ
′, θ) be defined by

Bi (θ
′, θ) =

 arg maxy∈D̄i(θ′,θ) ui (y, θ) if Di (θ
′, θ) 6= ∅

f (θ′) otherwise.
(29)

Note that Bi (θ
′, θ) 6= ∅ for all θ, θ′ ∈ Θ and all i ∈ I. Furthermore, for every i ∈ I,

let xi : Θ×Θ→ Y be a function such that

xi (θ
′, θ) ∈ Bi (θ

′, θ) (30)

for all θ′, θ ∈ Θ.

Lemma 9. For all i ∈ I and all θ, θ′ ∈ Θ, if θ, θ′ ∈ Θ̄f
i , then ui (xi (θ

′, θ) , θ) >

ui (zi (θ
′, θ′) , θ).

Proof. Fix any i ∈ I and any θ, θ′ ∈ Θ̄f
i . Then, xi (θ′, θ) ∈ Bi (θ

′, θ) by (30). Let us

proceed according to whether Di (θ
′, θ) = ∅ or not.

Suppose thatDi (θ
′, θ) = ∅, so that xi (θ′, θ) = f (θ′) by (29). By (20), ui (f (θ′) , θ′) >

ui (zi (θ, θ
′) , θ′). This proves the statement if θ = θ′. Suppose that θ 6= θ′. By

(21), ui (zi (θ, θ′) , θ) > ui (zi (θ
′, θ′) , θ). Since Di (θ

′, θ) = ∅ and since ui (f (θ′) , θ′) >

ui (zi (θ, θ
′) , θ′), it holds that ui (xi (θ′, θ) , θ) ≥ ui (zi (θ, θ

′) , θ), and so ui (xi (θ′, θ) , θ) >

ui (zi (θ
′, θ′) , θ).

Suppose thatDi (θ
′, θ) 6= ∅. Then, θ 6= θ′. Suppose that ui (f (θ′) , θ) ≥ ui (zi (θ, θ

′) , θ).

By (21), ui (f (θ′) , θ) > ui (zi (θ
′, θ′) , θ). Since xi (θ′, θ) ∈ Bi (θ

′, θ), it follows that

ui (xi (θ
′, θ) , θ) ≥ ui (f (θ′) , θ). Therefore, ui (xi (θ′, θ) , θ) > ui (zi (θ

′, θ′) , θ). Finally,

suppose that ui (zi (θ, θ′) , θ) > ui (f (θ′) , θ). By (20), ui (f (θ′) , θ′) > ui (zi (θ, θ
′) , θ′).

Thus, zi (θ, θ′) ∈ Di (θ
′, θ), by (27), and so zi (θ, θ′) ∈ D̄i (θ

′, θ), by requirement (i)

of the set D̄i (θ
′, θ). Since xi (θ′, θ) ∈ Bi (θ

′, θ), it follows that ui (xi (θ′, θ) , θ) ≥

ui (zi (θ, θ
′) , θ). By (21), ui (xi (θ′, θ) , θ) > ui (zi (θ

′, θ′) , θ). �

Lemma 10. For all i ∈ I and all θ, θ′, θ′′ ∈ Θ, if θ, θ′′ ∈ Θ̄f
i and (θ′, θ′′) /∈ β∗i

(
θ̄
)
×

β∗−i
(
θ̄
)
for all θ̄ ∈ Θ, then ui (xi (θ′′, θ) , θ) > ui (e (θ′, θ′′) , θ).
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Proof. Fix any i ∈ I and any θ, θ′, θ′′ ∈ Θ such that θ, θ′′ ∈ Θ̄f
i . Then, xi (θ′′, θ) ∈

Bi (θ
′′, θ) by (30). Suppose that (θ′, θ′′) /∈ Ψ̄i

(
θ̄
)
× Ψ̄−i

(
θ̄
)
for all θ̄ ∈ Θ. We proceed

according to whether Di (θ
′′, θ) = ∅ or not.

Suppose that Di (θ
′′, θ) = ∅. Thus, xi (θ′′, θ) = f (θ′′) by (29). Since Di (θ

′′, θ) = ∅

and since (24) holds, it follows that ui (xi (θ′′, θ) , θ) ≥ ui
(
yθi (θ′, θ′′) , θ

)
. Since (23)

holds, we conclude that ui (xi (θ′′, θ) , θ) > ui (e (θ′, θ′′) , θ).

Suppose thatDi (θ
′′, θ) 6= ∅. Then, θ 6= θ′′. Suppose that ui (f (θ′′) , θ) ≥ ui

(
yθi (θ′, θ′′) , θ

)
.

Since xi (θ′′, θ) ∈ Bi (θ
′′, θ), then ui (xi (θ′′, θ) , θ) ≥ ui (f (θ′′) , θ), and so ui (xi (θ′′, θ) , θ) ≥

ui
(
yθi (θ′, θ′′) , θ

)
. By (23), we have that ui (xi (θ′′, θ) , θ) > ui (e (θ′, θ′′) , θ). Other-

wise, let ui
(
yθi (θ′, θ′′) , θ

)
> ui (f (θ′′) , θ). By (24), it holds that ui (f (θ′′) , θ′′) >

ui
(
yθi (θ′, θ′′) , θ′′

)
. Thus, yθi (θ′, θ′′) ∈ Di (θ

′, θ), and so yθi (θ′, θ′′) ∈ D̄i (θ
′, θ), by

requirement (ii) of the set D̄i (θ
′, θ). Since xi (θ

′′, θ) ∈ Bi (θ
′′, θ), it follows that

ui (xi (θ
′, θ) , θ) ≥ ui

(
yθi (θ′, θ′′) , θ

)
and so, by (23), ui (xi (θ′′, θ) , θ) > ui (e (θ′, θ′′) , θ).

�

Based on the above results, let us constructM = (M, g). We define the following

countable set of lotteries:

Y = {zi (θ′, θ)}i∈I,θ,θ′∈Θ̄fi

⋃
{y∗i (θ)}i∈I,θ∈Θ̄fi

⋃
{Bi (θ

′, θ)}i∈I,θ,θ′∈Θ

⋃
{
e (θ′, θ′′) , yθi (θ′, θ′′)

}
i∈I,{(θ′,θ′′)|(θ′,θ′′)/∈∪θ̄∈Θ(β∗i (θ̄)×β∗−i(θ̄))} ,

where the collection {zi (θ′, θ)}i∈I,θ,θ′∈Θ̄fi
has been defined in Lemma 7, the collection

{y∗i (θ)}i∈I,θ∈Θ̄fi
follows from (23), the collection

{
e (θ′, θ′′) , yθi (θ′, θ′′)

}
i∈I,{(θ′,θ′′)|(θ′,θ′′)/∈∪θ̄∈Θ(β∗i (θ̄)×β∗−i(θ̄))}

is established by Lemma 8, and the collection {Bi (θ
′, θ)}i∈I,θ,θ′∈Θ follows from (29).

Each i ∈ I plays a strategy mi = (m1
i ,m

2
i ,m

3
i ,m

4
i ), where m1

i ∈ Θ, m2
i ∈ Z+,

m3
i : Θ → Y and m4

i ∈ Y . By construction, Mi is a nonempty countable set for
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player i. Moreover, the third component of the strategy allows player i to announce a

lottery in Y contingent on other player playing m1
−i = θ. The outcome function also

uses y, as defined in (18). Recall that for all θ ∈ Θ, Iθ = {i ∈ I|SLi (f (θ) , θ) 6= ∅}

and let IΘ =
⋂
θ∈Θ

Iθ. Thus, i ∈ Iθ if and only if θ ∈ Θ̄f
i , if and only if θ /∈ Θf

i . For all

θ ∈ Θ, let

Iβ∗(θ) =
{
i ∈ I|β∗−i (θ) ⊆ Θ̄f

i

}
. (31)

Note that if Iβ∗(θ) 6= ∅, then θ ∈ Θ̄f
i for all i ∈ Iβ∗(θ).

Before defining the outcome function g, let us derive the following useful results.

Lemma 11. If f : Θ 7−→ Y satisfies IM, then for all θ, θ′, θ̄ ∈ Θ and all i ∈ I, if

θ′ ∈ β∗i
(
θ̄
)
and θ ∈ β∗−i

(
θ̄
)
, then f

(
θ̄
)
∈ Li (f (θ) , θ).

Proof. Let the premises hold. Take any θ, θ′, θ̄ ∈ Θ and any i ∈ I. Suppose that

θ′ ∈ β∗i
(
θ̄
)
and θ ∈ β∗−i

(
θ̄
)
. We show that ui (f (θ) , θ) ≥ ui

(
f
(
θ̄
)
, θ
)
.

Since θ ∈ β∗−i
(
θ̄
)
and since θ ∈ β∗−i (θ), it follows that

θ ∈ β∗−i
(
θ̄
)⋂

β∗−i (θ) . (32)

We proceed according to whether θ /∈ Θ̄f
i or not.

Suppose that θ ∈ Θf
i . Lemma 1 implies that β∗i (θ) = Θ. Since θ′ ∈ β∗i

(
θ̄
)
, it

follows that

θ′ ∈ β∗i
(
θ̄
)⋂

β∗i (θ) . (33)

Since (32) and (33) hold, IM implies that f (θ) = f
(
θ̄
)
.

Suppose that θ ∈ Θ̄f
i . Since ui

(
f
(
θ̄
)
, θ
)
> ui (f (θ) , θ), it follows that Li (f (θ) , θ) ⊆

Li
(
f
(
θ̄
)
, θ
)
. Let us show that β∗i

(
θ̄
)
⊆ β∗i (θ). Since β∗ = R (β∗), it suffices to

show that β∗i
(
θ̄
)
⊆ Rβ∗

i (θ). To this end, let Ei =
{
θ, θ̄
}

and E−i = {θ}. It suf-

fices to show that β∗i (Ei) ⊆ R
β∗

i (θ). Let us first consider player −i. Then, for all

θ′′ ∈ β∗−i(E−i), it holds that θ ∈ β∗−i(E−i), θ ∈ β∗i (θ) ∩ β∗i (Ei), θ′′ ∈ β∗−i (θ) and

L−i (f (θ) , θ) ⊆ L−i (f (θ) , θ). Next, let us consider player i. Fix any θ′′ ∈ β∗i (Ei).
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Let us proceed according to whether θ′′ ∈ β∗i
(
θ̄
)
or not.

• Suppose that θ′′ ∈ β∗i
(
θ̄
)
. By our initial supposition, it holds that θ ∈ β∗−i

(
θ̄
)
.

Moreover, we are also under the assumption that Li (f (θ) , θ) ⊆ Li
(
f
(
θ̄
)
, θ
)
.

Then, we have that θ̄ ∈ β∗i (Ei), θ ∈ β∗−i
(
θ̄
)
∩ β∗−i(E−i), θ′′ ∈ β∗i

(
θ̄
)
and

Li (f (θ) , θ) ⊆ Li
(
f
(
θ̄
)
, θ
)
.

• Suppose that θ′′ /∈ β∗i
(
θ̄
)
. Then, θ′′ ∈ β∗i (θ). Then, it holds that θ ∈ β∗i (Ei),

θ′′ ∈ β∗i (θ), θ ∈ β∗−i (θ) ∩ β∗−i(E−i) and Li (f (θ) , θ) ⊆ Li (f (θ) , θ).

(5) implies that β∗i (Ei) ⊆ Rβ∗

i (θ). Thus, β∗i
(
θ̄
)
⊆ Rβ∗

i (θ).

Since θ′ ∈ β∗i
(
θ̄
)
and β∗i

(
θ̄
)
⊆ Rβ∗

i (θ) = β∗i (θ), we have that (33) holds. Again,

since (32) and (33) hold, IM implies f (θ) = f
(
θ̄
)
, which is a contradiction. �

For all m ∈M , the outcome g (m) is defined by the following rules.21

Rule 1: If there exists θ̄ ∈ Θ such that (m1
i )i∈I ∈ β∗

(
θ̄
)
andm2

i = 0 for all i ∈ Iβ∗(θ̄),

then

g (m) = f
(
θ̄
)
.

Rule 2: If m2
1 = m2

2 = 0 and (m1
i )i∈I /∈ β∗

(
θ̄
)
for all θ̄ ∈ Θ, then

g (m) = e
(
m1
i ,m

1
−i
)
,

21To include the case IΘ = ∅, Rule 1 needs to be formulated as follows: If there exists θ̄ ∈ Θ

such that
(
m1
i

)
i∈I ∈ β

∗ (θ̄) and [m2
i = 0 for all i ∈ Iβ

∗(θ̄) or IΘ = ∅], then g (m) = f
(
θ̄
)
. It is easy

to see that any m ∈M falls into Rule 1 when IΘ = ∅.
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where the existence of e
(
m1
i ,m

1
−i
)
is established in Lemma 8.

Rule 3: For all i ∈ I, if for some θ̄ ∈ Θ̄f
i ,
(
m1
−i,m

2
−i
)

=
(
θ̄, 0
)
and m2

i > 0, then

g (m) =


(

m2
i

m2
i+1

)
m3
i

(
θ̄
)

+
(

1
m2
i+1

)
zi
(
θ̄, θ̄
)

if ui
(
f
(
θ̄
)
, θ̄
)
≥ ui

(
m3
i

(
θ̄
)
, θ̄
)

zi
(
θ̄, θ̄
)

otherwise,

where the existence of zi
(
θ̄, θ̄
)
is established in Lemma 7.

Rule 4: In all other cases, an integer game is played: we identify a pivotal player i

by requiring that m2
i ≥ m2

−i, and that if m2
i = m2

−i, then i < −i. Then,

g (m) =

(
m2
i

m2
i + 1

)
m4
i +

(
1

m2
i + 1

)
y,

where y is defined in (18).

To check that g is well-defined, we need only to check that Rule 1 is well-defined.

Assume, to the contrary, that there exists m ∈ M falling into Rule 1 such that for

some θ̄, θ̄′ ∈ Θ, (m1
i )i∈I ∈ β∗

(
θ̄
)
and m2

i = 0 for all i ∈ Iβ∗(θ̄), (m1
i )i∈I ∈ β∗

(
θ̄′
)
and

m2
i = 0 for all i ∈ Iβ∗(θ̄′), and f

(
θ̄
)
6= f

(
θ̄′
)
. Then, m1

i ∈ β∗i
(
θ̄
)
∩ β∗i

(
θ̄′
)
for all

i ∈ I, and so β∗
(
θ̄
)
∩ β∗

(
θ̄′
)
6= ∅. Since f satisfies IM, we have that f

(
θ̄
)

= f
(
θ̄′
)
,

which is a contradiction.

Let m̄i = (θ, 0,m3
i ,m

4
i ) ∈Mi, for all i ∈ I. Let us first show that m̄ ∈ NE (M, θ),

that is, for all i ∈ I,

ui (g (m̄i, m̄−i) , θ) ≥ ui (g (mi, m̄−i) , θ) , (34)

for all mi ∈Mi.

By construction, m̄ falls into Rule 1, and so g (m̄) = f (θ). Fix any i ∈ I and any
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mi ∈Mi. Note that no deviation of i can induce Rule 4. Thus, Rules 1-3 apply.

(A) Suppose that (mi, m̄−i) falls into Rule 2. Then, g (m) = e
(
m1
i , m̄

1
−i
)
, and so

e (m1
i , θ) ∈ SLi (f (θ) , θ), by (22) of Lemma 8.

(B) Suppose that (mi, m̄−i) falls into Rule 3. Suppose that ui (f (θ) , θ) ≥ ui (m
3
i (θ) , θ).

Then, g (mi, m̄−i) =
(

m2
i

m2
i+1

)
m3
i (θ) +

(
1

m2
i+1

)
zi (θ, θ). Since θ ∈ Θ̄f

i , the

inequality in (20) of Lemma 7 implies that zi (θ, θ) ∈ SLi (f (θ) , θ). Since

ui (f (θ) , θ) ≥ ui (m
3
i (θ) , θ), it follows that g (mi, m̄−i) ∈ SLi (f (θ) , θ). Sup-

pose that ui (m3
i (θ) , θ) > ui (f (θ) , θ). Then, g (mi, m̄−i) = zi (θ, θ) ∈ SLi (f (θ) , θ)

given that θ ∈ Θ̄f
i . Therefore, in either case, g (mi, m̄−i) ∈ SLi (f (θ) , θ)

(C) Suppose that (mi, m̄−i) falls into Rule 1. Then, there exists θ̄′ ∈ Θ such that

m̄1
−i ∈ β∗−i

(
θ̄′
)
, m1

i ∈ β∗i
(
θ̄′
)
, m2

i = 0 if i ∈ Iβ∗(θ̄′), and g (mi, m̄−i) = f
(
θ̄′
)
.

Lemma 11 implies that ui (f (θ) , θ) ≥ ui
(
f
(
θ̄′
)
, θ
)
.

Since i ∈ I and mi ∈ Mi are arbitrary, we conclude that the inequality in (34)

is satisfied for all i ∈ I and all mi ∈ Mi. Thus, m̄ ∈ NE (M, θ). Since m̄ is

also a rationalizable strategy profile at θ, it follows that SM,θ is a nonempty set.

According to Definition 1, to complete the proof, we need to show that m ∈ SM,θ

=⇒ g (m) = f (θ). To this end, we need additional notation.

For all i ∈ I, let M0
−i be defined by

M0
−i =

m−i ∈M−i|m1
−i ∈

⋃
θ̄∈Θ

 ⋃
β∗−i(θ̄)∩Θfi 6=∅

β∗−i
(
θ̄
) and m2

−i = 0

 . (35)

Observe that M0
−i may be empty. Let M0

−i 6= ∅ and let us take any m−i ∈ M0
−i.

Then, there exists θ̄ ∈ Θ such that m1
−i ∈ β∗−i

(
θ̄
)
and β∗−i

(
θ̄
)⋂

Θf
i 6= ∅. Since

β∗−i
(
θ̄
)⋂

Θf
i 6= ∅, it follows from (31) that i /∈ Iβ∗(θ̄). Part (iv) of Lemma 1 implies

that β∗i
(
θ̄
)

= Θ. Thus, any strategy (mi,m−i) ∈Mi ×M0
−i falls into Rule 1.
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For each i ∈ I, let m̂i = (θ, 0, xi (·, θ) , y∗i (θ)) ∈ Mi, where xi (·, θ) is defined in

(30) and y∗i (θ) is defined in (19). The following lemmata will help us to complete the

proof.

Lemma 12. For all i ∈ I, all θ ∈ Θ̄f
i , all mi ∈ Mi and all λθi ∈ ∆

(
M−i\M0

−i
)
, if

i ∈ Iβ∗(θ) and mi is a best-response to λθi at θ, then m2
i = 0.22

Proof. Fix any i ∈ I, any θ ∈ Θ̄f
i , and any λθi ∈ ∆

(
M−i\M0

−i
)
and any mi ∈ Mi so

that mi is a best-response to λθi at θ. Recall that IΘ 6= ∅. Assume, to the contrary,

m2
i > 0. Sincem2

i > 0 and i ∈ Iβ∗(θ), it follows that for anym−i ∈supp
(
λθi
)
, (mi,m−i)

falls either into Rule 3 or into Rule 4. A contradiction of the initial assumption that

mi is a best response to λθi is derived if we show that m̂i = (θ, m̂2
i , xi (·, θ) , y∗i (θ))

strictly dominates mi.23

Case 1 : (mi,m−i) falls into Rule 3

Then, for some θ̄ ∈ Θ̄f
i ,
(
m1
j ,m

2
j

)
=
(
θ̄, 0
)
for all j ∈ I\ {i}. Observe that if

ui
(
f
(
θ̄
)
, θ̄
)
≥ ui

(
m3
i

(
θ̄
)
, θ̄
)
, then ui

(
xi
(
θ̄, θ
)
, θ
)
≥ ui

(
m3
i

(
θ̄
)
, θ
)
because xi

(
θ̄, θ
)
∈

Bi

(
θ̄, θ
)
, by (30). Since θ̄, θ ∈ Θ̄f

i , Lemma 9 implies that ui
(
xi
(
θ̄, θ
)
, θ
)
> ui

(
zi
(
θ̄, θ̄
)
, θ
)
.

By choosing an appropriate integer m̂2
i > 0 and by changing mi into m̂i, player i can

induce Rule 3 with ui
(
f
(
θ̄
)
, θ̄
)
≥ ui

(
xi
(
θ̄, θ
)
, θ̄
)
, obtain g (m̂i,m−i) and be strictly

better off at θ since ui
(
xi
(
θ̄, θ
)
, θ
)
> ui

(
zi
(
θ̄, θ̄
)
, θ
)
.

Case 2 : (mi,m−i) falls into Rule 4

Suppose that j ∈ I is the pivotal player. By definition of y∗i (θ) in (19), ui (y∗i (θ) , θ) ≥

ui
(
m4
j , θ
)
. Since θ ∈ Θ̄f

i , Lemma 6 implies that ui (y∗i (θ) , θ) > ui
(
y, θ
)
. By choosing

an appropriate integer m̂2
i > 0 and by changing mi into m̂i, player i can induce Rule

22This lemma holds only in the case IΘ 6= ∅.
23m̂i strictly dominates mi if ui (g (m̂i,m−i) , θ) > ui (g (mi,m−i) , θ) for all m−i ∈M−i.
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4, obtain g (m̂i,m−i) and be strictly better off at θ since ui (y∗i (θ) , θ) > ui
(
y, θ
)
.

Since Θ is finite and since the choice of m−i ∈supp
(
λθi
)
is arbitrary, we see that m̂i

strictly dominates mi by an appropriate choice of m̂2
i > 0. �

Lemma 13. For all i ∈ I, all θ ∈ Θ̄f
i , all mi ∈Mi and all λθi ∈ ∆ (M−i), if i ∈ Iβ

∗(θ)

and mi is a best-response to λθi at θ, then there exists m−i ∈ supp
(
λθi
)
such that mi

is a best-response to m−i at θ.24

Proof. Fix any i ∈ I, any θ ∈ Θ̄f
i , any λθi ∈ ∆ (M−i) and any mi ∈ Mi such that mi

is a best-response to λθi at θ. Assume, to the contrary, that mi is not a best-response

to any m−i ∈supp
(
λθi
)
at θ. We proceed according to whether supp

(
λθi
)
∩M0

−i 6= ∅

or not.

Suppose that supp
(
λθi
)
∩ M0

−i 6= ∅. Take any m−i ∈supp
(
λθi
)
∩ M0

−i. By (35),

m2
−i = 0 and m1

−i ∈
⋂

j∈I\{i}
β∗j
(
θ̄
)
for some θ̄ ∈ Θ such that

( ⋂
j∈I\{i}

β∗j
(
θ̄
))⋂

Θf
i 6= ∅.

Since

( ⋂
j∈I\{i}

β∗j
(
θ̄
))⋂

Θf
i 6= ∅, it follows from (31) that i /∈ Iβ∗(θ̄). Lemma ??

implies that β∗i
(
θ̄
)

= Θ. Thus, (mi,m−i) falls into Rule 1 and g (mi,m−i) = f
(
θ̄
)
.

Since i can induce only Rule 1 by changing his strategy, it follows that mi is a best-

response to m−i ∈supp
(
λθi
)
∩M0

−i at θ, which is a contradiction.

Suppose that supp
(
λθi
)
∩M0

−i = ∅. Since λθi ∈ ∆
(
M−i\M0

−i
)
, Lemma 12 implies

that m2
i = 0. A contradiction of the initial assumption that mi is a best response to

λθi is derived if we show that m̂i = (θ, m̂2
i , xi (·, θ) , y∗i (θ)) strictly dominates mi. To

this end, fix any m−i ∈supp
(
λθi
)
. Since m−i /∈ M0

−i, it follows from the definition of

M0
−i in (35) that m2

j 6= 0 for some j ∈ I\ {i} or m1
−i /∈ β∗−i

(
θ̃
)
for all θ̃ ∈ Θ such that( ⋂

j∈I\{i}
β∗j

(
θ̃
))⋂

Θf
i 6= ∅. We proceed according to whether (mi,m−i) falls either

24mi is a best-response to m−i at θ if ui (g (mi,m−i) , θ) ≥ ui (g (m′i,m−i) , θ) for all m′i ∈Mi.

33



into Rule 1, or into Rule 2, or into Rule 3, or into Rule 4.

Case 1 : (mi,m−i) falls into Rule 1

Then, there exists θ̄ such that
(
m1
j

)
j∈I ∈ β

∗ (θ̄) and m2
j = 0 for all j ∈ Iβ∗(θ̄) and

g (mi,m−i) = f
(
θ̄
)
. Since m−i /∈ M0

−i and (mi,m−i) falls into Rule 1, it cannot be

that i /∈ Iβ∗(θ̄). Thus, let i ∈ Iβ∗(θ̄). We proceed according to whether m2
j 6= 0 for

some j ∈ I\ {i} or not.

Sub-case 1.1 : m2
j = 0 for all j ∈ I\ {i}

Let us proceed according to whether there exists θ′ ∈ Θ̄f
i such that m1

j = θ′ for all

j ∈ I\ {i} or not.

Sub-case 1.1.1 : For some θ′ ∈ Θ̄f
i , m1

j = θ′ for all j ∈ I\ {i}

Sincemi is not a best-response tom−i at θ, it holds that Li (f (θ′) , θ′)∩SUi
(
f
(
θ̄
)
, θ
)
6=

∅. To see it, assume, to the contrary, that Li (f (θ′) , θ′) ∩ SUi
(
f
(
θ̄
)
, θ
)

= ∅, and

so Li (f (θ′) , θ′) ⊆ Li
(
f
(
θ̄
)
, θ
)
. Note that player i cannot induce Rule 4 since

m1
j = θ′ ∈ Θ̄f

i for all j ∈ I\ {i}. Take any m̃i ∈Mi.

• If (m̃i,m−i) falls into Rule 2, then g (m̃i,m−i) = e (m̃1
i , θ
′) ∈ SLi (f (θ′) , θ′).

• If (m̃i,m−i) falls into Rule 3, then g (m̃i,m−i) =
(

m̃2
i

m̃2
i+1

)
m̃3
i (θ′)+

(
1

m̃2
i+1

)
zi (θ

′, θ′)

if ui (f (θ′) , θ′) ≥ ui (m
3
i (θ′) , θ′), otherwise, g (m̃i,m−i) = zi (θ

′, θ′). Since

zi (θ
′, θ′) ∈ Li (f (θ′) , θ′) by (20) and since ui (f (θ′) , θ′) ≥ ui (m

3
i (θ′) , θ′), it

follows that g (m̃i,m−i) ∈ Li (f (θ′) , θ′).

• If (m̃i,m−i) falls into Rule 1, then there exists θ̄′ such that
(
m̃1
i ,m

1
−i
)
∈ β∗

(
θ̄′
)
,

m2
j = 0 for all j ∈ Iβ∗(θ̄′) and g (m̃i,m−i) = f

(
θ̄′
)
. By arguing as above, we

can see that (m′i,m−i) ∈ NE (Γ, θ′), where m′i = (θ′, 0,m3
i ,m

4
i ) and m−i =(

θ′, 0,m3
−i,m

4
−i
)
, that (m′i,m−i) falls into Rule 1 and that g (m′i,m−i) = f (θ′).

This implies that g (m̃i,m−i) = f
(
θ̄′
)
∈ Li (f (θ′) , θ′).
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Since Li (f (θ′) , θ′) ⊆ Li
(
f
(
θ̄
)
, θ
)
, it follows that g (m̃i,m−i) ∈ Li

(
f
(
θ̄
)
, θ
)
. Since

the choice of m̃i ∈ Mi is arbitrary, we have that mi is a best-response to m−i, which

is a contradiction. Thus, Li (f (θ′) , θ′) ∩ SUi
(
f
(
θ̄
)
, θ
)
6= ∅.

Since Li (f (θ′) , θ′) ∩ SUi
(
f
(
θ̄
)
, θ
)
6= ∅, it follows that αθi

(
θ′, θ̄

)
∈ Li (f (θ′) , θ′) ∩

SUi
(
f
(
θ̄
)
, θ
)
by definition of αθi

(
θ′, θ̄

)
given in (28). Since θ ∈ Θ̄f

i , requirement (iii)

of the definition of D̄i (θ
′, θ) implies that αθi

(
θ′, θ̄

)
∈ D̄i (θ

′, θ).

We show that ui (xi (θ′, θ) , θ) > ui
(
f
(
θ̄
)
, θ
)
. Let us proceed according to whether

Di (θ
′, θ) 6= ∅ or not.

• Suppose that Di (θ
′, θ) 6= ∅. Then, Li (f (θ′) , θ′) ∩ SUi (f (θ′) , θ) 6= ∅ by def-

inition of Di (θ
′, θ) in (27). Since ∅ 6= D̄i (θ

′, θ) ⊆ Di (θ
′, θ) by definition

and, moreover, since xi (θ′, θ) ∈ arg maxy∈D̄i(θ′,θ) ui (y, θ) by (29)-(30), it follows

that ui (xi (θ′, θ) , θ) > ui (f (θ′) , θ). Clearly, ui (xi (θ′, θ) , θ) > ui
(
f
(
θ̄
)
, θ
)
if

ui (f (θ′) , θ) ≥ ui
(
f
(
θ̄
)
, θ
)
. Otherwise, let ui

(
f
(
θ̄
)
, θ
)
> ui (f (θ′) , θ). Since

αθi
(
θ′, θ̄

)
∈ D̄i (θ

′, θ)∩SUi
(
f
(
θ̄
)
, θ
)
and since ui (xi (θ′, θ) , θ) ≥ ui

(
αθi
(
θ′, θ̄

)
, θ
)
,

it follows that ui (xi (θ′, θ) , θ) > ui
(
f
(
θ̄
)
, θ
)
.

• Suppose that Di (θ
′, θ) = ∅. Then, Li (f (θ′) , θ′) ⊆ Li (f (θ′) , θ). By defi-

nition of Bi (θ
′, θ) in (29) and by definition of xi (·, θ) in (30), xi (θ′, θ) =

f (θ′). Assume, to the contrary, that ui
(
f
(
θ̄
)
, θ
)
≥ ui (f (θ′) , θ). We have

already established above that αθi
(
θ′, θ̄

)
∈ Li (f (θ′) , θ′)∩SUi

(
f
(
θ̄
)
, θ
)
. Thus,

ui (f (θ′) , θ′) ≥ ui
(
αθi
(
θ′, θ̄

)
, θ′
)
and ui

(
αθi
(
θ′, θ̄

)
, θ
)
> ui (f (θ′) , θ). This im-

plies that Di (θ
′, θ) 6= ∅, which is a contradiction. Thus, ui (xi (θ′, θ) , θ) >

ui
(
f
(
θ̄
)
, θ
)
where xi (θ′, θ) = f (θ′).

We conclude that ui (xi (θ′, θ) , θ) > ui
(
f
(
θ̄
)
, θ
)
. Since m2

j = 0 and m1
j = θ′ ∈ Θ̄f

i

for all j ∈ I\ {i} and i ∈ Iβ∗(θ̄), by choosing an appropriate integer m̂2
i > 0 and by

changing mi into m̂i, player i can induce Rule 3 with ui (f (θ′) , θ′) ≥ ui (xi (θ
′, θ) , θ′),
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obtain g (m̂i,m−i) and be strictly better off at θ since ui (xi (θ′, θ) , θ) > ui
(
f
(
θ̄
)
, θ
)
.

Sub-case 1.1.2 : There does not exist any θ′ ∈ Θ̄f
i such that m1

j = θ′ for all j ∈ I\ {i}

Since m2
j = 0 for all j ∈ I\ {i} and m−i /∈ M0

−i, it follows from the definition of

M0
−i in (35) that m1

−i /∈ β∗−i
(
θ̃
)
for all θ̃ ∈ Θ such that

( ⋂
j∈I\{i}

β∗j

(
θ̃
))⋂

Θf
i 6= ∅.

Suppose that I = 2. Then, m1
−i /∈ Θ̄f

i . Since θ′ ∈ β∗−i (θ′) for all θ′ ∈ Θf
i and since

m1
−i /∈ β∗−i

(
θ̃
)
for all θ̃ ∈ Θ such that β∗−i

(
θ̃
)⋂

Θf
i 6= ∅, it follows that m1

−i ∈ Θ̄f
i ,

which is a contradiction. Thus, let us suppose that I ≥ 3.

Suppose that there exists j, j′ ∈ I\ {i}, with j 6= j′, such that m1
j 6= m1

j′ . By

definition of y∗i (θ) in (19), ui (y∗i (θ) , θ) ≥ ui
(
f
(
θ̄
)
, θ
)
. Since θ ∈ Θ̄f

i , Lemma 6

implies that ui (y∗i (θ) , θ) > ui
(
y, θ
)
. Suppose that ui (y∗i (θ) , θ) = ui

(
f
(
θ̄
)
, θ
)
.

Then, by definition of g, we have that mi is a best-response to m−i at θ, which is a

contradiction. Suppose that ui (y∗i (θ) , θ) > ui
(
f
(
θ̄
)
, θ
)
. By choosing an appropriate

integer m̂2
i > 0 and by changing mi into m̂i, player i can induce Rule 4, obtain

g (m̂i,m−i) and be strictly better off at θ since ui (y∗i (θ) , θ) > ui
(
f
(
θ̄
)
, θ
)
.

Suppose that for all j, j′ ∈ I\ {i}, m1
j = m1

j′ . Since there does not exist any θ′ ∈ Θ̄f
i

such thatm1
j = θ′ for all j ∈ I\ {i}, it follows thatm1

j = θ̃ ∈ Θf
i andm1

j = m1
j′ = θ̃ for

all j, j′ ∈ I\ {i}. Since m1
−i ∈ β∗−i

(
θ̄
)
, we have that m1

j = θ̃ ∈
⋂

j∈I\{i}
β∗j
(
θ̄
)
. However,

since i ∈ Iβ∗(θ̄), it follows from (31) that m1
j = θ̃ /∈ Θf

i , which is a contradiction.

Sub-case 1.2 : m2
j 6= 0 for some j ∈ I\ {i}

Since i ∈ Iβ∗(θ̄), by choosing an appropriate integer m̂2
i > 0 and by changing

mi into m̂i, player i can induce Rule 4. Suppose that ui (y∗i (θ) , θ) = ui
(
f
(
θ̄
)
, θ
)
.

Then, by definition of g, we have that mi is a best-response to m−i at θ, which

is a contradiction. Suppose that ui (y∗i (θ) , θ) > ui
(
f
(
θ̄
)
, θ
)
. Player i can obtain
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g (m̂i,m−i) and be strictly better off at θ since ui (y∗i (θ) , θ) > ui
(
f
(
θ̄
)
, θ
)
.

Case 2 : (mi,m−i) falls into Rule 2

Then,m2
1 = m2

2 = 0, (m1
i )i∈I /∈ β∗

(
θ̄
)
for all θ̄ ∈ Θ and g (m) = e

(
m1
i ,m

1
−i
)
. Recall

that θ ∈ Θ̄f
i . Then, to apply Lemma 10, we need to guarantee that m1

−i ∈ Θ̄f
i . Since

m−i /∈M0
−i and m2

−i = 0, m1
−i /∈ β∗−i

(
θ̃
)
for all θ̃ ∈ Θ such that β∗−i

(
θ̃
)
∩Θf

i 6= ∅, by

(35). Since θ′ ∈ β∗−i (θ′) for all θ′ ∈ Θf
i , it follows that m1

−i /∈ Θf
i , and so m1

−i ∈ Θ̄f
i .

Since θ,m1
−i ∈ Θ̄f

i , Lemma 10 implies that ui
(
xi
(
m1
−i, θ

)
, θ
)
> ui

(
e
(
m1
i ,m

1
−i
)
, θ
)
.

Suppose that i changes mi into m̂i in which m̂2
i > 0. Then, (m̂i,m−i) cannot fall

into Rule 1. To see it, assume, on the contrary, that it falls into Rule 1. Then, there

exists θ̄′ such that
(
m̂1
i ,m

1
−i
)
∈ β∗i

(
θ̄′
)
× β∗−i

(
θ̄′
)
. Since m̂2

i > 0 and (m̂i,m−i) falls

into Rule 1, it follows that Iβ∗(θ̄′) = {−i} given that IΘ 6= ∅. Since i /∈ Iβ∗(θ̄′), it

follows from (31) that β∗−i
(
θ̄′
)⋂

Θf
i 6= ∅. Since m−i /∈ M0

−i and m2
−i = 0 and since

β∗−i
(
θ̄′
)⋂

Θf
i 6= ∅, (35) implies that m1

−i /∈ β∗−i
(
θ̄′
)
, which is a contradiction. Thus,

(m̂i,m−i) cannot fall into Rule 1.

Since m1
−i ∈ Θ̄f

i , by choosing an appropriate integer m̂2
i > 0 and by changing mi

into m̂i, player i can induce Rule 3 with ui
(
f
(
m1
−i
)
,m1
−i
)
≥ ui

(
xi
(
m1
−i, θ

)
,m1
−i
)
–by

definition of xi
(
m1
−i, θ

)
in (30), obtain g (m̂i,m−i) and be strictly better off at θ since

ui
(
xi
(
m1
−i, θ

)
, θ
)
> ui

(
e
(
m1
i ,m

1
−i
)
, θ
)
.

Case 3 : (mi,m−i) falls into Rule 3

Then, for some h ∈ I and some θ̄ ∈ Θ̄f
h,
(
m1
j ,m

2
j

)
=
(
θ̄, 0
)
for all j ∈ I\ {h}, and

either m2
h > 0 or [m2

h = 0, I 6= 2 and (m1
k)k∈I /∈ β∗

(
θ̂
)
for all θ̂ ∈ Θ]. Let us proceed

according to whether m1
i = θ̄ or not.

Sub-case 3.1 : m1
i = θ̄.

Since m2
i = 0, it follows that h 6= i. Since θ ∈ Θ̄f

i , Lemma 6 implies that

ui (y
∗
i (θ) , θ) > ui

(
y, θ
)
. Moreover, by definition of y∗i (θ) in (19), it holds that
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ui (y
∗
i (θ) , θ) ≥ ui

(
m3
h

(
θ̄
)
, θ
)
and ui (y

∗
i (θ) , θ) ≥ ui

(
zh
(
θ̄, θ̄
)
, θ
)
. We proceed ac-

cording to whether ui (y∗i (θ) , θ) = ui
(
m3
h

(
θ̄
)
, θ
)
and ui (y∗i (θ) , θ) = ui

(
zh
(
θ̄, θ̄
)
, θ
)

or not.

• Suppose that ui (y∗i (θ) , θ) = ui
(
m3
h

(
θ̄
)
, θ
)
and ui (y∗i (θ) , θ) = ui

(
zh
(
θ̄, θ̄
)
, θ
)
.

Since i cannot be strictly better off by changing mi, it follows that mi is a

best-response to m−i, which is a contradiction.

• Suppose that ui (y∗i (θ) , θ) > ui
(
m3
h

(
θ̄
)
, θ
)
or ui (y∗i (θ) , θ) > ui

(
zh
(
θ̄, θ̄
)
, θ
)
.

By choosing an appropriate integer m̂2
i > 0 and by changing mi into m̂i, player

i can induce Rule 4, obtain g (m̂i,m−i) and be strictly better off at θ since

ui (y
∗
i (θ) , θ) > ui

(
m3
h

(
θ̄
)
, θ
)
or ui (y∗i (θ) , θ) > ui

(
zh
(
θ̄, θ̄
)
, θ
)
.

Sub-case 3.2 : m1
i 6= θ̄.

Since m2
i = 0, we have that either i 6= h if I = 2 or i = h if I 6= 2. If I = 2, then i

can find a profitable deviation by changing mi into m̂i–by arguing as in sub-case 3.1.

Suppose that I 6= 2. Then, g (m) = zi
(
θ̄, θ̄
)
because m2

i = 0. Since θ̄, θ ∈ Θ̄f
i , Lemma

9 implies that ui
(
xi
(
θ̄, θ
)
, θ
)
> ui

(
zi
(
θ̄, θ̄
)
, θ
)
. By choosing an appropriate integer

m̂2
i > 0 and by changing mi into m̂i, player i can induce Rule 3, obtain g (m̂i,m−i)

and be strictly better off at θ since ui
(
xi
(
θ̄, θ
)
, θ
)
> ui

(
zi
(
θ̄, θ̄
)
, θ
)
.

Case 4 : (mi,m−i) falls into Rule 4

Suppose that j is the pivotal player. By definition of y∗i (θ) in (19), ui (y∗i (θ) , θ) ≥

ui
(
m4
j , θ
)
. Recall that m2

i = 0. We proceed according to whether m2
h 6= 0 for some

h ∈ I\ {i} or not.

Sub-case 4.1 : m2
h 6= 0 for some h ∈ I\ {i}

Since θ ∈ Θ̄f
i , Lemma 6 implies that ui (y∗i (θ) , θ) > ui

(
y, θ
)
. By choosing an

appropriate integer m̂2
i > 0 and by changing mi into m̂i, player i can induce Rule 4,
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obtain g (m̂i,m−i) and be strictly better off at θ since ui (y∗i (θ) , θ) > ui
(
y, θ
)
.

Sub-case 4.2 : m2
h = 0 for all h ∈ I\ {i}

Thus, m2
i = m2

h = 0 for all h ∈ I\ {i} and g (m) = y. Since (mi,m−i) does not fall

into Rule 1 and m2
k = 0 for all k ∈ I, it holds that (m1

k)k∈I /∈ β∗
(
θ̄
)
for all θ̄ ∈ Θ.

If I = 2, then (mi,m−i) falls into Rule 2, which is a contradiction. Therefore, let

I 6= 2. Since (mi,m−i) falls into Rule 4 and m2
i = m2

h = 0 for all h ∈ I\ {i}, it

cannot be that there exists θ̄ ∈ Θ such that
(
m1
j

)
j∈I ∈ β∗

(
θ̄
)
–otherwise, m would

fall into Rule 1. Therefore,
(
m1
j

)
j∈I /∈

⋃̄
θ∈Θ

β∗
(
θ̄
)
. Since (mi,m−i) falls into Rule

4 and m2
i = m2

h = 0 for all h ∈ I\ {i}, it follows that either m1
k = m1

j for all

k, j ∈ I\ {i} and m1
k /∈ Θ̄f

i or there exists k ∈ I\ {i} such that m1
k 6= m1

j for some

j ∈ I\ {i}. In either case, by changing mi into m̂i with m̂2
i > 0, player i induces Rule

4. Since θ ∈ Θ̄f
i , Lemma 6 implies that ui (y∗i (θ) , θ) > ui

(
y, θ
)
. Then, by choosing

an appropriate integer m̂2
i > 0, i can obtain g (m̂i,m−i) and be strictly better off at

θ since ui (y∗i (θ) , θ) > ui
(
y, θ
)
.

Since Θ is finite and since the choice of m−i ∈supp
(
λθi
)
is arbitrary, we see that m̂i

strictly dominates every element of supp
(
λθi
)
by an appropriate choice of m̂2

i > 0. �

Lemma 14. For all i ∈ I, all θ ∈ Θ̄f
i , all mi ∈ Mi and all m−i ∈ M−i, if i ∈ Iβ

∗(θ)

and mi is a best-response to m−i at θ, then (mi,m−i) falls into Rule 1.

Proof. Fix any i ∈ I, any θ ∈ Θ̄f
i , any m−i ∈ M−i and any mi ∈ Mi such that mi

is a best-response to m−i at θ. Suppose that i ∈ Iβ∗(θ). Assume, to the contrary,

that (mi,m−i) does not fall into Rule 1. This implies that
(
m1
i ,m

1
−i
)
/∈ β∗

(
θ̄
)
for all

θ̄ ∈ Θ or [for some ` ∈ I such that ` ∈ Iβ∗(θ̄), it holds that m2
` 6= 0, where θ̄ ∈ Θ is

such that
(
m1
i ,m

1
−i
)
∈ β∗

(
θ̄
)
].

Let us show that m−i /∈ M0
−i. Suppose that m−i ∈ M0

−i. By (35), m2
−i = 0 and

m1
−i ∈ β∗−i

(
θ̃
)

for some θ̃ ∈ Θ such that β∗−i
(
θ̃
)
∩ Θf

i 6= ∅. This implies that

i /∈ Iβ∗(θ̃). Moreover, Lemma 1 implies that β∗i
(
θ̃
)

= Θ. Since m1
−i ∈ β∗−i

(
θ̃
)
and
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m2
−i = 0, it follows that (mi,m−i) falls into Rule 1, which is a contradiction. Thus,

m−i /∈M0
−i.

Since i ∈ Iβ∗(θ), Lemma 12 implies that m2
i = 0. Thus, (mi,m−i) falls either into

Rule 2, or into Rule 3, or into Rule 4. By arguing as in Cases 2-4 of the proof of Lemma

13, we see that mi is not a best-response to m−i at θ, which is a contradiction. �

For all i ∈ I, let

Ei =
{
m1
i ∈M1

i

∣∣∣mi ∈ SM,θ
i

}
. (36)

Since m̄ ∈ NE (M, θ), it follows that Ei 6= ∅ for all i ∈ I. Specifically, it follows

that θ ∈ Ei for all i ∈ I. Let us show that Ei ⊆ β∗i (θ) for all i ∈ I. Fix any

i ∈ I. Suppose that θ ∈ Θf
i . Part (iv) of Lemma 1 implies that β∗i (θ) = Θ, and so

Ei ⊆ β∗i (θ), as we sought. Otherwise, let us suppose that θ ∈ Θ̄f
i . Since β∗ ∈ E (R),

it suffices to show that Ei ⊆ Rβ∗

i (θ).

Fix any ` ∈ I and any m1
` ∈ E`. (36) implies that there exists m` ∈ SM,θ

` . Suppose

that β∗−` (θ) ∩ Θf
` 6= ∅. Part (iv) of Lemma 1 implies that β∗` (θ) = Θ. We can apply

(5) to player ` under the specification that θ̃ = θ̂ = θ. Otherwise, let us suppose

that β∗−` (θ) ⊆ Θ̄f
` , so that ` ∈ Iβ∗(θ). Since m` ∈ SM,θ

` , it follows that m` is a

best-response to some λθ` at θ. Since β∗−` (θ) ⊆ Θ̄f
` , it follows that M0

` = ∅, and so

λθ` ∈ ∆
(
M−`\M0

−`
)
. Lemma 12 implies that m2

` = 0, Lemma 13 implies that m` is a

best-response to some m−` ∈ supp
(
λθ`
)
at θ, and Lemma 14 implies that (m`,m−`)

falls into Rule 1. Then, there exists θ̄ such that m1 ∈ β∗
(
θ̄
)
and g (m`,m−`) = f

(
θ̄
)
.

By definition of SM,θ
` , it also follows that m−` ∈ SM,θ

−` , and so m1
−` ∈ E−`. Since m` is

a best-response to some m−`, it holds that L`
(
f
(
m1
−`
)
,m1
−`
)
⊆ L`

(
f
(
θ̄
)
, θ
)
. Thus,

we can apply (5) to player ` under the specification that θ̃ = θ̄ and θ̂ = m1
−`.

Since the choice of ` ∈ I is arbitrary, we have that (5) applies to every player ` ∈ I.

It follows that Ei ⊆ Rβ∗

i (θ). Since the choice of i ∈ I was arbitrary, we have that

Ei ⊆ Rβ∗

i (θ) = β∗i (θ) (37)
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for all i ∈ I.

To complete the proof, let us show that g (m) = f (θ) for allm ∈ SM,θ. Fix anym ∈

SM,θ. (36) implies that
(
m1
i ,m

1
−i
)
∈ Ei × E−i. (36) implies that

(
m1
i ,m

1
−i
)
∈ β∗ (θ).

If Iβ∗(θ) = ∅, thenm falls into Rule 1 and that g (m) = f (θ). Suppose that Iβ∗(θ) 6= ∅.

Fix any ` ∈ Iβ∗(θ). Since m` ∈ SM,θ
` , it follows that m` is a best-response to some λθ`

at θ. Since β∗−` (θ) ⊆ Θ̄f
` , it follows that M

0
` = ∅, and so λθ` ∈ ∆

(
M−`\M0

−`
)
. Lemma

12 implies that m2
` = 0. Since the choice of ` ∈ Iβ∗(θ) is arbitrary, it follows that

m2
` = 0 for all ` ∈ Iβ∗(θ). Therefore, m falls into Rule 1 and g (m) = f (θ). Since the

choice of m ∈ SM,θ was arbitrary, it follows that g (m) = f (θ) for all m ∈ SM,θ.

C. Proof of Theorem 2

In this Appendix, we study the relationship between IM and SEM∗∗. The implement-

ing condition of Xiong (2022) termed Strict Event Monotonicity∗∗ with respect to the

partition P . To introduce SEM∗∗, we need additional notation. For each θ ∈ Θ, let

us define Iθ by Iθ = {i ∈ I|SLi(f(θ), θ) 6= ∅}, and for each E ∈ 2Θ \ {∅}, let us

define IE by IE =
⋂
θ∈E Iθ.

Definition 5. f : Θ → Y is Strict Event Monotonic∗∗ (henceforth, SEM**) if there

exists P ∈ Pf such that the following conditions are satisfied.

1. For all (θ′, E) ∈ Θ× 2Θ\ {∅},

 for all (i, θ) ∈ I∪θ∈EP (θ) × E,there exists θ̂ (i) ∈ P (θ)

such that SLi
(
f (θ) , θ̂ (i)

)
⊆ Li (f (θ) , θ′)

 =⇒ P (θ′) =
⋃
θ∈E

P (θ) .

2. For all i ∈ I and all θ, θ′, θ̂ ∈ Θ, {i} = Iθ

and P (θ) 6= P (θ′)

 =⇒ Li

(
f
(
θ̂
)
, θ̂
)
∩ SUi (f (θ) , θ′) 6= ∅.
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Before presenting this equivalence result, let us state and prove the following claim.

Lemma 15. Suppose f is IM and for any θ, θ′, β∗(θ′) ⊆ β∗(θ), then β∗(θ′) ⊆ β∗(θ)

Proof. Suppose f is IM and for some θ, θ′, β∗(θ′) ⊆ β∗(θ). θ ∈ E and let us show that

β∗ (θ′) ⊆ β∗ (θ). Again, since β∗ ∈ E (R), it is sufficient to show that β∗i (θ′) ⊆ Rβ∗

i (θ)

for all i ∈ I. Fix any i ∈ I. Since we have already shown that β∗ (θ) ⊆ β∗ (θ′), it

follows that θ ∈ β∗j (θ′) for all j ∈ I. Moreover, IM implies that f (θ′) = f (θ). Let

E ′j = β∗j (θ′) for all j ∈ I.

Fix any ` ∈ I and any θ̄ ∈ E ′`. Then, θ′ ∈ E ′`, θ ∈
⋂

j∈I\{`}
E ′j, θ̄ ∈ β∗` (θ′),

θ ∈
⋂

j∈I\{`}
β∗j (θ′) and L` (f (θ) , θ) ⊆ L` (f (θ′) , θ). Since this holds for any ` ∈ I and

any θ̄ ∈ E ′`, it follows from (5) that β∗i (θ′) = E ′i ⊆ R
β∗

i (θ). Since the choice of i was

arbitrary, we conclude that β∗ (θ′) ⊆ Rβ∗ (θ). �

PROOF OF THEOREM 2 Assume that I ≥ 3 and that IΘ 6= ∅. Suppose that f

satisfies IM. We show that f is SEM∗∗. Let P : Θ→ 2Θ\ {∅} be defined by

P (θ) = {θ′ ∈ Θ|β∗ (θ) = β∗ (θ′)} . (38)

Let us show that P ∈ Pf . Since θ ∈ β∗ (θ) ⊆ P (θ), it follows that P (θ) 6= ∅ and

∪θ∈ΘP (θ) = Θ. Fix any θ, θ′ ∈ Θ and suppose that P (θ) 6= P (θ′). We show that

P (θ) ∩ P (θ′) = ∅. Assume, to the contrary, that there exists θ̄ ∈ P (θ) ∩ P (θ′).

By (38), β∗ (θ) = β∗
(
θ̄
)
and β∗ (θ′) = β∗

(
θ̄
)
, and so β∗ (θ) = β∗ (θ′). Therefore,

P (θ) = P (θ′), which is a contraction. Thus, P is a partition of Θ. Finally, since f

satisfies IM, it can be seen that P is at least as fine as Pf . Thus, P ∈ Pf .

Let us show that f satisfies part (1) of SEM∗∗. To this end, fix any (θ′, E) ∈

Θ×2Θ\ {∅}. Suppose that for all (i, θ) ∈ I∪θ∈EP (θ)×E, there exists θ̂ (i) ∈ P (θ) such

that SLi
(
f (θ) , θ̂ (i)

)
⊆ Li (f (θ) , θ′). This is equivalent to the following statement:

for all (i, θ) ∈ I∪θ∈EP (θ) × E, there exists θ̂ (i) ∈ P (θ) such that Li
(
f (θ) , θ̂ (i)

)
⊆

Li (f (θ) , θ′). We show that P (θ′) = ∪θ∈EP (θ). By (38), it is sufficient to show that
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β∗ (θ) = β∗ (θ′) for all θ ∈ E. To this end, we first show that β∗i (E) ⊆ β∗i (θ′) for all

i ∈ I.

Fix any i ∈ I. Since β∗ ∈ E (R), it is sufficient to show that β∗i (E) ⊆ Rβ∗

i (θ′).

Let E ′ = ∪θ∈EP (θ). Since β∗i (E) ⊆ β∗i (E ′), the proof is complete if we show that

β∗i (E ′) ⊆ β∗i (θ′). Fix any ` ∈ I. Let us proceed according to whether ` ∈ IE′ or not.

Suppose that ` ∈ IE′ . Fix any θ̄ ∈ E ′. Then, there exists θ ∈ E such that

θ̄ ∈ P (θ). By (38), β
(
θ̄
)

= β (θ), and so θ̄ ∈ βi (θ). Since IE
′ ⊆ IE, it follows by our

initial supposition that there exists θ̂ (`) ∈ P (θ) ⊆ E ′ such that L`
(
f (θ) , θ̂ (`)

)
⊆

L` (f (θ) , θ′). Since θ̂ (`) ∈ P (θ), it follows from (38) that β∗ (θ) = β∗
(
θ̂ (`)

)
, and

so θ̂ (`) ∈
⋂

j∈I\{`}
β∗j (θ). Since β∗ (θ) = β∗

(
θ̂ (`)

)
, IM implies that f (θ) = f

(
θ̂ (`)

)
.

Since the choice of θ̄ ∈ E ′ was arbitrary, we have that for all θ̄ ∈ E ′, there exist θ ∈ E ′

and θ̂ (`) ∈ E ′ such that θ̄ ∈ β∗i (θ), θ̂ (`) ∈
⋂

j∈I\{`}
β∗j (θ) and L`

(
f
(
θ̂ (`)

)
, θ̂ (`)

)
⊆

L` (f (θ) , θ′).

Suppose ` /∈ IE′ . Then, there exists θ̃ ∈ Θf
` ∩ E ′. By definition of E ′, there

exists θ ∈ E such that θ̃ ∈ P (θ). It follows from (38) that β∗ (θ) = β∗
(
θ̃
)
, and

so θ ∈
⋂

j∈I\{`}
β∗j

(
θ̃
)
. Since θ̃ ∈ Θf

` , it follows from (10) and the fact that β0 ⊆ β∗

that β∗`
(
θ̃
)

= β∗` (θ) = Θ, and so E ′ ⊆ β∗`

(
θ̃
)
. Therefore, for all θ̄ ∈ E ′, there exist

θ̃ ∈ E ′ and θ ∈ E ′ such that θ̄ ∈ β∗`
(
θ̃
)
, θ ∈

⋂
j∈I\{`}

β∗j

(
θ̃
)
and θ̃ ∈ Θf

` .

Since the choice of ` was arbitrary, it follows from (5) that β∗i (E ′) ⊆ Rβ∗

i (θ′). Since

the choice of i was arbitrary, we conclude that β∗i (E ′) ⊆ Rβ∗

i (θ′) for all i ∈ I. Since

β∗ ∈ E (R) and since E ′ = ∪θ∈EP (θ), it follows that for all θ ∈ E, β∗ (θ) ⊆ β∗ (θ′).

Since f is IM, Lemma 15 implies that β∗ (θ) = β∗ (θ′). Thus, f satisfies part (1) of

SEM∗∗.

Let us show that f satisfies part (2) of SEM∗∗. Fix any θ, θ′, θ′′ ∈ Θ and any

i ∈ I. Assume that Iθ = {i} and that P (θ) 6= P (θ′). Assume, to the contrary, that

Li (f (θ′′) , θ′′) ⊆ Li (f (θ) , θ′).

Let us show that f satisfies part (2) of SEM∗∗. Fix any θ, θ′, θ′′ ∈ Θ and any
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i ∈ I. Assume that Iθ = {i} and that P (θ) 6= P (θ′). Assume, to the contrary,

that Li (f (θ′′) , θ′′) ⊆ Li (f (θ) , θ′). Since P (θ) 6= P (θ′), we have from (38) that

β∗ (θ) 6= β∗ (θ′). We show that β∗ (θ) = β∗ (θ′).

Since Iθ = {i}, we have that θ ∈ Θf
j for all j ∈ I\ {i}. It follows from the definition

of β0 in (10) and the fact that β0 ⊆ β∗ that β∗j (θ) = Θ for all j ∈ I\ {i}.

Let us first show that β∗ (θ) ⊆ β∗ (θ′). Since β∗ ∈ E (R), it is sufficient to show

that β∗ (θ) ⊆ Rβ∗ (θ′). To this end, let Ei = β∗i (θ) and Ej = Θ for all j ∈ I\ {i}. Fix

any k ∈ I. Fix any ` ∈ I and any θ̄ ∈ E`. We proceed according to whether ` = i or

not.

• Suppose that ` = i. Since θ̄ ∈ E`, it follows that θ̄ ∈ β∗` (θ). Then, (5) applies

to player ` because θ ∈ E`, θ′′ ∈
⋂

j∈I\{`}
Ej, θ̄ ∈ β∗` (θ), θ′′ ∈

⋂
j∈I\{`}

β∗j (θ) = Θ

and L` (f (θ′′) , θ′′) ⊆ L` (f (θ) , θ′).

• Suppose that ` 6= i. Then, (5) applies to player ` because θ ∈ E`, θ ∈
⋂

j∈I\{`}
Ej,

θ̄ ∈ β∗` (θ), θ ∈
⋂

j∈I\{`}
β∗j (θ) and θ ∈ Θf

` .

Since this holds for any ` ∈ I and any θ̄ ∈ E`, it follows from (5) that β∗k (θ) ⊆

Rβ∗

k (θ′). Since the choice of k ∈ I was arbitrary, we conclude that β∗ (θ) ⊆ Rβ∗ (θ′) =

β∗ (θ′). Since f is IM, Lemma 15 implies that β∗ (θ) = β∗ (θ′), we conclude that f is

SEM∗∗.

Suppose that f is SEM∗∗. Then, there exists P ∈ Pf satisfying parts (1)-(2) of the

condition. We show that f satisfies IM. To this end, for all i ∈ I, let βi : Θ 7→ 2Θ\ {∅}

be defined, for all θ ∈ Θ, by

βi (θ) =

 P (θ) if i ∈ IP (θ)

Θ otherwise.
(39)

Since θ ∈ βi (θ) for all θ ∈ Θ and all i ∈ I, it follows from (10) that β0 ⊆ β, and so

β ∈ Bt. To complete the proof, we need only to show that β ∈ E (R). The reason is
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that f is IM with respect to β because P ∈ Pf . Moreover, since β∗ = min E (R), it

follows that f is IM. Thus, let us show that β ∈ E (R). Since Lemma 1 implies that

β ⊆ R (β), we show below that R (β) ⊆ β.

Fix any θ′ ∈ Θ and any i ∈ I. We show that Rβ
i (θ′) ⊆ βi (θ

′). Suppose that there

is a E =
∏
i∈I
Ei such that E satisfies (5). We show that Ei ⊆ βi (θ

′). Suppose that

i /∈ IP (θ′). It follows from (39) that that βi (θ′) = Θ, and so Ei ⊆ βi (θ
′).

Otherwise, assume that i ∈ IP (θ′). Since Ei ⊆ Rβ
i (θ′), it follows that there exists

E−i ∈
(
2Θ\ {∅}

)I−1 such that (5) is satisfied. To apply SEM∗∗, we need to construct

the set Ē, which is defined by

Ē =
⋃
i∈I


θ ∈ Ei there exist θ′ ∈ Ei and θ̂ ∈

⋂
j∈I\{i}

Ej

such that θ′ ∈ βi (θ) and θ̂ ∈
⋂

j∈I\{i}
βj (θ).


It can be shown that for every i ∈ I∪θ∈ĒP (θ), the set Ei satisfying (5) can be replaced

with E ′i = ∪θ∈ĒP (θ).25 In what follows, for all i ∈ I, let us define

E ′i =

 ∪θ∈ĒP (θ) if i ∈ I∪θ∈ĒP (θ)

Ei otherwise.

25To see it, observe that for every i ∈ I∪θ∈ĒP (θ), it holds that P (θ) ∩ Ei 6= ∅ for all θ ∈ Ē and
that for each θ′ ∈ Ei, there exists θ ∈ Ē such that θ′ ∈ P (θ). These observations follow from the
fact that βi (θ) = P (θ) for all θ ∈ Ē. Next, let us show that E′i = ∪θ∈EiP (θ). Fix any θ′ ∈ P (θ)

for some θ ∈ Ei. Since θ ∈ Ei, there exists θ̃ ∈ Ē such that θ ∈ P
(
θ̃
)
. Since P ∈ Pf and since

θ′ ∈ P (θ) and θ ∈ P
(
θ̃
)
, it can be seen that θ′ ∈ E′i. For the converse, fix any θ′ ∈ P (θ) for some

θ ∈ Ē. Since θ ∈ Ē, we have that there exists θ̃ ∈ P (θ) ∩ Ei. Since P ∈ Pf and since θ′ ∈ P (θ)

and θ̃ ∈ P (θ) ∩ Ei, it follows that θ′ ∈ P
(
θ̃
)
for some θ̃ ∈ Ei. Thus, E′i = ∪θ∈EiP (θ). To see that

the set Ei satisfying (5) can be replaced with E′i, fix any θ̄ ∈ E′i. Then, there exists θ ∈ Ei such
that θ̄ ∈ P (θ). Since Ei ⊆ Rβi (θ′), it follows that there exist θ̃ ∈ Ei and θ̂ ∈

⋂
j∈I\{i}

Ej such that

θ ∈ βi
(
θ̃
)
, θ̂ ∈

⋂
j∈I\{i}

βj

(
θ̂
)
and either θ̃ ∈ Θf

i or Li
(
f
(
θ̂
)
, θ̂
)
⊆ Li

(
f
(
θ̃
)
, θ′
)
. Since P ∈ Pf

and since, moreover, θ ∈ βi
(
θ̃
)

= P
(
θ̃
)
and θ̄ ∈ P (θ), it follows that θ̄ ∈ βi

(
θ̃
)
. Since the choice

of θ̄ ∈ E′i was arbitrary, we can conclude that the set Ei can be replaced with the set E′i.
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Fix any (`, θ) ∈ I∪θ∈ĒP (θ)×Ē. Since ` ∈ I∪θ∈ĒP (θ), it follows from (5) that for every

θ ∈ E ′`, there exist θ̃ ∈ E ′` and θ̂ ∈
⋂

j∈I\{`}
E ′j such that θ ∈ β`(θ̃), θ̂ ∈

⋂
j∈I\{`}

βj

(
θ̃
)

and

L`

(
f
(
θ̂
)
, θ̂
)
⊆ L`

(
f
(
θ̃
)
, θ′
)

(40)

Since, by (39), β`
(
θ̃
)

= P (θ̃), we have that θ ∈ P (θ̃). Since P ∈ Pf , it holds that

P (θ) = P
(
θ̃
)
and f (θ) = f

(
θ̃
)
.

We proceed according to whether P
(
θ̃
)

= P (θ′) or not. Suppose that P
(
θ̃
)

=

P (θ′). Then, θ ∈ P (θ′), and so P (θ) = P (θ′). Since P ∈ Pf , it follows that

f (θ) = f (θ′). Thus, we have that θ′ ∈ P (θ) such that L` (f (θ) , θ′) ⊆ L` (f (θ) , θ′).

Suppose that P
(
θ̃
)
6= P (θ′). Part (2) of SEM∗∗ implies that θ̂ ∈ P

(
θ̃
)
.26

Since P ∈ Pf and since, moreover, P (θ) = P
(
θ̃
)
, it follows that θ̂ ∈ P (θ) and

f (θ) = f
(
θ̃
)

= f
(
θ̂
)
. Since (40) holds, we have there exists θ̂ ∈ P (θ) such that

L`

(
f (θ) , θ̂

)
⊆ L` (f (θ) , θ′).

Since the choice of (`, θ) ∈ I∪θ∈ĒP (θ)×Ē was arbitrary, we have fulfilled the premises

of part (1) of SME∗∗ for the pair
(
θ′, Ē

)
. SME∗∗ implies that P (θ′) = ∪θ∈ĒP (θ).

Since i ∈ IP (θ′) = I∪θ∈ĒP (θ), it follows from (39) that βi (θ′) = P (θ′) and that

βi (θ) = P (θ) for all θ ∈ Ē. Since P (θ′) = ∪θ∈ĒP (θ), it follows that ∪θ∈Ēβi (θ) =

∪θ∈ĒP (θ) ⊆ βi (θ
′). Since i ∈ I∪θ∈ĒP (θ), it follows that E ′i = ∪θ∈ĒP (θ). Since

Ei ⊆ E ′i and ∪θ∈ĒP (θ) ⊆ βi (θ
′), it follows that Ei ⊆ βi (θ

′).

Since the choice of player i ∈ I and the choice of the set Ei were arbitrary, we have

that Rβ
i (θ′) ⊆ βi (θ

′) for all i ∈ I. Since the choice of θ′ was arbitrary, we have that

R (β) ⊆ β. Thus, β ∈ E (R).

26To see it, suppose θ̂ /∈ P
(
θ̃
)
. Since θ̂ ∈

⋂
j∈I\{`}

βj

(
θ̂
)
, it follows that IP(θ̃) = {`}. Since

IP(θ̃) = {`} and P
(
θ̃
)
6= P (θ′), Part (2) of SEM∗∗ implies that L`

(
f
(
θ̂
)
, θ̂
)
∩SU`

(
f
(
θ̃
)
, θ′
)
6= ∅,

which contradicts (40).
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D. Two Player Example of Section V

Let us reconsider the two-player example presented in Section V. For all θ̄ ∈ {θ, θ′, θ′′},

the set Ai
(
θ̄
)
is defined in (2). We see that A1 (θ) = A2 (θ′) = {θ, θ′},

A1 (θ′) = {θ′}, A2 (θ) = {θ}, and A1 (θ′′) = A2 (θ′′) = {θ′′} . Note that A1 (θ) = {θ, θ′}

because for each lottery z ∈ L1 (f (θ) , θ)
⋂
L2 (f (θ′) , θ′), it holds that u1 (z, θ) =

u2 (z, θ′) = 0.27

In what follows, we show that the SCF f presented in that example is rationalizably

implementable. By Theorem 1, it suffices to show that that f is IM. We do it by

setting β∗i = Ai for all i = 1, 2 and by showing that β∗ = R (β∗). To this end, suppose

that β∗i
(
θ̄
)

= Ai
(
θ̄
)
for all θ̄ ∈ {θ, θ′, θ′′} and all i = 1, 2. Since β0

i ⊆ β∗i for every

player i = 1, 2, it follows that β∗ ∈ Bt. It is also clear that f satisfies IM. Thus, we are

only left to show that for every player i = 1, 2, β∗i
(
θ̄
)

= Rβ∗

i

(
θ̄
)
for all θ̄ ∈ {θ, θ′, θ′′}.

Since Lemma 1 implies that β∗ ⊆ R (β∗), we need only to show that for every player

i = 1, 2, Rβ∗

i

(
θ̄
)
⊆ β∗i

(
θ̄
)
for all θ̄ ∈ {θ, θ′, θ′′}. To this end, fix any θ̄ ∈ {θ, θ′, θ′′}

and any θ̂ ∈ Rβ∗

i

(
θ̄
)
. Assume, to the contrary, that θ̂ /∈ β∗i

(
θ̄
)
. This implies that

θ̂ /∈ Ai
(
θ̄
)

= β0
i (θ̄). Since θ̂ ∈ R

β∗

i

(
θ̄
)
, it follows that there exists Ei ⊆ Rβ∗

i

(
θ̄
)
such

that θ̂ ∈ Ei. (5) implies that there exists E−i ⊆ Rβ∗

i

(
θ̄
)
such that, given that θ̂ ∈ Ei,

there exists
(
θ̃, θ−i

)
∈ Ei × E−i such that

(
θ̂, θ−i

)
∈ β∗i

(
θ̃
)
× β∗−i

(
θ̃
)

and either

θ̃ ∈ Θf
i or Li (f (θ−i) , θ−i) ⊆ Li

(
f
(
θ̃
)
, θ̄
)
. Since f satisfies NWA and θ̂ ∈ Ei, we

have that there exists
(
θ̃, θ−i

)
∈ Ei×E−i such that

(
θ̂, θ−i

)
∈ β∗i

(
θ̃
)
× β∗−i

(
θ̃
)
and

Li (f (θ−i) , θ−i) ⊆ Li

(
f
(
θ̃
)
, θ̄
)
. (41)

We proceed according to whether θ̄ = θ, θ̄ = θ′ or θ̄ = θ′′. Let z be a lottery that

assigns 1
2
to the pure outcome a and 1

2
to the pure outcome c, and let z′ be a lottery

that assigns 1
2
to the pure outcome c and 1

2
to the pure outcome d.

27To see it, take any z ∈ L1 (f (θ) , θ)
⋂
L2 (f (θ′) , θ′). Then, u1 (z, θ) ≤ u1 (f (θ) , θ) = 0 and

u2 (z, θ′) ≤ u2 (f (θ′) , θ′) = 0. Since u1 (·, θ) = −u2 (·, θ′), it follows that u1 (z, θ) + u2 (z, θ′) = 0.
Since u1 (z, θ) ≤ 0 and u2 (z, θ′) ≤ 0, we have that u1 (z, θ) = u2 (z, θ′) = 0.
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Case 1: θ̄ = θ

Suppose that i = 1. Since θ̂ /∈ β∗1 (θ) = A1 (θ), it follows that θ̂ = θ′′. Since θ̂ ∈

β∗1

(
θ̃
)
and θ̂ = θ′′ and since θ−1 ∈ β∗−1

(
θ̃
)
, we have that θ′′ = θ̂ = θ̃ = θ−1. However,

by construction, e ∈ L1 (f (θ′′) , θ′′)
⋂
SU1 (f (θ′′) , θ), which is in contradiction to (41),

where θ′′ = θ̃ = θ−1 and θ̄ = θ. Thus, Rβ∗

1 (θ) = β∗1 (θ).

Suppose that i = 2. Since Rβ∗

1 (θ) = β∗1 (θ), it follows that θ−2 ∈ {θ, θ′}. Moreover,

since θ−2 ∈ β∗−2

(
θ̃
)⋂
{θ, θ′}, it holds that θ̃ 6= θ′′. Since θ̂ 6= θ, θ̂ ∈ β∗2

(
θ̃
)

and

β∗2 (θ) = {θ}, we also have that θ̃ 6= θ. Therefore, θ̃ 6= θ′′ and θ̃ 6= θ, and so

θ̃ = θ′. Then, θ̂ ∈ β∗2 (θ′) and θ−2 ∈ β∗−2 (θ′). Since θ−2 ∈ {θ, θ′}
⋂
β∗−2 (θ′), it

follows that θ−2 = θ′. Therefore, θ̃ = θ−2 = θ′. However, by construction, z ∈

L2 (f (θ′) , θ′)
⋂
SU2 (f (θ′) , θ), which is in contradiction to (41), where θ̃ = θ−2 = θ′

and θ̄ = θ. Thus, Rβ∗

2 (θ) = β∗2 (θ).

Case 2: θ̄ = θ′

Suppose that i = 2. Since θ̂ /∈ β∗2 (θ′) = A2 (θ′), it follows that θ̂ = θ′′. Since

θ̂ ∈ β∗2

(
θ̃
)

and θ−2 ∈ β∗−2

(
θ̃
)
, we have that θ̂ = θ̃ = θ−2 = θ′′. By construction,

z′ ∈ L2 (f (θ′′) , θ′′)
⋂
SU2 (f (θ′′) , θ′), which is in contradiction to (41), where θ̃ =

θ−2 = θ′′ and θ̄ = θ′. Thus, Rβ∗

2 (θ′) = β∗2 (θ′).

Suppose that i = 1. SinceRβ∗

2 (θ′) = β∗2 (θ′), it follows that θ−1 ∈ {θ, θ′}. Moreover,

since θ−1 ∈ β∗−1

(
θ̃
)⋂
{θ, θ′}, it holds that θ̃ 6= θ′′. Since θ̂ 6= θ′, θ̂ ∈ β∗1

(
θ̃
)

and

β∗1 (θ′) = {θ′}, we also have that θ̃ 6= θ′. Therefore, θ̃ /∈ {θ′, θ′′}, and so θ̃ = θ. Then,

θ̂ ∈ β∗1 (θ) and θ−1 ∈ β∗−1 (θ). Since θ−1 ∈ {θ, θ′}
⋂
β∗−1 (θ), it also follows that θ−1 = θ.

Therefore, θ̃ = θ−1 = θ. By construction, z ∈ L1 (f (θ) , θ)
⋂
SU1 (f (θ) , θ′), which is

in contradiction to (41), where θ̃ = θ−1 = θ and θ̄ = θ′. Thus, Rβ∗

1 (θ′) = β∗1 (θ′).

Case 3: θ̄ = θ′′

To derive a contradiction, it suffices to show that θ̂ = θ′′. Assume, to the contrary,

that θ̂ 6= θ′′. Since θ̂ ∈ β∗i
(
θ̃
)
, it holds that θ̃ 6= θ′′. Thus, θ̂, θ̃ ∈ {θ, θ′}.

Suppose that θ̂ = θ and i = 1. Since θ ∈ β∗1

(
θ̃
)
, we have that θ̃ 6= θ′. Since
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θ̃ ∈ {θ, θ′}, it follows that θ̃ = θ. Since θ−1 ∈ β∗−1 (θ), we have that θ̂ = θ̃ = θ−1 = θ.

However, by construction, z ∈ L1 (f (θ) , θ)
⋂
SU1 (f (θ) , θ′′), which is in contradiction

to (41), where θ̃ = θ−1 = θ and θ̄ = θ′′. Thus, θ /∈ Rβ∗

1 (θ′′).

Suppose that θ̂ = θ and i = 2. Then, θ ∈ β∗2

(
θ̃
)

and θ−2 ∈ β∗−2

(
θ̃
)
. Since

θ /∈ Rβ∗

1 (θ′′), it follows that θ−2 ∈ Rβ∗

−2 (θ′′)
⋂
{θ′, θ′′}. It cannot be that θ−2 = θ′′

because this implies that θ̃ = θ′′, which is a contradiction. Therefore, it must be that

θ−2 = θ′. Since θ′ ∈ β∗−2

(
θ̃
)
, we have that θ̃ = θ′. Thus, θ̃ = θ−2 = θ′. However, by

construction, z ∈ L2 (f (θ′) , θ′)
⋂
SU2 (f (θ′) , θ′′), which is in contradiction to (41),

where θ̃ = θ−2 = θ′ and θ̄ = θ′′. Thus, θ /∈ Rβ∗

2 (θ′′).

Suppose that θ̂ = θ′ and i = 2. Then, θ′ ∈ β∗2

(
θ̃
)

and θ−2 ∈ β∗−2

(
θ̃
)
. Since

θ̃ ∈ {θ, θ′} and θ′ ∈ β∗2
(
θ̃
)
, we have that θ̃ 6= θ. Thus, θ̃ = θ′. Since θ−2 ∈ β∗−2 (θ′),

it holds that θ−2 = θ′. Therefore, θ̂ = θ̃ = θ−2 = θ′. However, by construction, z ∈

L2 (f (θ′) , θ′)
⋂
SU2 (f (θ′) , θ′′), which is in contradiction to (41), where θ̃ = θ−2 = θ′

and θ̄ = θ′′. Thus, θ′ /∈ Rβ∗

2 (θ′′).

Suppose that θ̂ = θ′ and i = 1. Then, θ′ ∈ β∗1

(
θ̃
)

and θ−1 ∈ β∗−1

(
θ̃
)
. Since

θ′ /∈ Rβ∗

2 (θ′′) and θ /∈ Rβ∗

2 (θ′′), it follows that θ−1 = θ′′. It follows from θ−1 ∈ β∗−1

(
θ̃
)

that θ̃ = θ′′, which is a contradiction. Thus, θ′ /∈ Rβ∗

1 (θ′′).

Thus, we conclude that β∗ = R (β∗) for the case that β∗i = Ai for all i = 1, 2, and

so f is rationalizably implementable.
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