
WORKING PAPER NO. 645 

Interim Rationalizable (and Bayes-Nash) 
Implementation of Functions: A full 

Characterization

Ritesh Jain and Michele Lombardi

May 2022 

University of Naples Federico II    University of Salerno        Bocconi University, Milan

CSEF - Centre for Studies in Economics and Finance  
DEPARTMENT OF ECONOMICS AND STATISTICS – UNIVERSITY OF NAPLES FEDERICO II 

80126 NAPLES - ITALY 
Tel. and fax +39 081 675372 – e-mail: csef@unina.it 

ISSN: 2240-9696 

mailto:csef@xcom.it




WORKING PAPER NO. 645

Interim Rationalizable (and Bayes-Nash) 
Implementation of Functions: A full 

Characterization 

Ritesh Jain* and Michele Lombardi† 

Abstract 
Interim Rationalizable Monotonicity, due to Oury and Tercieux (2012), fully characterizes the 
class of social choice functions that are implementable in interim correlated rationalizable (and 
Bayes-Nash equilibrium) strategies. 

JEL classification: C79, D82. 

Acknowledgements: Special thanks go to Anujit Chakraborty and Yehuda (John) Levy, 
whose comments and suggestions have led to substantial improvements in the manuscript. 
Finally, we are grateful to the audiences at the University of Glasgow, the National Taiwan 
University, and the Economic Theory Workshop (University of York). Ritesh Jain greatly 
acknowledges financial support from the Ministry of Science and Technology Grant, Taiwan 
under the grant: 110- 2410-H-001-082. The usual disclaimer applies. 

* Institute of Economics, Academia Sinica. E-mail: ritesh@econ.sinica.edu.tw.

†  University of Liverpool Management School, University of Napoli Federico II and CESF. E-mail: 
michele.lombardi@liverpool.ac.uk. 





Table of contents 

1. Introduction

2. Motivating example

3. The Implementation Model 

3.1 Preliminaries

3.2 Solution concepts

3.3 Implementation

4. Interim Iterative Monotonicity

5. A full characterization

5.1 Proof of Theorem 1: Part (i) implies part (ii)

References 

Appendices 





I. Introduction

A social choice function (SCF) f is (fully) interim rationalizably (and Bayes-Nash)

implementable on a type space (T, κ) if there exists a mechanism such that (a) ev-

ery interim rationalizable strategy profile leads to the realization of f and (b) it has

a pure strategy Bayes-Nash equilibrium.1 Oury and Tercieux (2012) introduce In-

terim Rationalizable Monotonicity (IRM, henceforth), a generalization of Bayesian

Monotonicity, and they show that IRM is sufficient for interim rationalizable imple-

mentation when combined with Assumption 1. We show that IRM fully characterizes

the class of interim rationalizably implementable functions.2

Beyond its relevance for implementation theory, our characterization result strength-

ens the connection between strict continuous implementation and interim rationaliz-

able implementation. By adopting the notion of robustness of Weinstein and Yildiz

(2007) in a mechanism design setting, Oury and Tercieux (2012) introduce the notion

of strict continuous implementation and show that, when combined with Assumption

1, strict continuous implementation implies (full) implementation in interim ratio-

nalizable strategies. An SCF is strictly continuously implementable if there exists a

strict Bayes-Nash equilibrium that continuously implements f .3

Specifically, Oury and Tercieux (2012) show that only functions satisfying IRM on

(T, κ) are strictly continuously implementable on (T, κ). Moreover, they show that

if f satisfies IRM on (T, κ) and it satisfies Assumption 1, then f is interim ratio-

nalizably implementable on (T, κ). Our characterization result strengthens Oury and

Tercieux (2012)’s connection between partial implementation and full implementation

as follows: Only interim rationalizably implementable functions on (T, κ) are strictly

continuously implementable on (T, κ).

Roughly speaking, Assumption 1 is a condition that allows the planner to find a
1The requirement of the existence of a pure strategy Bayes-Nash equilibrium is shown to be

equivalent to the requirement that the implementing mechanism guarantees the non-emptiness of
player’s best-responses to “certain” beliefs. For further details, see Lemma 2 below.

2The necessity of IRM is briefly discussed by Oury and Tercieux (2012) in footnote 4 (p. 1606),
though no formal arguments have been provided.

3Specifically, Oury and Tercieux (2012) require that, in any type space that embeds (T, κ), there
exists an equilibrium that (i) is a strict equilibrium on (T, κ), and (ii) it yields the desired outcome,
not only at all types of (T, κ) but also at all types “close” to (T, κ).
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punishment outcome for each player, whatever the player’s beliefs are. The assump-

tion is satisfied in environments with transfers or bad outcomes that the planner does

not desire. However, it may be violated in many environments, such as voting, match-

ing, and allocation problems. For instance, Assumption 1 is violated when there is a

state of the world at which a player deems all pure outcomes equally good. On this

observation, in Section II, we present an interim rationalizably implementable voting

rule violating Assumption 1. Moreover, it is violated in house allocation problems in

which a player receives his worst house. This is the case in situations in which players

have the same ranking of the houses.

As we discuss in Section II, Assumption 1 ensures that for every player, the elimina-

tion of a never-best reply starts in the first round of the iterative process of deletion of

never-best replies. Indeed, the sufficiency result of Oury and Tercieux (2012) relies on

this fact. However, Assumption 1 is not related to the assumption of common knowl-

edge of rationality. Indeed, the iterative process that builds on the assumption of

common knowledge of rationality neither requires deleting strategies simultaneously

for all players nor requires deleting them in the first round for all players.

When Assumption 1 is relaxed, we show that IRM fully characterizes interim ra-

tionalizable implementation. This result is obtained by characterizing IRM in terms

of an iterative condition, which embeds an argument of iterated deletion of never-

best replies. This iterative condition is termed interim iterative monotonicity (IIM,

henceforth).

Recently, Xiong (2021) and Jain et al. (2022) obtain full characterization results for

rationalizable implementation of functions under complete information. The seminal

paper on this class of implementation problems is Bergemann et al. (2011), which

critically hinges on a condition similar to Assumption 1, named NoWorst Alternatives

(NWA, henceforth) and on the assumption that there are three or more players.

The idea to use iterative arguments has been shown to be fruitful by Xiong (2021)

and Jain et al. (2022) in dispensing with the NWA condition and relaxing the as-

sumption of three or more players, respectively. Indeed, the latter authors offer a

novel iterative condition, named Iterative Monotonicity, and use it to provide an it-
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erative characterization of the class of rationalizably implementable functions under

complete information when there are two or more players.4 IIM is the counterpart of

iterative monotonicity in an incomplete information setup.

Following Jain et al. (2022), IIM is defined on the space of deception profiles, over

which we define a decreasing sequence of deception profiles
(
βk
)
k≥0

(in the sense of

set inclusion). The limit of the sequence, which we refer to as β∗, can be viewed as

the profile of largest deceptions that the planner cannot rule out in any implementing

mechanism. An SCF f satisfies IIM on a type space (T, κ) if for any type profiles t

and t′ such that t′ ∈ β∗(t), it holds that f(t) = f(t′). It is worth mentioning that IIM

is a measurability condition, which is reminiscent of the classical Abreu–Matsushima

measurability condition (Abreu and Matsushima (1992)).5

As is typical in the implementation literature, the sufficiency result of Oury and

Tercieux (2012) is based on designing an "augmented" direct mechanism. However,

the devised mechanism does not work when Assumption 1 is relaxed. Indeed, thanks

to the assumption, the augmentation of the direct mechanism used by Oury and

Tercieux (2012) relies on β0, which is the first element of the sequence
(
βk
)
k≥0

. How-

ever, our characterization result is obtained by devising an augmentation of the direct

mechanism that may crucially hinge on the entire sequence. Therefore, we provide an

iterative characterization of the class of interim rationalizably implementable func-

tions.

Section II present our motivating example. Section III presents the implementa-

tion model. Section IV discusses IIM and relates it to IRM. Section V presents our

characterization result. Appendices include proofs not in the main body.

4Xiong (2021) provides a complete characterization of rationalizably implementable functions
when there are three or more players.

5Abreu and Matsushima (1992) proposed a measurability condition, now referred to as Abreu–
Matsushima measurability, to characterize virtual rationalizable implementation when there is in-
complete information.
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II. Motivating example

Suppose that there are two players, player 1 and player 2. Assume that the sets of

types are Θ1 = {θ1, θ
′
1} for player 1 and Θ2 = {θ2, θ

′
2} for player 2. The possible type

profiles in Θ1×Θ2 are (θ1, θ2), (θ′1, θ2), (θ1, θ
′
2) and (θ′1, θ

′
2). Let φ ∈ ∆ (Θ1 ×Θ2) be the

common prior and assume that the type profiles (or states) are equally likely, that is,

φ (θ) = 1
4
for all θ ∈ Θ1×Θ2. The type θ̂i ∈ Θi is only observed by player i, who uses

this information both to make decisions and to update his beliefs about the likelihood

of his opponent’s types (using the conditional probability φ
(
θ̂j|θ̂i

)
). The set of pure

outcomes is given by A = {a, b, c, d}. For player i = 1, 2, let υi : ∆ (A)×Θ1×Θ2 → R

be the state-dependent payoff function of player i. For each θ ∈ Θ1 × Θ2, υi (·, θ)
satisfies the expected utility hypothesis for i = 1, 2. Players’ state-dependent payoff

functions over A are represented in the table below.

(θ1, θ2) (θ′1, θ2) (θ1, θ
′
2) (θ′1, θ

′
2)

υ1 υ2 υ1 υ2 υ1 υ2 υ1 υ2

a, b, c, d a a, b, c, d a c c d c

c c d a c a

b b a, b d a, b d

d d b b

where, as usual, αβ for player i in state θ means that he strictly prefers α to β in state

θ, while α, β in state θ means that this i is indifferent between α and β in state θ.

Suppose that we want to implement f in interim correlated rationalizable strategies,

where f (θ1, θ2) = a, f (θ′1, θ2) = b, f (θ1, θ
′
2) = c and f (θ′1, θ

′
2) = d. To this end, let us

consider the following direct mechanism, where player 1 is the row player and player

2 is column player.
θ2 θ′2

θ1 a c

θ′1 b d

To show that the direct mechanism implements f , let us note that truth-telling is
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always the unique dominant strategy for player 2. Consequently, truth-telling is the

only interim correlated rationalizable strategy for player 1. Observe that truth-telling

is also the Bayes-Nash equilibrium of game. Thus, the above mechanism implements f

in interim correlated rationalizable strategies and Bayes-Nash equilibrium strategies.

However, in this example, Assumption 1 of Oury and Tercieux (2012) is violated.

This assumption is formally stated in Definition 6. The easiest way to see it is to

recall that this assumption implies the condition of no total indifference. In our

example, this condition requires that no player is indifferent over the entire set A at

any state: for all i = 1, 2 and all θ ∈ Θ1×Θ2, there exist x, y ∈ A such that such that

υi (x, θ) 6= υi (x, θ). As it can be checked from the above table, player 1 is indifferent

over the entire set A at states (θ1, θ2) and (θ′1, θ2).

III. The Implementation Model

Preliminaries

Throughout the paper, if X is a topological space, we treat it as a measurable space

with its Borel sigma field, and the space of Borel probability measures onX is denoted

by ∆ (X). Spaces ∆ (X) are endowed with the topology of weak convergence of

measures. Throughout the paper, we treat each countable set as a topological space

endowed with the discrete topology. A subset Y of a topological space X is a dense

subset of X if the closure of Y in X is equal to X. With abuse of notation, given a

space X, let δx denote a degenerate distribution in ∆ (X) assigning probability 1 to

{x}.
We consider a finite set of players I = {1, ..., I}. Each player i has a bounded

utility function ui : ∆ (A) × Θ → R where A is the set of (pure) outcomes and Θ is

the set of states (of nature). For each θ ∈ Θ, ui (·, θ) satisfies the expected utility

hypothesis. We assume that Θ and A are countable and hence are separable metric

spaces.

Throughout the paper, if, for each i ∈ I, there is a space Xi, we write X as an

abbreviation for Πi∈IXi and, for each i ∈ I, X−i for Πj∈I\{i}Xj.
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A model (of incomplete information) is a pair T ≡ (T, κ), where T = Πi∈ITi is a

countable type space and, for each i ∈ I, κ (ti) ∈ ∆ (Θ× T−i) denotes the associated

beliefs for each type ti ∈ Ti of player i satisfying the following condition: For all

ti ∈ Ti, Supp(κ (ti)) = ∆ (Θ× T−i).
A typical type profile of T (resp., T−i) is denoted by t (resp., t−i). Throughout the

paper, we rule out the case that T is a model of complete information, for the sake

of simplicity.

A (stochastic) mechanism is a pair M ≡ (M, g), where M ≡i∈I Mi is a message

space and the outcome function g : M → ∆ (A) assigns to every m ∈ M an element

of ∆ (A). For each i ∈ I, Mi is player i’s message space, which is assumed to be a

(nonempty) countable set. A message profile m ∈ M is often written as (mi,m−i),

where m−i ∈M−i.

Solution concepts

Given a mechanism M and a model T , U (M, T ) denotes the induced game of in-

complete information. In this game, a (behavioral) strategy of player i is any function

σi : Ti → ∆ (Mi). We write σi (ti) [mi] for the probability that σi assigns to mi when

player i is of type ti. Player i’s strategy σi is a pure strategy if σi : Ti → Mi. Given

a mechanism M, for each i ∈ I, player i’s best response correspondence BRi from

∆ (Θ×M−i) to Mi be defined, for all πi ∈ ∆ (Θ×M−i), by

BRi (πi|M) = arg max
mi∈Mi

 ∑
(θ,m−i)∈Θ×M−i

πi [θ,m−i] [ui (g (mi,m−i) , θ)]

 .

Since we allow for infinite mechanisms, the correspondence may be empty. For all

i ∈ I, all ti ∈ Ti and all σ−i ≡ (σj)j∈I\{i}, we write πi (ti, σ−i) ∈ ∆ (Θ×M−i) for the

joint distribution on the underlying uncertainty and the messages of other players

induced by ti and σ−i.6

6Formally, πi (ti, σ−i) ∈ ∆ (Θ×M−i) is defined by πi (ti, σ−i) =∑
t−i∈T−i

κ (ti) [θ, t−i]σ−i (t−i) [m−i], where κ (ti) [θ, t−i] is the probability attached to [θ, t−i]

under κ (ti), and σ−i (t−i) [m−i] is the probability attached to m−i under σ−i (t−i).
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Definition 1. Let U (M, T ) be any game of incomplete information. A profile of

strategies σ = (σi)i∈I is a Bayes-Nash equilibrium of U (M, T ) if, for all i ∈ I and

all ti ∈ Ti,
mi ∈ Supp (σi (ti)) =⇒ mi ∈ BRi (πi (ti, σ−i) |M) .

We denote by BNE (U (M, T )) the set of all pure strategy Bayes-Nash equilibria of

U (M, T ). To distinguish between pure strategy and mixed strategy equilibrium, let

us denote by BNE(U (M, T )) as the set of pure strategy Bayes-Nash equilibria of

U (M, T ).

Next, let us define the solution concept of interim correlated rationalizability (ICR,

henceforth), which was introduced by Dekel et al. (2007). Before introducing it, we

need additional notation. Fix any pair (M, T ). For all i ∈ I, let Σi be a nonempty

correspondence from Ti to 2Mi\ {∅}, and let SM,T
i denote the set of all nonempty

correspondences from Ti to 2Mi\ {∅}. Let SM,T = Πi∈IS
M,T
i , with Σ as a typical

profile of SM,T . For all i ∈ I and all ti ∈ Ti, let ∆κ(ti) (Θ× T−i ×M−i) be defined by

∆κ(ti) (Θ× T−i ×M−i) =
{
πi ∈ ∆ (Θ× T−i ×M−i) |margΘ×T−iπi = κ (ti)

}
,

and, for all Σ−i ∈ SM,T
−i , let ∆Σ−i (Θ× T−i ×M−i) be defined by

∆Σ−i (Θ× T−i ×M−i) =

 πi πi ∈ ∆ (Θ× T−i ×M−i) and

πi [θ, t−i,m−i] > 0 =⇒ m−i ∈ Σ−i (t−i)

 .

For all (M, T ) and all Σ ∈ SM,T , Σ is a best-reply set in U (M, T ) if, for all i ∈ I,
all ti ∈ Ti and all mi ∈ Σi (ti), there exists

πi ∈ ∆κ(ti) (Θ× T−i ×M−i) ∩∆Σ−i (Θ× T−i ×M−i)

such that

mi ∈ BRi

(
margΘ×M−iπi|M

)
.

Definition 2. For all (M, T ), all i ∈ I and all ti ∈ Ti, the set of interim correlated
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rationalizable messages at type ti, denoted by SM,T
i (ti), is defined by

SM,T
i (ti) = {mi ∈ Σi (ti) |for some best-reply set Σ in U (M, T )} .

For all t ∈ T , we write SM,T (t) for Πi∈IS
M,T
i (ti).

Alternatively, the set of interim correlated rationalizable messages can be computed

iteratively, where transfinite induction may be necessary to reach the fixed point.

Following Aliprantis and Border (2006), we denote by Ω the set whose elements are

called ordinals, which are ordered by ≤. The set Ω is such that (1) it is uncountable

and (2) it has a greatest element ω1.7

Definition 3. For all (M, T ), all i ∈ I and all ti ∈ Ti, let S0,M,T
i (ti) = Mi and, for

all ordinal numbers α ∈ Ω, define Sα,M,T
i (ti) as follows:

• If α is a successor ordinal, then

Sα,M,T
i (ti) =


There exists πi ∈ ∆κ(ti) (Θ× T−i ×M−i)

mi ∈ Sα−1,M,T
i (ti) such that πi ∈ ∆Sα−1,M,T

−i (Θ× T−i ×M−i)
and that mi ∈ BRi

(
margΘ×M−iπi|M

)
.


• If α is a limit ordinal, then

Sα,M,T
i (ti) =

⋂
γ<α

Sγ,M,T
i (ti) ,

Let S∞,M,T
i (ti) =

⋂
α∈Ω S

α,M,T
i (ti) be the set of interim correlated rationaliz-

able messages at type ti.

Arieli (2010) shows that the correspondence S∞,M,T = Πi∈IS
∞,M,T
i is a best-reply

set of U(M, T ), that is, for all i ∈ I, S∞,M,T
i ⊆ SM,T

i . Indeed, Arieli (2010) shows

the following result.

7The existence of this set Ω is proved in Theorem 1.14 of Aliprantis and Border (2006) p. 19.
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Lemma 1 (Arieli (2010), Theorem 1, p. 914). For all (M, T ), all i ∈ I and all

ti ∈ Ti, there exists a least ordinal number α such that

Sα,M,T
i (ti) = Sα+1,M,T

i (ti) = SM,T
i (ti). (1)

Implementation

Let T be given. A (stochastic) social choice function (SCF, henceforth) is a function

f : T → ∆ (A). Following Oury and Tercieux (2012), we assume that the planner

cares about all profiles of types in T .

Definition 4. A mechanism M implements f : T → ∆ (A) in interim correlated

rationalizable strategies (ICR-implements, henceforth) on T if the following two con-

ditions are satisfied.

(i) For all i ∈ I and all ti ∈ Ti, SM,T
i (ti) 6= ∅.

(ii) For all t ∈ T , m ∈ SM,T (t) =⇒ g (m) = f (t).

If such a mechanism exists, f is interim correlated rationalizably (ICR, henceforth)

implementable, or simply, ICR-implementable on T .

In a complete information environment, Xiong (2021) and Jain et al. (2022) fully

characterize the class of implementable functions in rationalizable strategies. Their

results show that every implementable function in rationalizable strategies is also Nash

implementable. The reason is that the implementing mechanism in rationalizable

strategies never fails to have a Nash equilibrium. This is not the case in incomplete

information environments, in which implementing mechanisms may fail to have Bayes-

Nash equilibria.8 Following Oury and Tercieux (2012), we assume that the planner is

interested in implementing in interim correlated rationalizable strategies and Bayes-

Nash equilibria.

8By assuming a variant of Assumption 1 of Oury and Tercieux (2012), Kunimoto et al. (2020)
study implementation problems in interim rationalizable strategies without requiring the existence
of Bayes-Nash equilibria.
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Definition 5. A mechanism M implements f : T → ∆ (A) on T in Bayes-Nash

equilibria if (i) BNE (U (M, T )) 6= ∅ and (ii) for all σ ∈ BNE (U (M, T )) and for

all t ∈ T ,
⋃

m∈supp(σ(t))

g(m) = f(t).

Remark 1. It is clear from the definition of Bayes-Nash equilibrium that for any

σ ∈ BNE (U (M, T )) and for any t ∈ T , Supp(σ(t)) ⊆ SM,T (t).

Thus, Definition 4 implies part (ii) of the definition above. Thus, a mechanism

M that implements an f in interim rationalizable strategies also implements f in

Bayes-Nash equilibrium if and only if BNE (U (M, T )) 6= ∅.
The lemma below shows that a mechanism M that ICR-implements f also im-

plements f in Bayes-Nash equilibrium if and only if M satisfies the Equilibrium

Best-Response Property (EBRP). A mechanismM satisfies the EBRP on T if there

exists a pure strategy profile σ such that for all t ∈ T ,

σ (t) ∈ SM,T (t) ,

and for all i ∈ I and all ti ∈ Ti,

BRi (πi (ti, σ−i) |M) 6= ∅.

Lemma 2. Assume that M ICR-implements f on T . M implements f on T in

Bayes-Nash equilibria if and only ifM satisfies the EBRP.

Proof. Assume thatM ICR-implements f on T . Assume thatM satisfies the EBRP

on T . Let us show thatM implements f on T in Bayes-Nash equilibria. To this end,

we need only to show that BNE (U (M, T )) 6= ∅. SinceM ICR-implements f andM
satisfies the EBRP, it follows that there exists a pure strategy profile σ such that for

all t ∈ T , σ (t) ∈ SM,T (t), and for all i ∈ I and all ti ∈ Ti, BRi (πi (ti, σ−i) |M) 6= ∅.
Let us show that σ ∈ BNE (U (M, T )).

For all i ∈ I and all ti ∈ Ti, sinceBRi (πi (ti, σ−i) |M) 6= ∅, let σ̂i (ti) ∈ BRi (πi (ti, σ−i) |M)

for all ti ∈ Ti and all i ∈ I. Fix any i ∈ I. By construction, we see that for all t ∈ T ,
(σ̂i (ti) , σ−i (t−i)) ∈ SM,T (t). Moreover, since M ICR-implements f on T , we also
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have that for all t ∈ T , f (t) = g (σ̂i (ti) , σ−i (t−i)). Thus, we can replace σ̂i with σi
and see that σi (ti) ∈ BRi (πi (ti, σ−i) |M) for all ti ∈ Ti. Since the choice of i was

arbitrary, we have that σ ∈ BNE (U (M, T )).

For the converse, assume that M implements f on T in Bayes-Nash equilibria.

This implies that BNE (U (M, T )) 6= ∅. Thus,M satisfies the EBRP on T .

IV. Interim Iterative Monotonicity

In the following section, we present our necessary condition. Let T be any model. For

every player i ∈ I, let us call any map βi : Ti → 2Ti\ {∅} as player i’s deception. A

special deception for player i is the truth-telling deception, βti , defined by βti (ti) = {ti}
for all ti ∈ Ti. Another special deception for player i is denoted by β̄i and defined by

β̄i (ti) = Ti. For any βi and β′i we write βi ⊆ β′i if βi (ti) ⊆ β′i (ti) for all ti ∈ Ti. Let

Bi be the set of all player i’s deceptions containing the truth-telling deception; that

is,

Bi =
{
βi : Ti → 2Ti\ {∅} |βti ⊆ βi

}
.

Let B = Πi∈IBi, with β = (βi)i∈I as a typical deception profile of B.
For every i ∈ I, let Y f

i be the set of mappings from T−i to ∆ (A) satisfying the

following requirement. Whatever is player i’s actual type, he would never prefer the

outcome to be selected by a mapping Y f
i to the outcome he could obtain under f if

all his opponents were reporting truthfully. Formally,

Y f
i =


For all t̃i ∈ Ti,

y : T−i → ∆ (A)
∑

(θ,t−i)∈Θ×T−i κ
(
t̃i
)

[θ, t−i]ui
(
f
(
t̃i, t−i

)
, θ
)
≥∑

(θ,t−i)∈Θ×T−i κ
(
t̃i
)

[θ, t−i]ui (y (t−i) , θ).

 (2)

Note that Y f
i is a metrizable separable space.9 We write Y f for Πi∈IY

f
i . For all i ∈ I,

9To see it, observe that ∆ (A) is a separable metric space under the Prohokorov metric given
that A is a separable metric space Aliprantis and Border (2006); Theorem 14.15). Moreover, a
countable product of the space ∆ (A) is separable metric space under the standard metric (see, e.g.,
Ok (2011), p. 196). Thus, since Y fi is a subset of a separable metric space, it follows that it is a
separable metric space.
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let Y f
i,s be the set of all mappings in Y f

i satisfying the inequality in (2) strictly for all

t̃i ∈ Ti.10 Similarly, we write Y f
s for Πi∈IY

f
i,s.

Assumption 1 used by Oury and Tercieux (2012) to characterize a class of imple-

mentable SCFs can be stated as follows.

Definition 6 (Assumption 1 of Oury and Tercieux (2012)). Let T be any model and

let f : T → ∆ (A) be any SCF. For all i ∈ I, there exists ȳi : T−i → ∆ (A) such that

for all ψi ∈ ∆ (Θ× T−i), there exists yi ∈ Y f
i satisfying

∑
(θ,t′−i)∈Θ×T−i ψi

[
θ, t′−i

]
ui
(
yi
(
t′−i
)
, θ
)

>∑
(θ,t′−i)∈Θ×T−i ψi

[
θ, t′−i

]
ui
(
ȳi
(
t′−i
)
, θ
)
.

The assumption requires that player i’s preferences over the mappings from T−i to

∆ (A) are such that there exists a mapping ȳi : T−i → ∆ (A) such that, whatever his

beliefs over Θ× T−i are, the mapping ȳi is never his top-ranked mapping.

For the sake of clarity, in what follows, for every i ∈ I, we write T−i × T̂−i for

T−i× T−i. In the context of a mechanism, our interpretation of
(
t−i, t̂−i

)
∈ T−i× T̂−i

is that player i’s opponents are of types t−i but they are playing as if they were of

types t̂−i.

A deception profile β ∈ B is acceptable on T for f if for all t, t′ ∈ T , t′ ∈ β (t) =⇒
f (t) = f (t′). The following condition is due to Oury and Tercieux (2012).

Definition 7. f : T → ∆ (A) satisfies interim (correlated) rationalizable mono-

tonicity (IRM, henceforth) on T if for every unacceptable deception profile β ∈
B on T for f , there exists (i, ti, t

′
i) ∈ I × Ti × βi (ti) such that for all ψi (ti) ∈

10Formally, for all i ∈ I,

Y fi,s =


For all t̃i ∈ Ti,

y : T−i → ∆ (A)
∑

(θ,t−i)∈Θ×T−i
κ
(
t̃i
)

[θ, t−i]ui
(
f
(
t̃i, t−i

)
, θ
)
>∑

(θ,t−i)∈Θ×T−i
κ
(
t̃i
)

[θ, t−i]ui (y (t−i) , θ).


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∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆β−i

(
Θ× T−i × T̂−i

)
, there exists y∗i ∈ Y

f
i such that

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iψi (ti)

[
θ, t̂−i

])
ui
(
y∗i
(
t̂−i
)
, θ
)

>∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iψi (ti)

[
θ, t̂−i

])
ui
(
f
(
t′i, t̂−i

)
, θ
)
.

(3)

Remark 2. Oury and Tercieux (2012) introduce a strict variant of IRM. f satisfies

strict IRM on T if y∗ ∈ Y f
i satisfying (3) is such that it satisfies the inequality in (2)

strictly for t′i = t̃i. However, it can be shown that the two conditions are equivalent.11

A condition, which is equivalent to IRM, can be expressed in terms of the limit

point of an iterative net of deception profiles. To define the net, we need additional

notation. For all i ∈ I and all ti ∈ Ti, let ∆κ(ti)
(

Θ× T−i × T̂−i
)
be defined by

∆κ(ti)
(

Θ× T−i × T̂−i
)

=
{
νi ∈ ∆

(
Θ× T−i × T̂−i

)
|margΘ×T−iνi = κ (ti)

}
,

and, moreover, for all β ∈ B, let ∆β−i
(

Θ× T−i × T̂−i
)
be defined by

∆β−i
(

Θ× T−i × T̂−i
)

=

 νi νi ∈ ∆
(

Θ× T−i × T̂−i
)
and

νi
[
θ, t−i, t̂−i

]
> 0 =⇒ t̂−i ∈ β−i (t−i)

 .

The iterative net, denoted by (βα)α∈Ω, is defined as follows. For all i ∈ I and all

ti ∈ Ti, let
β0
i (ti) = β̄i (ti) = Ti,

and, for all ordinal numbers α ∈ Ω, define βαi (ti) as follows:

11The formal arguments are available from authors on request.
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• If α is a successor ordinal, then

βαi (ti) =



t̂i ∈ βα−1
i (ti) and there exists

νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
such

that νi (ti) ∈ ∆βα−1
−i

(
Θ× T−i × T̂−i

)
and

t̂i
∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)
≥∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
yi
(
t̂−i
)
, θ
)
,

for all yi ∈ Y f
i .


(4)

• If α is a limit ordinal, then

βαi (ti) =
⋂
γ<α

βγi (ti) . (5)

Observe that ti ∈ βαi (ti) for all i ∈ I, all ti ∈ Ti and all α ∈ Ω. A net (βα)α∈Ω is

monotonic decreasing if βα+1 ⊆ βα for all α ∈ Ω. If the limit of (βα)α∈Ω exists, we

denote it by β∗; that is, limα∈Ω β
α → β∗.

Lemma 3. Let T be any model. (βα)α∈Ω is a monotonic decreasing net such that

limα∈Ω β
α → β∗ ∈ B. Moreover, there exists an ordinal α ∈ Ω such that βα = βα+1 =

β∗.

Proof. Let T be any model. Let (βα)α∈Ω be given. By definition (βα)α∈Ω, it holds that

βt ⊆ βα for all α ∈Ω. Thus, βα ∈ B for all α ∈Ω and it is bounded below. Moreover,

since (βα)α∈Ω is bounded below, it holds that limα∈Ω β
α → β∗ ∈ B if it is a monotonic

decreasing net. Thus, we show that (βα)α∈Ω is a monotonic decreasing net. Fix any

ordinal α ∈Ω. Fix any i ∈ I and any ti ∈ Ti. We show that βα+1
i (ti) ⊆ βαi (ti). Let

us proceed according to whether α is a successor ordinal or not.

• Suppose that α is a successor ordinal. Fix any t̂i ∈ βα+1
i (ti). We show that

t̂i ∈ βαi (ti). (4) implies that t̂i ∈ βαi (ti), as we sought.

• Suppose that α is a limit ordinal. Since α is a limit ordinal, it follows that α+1

15



is a successor ordinal. Suppose that t̂i ∈ βα+1
i (ti). We show that t̂i ∈ βαi (ti).

Again, (4) implies that t̂i ∈ βαi (ti), as we sought.

Since the choice of α was arbitrary, it follows that limα∈Ω β
α → β∗ ∈ B. Finally,

the fact that there exists an ordinal α ∈ Ω such that βα = βα+1 = β∗ follows from

the assumption that Ti is a countable set for each player i and the fact that Ω is

an uncountable set. To see this, fix any i ∈ I and any ti ∈ Ti. Assume that,

for all α ∈ Ω, it holds that βα+1
i (ti) ⊂ βαi (ti).12 Define the mapping f : Ω → Ti

by f(α) ∈ βαi (ti) \ βα+1
i (ti), for all α ∈ Ω. Let us show that f is an injective

mapping. Fix any α, α′ ∈ Ω such that α 6= α′. Let us show that f (α) 6= f (α′).

Since Ω is a well ordered set, it is Without loss of generality, let α′ > α. Since

βα
′

i (ti) ⊆ βα+1
i (ti) ⊂ βαi (ti), it follows from definition of f that f (α) 6= f (α′). Since

f is an injective mapping from Ω to Ti, it follows that Ω is a countable set, which

is a contradiction. Thus, for all i ∈ I, all ti ∈ Ti, there exists α ∈ Ω such that

βα+1
i (ti) = βαi (ti). Since Ω is an uncountable set whose elements are ordered by ≥,

it follows that there exists α ∈ Ω such that βα+1 = βα.

Our condition can be stated as follows.

Definition 8. f : T → ∆ (A) satisfies Interim Iterative Monotonicity (IIM, hence-

forth) on T if β∗ is an acceptable deception on T for f .

The following result shows that IIM is equivalent to IRM.

Lemma 4. f : T → ∆ (A) satisfies IIM on T if and only if f satisfies IRM on T .

Proof. Assume that f : T → ∆ (A) satisfies IIM on T . Take any unacceptable

deception profile β ∈ B on T for f . Assume, to the contrary, that for all (i, ti, t
′
i) ∈

I × Ti × βi (ti), there exists ψi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆β−i

(
Θ× T−i × T̂−i

)
such that for all y∗i ∈ Y

f
i , (3) is violated.13 To derive a contradiction, let us first show

that β ⊆ βα for all α ∈ Ω. Let us proceed by transfinite induction.

By definition, β ⊆ β̄ = β0. Fix an arbitrary α ∈ Ω and suppose that for all

γ < α, it holds that β ⊆ βγ. To complete the proof we need to show that β ⊆ βα.
12The symbol ⊂ denotes strict set inclusion.
13Recall that Y f is a nonempty metrizable subspace.
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We proceed according to whether α is a limit ordinal or a successor ordinal. When

α is a limit ordinal, the induction hypothesis and the definition of βα implies that

β ⊆
⋂
γ<α

βγ = βα.

Suppose that α is a successor ordinal. Let us show that β ⊆ βα. By the inductive

hypothesis, it holds that ψi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩ ∆βα−1

−i

(
Θ× T−i × T̂−i

)
for all i ∈ I and all ti ∈ Ti. Fix any i ∈ I and any ti ∈ Ti. Take any t̂i ∈ βi (ti).
It follows from the inductive hypothesis that t̂i ∈ βα−1

i (ti). Since (3) is violated for

y∗i ∈ Y
f
i , (4) implies that t̂i ∈ βαi (ti). Since the triplet

(
i, ti, t̂i

)
∈ I × Ti × βi (ti) was

chosen arbitrarily, we conclude that β ⊆ βα. By the principle of transfinite induction,

it holds that β ⊆ βα for all α ∈ Ω. Since Lemma 3 implies that the (βα)α∈Ω is a

monotonically decreasing net which converges to β∗ ∈ B, we have that β ⊆ β∗. Since

f satisfies IIM on T , it follows that β∗ is an acceptable deception profile on T for f ,

and so β is also an acceptable deception profile on T for f , which is a contradiction.

Assume f satisfies IRM on T . Assume, to the contrary, that β∗ ∈ B is not accept-

able on T for f . Since f satisfies IRM, it follows that there exists (i, ti, t
′
i) ∈ I ×

Ti× β∗i (ti) such that for all ψi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆β∗−i

(
Θ× T−i × T̂−i

)
,

there exists y∗i ∈ Y
f
i such that (3) is satisfied. Lemma 3 implies that there exists an

α ∈ Ω such that βα = βα+1 = β∗. Since t′i ∈ β∗i (ti), (4) implies that there exists

νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆β∗−i

(
Θ× T−i × T̂−i

)
such that

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)
≥∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
y∗i
(
t̂−i
)
, θ
)

for all y∗i ∈ Y
f
i , yielding a contradiction.

Any SCF satisfying our condition on T is incentive compatible on T . The condition
can be stated as follows.

Definition 9. f : T → ∆ (A) incentive compatible on T if for all i ∈ I and all ti ∈ Ti,

∑
(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (f (ti, t−i) , θ) ≥
∑

(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (f (t′i, t−i) , θ)
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for all ti ∈ Ti.

Lemma 5. f : T → ∆ (A) satisfies IIM on T implies that f is incentive compatible

on T .

Proof. It follows from Lemma 4 above and Lemma 3 of Oury and Tercieux (2012).

V. A full characterization

Our main result can be stated as follows.

Theorem 1. The following statements are equivalent.

(i) f : T → ∆ (A) is ICR-implementable on T by a mechanism satisfying the EBRP.

(ii) f : T → ∆ (A) satisfies IRM on T .

(iii) f : T → ∆ (A) satisfies IIM on T .

(iv) f : T → ∆ (A) is ICR-implementable and Bayes-Nash implementable on T .

Proof of Theorem 1

The proof that part (i) implies part (ii) can be found in Appendix. Lemma 4 implies

that part (ii) implies (iii). Lemma 2 implies that part (iv) implies (i). Finally, we

show that part (iii) implies part (iv). Thus, assume that f : T → ∆ (A) satisfies IIM

on T . We show that f : T → ∆ (A) is ICR-implementable on T by a mechanism

satisfying the EBRP. Before proving this result, we need additional notation. Fix any

β ∈ B, and any i ∈ I. Let ∆β−i
(

Θ× T̂−i
)
be defined by

∆β−i
(

Θ× T̂−i
)

=

 ψi There exists νi (ti) ∈ ∆β−i
(

Θ× T−i × T̂−i
)

such that margΘ×T̂−iνi (ti) = ψi.

 (6)

Since for all t−i ∈ T−i, β̄−i (t−i) = T−i, it follows that ∆β̄−i
(

Θ× T̂−i
)

= ∆
(

Θ× T̂−i
)
.

The following definition is critical in the construction of our implementing mecha-

nism.
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Definition 10. Let T be any model. For all β ∈ B and all i ∈ I, i ∈ I (β) if and

only if for all ψi ∈ ∆β−i
(

Θ× T̂−i
)
, there exist yi, ȳi ∈ Y f

i such that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
yi
(
t̂−i
)
, θ
)
>

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)
. (7)

The above definition says that i ∈ I (β) provided that for every belief ψi of player

i over Θ × T̂−i, there are mappings yi, ȳi ∈ Y f
i that may depend on his belief ψi

such that yi is strictly preferred to ȳi, given his belief ψi. A stronger, though more

desirable, definition would be to require that the mapping ȳi does not depend on

player i’s belief. The definition can be stated as follows.

Definition 11. Let T be any model. For all β ∈ B and all i ∈ I, i ∈ I∗ (β) if and

only if there exists ȳi ∈ Y f
i such that for all ψi ∈ ∆β−i

(
Θ× T̂−i

)
, there exists yi ∈ Y f

i

such that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
yi
(
t̂−i
)
, θ
)
>

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)
. (8)

Observe that Definition 11 is equivalent to Assumption 1 of Oury and Tercieux

(2012) when β = β̄. We show below that Definition 10 and Definition 11 are equiva-

lent.

Lemma 6. Let T be any model. For all β ∈ B, I∗ (β) = I (β).

Proof. Let T be any model. Fix any β ∈ B. Since it is clear that I∗ (β) ⊆ I (β),

let us show that I (β) ⊆ I∗ (β). Assume that i ∈ I (β). Definition 10 implies that

for all ψi ∈ ∆β−i
(

Θ× T̂−i
)
, there exist yψii , ȳ

ψi
i ∈ Y

f
i such that (8) is satisfied. Since

∆β−i
(

Θ× T̂−i
)

is a separable metric space, let ∆̂
(

Θ× T̂−i
)

= ∪k∈N {ψi,k} be a

countable, dense subset of ∆β−i
(

Θ× T̂−i
)
. Let ỹi ∈ Y f

i be a mapping defined by

ỹi =
∞∑
k=1

1

2k
ȳ
ψi,k
i .
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For all k̄ ∈ N, let yψi,k̄i ∈ Y f
i be a mapping defined by

yk̄i =
∑
k 6=k̄

1

2k
ȳ
ψi,k
i +

1

2k̄
y
ψi,k̄
i .

Thus, for all k ∈ N, we have that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi,k
[
θ, t̂−i

]
ui
(
yki
(
t̂−i
)
, θ
)
>

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ỹi
(
t̂−i
)
, θ
)
,

where the strict inequality is guaranteed by (7). Since player i’s preference over

lotteries are continuous and since, moreover, ∆̂
(

Θ× T̂−i
)
is a countable, dense subset

of ∆β−i
(

Θ× T̂−i
)
, it follows that i ∈ I∗ (β). Since the choice of i ∈ I (β) was

arbitrary, it follows that I (β) ⊆ I∗ (β).

In what follows, to avoid trivialities, we assume that I
(
β̄
)
6= ∅. Moreover, we will

also assume that I (β∗) = I. The reason is that if I (β∗) 6= I, part (ii) of the above

lemma implies that the planner’s objective is constant on Πi∈Ic(β∗)Ti ≡ TIc(β∗), where

Ic (β∗) is the complement of Ic (β∗). Therefore, the planner can, equivalently, focus

on the implementation of an SCF f̂ : Πi∈I(β∗)Ti → ∆ (A) defined, for all t ∈ Πi∈I(β∗)Ti,

by f̂ (t) = f (t, t′) for all t′ ∈ TIc(β∗). This is justified by the following lemmata.

Lemma 7. Assume that f : T → ∆ (A) satisfies IIM on T . For all α ∈ Ω and all

i ∈ I, i ∈ Ic (βα) =⇒ βαi = βα+1
i = β̄i.

Proof. Assume that f : T → ∆ (A) satisfies IIM on T . Fix any α ∈ Ω. Assume that

i ∈ Ic (βα). Assume, to the contrary, βα+1
i 6= βαi . Since Lemma 3 implies that (βα)α∈Ω

is a monotonic decreasing net, it follows that there exists
(
ti, t̂i

)
such that t̂i ∈ βαi (ti)

and t̂i /∈ βα+1
i (ti). It follows from (4) that for all νi (ti) ∈ ∆κ(ti)

(
Θ× T−i × T̂−i

)
∩

∆βα−i

(
Θ× T−i × T̂−i

)
,

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)

<∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
ȳi
(
t̂−i
)
, θ
)
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for some ȳi ∈ Y f
i . Therefore, for all ψi ∈ ∆βα−i

(
Θ× T̂−i

)
,

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
f
(
t̂i, t̂−i

)
, θ
)
<

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)

for some ȳi ∈ Y f
i . Let yi

(
t̂i, ·
)

= f
(
t̂i, ·
)
. Since f satisfies IIM on T , Lemma 4 and

Lemma 5 imply that f is incentive compatible on T . This implies that yi
(
t̂i, ·
)
∈ Y f

i .

Definition 10 implies that i ∈ I (βα), yielding a contradiction.

Finally, let us show that βα+1
i = βαi = β̄i. Assume, to the contrary, that βα+1

i =

βαi 6= β̄i. Since Lemma 3 implies that (βαi )α∈Ω is a decreasing monotonic net, it follows

that there exists a successor ordinal α̂ such that 0 < α̂ ≤ α such that βα̂i ⊆ βα̂−1
i

and βα̂i 6= βα̂−1
i .14 It follows that βα̂i (ti) ⊆ βα̂−1

i (ti) and βα̂i (ti) 6= βα̂−1
i (ti) for some

ti ∈ Ti, and so t̂i ∈ βα̂−1
i (ti) and ti /∈ βα̂i (ti) for some t̂i, ti ∈ Ti. (4) implies that there

exists ȳi ∈ Y f
i such that

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)

<∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
ȳi
(
t̂−i
)
, θ
)

for all νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩ ∆βα̂−1

−i

(
Θ× T−i × T̂−i

)
. By definition of

∆βα̂−1
−i

(
Θ× T̂−i

)
in (6), it follows that there exists ȳi ∈ Y f

i such that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
f
(
t̂i, t̂−i

)
, θ
)
<

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)

for all ψi ∈ ∆βα̂−1
−i

(
Θ× T̂−i

)
. Let yi

(
t̂i, ·
)

= f
(
t̂i, ·
)
. Since f satisfies IIM on T ,

Lemma 4 and Lemma 5 imply that f is incentive compatible on T . This implies

14Suppose not. Then, for all successor ordinals α̂ such that α̂ ≤ α, it holds that βα̂i = βα̂−1
i .

Suppose that βα̂i = β̄i for all successor ordinals α̂ such that α̂ ≤ α. It follows that for every
limit ordinal δ ≤ α, it holds that βδi (ti) =

⋂
γ<δ β

γ
i (ti) = β̄i (ti) for all ti ∈ Ti. An immediate

contradiction is obtain if α is a limit ordinal. Thus, let α be a successor ordinal, and so βαi = β̄i,
which is a contradiction. Thus, there exists a successor ordinal α′, with α′ ≤ α, such that βα

′

i 6= β̄i.
Since for all α̃ ∈ Ω, βα̃i = βα̃+1

i , it follows that for all successor ordinals α̂ such that α̂ ≤ α, it holds
that βα̂i 6= β̄i. Since 1 ∈ Ω is a successor ordinal, it follows that there exists a successor ordinal such
that β1

i ⊆ β0
i = β̄i, yielding a contradiction.
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that yi
(
t̂i, ·
)
∈ Y f

i . Definition 10 implies that i ∈ I
(
βα̂−1

)
. Since Lemma 3 implies

that (βαi )α∈Ω is a decreasing monotonic sequence and since, moreover, α̂ is such that

0 6= α̂ ≤ α, it follows that there exist ȳi, yi
(
t̂i, ·
)
∈ Y f

i such that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
f
(
t̂i, t̂−i

)
, θ
)
<

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)

for all ψi ∈ ∆βα−i

(
Θ× T̂−i

)
⊆ ∆βα̂−1

−i

(
Θ× T̂−i

)
. Definition 10 implies that i ∈

I (βα), which is a contradiction. Thus, βα+1
i = βαi = β̄i.

Lemma 8. Assume that f : T → ∆ (A) satisfies IIM on T .

(i) If I
(
β̄
)

= ∅, then f is constant.15

(ii) If I (β∗) 6= I, then for all i ∈ Ic (β∗), all t−i ∈ T−i and all ti, t′i ∈ Ti, f (ti, t−i) =

f (t′i, t−i).

Proof. Assume that f : T → ∆ (A) satisfies IIM on T . To show part (i), assume

that I
(
β̄
)

= ∅. If β∗ = β̄, then β̄ is an acceptable deception profile on T for f .

This implies that f is constant. Thus, the complete the proof, let us show that

β∗ = β̄. Assume, to the contrary, that β∗ 6= β̄. Then, there exists (i, ti) ∈ I × Ti
such that β∗i (ti) 6= Ti = β̄i (ti). Since β∗i (ti) ⊆ β̄i (ti) = Ti, it follows that there

exists t̂i ∈ β̄i (ti) = Ti such that t̂i /∈ β∗i (ti). Since β∗ is the limit point of
(
βk
)
k≥0

and since, by Lemma 3, β∗ ⊆ βk for all k ≥ 0, it follows from (4) and the fact that

β0
i (ti) = β̄i (ti) that there exists k + 1 such that t̂i /∈ βk+1

i (ti), t̂i ∈ βki (ti) and for all

νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆βk−i

(
Θ× T−i × T̂−i

)
,

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
f
(
t̂i, t̂−i

)
, θ
)

<∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
ȳi
(
t̂−i
)
, θ
)

for some ȳi ∈ Y f
i . Since ∆βk−i

(
Θ× T−i × T̂−i

)
⊆ ∆β̄−i

(
Θ× T−i × T̂−i

)
= ∆

(
Θ× T−i × T̂−i

)
,

15f is constant if for all t, t′ ∈ T , f (t) = f (t′).
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we can write that for all ψi ∈ ∆
(

Θ× T̂−i
)
,

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
f
(
t̂i, t̂−i

)
, θ
)
<

∑
(θ,t̂−i)∈Θ×T̂−i

ψi
[
θ, t̂−i

]
ui
(
ȳi
(
t̂−i
)
, θ
)

for some ȳi ∈ Y f
i . Let yi

(
t̂i, ·
)

= f
(
t̂i, ·
)
. Since f satisfies IIM on T , Lemma 4 and

Lemma 5 imply that f is incentive compatible on T . This implies that yi
(
t̂i, ·
)
∈ Y f

i .

Definition 10 implies that i ∈ I
(
β̄
)
, yielding a contradiction. This completes the

proof of part (i).

Let us show part (ii). Assume that I (β∗) 6= I. Suppose that β∗i = β̄i for all

i ∈ Ic (β∗). Since f satisfies IIM on T , it follows that β∗ is an acceptable deception

profile on T for f . Fix any i ∈ Ic (β∗) and any ti ∈ Ti. Since β∗i = β̄i, we have that

β∗i (ti) = β̄i (ti) = Ti. Since f satisfies IIM on T , we have that for all t−i ∈ T−i,

f (t′i, t−i) = f (t′′i , t−i) for all t′i, t′′i ∈ β∗i (ti) = β̄i (ti) = Ti. Since the choice of i ∈
Ic (β∗) was arbitrary, the statement of part (ii) follows if we show that β∗i = β̄i for

all i ∈ Ic (β∗). To this end, fix any i ∈ Ic (β∗). Assume that β∗i 6= β̄i. Then, there

exists ti ∈ Ti such that β∗i (ti) 6= Ti = β̄i (ti). A contradiction can be derived by using

the same reasoning used in part (i). This completes the proof of part (ii).

Lemma 9. For all (α, i) ∈ Ω× I, if i ∈ I (βα) \I (β0), then there exists α̂ ≤ α such

that i ∈ I
(
βα̂
)
and i ∈ Ic (βγ) for all γ < α̂.

Proof. Fix any pair (α, i) ∈ Ω × I such that i ∈ I (βα) \I (β0). Assume, to the

contrary, that there does not exist any α̂ ∈ Ω with α̂ ≤ α such that i ∈ I
(
βα̂
)

and i ∈ Ic (βγ) for all γ < α̂. Thus, for all α̂ ∈ Ω with α̂ ≤ α, it holds that

i ∈ Ic
(
βα̂
)
or i ∈ I (βγ) for some γ < α̂. Suppose that there exists α̂ ∈ Ω

with α̂ ≤ α such that i ∈ I (βγ) for some γ < α̂. Let us consider the set Ω̄ ={
δ ∈ Ω\ {0} |δ ≤ γ < α̂ and i ∈ I

(
βδ
)}

. Let γ∗ ∈ Ω̄ be such that γ∗ ≤ δ for all

δ ∈ Ω̄. We have that i ∈ I
(
βγ
∗) and i ∈ Ic (βγ) for all γ < γ∗, which is a contradic-

tion. Therefore, suppose that for all α̂ ∈ Ω with α̂ ≤ α, it holds that i ∈ Ic (βγ) for all

γ < α̂. Since i ∈ I (βα) and since i ∈ Ic (βγ) for all γ < α, we have a contradiction.
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The following result is useful in defining Rule 3 of the mechanism.

Lemma 10. Let T be any model. For all i ∈ I (β∗), there exists ŷi ∈ ∆ (A) such

that for all φi ∈ ∆ (Θ), there exists yi ∈ ∆ (A) such that

∑
θ∈Θ

φi (θ)ui (yi, θ) >
∑
θ∈Θ

φi (θ)ui (ŷi, θ) . (9)

Proof. Fix any i ∈ I (β∗). Lemma 6 implies that i ∈ I∗ (β∗). Definition 11 implies

that there exists ȳi ∈ Y f
i such that for all ψi ∈ ∆β∗−i

(
Θ× T̂−i

)
, there exists yi ∈ Y f

i

such that (8) holds. Since βt ⊆ β∗, it follows that there exists ȳi ∈ Y f
i such that for

all ψi ∈ ∆βt−i

(
Θ× T̂−i

)
, there exists yi ∈ Y f

i such that (8) holds. Fix any ti ∈ Ti.

Observe that φi ◦
(
margT−iκ (ti)

)
∈ ∆βt−i

(
Θ× T̂−i

)
for all φi ∈ ∆ (Θ). Therefore, it

holds that

∑
(θ,t̂−i)∈Θ×T̂−i

(
φi [θ]

(
margT−iκ (ti)

[
t̂−i
])) [

ui
(
yi
(
t̂−i
)
, θ
)
− ui

(
ȳi
(
t̂−i
)
, θ
)]
> 0.

By setting

yi =
∑

t̂−i∈T̂−i

(
margT−iκ (ti)

[
t̂−i
])
yi
(
t̂−i
)

and

ŷi =
∑

t̂−i∈T̂−i

(
margT−iκ (ti)

[
t̂−i
])
ȳi
(
t̂−i
)
,

and by noting that yi, ŷi ∈ ∆ (A), the inequality in (9) follows for i. Since the choice

of i ∈ I (β∗) was arbitrary, the statement follows.

Let T be any model. Since I (β∗) = I and since Lemma 9 guarantees the existence

of the lottery ŷi ∈ ∆ (A) for all i ∈ I, let us define the lottery ŷ by

ŷ =
1

I

∑
i∈I

ŷi.

Given the net (βα)α∈Ω and our assumption that I(β∗) = I, Lemma 3 implies

that for some α ∈ Ω, it holds that I(βα) = I. For every i ∈ I \ I(β0), Lemma 9
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implies that there exists a least ordinal α (i) such that i ∈ I∗
(
βα(i)

)
\I∗ (βγ) for every

γ < α(i). For player i ∈ I∗
(
βα(i)

)
, Definition 8 implies that there exists ȳi ∈ Y f

i

satisfying (8). Let us denote ȳi by ȳβ
α(i)

i . Since ȳβ
α(i)

i ∈ Y f
i,s, we can choose an ε > 0

sufficiently small such that the mapping yβ
α(i)

i : T−i → ∆ (A) defined by

yβ
α(i)

i (t−i) = (1− ε) ȳβ
α(i)

i (t−i) + εŷ (10)

is such that yβ
α(i)

i ∈ Y f
i,s. For i ∈ I(β0), let α(i) = 0.

Let us now define the mechanismM. For all i ∈ I, let

Mi = M1
i ×M2

i ×M3
i ×M4

i ,

where

M1
i = Ti, M2

i = N, M3
i = Y ∗i and M4

i = ∆∗ (A) ,

where N is the set of natural numbers, Y ∗i is a countable, dense subset of Y f
i , and

∆∗ (A) is a countable, dense subset of ∆ (A). For all m ∈ M , let g : M → ∆ (A) be

defined as follows.

Rule 1 : If m2
i = 1 for all i ∈ I, then g (m) = f (m1).

Rule 2 : For all i ∈ I, if m2
j = 1 for all j ∈ I\ {i} and m2

i > 1, then

g (m) = m3
i

(
m1
−i
)(

1− 1

1 +m2
i

)
⊕ yβ

α(i)

i

(
m1
−i
)( 1

1 +m2
i

)
, (11)

where yβ
α(i)

i ∈ Y f
i,s is defined in (10).

Rule 3 : Otherwise, for each i ∈ I, m4
i is picked with probability 1

I

(
1− 1

1+m2
i

)
and ŷi

is picked with probability 1
I

(
1

1+m2
i

)
; that is,

g (m) =
1

I

[
m4
i

(
1− 1

1 +m2
i

)
⊕ ŷi

(
1

1 +m2
i

)]
, (12)

where ŷi is specified by Lemma 10.
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Suppose that f satisfies IIM on T . In what follows, we prove that M ICR-

implements f on T and that M satisfies the EBRP. The following lemmata will

help us to complete the proof.

Lemma 11. BNE (U (M, T )) 6= ∅.

Proof. For all i ∈ I, let σi : Ti → Mi be defined by σi (ti) = (ti, 1, ·, ·). For all i ∈ I
and all ti ∈ Ti, let πi (ti) ∈ ∆ (Θ× Ti ×M−i) be defined by

πi (ti) [θ, ti,m−i] = κ (ti) [θ, t−i] δσ−i(t−i) [m−i] ,

where δσ−i(t−i) is the dirac measure on {σ−i (t−i)}. By construction, for all ti ∈ Ti

and all (θ, t−i,m−i) ∈ Θ × Ti × M−i, πi (ti) [θ, ti,m−i] > 0 =⇒ m−i = σ−i (t−i).

Moreover, by construction and Rule 1, for all i ∈ I and all ti ∈ Ti,

∑
(θ,m−i)∈Θ×M−i

margΘ×M−iπi (ti) [θ,m−i]ui (g (σi (ti) ,m−i) , θ)

=
∑

(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (f (ti, t−i) , θ) .

Finally, by definition of g and the fact that f is incentive compatible on T (Lemma

5), it follows that for all i ∈ I and all ti ∈ Ti, Supp(σi (ti)) ⊆ BRi

(
margΘ×M−iπi|M

)
,

and so σ ∈ BNE (U (M, T )).

Before proving the following lemma, let us introduce the following definitions. For

all β ∈ B and all i ∈ I, define Σβi
i : Ti → 2Mi\ {∅} by

Σβi
i (ti) =

{
mi ∈Mi|m1

i ∈ βi (ti)
}
, (13)

and define Σ̃βi
i : Ti → 2Mi\ {∅} by

Σ̃βi
i (ti) =

{
mi ∈ Σβi

i (ti) |m2
i = 1

}
. (14)

It can be checked that Σβ, Σ̃β ∈ SM,T .
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Lemma 12. For all α ∈ Ω, all i ∈ I (βα) and all πi ∈ ∆ (Θ× T−i ×M−i), if

mi ∈ BRi

(
margΘ×M−iπi|M

)
(15)

and

πi ∈ ∆Σ
βα−i
−i (Θ× T−i ×M−i) ,

then m2
i = 1 and

πi ∈ ∆Σ̃
βα−i
−i (Θ× T−i ×M−i) ,

and m1
i ∈ βα+1

i (ti) for all ti ∈ Ti.

Proof. Fix any α ∈ Ω and any i ∈ I (βα). Suppose that πi ∈ ∆Σ
βα−i
−i (Θ× T−i ×M−i)

and that mi ∈ BRi

(
margΘ×M−iπi|M

)
. Let us first show that m2

i = 0. Assume,

to the contrary, that m2
i > 0. Let us proceed according to whether Rule 2 applies

or Rule 3 applies. To this end, let us first show that πi ∈ ∆Σ
βα−i
−i (Θ× T−i ×M−i)

implies that

∑
θ∈Θ

∑
t−i∈T−i

∑
m−i∈Σ̃

βα−i
−i (t−i)

πi(ti)[θ, t−i,m−i]

︸ ︷︷ ︸
Prob[Rule2]

+
∑
θ∈Θ

∑
t−i∈T−i

∑
m−i∈M−i\Σ̃

βα−i
−i (t−i)

πi(ti)[θ, t−i,m−i]

︸ ︷︷ ︸
Prob[Rule3]

= 1.

(16)

For all i ∈ I and all ti ∈ T−i, define νi(ti) ∈ ∆(Θ× T−i ×M1
−i) by

νi(ti)[θ, t−i,m
1
−i] =

∑
m−i∈Σ̃

βα−i
−i (t−i)[m1

−i]

πi(ti)[θ, t−i,m−i]

Prob[Rule2]
. (17)

Since πi ∈ ∆Σ
βk−i
−i (Θ× T−i ×M−i), it follows that νi(ti) ∈ ∆βk−i(Θ × T 1

−i ×M1
−i).

Let ψi = margΘ×M1
−i
νi(ti). Since νi(ti) ∈ ∆βk−i(Θ× T 1

−i ×M1
−i), it holds that

ψi ∈ ∆βα−i(Θ×M1
−i). (18)

Next, let φi(θ) ∈ ∆(Θ) be defined by
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φi(θ) =

∑
t−i∈T−i

∑
m−i∈M−i\Σ̃

βα−i
−i (t−i)

πi(ti)[θ, t−i,m−i]

Prob[Rule3]
. (19)

The utility ofmi under the beliefsmargΘ×M−iπi, which is denoted by Ui(mi,margΘ×M−iπi),

is given by

Ui(mi,margΘ×M−iπi) = α
∑

(θ,t−i)∈Θ×T−i

ψi(θ, t−i)ui

[(
1− 1

m2
i + 1

)m3
i (t−i)⊕

1

m2
i + 1

yβ
α(i)

i (t−i)
)
, θ
]

+ (1− α)
∑
θ∈Θ

φi(θ)ui

[(
1− 1

m2
i + 1

)m4
i ⊕

1

m2
i + 1

ŷi

)
, θ
]

(20)

where α = Prob[Rule2].

Since ψi ∈ ∆βk−i(Θ× T̂−i), Definition 11 implies that there exists y′i ∈ Y
f
i such that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi(θ, t̂−i)ui(y
′
i(t̂−i), θ) >

∑
(θ,t̂−i)∈Θ×T̂−i

ψi(θ, t̂−i)ui(y
βα(i)

(t̂−i), θ). (21)

Furthermore, Lemma 10 implies that there exists yi ∈ ∆(A) such that

∑
θ∈Θ

φi(θ)ui(yi, θ) >
∑
θ∈Θ

φi(θ)ui(ŷi, θ). (22)

Since mi ∈ BRi(margΘ×M−iπi|M), it follows that

∑
(θ,t̂−i)∈Θ×T̂−i

ψi(θ, t̂−i)ui(m
3
i (t̂−i), θ) ≥

∑
(θ,t̂−i)∈Θ×T̂−i

ψi(θ, t̂−i)ui(y
′
i(t̂−i), θ) (23)

and that ∑
θ∈Θ

φi(θ)ui(m
4
i , θ) ≥

∑
θ∈Θ

φi(θ)ui(yi, θ). (24)
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Inequalities in (21)-(24) imply that Ui(mi,margΘ×M−iπi) is strictly increasing in

m2
i , which is a contradiction. Thus, m2

i = 1.

Next, let us show that πi ∈ ∆Σ̃
βα−i
−i (Θ× T−i ×M−i). Assume, to the contrary, that

πi /∈ ∆Σ̃
βα−i
−i (Θ× T−i ×M−i). Then, since m2

i = 1, either Rule 2 applies where m2
j > 1

for some j ∈ I\{i} or Rule 3 applies. In what follows, we focus only on the case that

Rule 2 applies.16

By the definition of g, for all (θ,m−i) ∈ Supp(marg
Θ×M−i

πi), it holds that

g(mi,m−i) = (1− 1

m2
j + 1

)m3
j(m

1
−j) +

1

m2
j + 1

yβ
α(j)

j (m1
−j), (25)

where, for ε > 0 sufficiently small,

yβ
α(j)

j (t−j) = (1− ε) ȳβ
α(j)

j (t−j) + εŷ. (26)

Define g̃(mi,m−i) as

g̃(mi,m−i) = (1− 1

m2
j + 1

)m3
j(m

1
−j) +

1

m2
j + 1

ỹβ
α(j)

j (m1
−j) (27)

where ỹβ
α(j)

j (t−j) = (1− ε) ȳβ
α(j)

j (t−j) + ε[
∑
j 6=i

1
I
ŷj + 1

I
yi] and yi is such that (9) is

satisfied. Finally, let us define m̂4
i by

m̂4
i =

∑
margΘ×M−iπi(θ,m−i)g̃(·,m−i). (28)

Since player i’s utility is strictly higher under g̃(mi,m−i) than under g(mi,m−i),

for every (θ,m−i) ∈ Supp(marg
Θ×M−i

πi), and since player i’s utility function is contin-

uous, we can assume without lost of generality that m̂4
i ∈ ∆∗(A) = M4

i . Since

player i’s utility is strictly higher under g̃(mi,m−i) than under g(mi,m−i), for ev-

ery (θ,m−i) ∈ Supp(marg
Θ×M−i

πi), player i can play any m̂i ∈ Mi such that its fourth

component is m̂4
i and its second component is m̂2

i > 1 and trigger Rule 3. In

this way, player i obtains a strictly higher utility. Since the utility gain is ob-

16When Rule 3 applies, we can see, by the arguments provided above, that player i can find a
profitable deviation
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tained point-wise in the Supp(marg
Θ×M−i

πi), we obtain the desired contradiction. Thus,

πi ∈ ∆Σ̃
βα−i
−i (Θ× T−i ×M−i).

Finally, let us show that m1
i ∈ βα+1

i (ti) for all ti ∈ Ti. Fix any ti ∈ Ti. Since

πi ∈ ∆Σ̃
βα−i
−i (Θ× T−i ×M−i), we have that

∑
t−i∈T−i

∑
m−i∈Σ̃

βα−i
−i (t−i)

πi [θ, t−i,m−i] = 1.

Let νi (ti) ∈ ∆
(

Θ× T−i × T̂−i
)
be defined by

νi (ti)
[
θ, t−i,m

1
−i
]

=
∑

m−i∈Σ̃
βα−i
−i (m1

−i)

πi [θ, t−i,m−i] . (29)

By definition, we can see that νi (ti) ∈ ∆κ(ti)
(
Θ× T−i ×M1

−i
)
∩∆βα−i

(
Θ× T−i ×M1

−i
)
.

Since m2
1 = 1, then Rule 1 applies with probability 1, and so

∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi [θ,m−i]

)
ui (g (mi,m−i) , θ) =∑

(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi [θ,m−i]

)
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)
,

(30)

and so, by (29),

∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi [θ,m−i]

)
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)

=∑
(θ,m1

−i)∈Θ×M1
−i

(
margΘ×M1

−i
νi (ti)

[
θ,m1

−i
])
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)
.

Moreover, since mi ∈ BRi

(
margΘ×M−iπi|M

)
and since, moreover, player i can never

induce Rule 3, it follows from the definition of g that

∑
(θ,m1

−i)∈Θ×M1
−i

(
margΘ×M1

−i
νi (ti)

[
θ,m1

−i
])
ui
(
f
(
m1
i ,m

1
−i
)
, θ
)
≥∑

(θ,m1
−i)∈Θ×M1

−i

(
margΘ×M1

−i
νi (ti)

[
θ,m1

−i
])
ui
(
m3
i

(
m1
−i
)
, θ
)
,

(31)

for all m3
i ∈ Y ∗i . Since Y ∗i is a countable, dense subset of Y f

i and since ui is con-

tinuous, we have that the inequality in (31) holds for all m3
i ∈ Y f

i . Since νi (ti) ∈
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∆κ(ti)
(
Θ× T−i ×M1

−i
)
∩∆βα−i

(
Θ× T−i ×M1

−i
)
and since, moreover, the inequality in

(31) holds for all m3
i ∈ Y

f
i , and m1

i ∈ βαi (ti), it follows from (4) that m1
i ∈ βα+1

i (ti),

as we sought.

Lemma 13. For all α ∈ Ω and all i ∈ I, Sα,M,T
i ⊆ Σ

βαi
i

Proof. Let us proceed by transfinite induction over Ω. It is clear that Sα,M,T
i ⊆

Σ
βαi
i = Mi for all i ∈ I if α = 0. Fix any α ∈ Ω \ {0}. Suppose that for all

γ < α, Sγ,M,T
i ⊆ Σ

βγi
i for all i ∈ I. Fix any i ∈ I. We proceed according to

whether α is a successor ordinal or not. Suppose that α is a limit ordinal. Since⋂
γ<α S

γ,M,T
i = Sα,M,T

i , by Definition 3, it follows that Sα,M,T
i ⊆

⋂
γ<α Σ

βγi
i . Fix any

ti ∈ Ti and any mi ∈
⋂
γ<α Σ

βγi
i (ti). Then, m1

i ∈
⋂
γ<α β

γ
i (ti). It follows from (5) that

m1
i ∈ βαi (ti). Since the choice of ti ∈ Ti was arbitrary, we have that

⋂
γ<α Σ

βγi
i ⊆ Σ

βαi
i .

Since Sα,M,T
i ⊆

⋂
γ<α Σ

βγi
i , we have that Sα,M,T

i ⊆ Σ
βαi
i .

Suppose that α is a successor ordinal. We proceed according to whether i ∈
I (βα−1) or i ∈ Ic (βα−1). Suppose that i ∈ I (βα−1), we proceed according to

whether i ∈ I (βα) or not. Suppose that i ∈ Ic (βα). Lemma 7 implies that βαi = β̄i.

It follows from (13) that Sα,M,T
i ⊆ Σβα

i . Suppose that i ∈ I (βα). Fix any ti ∈ Ti and
any mi ∈ Sα,M,T

i (ti). The inductive hypothesis implies that Sα−1,M,T
−i ⊆ Σ

βα−1
−i
−i .

Since mi ∈ Sα,M,T
i , Definition 3 implies that mi ∈ Sα−1,M,T

i and there exists

πi ∈ ∆κ(ti) (Θ× T−i ×M−i) such that πi ∈ ∆Sα−1,M,T
−i (Θ× T−i ×M−i) and that

mi ∈BRi

(
margΘ×M−iπi|M

)
. Since Sα−1,M,T

−i ⊆ Σβα−1

−i , it follows that

πi ∈ ∆Σβ
α−1

−i (Θ× T−i ×M−i) .

Since i ∈ I (βα−1) and since, moreover, mi ∈ BRi

(
margΘ×M−iπi|M

)
and πi ∈

∆Σ
βα−1
−i
−i (Θ× T−i ×M−i), Lemma 12 implies that m2

i = 1 and that m1
i ∈ βαi (ti).

Thus, mi ∈ Σ
βαi
i .

Suppose that i ∈ Ic (βα−1). Lemma 7 implies that βαi = β̄i. It follows from (13)

that Sα,M,T
i ⊆ Σβα

i .
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Lemma 14. For all α ∈ Ω, all i ∈ I (βα) and all ti ∈ Ti, if mi ∈ Sα+1,M,T
i (ti), then

m2
i = 1 and m1

i ∈ βα+1
i (ti).

Proof. Let us proceed by transfinite induction over α. Let α = 0. Assume that

i ∈ I (β0) and fix any ti ∈ Ti. Assume that mi ∈ S1,M,T
i (ti). We show that m2

i = 1

and m1
i ∈ β1

i (ti). Since mi ∈ S1,M,T
i (ti), it follows from Definition 3 that there exists

πi ∈ ∆κ(ti) (Θ× T−i ×M−i) ∩ ∆Σ
β0
−i
−i (Θ× T−i ×M−i), where Σ

β0
−i
−i = S0,M,T

−i = M−i,

such that mi ∈ BRi

(
margΘ×M−iπi|M

)
. Since mi ∈ BRi

(
margΘ×M−iπi|M

)
and

πi ∈ ∆Σ
β0
−i
−i (Θ× T−i ×M−i), Lemma 12 implies that m2

i = 1 and that m1
i ∈ β1

i (ti).

Since the choice of (i, ti) was arbitrary, we have that the statement holds for all

i ∈ I (β0) and all ti ∈ Ti.
Fix any α 6= 0. Suppose that for all γ < α, all i ∈ I (βγ) and all ti ∈ Ti, if

mi ∈ Sγ+1,M,T
i (ti), then m2

i = 1 and m1
i ∈ βγ+1

i (ti). Suppose that i ∈ I(βα) and

that mi ∈ Sα+1,M,T
i (ti). We show that m2

i = 1 and m1
i ∈ βα+1

i (ti). We proceed

according to whether α is a limit ordinal or not.

Suppose that α is a limit ordinal. Since mi ∈ Sα+1,M,T
i (ti), it follows from Defini-

tion 3 that there exists πi ∈ ∆κ(ti) (Θ× T−i ×M−i) ∩∆Sα,M,T
−i (Θ× T−i ×M−i) such

that mi ∈ BRi

(
margΘ×M−iπi|M

)
. Since α is a limit ordinal, Lemma 13 implies that

Sα,M,T
−i ⊆ Σ

βα−i
−i , (32)

and so πi ∈ ∆κ(ti) (Θ× T−i ×M−i)∩∆Σ
βα−i
−i (Θ× T−i ×M−i). Lemma 12 implies that

m2
i = 1 and that m1

i ∈ βα+1
i (ti).

Suppose that α is a successor ordinal. To apply Lemma 12, we need to show that

πi ∈ ∆Σ
βα−i
−i (Θ× T−i ×M−i). This can be done by showing that

Sα,M,T
−i ⊆ Σ

βα−i
−i . (33)

Fix any j ∈ I\ {i}. We proceed according to whether j ∈ I (βα−1) or not.

Suppose that j ∈ I (βα−1). Fix any tj ∈ Tj and any mj ∈ Sα−1,M,T
j (tj). The

inductive hypothesis implies that m2
j = 1 and m1

j ∈ βαj (tj). It follows from (13) that
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mj ∈ Σ
βαj
j (tj). Since the choice of (j, tj) ∈ I (βα−1)×Tj was arbitrary, it follows that

Sα,M,T
j ⊆ Σ

βαj
j for all j ∈ (I ∩ I (βα−1)) \ {i}.

Suppose that j ∈ Ic (βα−1). Since f satisfies IIM on T , Lemma 7 implies that

βαj = βα−1
j = β̄j. Then, it follows from (13) that mj ∈ Σ

βαj
j (tj). Again, since the

choice of j ∈ Ic (βα−1) was arbitrary, we conclude that (33) holds.

Since mi ∈ BRi

(
margΘ×M−iπi|M

)
and since πi ∈ ∆Σ

βα−i
−i (Θ× T−i ×M−i), Lemma

12 implies that m2
i = 1 and that m1

i ∈ βα+1
i (ti), as we sought.

Since the choice of (i, ti) was arbitrary, we have that the statement holds for all

i ∈ I (βα) and all ti ∈ Ti.

Let us show thatM ICR-implements f on T . Lemma 11 implies that for all i ∈ I
and ti ∈ Ti, SM,T

i (ti) 6= ∅. Thus, part (i) of Definition 4 is satisfied. Recall that

Lemma 3 implies that there exists an α such that βα = βα+1 = β∗. Recall that by

Lemma 8, we are under the assumption that I (β∗) = I. Thus, I (βα) = I . Fix any

t ∈ T and any m ∈ SM,T (t). Since SM,T (t) ⊆ Sα+1,M,T (t), then m ∈ Sα+1,M,T (t).

Lemma 14 implies thatm2
i = 1 andm1

i ∈ βα+1
i (ti) = β∗i (ti) for all i ∈ I (βα) = I (β∗).

Rule 1 implies that g (m) = f (m1). Since f satisfies IIM on T , it follows that β∗

is an acceptable deception on T for f . This implies that f (m1) = f (t). Since the

choice of (t,m) ∈ T × SM,T (t) was arbitrary, we conclude that part (ii) of Definition

4 is satisfied. Thus, f is ICR-implementable on T . Finally, in light of Remark 1,

Lemma 11 implies thatM also implements f in Bayes-Nash equilibria.
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Appendices

A. Proof of Theorem 1: Part (i) implies part (ii)

Let T be any model. Let f : T → ∆ (A) be any SCF. Assume thatM satisfies the

EBRP and that M ICR-implements f . Lemma 2 implies that there exists a pure

strategy σ ∈ BNE (U (M, T )). This implies that for all i ∈ I and all ti ∈ Ti,

∑
(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (g (σ (t)) , θ) ≥∑
(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (g ((mi, σ−i (t−i))) , θ)

for all mi ∈ Mi. Since M ICR-implements f , it follows that for all i ∈ I and all

ti ∈ Ti, ∑
(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (f (t) , θ) ≥∑
(θ,t−i)∈Θ×T−i

κ (ti) [θ, t−i]ui (g ((mi, σ−i (t−i))) , θ)
(34)

for all mi ∈Mi.

Suppose that the deception β is unacceptable. For all i ∈ I and all ti ∈ Ti,

Σi (ti) = {σi (t′i) ∈Mi|t′i ∈ βi (ti)}. Then, Σi is a correspondence from Ti to 2Mi\ {∅},
and so Σi ∈ SM,T

i . SinceM ICR-implements f , it follows that Σ ∈ SM,T cannot be

a best-reply set in U (M, T ). Then, for some
(
i, ti, σ

(
t̂i
))
∈ I × Ti × Σi (ti) and all

πi (ti) ∈ ∆κ(ti) (Θ× T−i ×M−i) ∩∆Σ−i (Θ× T−i ×M−i), it holds that

σi
(
t̂i
)
/∈ BRi

(
margΘ×M−iπi (ti) |M

)
,

and so

∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi (ti) [θ,m−i]

)
[ui (g (mi,m−i) , θ)] >∑

(θ,m−i)∈Θ×M−i

(
margΘ×M−iπi (ti) [θ,m−i]

) [
ui
(
g
(
σi
(
t̂i
)
,m−i

)
, θ
)] (35)

for some mi ∈Mi.

For all i ∈ I and all ti ∈ Ti, let νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
∩∆β−i

(
Θ× T−i × T̂−i

)
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be any distribution. For all i ∈ I, all ti ∈ Ti, let π̄i (ti) ∈ ∆ (Θ× T−i ×M−i) be de-

fined, for all (θ, t−i,m−i) ∈ Θ× T−i ×M−i, by

π̄i (ti) [θ, t−i,m−i] =
∑

t̂−i∈σ−1
−i (m−i)

νi (ti)
[
θ, t−i, t̂−i

]
,

where σ−1
−i (m−i) = Πj∈I\{i}σ

−1
j (mj) and σ−1

j (mj) = {tj ∈ Tj|mj = σj (tj)}. Since

νi (ti) ∈ ∆κ(ti)
(

Θ× T−i × T̂−i
)
, we have that margΘ×T−iνi (ti) = κ (ti). Moreover,

by construction, margΘ×T−iνi (ti) =margΘ×T−iπ̄i (ti).17 Moreover, since νi (ti) belongs

to ∈ ∆β−i
(

Θ× T−i × T̂−i
)
, it also follows that for all (θ, t−i,m−i) ∈ Θ × T−i ×

M−i, π̄i (ti) [θ, t−i,m−i] > 0 =⇒ m−i ∈ Σ−i (t−i). Thus, we have that π̄i (ti) ∈
∆κ(ti) (Θ× T−i ×M−i)∩∆Σ−i (Θ× T−i ×M−i) for all i ∈ I and all ti ∈ Ti. Moreover,

17Observe that for all (θ, t−i) ∈ Θ× T−i,

margΘ×T−i
π̄i (ti) [θ, t−i] =

∑
m−i∈M−i

π̄i (ti) [θ, t−i,m−i]

=
∑

m−i∈M−i

 ∑
t̂−i∈σ−1

−i (m−i)

νi (ti)
[
θ, t−i, t̂−i

]
=

∑
t̂−i∈T̂−i

νi (ti)
[
θ, t−i, t̂−i

]
= margΘ×T−i

νi (ti) [θ, t−i] .
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by construction, we also have that for all i ∈ I and all mi ∈Mi,18

∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−i π̄i (ti) [θ,m−i]

)
ui (g (mi,m−i) , θ) =∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)
.

(36)

Since π̄i (ti) ∈ ∆κ(ti) (Θ× T−i ×M−i) ∩∆Σ−i (Θ× T−i ×M−i) for all i ∈ I and all

ti ∈ Ti, from (35) and (36), we have that for some
(
i, ti, σ

(
t̂i
))
∈ I × Ti × Σi (ti),

∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)

>∑
(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−iνi (ti)

[
θ, t̂−i

])
ui
(
g
(
σi
(
t̂i
)
, σ−i

(
t̂−i
))
, θ
)
.

(37)

Define yi(·) = g(mi, σ−i(·)). (34) implies that yi ∈ Y f
i . Thus, f satisfies IRM on

T .

18To see it, observe that∑
(θ,m−i)∈Θ×M−i

(
margΘ×M−i

π̄i (ti) [θ,m−i]
)
ui (g (mi,m−i) , θ)

=
∑

(θ,t−i,m−i)∈Θ×T−i×M−i

π̄i (ti) [θ, t−i,m−i]ui (g (mi,m−i) , θ)

=
∑

(θ,t−i,m−i)∈Θ×T−i×M−i

 ∑
t̂−i∈σ−1

−i (m−i)

νi (ti)
[
θ, t−i, t̂−i

]
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)

=
∑

(θ,m−i)∈Θ×M−i

 ∑
t̂−i∈σ−1

−i (m−i)

(
margΘ×T̂−i

νi (ti)
[
θ, t̂−i

])
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)

=
∑

(θ,t̂−i)∈Θ×T̂−i

(
margΘ×T̂−i

νi (ti)
[
θ, t̂−i

])
ui
(
g
(
mi, σ−i

(
t̂−i
))
, θ
)
.
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