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1 Introduction

Recently developed models of the business cycle feature a recursive timing structure,

according to which decision rules of forward-looking (rational) economic agents re-

flect the presence of delayed shock observability and/or partial information. Two

examples from the macroeconomic domain stand out: first, general equilibrium

frameworks with a role for fiscal policy often posit that government spending is

predetermined with respect to the current state of the economy, implying that the

policy instrument cannot react to sources of uncertainty other than fiscal shocks – see

Schmitt-Grohé and Uribe (2012) and Kormilitsina and Zubairy (2018) among many

others; second, in dynamic settings where monetary authorities exhibit a concern for

price stability, policy surprises are oftentimes assumed not to trigger contemporane-

ous changes in non-policy variables (such as consumption, wages and prices), while

allowed to slowly propagate through the underlying economy – see e.g. Rotemberg

and Woodford (1997), Christiano et al. (2005), Boivin and Giannoni (2006), Altig

et al. (2011).1

A clear-cut implication of the recursive timing protocol is the emergence of trans-

mission delays for a subset of the exogenous forces (i.e. the structural shocks) driving

short-run dynamics. This structural timing assumption in modern macroeconomic

writing has mirrored the diffuse adoption of econometric frameworks for the anal-

ysis of dynamic impulse responses that rely on short-run exclusion restrictions for

identification purposes, e.g. Sims (1980), Christiano et al. (1999). From a struc-

tural point of view, a direct empirical test of the relevance of timing restrictions

and the ensuing shock transmission delays in a general dynamic stochastic general

equilibrium (DSGE) environments has not been advanced thus far. As a result,

whether macroeconomic data favor the recursive timing assumption, as opposed to

the conventional (unrestricted) one, still remains an open question.

We fill this gap by developing a (time-domain) bootstrap-based procedure for

likelihood ratio (LR) testing of delayed shock transmission in DSGE economies.

Specifically, building on recent computational techniques in the realm of DSGE

1Further instances of recursive timing assumptions in the DSGE literature include models of
factor hoarding, where employment decisions predate the full realization of aggregate uncertainty
(e.g. Burnside and Eichenbaum, 1994), and limited participation settings in which households
might engage in financial decision-making prior to observing the whole set of current period shocks
(e.g. Fuerst, 1992).
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models featuring timing restrictions – e.g. Kormilitsina (2013) and Angelini and

Sorge (2021), we submit to formal testing the null hypothesis that a subset of en-

dogenous model variables of interests (e.g. the inflation rate and the output gap)

simultaneously and/or fully adjust to changes in the current fundamentals of the

economy (e.g. the monetary policy innovation), thus providing evidence against the

alternative of staggered impulse propagation. Since the solution to any restricted

DSGE model can be constructed via a uniquely defined linear transformation of the

solution to its unrestricted counterpart, however computed, nesting requirements are

generically fulfilled. Hence, upon estimating the model-implied set of endogenous

responses across timing structures (restricted versus unrestricted) along with other

structural model’s parameters, information stemming from likelihood-based tests for

the rational expectations cross-equation restrictions (CERs) placed on equilibrium

reduced forms can be exploited to evaluate the empirical plausibility of the recursive

timing assumption in the DSGE context.

From an operational perspective, we build on recent contributions by Stoffer and

Wall (1991), B̊ardsen and Fanelli (2015) and Angelini et al. (2022) on hypothesis

testing and estimation in state-space models. Stoffer and Wall (1991) propose a

nonparametric Monte Carlo bootstrap that abstracts from distributional assump-

tions that are hardly valid in small to moderate samples. B̊ardsen and Fanelli (2015)

develop a frequentist approach to testing sequentially cointegration/common-trend

restrictions along with conventional rational expectations CERs in DSGE models,

arguing that classical likelihood-based tests are able to handle both long- and short-

run restrictions placed by the model on time series data representations. Angelini

et al. (2022) formally show that, in the case of ‘strong identification’, meaning that

all the regularity conditions for standard asymptotic inference are at work, the boot-

strap maximum likelihood (ML) estimator of the structural parameters replicates

the asymptotic distribution of the ML estimator, and prove formally that the re-

stricted bootstrap (i.e. with the null hypothesis under investigation being imposed

in estimation) is consistent. In this scenario, the asymptotic distribution of the ML

estimator of the structural parameters can be estimated accurately by the bootstrap.

Importantly, not only the (either standard or bootstrap) LR test is asymptotically

pivotal and chi-square distributed, but the bootstrap tends to reduce the discrep-

ancy between actual and nominal probabilities of type-I error. It turns out that

the bootstrap in DSGE models (and, more generally, in frameworks that admit
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a conventional state space representation) has the potential to mitigate the over-

rejection phenomenon that characterizes tests of non-linear hypothesis that rely on

first-order asymptotic approximations. Remarkably, our resampling method still

improves upon the asymptotic LR test, for the empirical size of the bootstrap-based

LR test tends to approach the chosen nominal level.

To showcase the empirical validity of our test, we employ the hybrid New Key-

nesian model introduced in Benati and Surico (2009), where imposing the recur-

siveness assumption amounts to embodying timing restrictions on the transmission

of the monetary policy innovation, which thereby imparts no impact changes on

slow-moving variables (inflation and output gap). Even under these circumstances,

unexpected increases in the policy rate entail recessionary and deflationary dynamic

effects that prove qualitatively similar across the two information structures (re-

stricted versus unrestricted), and eventually follow the same exact pattern when

the effect of the monetary policy shock fades out. Our simulation results indicate

that the bootstrap-based approach manages to counterbalance the tendency of the

standard LR test to over-reject the hypothesis of structural timing restrictions in

small samples, with rejection frequencies close to the 5% nominal level.

The remainder of the paper is organized as follows. Section (2) presents the gen-

eral state space representation of first-order approximate solution to general DSGE

models featuring timing restrictions, with a specific focus on how this representa-

tion maps into the one complying with the conventional timing protocol. Section

(3) introduces the testing problem and discusses the bootstrap algorithm used to

test for the relevance of shock transmission delays in DSGE environments. Section

(4) reports the outcome of our Monte Carlo experiment, whose goal is to show how

the bootstrap-based LR test performs in the empirical evaluation of the hypothesis

under scrutiny. Section (5) concludes.

2 Transmission delays in DSGE models

Equilibrium conditions of DSGE models are generally described by a system of nF

expectational stochastic difference equations of the form

Et[f (yt+1, yt, xt+1, xt;σ, θ)] = 0 (1)
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where the random processes (yt) and (xt) are defined on the same probability space,

and Et is the conditional (rational) expectation operator associated with the under-

lying probability measure. The ny-dimensional vector y collects the model’s endoge-

nous jump variables, whereas the nx-dimensional vector x contains n1
x endogenous

predetermined variables as well as n2
x exogenous states (n1

x + n2
x = nx). Finally,

θ denotes the vector of structural parameters and σ ≥ 0 is a parameter capturing

the size of aggregate uncertainty surrounding the economy, see Schmitt-Grohé and

Uribe (2004).2

2.1 Unrestricted timing

To ease notation, let the prime superscript denotes one-step ahead variables. Under

the conventional timing assumption, policy functions for all the endogenous variables

depend on all the state variables x. Analytic solutions to (1) are in the form

y = g(x, σ), x′ = h(x, σ) + σε′ (2)

where the elements of the nx-dimensional vector ε are i.i.d. zero-mean, unit variance

innovations (e.g. structural shocks).

As shown in Schmitt-Grohé and Uribe (2004), up to first order certainty equiv-

alence holds generically, i.e. one has

y = gxx, x′ = hxx+ σε′ (3)

where gx and hx are conformable matrices of first-order derivatives of the maps

g(x, σ) and h(x, σ) with respect to x, evaluated at the non-stochastic steady state

(ȳ, x̄) that solves (1) when σ = 0.

2.2 Timing restrictions

In the presence of information-based timing restrictions, the general form of the

multivariate RE model is

Et [f (yt+1, yt, xt+1, xt;σ, θ)] = 0 (4)

2This section draws on Sorge (2020) and Angelini and Sorge (2021), to which the reader is
referred for further details.
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where Et denotes the collection of (conditional) expectation operators accounting

for partial shock observability, which in turn enforces delays in the propagation of

exogenous impulses. Following Angelini and Sorge (2021), we can expand (4) as

follows

Et [f(yt+1, yt, xt+1, xt;σ, θ)] =



E
[
f
(y,x)
1 (yt+1, yt, xt+1, xt;σ, θ) I1,t

]
E
[
f
(y,x)
2 (yt+1, yt, xt+1, xt;σ, θ) I2,t

]
...

E
[
f
(y,x)

ny+n1
x
(yt+1, yt, xt+1, xt;σ, θ) Iny+n1

x,t

]
f
(x)
1 (x2t+1, x

2
t ;σ, θ)

f
(x)
2 (x2t+1, x

2
t ;σ, θ)

...

f
(x)

n2
x

(
x2t+1, x

2
t ;σ, θ

)


where f

(y,x)
k (k ≤ ny+n1

x) is the model’s equation used to pin down the k-th endoge-

nous variable (y, x1), conditional on the equilibrium values for the other endogenous

variables and the relevant states, for which t-dated optimal projections are framed

on the basis of the restricted information set Ik,t, k ≤ ny; and f
(x)
j (j ≤ n2

x), is

the possibly nonlinear equation that governs the dynamics of j-th exogenous state

variable xj.
3

Let us next consider the case where any given time period is split into two

fictitious sub-periods, according to the timing of the model’s variables. Formally,

the control and state vectors are accordingly partitioned as

y = [yu; yr] , x = [xu; xr] (5)

where the nxu-dimensional vector xu consists of endogenous predetermined as well as

exogenous variables realizing in the beginning of the first subperiod, xr contains nxr

exogenous variables materializing in the second subperiod, yu is the nyu-dimensional

3The conditioning set Ik,t, k ≤ ny is the smallest closed linear subspace spanned by the semi-
infinite history of all the observed variables k up to time t.
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vector of endogenous variables which respond to the whole set of current time state

variables x. Finally, the nyr -dimensional vector yr collects endogenous variables

selected in the first subperiod, when realizations of only a subset of state variables

are observed. In order to apply Kormilitsina (2013)’s perturbation approach, as

generalized in Sorge (2020), the RE system (1) is partitioned as follows

f =
[
f 0; f 1; fxr

]
(6)

so that the sub-system f 0 includes nyr equations pinning down endogenous variables

yr, the sub-system f 1 includes nyu equations that determine endogenous variables yu

and nxu equations delivering the dynamics of the states xu, and the sub-system fxr

describes the evolution of exogenous shocks xr, represented as a first-order stationary

autoregressive process

x′r = Pxr + σε′xr , εxr ∼ i.i.d.N(0, Vεxr ) (7)

where P is a stable square matrix of autoregressive coefficients, and ε′xr collects the

nxr structural shocks associated with the states xr.

As shown in Kormilitsina (2013), the first-order approximation to the recursive

solution of (4) is

yu = ĝxu(θ)xu + ĝxr(θ)xr + ĝxr,1(θ)xr,−1,

yr = ĵxu(θ)xu + ĵxr,−1(θ)xr,−1, (8)

x′u = ĥxu(θ)xu + ĥxr(θ)xr + ĥxr,−1(θ)xr,−1 + σε′xu

where the dependence of the reduced form matrices on the structural parameters θ

has been made explicit. In a more compact form one has

y = ĝx(θ)

 xu

xr

xr,−1

 , x′ = ĥx(θ)

 xu

xr

xr,−1

+ σε′ (9)
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where

ĝx(θ) =

(
ĝxu(θ) ĝxr(θ) ĝxr,−1(θ)

ĵxu(θ) 0nyr×nxr ĵxr,−1(θ)

)
, ĥx(θ) =

(
ĥxu(θ) ĥxr(θ) ĥxr,−1(θ)

0nxr×nxr P (θ) 0nxr×nxr

)
(10)

Provided the rank condition characterized in Sorge (2020) is fulfilled, the solu-

tion to the restricted model can be readily constructed via uniquely defined linear

transformations of (3), however computed (e.g. exploiting algorithms put forward

in Klein (2000), Christiano (2002), King and Watson (2002), Sims (2002)). In fact,

upon partitioning the equilibrium coefficient matrices (gx(θ), hx(θ)) in (3) as follows

gx(θ) =

(
gxu(θ) gxr(θ)

jxu(θ) jxr(θ)

)
, hx =

(
hxu(θ) hxr(θ)

0 P (θ)

)
(11)

we can easily map the coefficient matrices under conventional timing into those

appearing in (9), i.e.

ĝx(θ) =

(
gxu(θ) gxr(θ) +

[
∇(f 1)−1f 1

yrjxr(θ)
]
nyu

−
[
∇(f 1)−1f 1

yrjxr(θ)P (θ)
]
nyu

jxu(θ) 0nyr×nxr jxr(θ)P (θ)

)
,

ĥx(θ) =

(
hxu(θ) hxr(θ) +

[
∇(f 1)−1f 1

yrjxr(θ)
]
nxu

[
−∇(f 1)−1f 1

yrjxr(θ)P (θ)
]
nxu

0 P (θ) 0

)

where ∇(f 1) denotes the Jacobian of the sub-system f 1 with respect to the vector

[x′u, yu], f
1
yr is the matrix of partial derivatives of f 1 with respect to the slow moving

endogenous variables collected in the vector yr, and [M ]m is used to denote the

selection of the first (or last) m rows of some matrix M .

In order to test for the presence of shock transmission delays, we notice that co-

efficient matrices ĥxr and ĥxr,−1 (and thereby ĝxr and ĝxr,−1) embodying the model’s

CERs will generally differ from those implied by the counterpart model complying

with the standard timing protocol. Timing restrictions in fact enforce an enlarged

state space as well as an increased degree of backward dependence in the model’s

equilibrium representation. As a result, the dynamics of the endogenous variables

and their statistics, including the likelihood function, will depend (among other

things) on the parameterization of the matrix ĵxr which characterizes the model-

implied transmission of structural shocks driving states xr to endogenous variables
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yr: when timing restrictions are operative, ĵxr will necessarily be zero-valued. In-

formation contained in the likelihood function can then be used to derive (classical

or Bayesian) inference about the relevance of delayed transmission for the shock(s)

of interest.

To frame our bootstrap-based MLE testing procedure, we exploit the structural

form in (9) embodying timing restrictions against the following state-space counter-

part

y = g̃x(φ)

 xu

xr

xr,−1

 , x′ = h̃x(φ)

 xu

xr

xr,−1

+ σε′ (12)

where g̃x and h̃x are conformable matrices. We collect the non-zero parameters in

h̃x and g̃x in the vector φ (i.e. g̃x = g̃x(φ) and h̃x = h̃x(φ)).

3 Testing problem

We consider the testing problem

H0 : h̃x(φ) = ĥx(θ) and g̃x(φ) = ĝx(θ) against H1 : h̃x(φ) 6= ĥx(θ) or g̃x(φ) 6= ĝx(θ)

(13)

by a LR test. The null H0 incorporates the timing restrictions imposed by (4).

The DSGE model under H0 is given by (9), instead, the state space counterpart

of the DSGE model under H1 corresponds to (12). To compute a LR test of these

restrictions it is necessary to maximize the likelihood associated with both systems.

Let `T (φ) and `T (θ) be the log-likelihoods of the DSGE model under H1 and H0,

respectively, and let φ̂T = arg maxφ∈Pφ `T (φ) and θ̂T = arg maxθ∈PD `T (θ) the ML

estimators of φ and θ. Estimation of the model under the null (H0) and under

the alternative (H1) is a necessary preliminary step to the computation of the LR

test. We start from the representation in (12). The innovation form representation

(Anderson and Moore, 2012) associated with system (12) can be written in the form

x̂t+1|t = h̃x(φ)x̂t|t−1 +Kt + εt (φ) (14)

yt = g̃x(φ)x̂t|t−1 + εt (φ) (15)
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where Kt = Kt(φθ) is the Kalman gain and

εt = yt − g̃x(φ)x̂t|t−1 (16)

are the innovation residuals with covariance matrix

Σε,tg̃x(φ)Pt|t−1g̃x(φ)′ + JΣωJ
′ (17)

and Pt|t−1 = E((xt − x̂t|t−1)(xt − x̂t|t−1)
′ | Fyt−1), P1|0 being given. Imposing the

normality of εt in (16), i.e.

yt | Fyt−1 ∼ N(g̃x(φ)x̂t|t−1 Σε,t)

the estimation of φ can be accomplished via Gaussian maximum likelihood estima-

tion.4

Let `T (φ) be the Gaussian log-likelihood function associated with the state space

model in (14)-(15). The essential part of the log-likelihood `T (φ), denoted for sim-

plicity by `◦,T (φ) :=
∑T

t=1 l(yt | F
y
t−1;φ), is given by

`◦,T (φ) = −
T∑
t=1

`t(φ) (18)

`t(φ) = l(yt | Fyt−1;φ) = {log det(Σεc,t (φ)) + ε0t (φ)′Σε0,t (φ)−1 ε0t (φ)}

where εt (φ) and Σε0,t (φ) are defined above. Given `◦,T (φ) in (18), the ML estimator

of φ solves

φ̂T = arg max
φ∈PD

`◦,T (φ) (19)

and can be computed by combining the Kalman filter with numerical optimization

methods. To estimate the structural parameters in θ, we can consider analogs

of systems (14)-(15) and replace h̃x(φ) and g̃x(φ) with ĥx(θ) and ĝx(θ). The ML

4It is maintained throughout the paper that the regularity conditions for standard asymptotic
inference in the state space representation of the DSGE model are valid both under the null and
the alternative. We refer to Angelini et al. (2022) for a comprehensive treatment of how bootstrap
resampling can be used to detect deviations from regularity conditions.
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estimator of θ is therefore obtained from

θ̂T = arg max
θ∈Pθ

`o,T (θ), `◦,T (θ) = −
T∑
t=1

{
log det(Σε0,t + ε0,′t Σ−1ε0,tε

0
t

}
. (20)

We use the superscript ‘0’ for ε0t in (20) and Σε0,t to remark that the representation

is obtained under the null H0 which imposes the timing restrictions. The LR test

for the timing restrictions is then given by

LRT = −2[`T (θ̂T )− `T (φ̂T )]. (21)

The asymptotic properties of the tests statistics LRT are intimately related to the

asymptotic properties of θ̂T and φ̂T and these crucially depend on whether the

regularity conditions for inference are valid in the estimated DSGE model.

3.1 Bootstrap algorithm

We employ a nonparametric ‘restricted bootstrap’ algorithm (see e.g. Davidson and

MacKinnon, 1999), where the bootstrap samples are generated using the the param-

eter estimates θ̂T obtained under H0. The LR test statistic, LRT (θ̂T ), computed as

in (21) is stored, along with θ̂T . Our procedure is adapted from Stoffer and Wall

(1991) and Angelini et al. (2022), and is described by the following algorithm. Here,

steps 1–4 define the bootstrap sample, the bootstrap parameter estimators and re-

lated bootstrap LR statistic; steps 5–7 describe the numerical computation of the

bootstrap p-value associated to the bootstrap LR test.

Algorithm (Restricted bootstrap)

1. Given the innovation residuals ε̂0t = yt− ĝx(θ̂T )x̂t|t−1 and the estimated covari-

ance matrices Σ̂ε0,t produced by the estimation of the DSGE model under the

precesence of timing restrictions (H0), construct the standardized innovations

as

ê0t = Σ̂
−1/2
ε0,t ε̂

0,c
t , t = 1, ..., T, (22)

where Σ̂
−1/2
ε0,t is the inverse of the square-root matrix of Σ̂ε0,t and ε̂0,ct , t = 1, ..., T ,

are the centered residuals ε̂0,ct = ε̂0t − T−1
∑T

t=1 ε̂
0
t ;

11



2. Sample, with replacement, T times from ê01, ê
0
2, ..., ê

0
T to obtain the bootstrap

sample of standardized innovations e∗1, e
∗
2, ..., e

∗
T ;

3. Mimicking the innovation form representation of the DSGE model in (14)-

(15)), the bootstrap sample y∗1, y
∗
2, ..., y

∗
T is generated recursively by solving,

for t = 1, ..., T, the system(
x̂∗t+1|t

y∗t

)
=

(
ĥx(θ̂T ) 0nm×ny

ĝx(θ̂T ) 0ny×ny

)(
x̂∗t|t−1
y∗t−1

)
+

(
Kt(θ̂T )Σ̂

1/2

ε0,t

Σ̂
1/2

ε0,t

)
e∗t (23)

with initial condition x̂∗1|0 = x̂1|0;

4. From the generated pseudo-sample y∗1, y
∗
2, ..., y

∗
T , estimate the DSGE model un-

der H0 obtaining the bootstrap estimator θ̂∗T and the associated log-likelihood

`∗T (θ̂∗T ), and estimate the DSGE model under H1 obtaining the bootstrap esti-

mator φ̂∗T and the associated log-likelihood `∗T (φ̂∗T ); the bootstrap LR test for

the CER is defined as:

LR∗T (θ̂∗T ) = −2[`∗T (θ̂∗T )− `∗T (φ̂∗T )]; (24)

5. Steps 2-4 are repeated B times in order to obtain B bootstrap realizations of θ̂T

and φ̂T , say {θ̂∗T :1, θ̂∗T :2, ..., θ̂∗T :B} and {φ̂∗T :1, φ̂∗T :2, ..., φ̂∗T :B}, and the B bootstrap

realizations of the associated bootstrap LR test, {LR∗T :1, LR∗T :2, ..., LR∗T :B},
where LR∗T :b = LR∗T (θ̂∗T :b), b = 1, ..., B;

6. The bootstrap p-value of the test of the timing restrictions is computed as

p̂∗T,B = Ĝ∗T,B(LRT (θ̂T )) , Ĝ∗T,B(δ) = B−1
B∑
b=1

I{LR∗T :b > δ}, (25)

I {·} being the indicator function;

7. The bootstrap LR test for the timing restrictions at the 100η% (nominal)

significance level rejects H0 if p̂∗T,B ≤ η.
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4 Simulation experiment

4.1 NK model

We showcase the usefulness of our testing procedure by running a series of Monte

Carlo simulation experiments based on the hybrid New Keynesian model put forward

by Benati and Surico (2009) in their VAR analysis of the so-called Great Moderation

period.

The model is given as follows

gt = γEtgt+1 + (1− γ)gt−1 − δ−1(it − Etπt+1) + ωgt (26)

πt =
β

1 + βα
Etπt+1 +

α

1 + βα
πt−1 + κgt + ωπt (27)

it = ρit−1 + (1− ρ)(ϕππt + ϕggt) + ωit (28)

where

ωjt = ρjω
j
t−1 + εjt , |ρj| < 1, εjt ∼WN(0, σ2

j ) , j = g, π, i (29)

and expectations are conditional on the information set It, i.e. Et·:=E(· | It). The

variables gt, πt, and it stand for the output gap, inflation, and the nominal interest

rate, respectively; γ is the weight of the forward-looking component in the dynamic

IS curve; α is price setters’ extent of indexation to past inflation; δ is the the

households’ intertemporal elasticity of substitution in consumption; κ is the slope

of the Phillips curve; ρ, ϕπ, and ϕg are the interest rate smoothing coefficient, the

long-run coefficient on inflation, and that on the output gap in the monetary policy

rule, respectively; finally, ωgt , ω
π
t and ωit in eq. (29) are the mutually independent,

AR(1) exogenous shock processes and εgt , ε
π
t and εit are the structural innovations.

The model (26)-(27)-(28) is submitted to timing restrictions according to which

(i) the monetary policy shocks are orthogonal to the non-policy variables (gt, πt),

and (ii) these non-policy variables are thus predetermined with respect to the policy

instrument, i.e. the nominal interest rate. The information partition enforcing the

above mentioned timing restrictions requires the following assignment of variables:

yu = i, yr = [g, π]′

xu = [g−1, π−1, ω
g, ωπ]′, xr = ωi

(30)
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As is well known, the model (26)-(27)-(28) can admit a continuum of asymptoti-

cally stable equilibria (equilibrium indeterminacy) depending on the strength of the

monetary authority’s response to inflation. Under these circumstances, short-run dy-

namics for the endogenous variables can be arbitrarily driven by both structural and

non-structural (sunspot) shocks (e.g. Lubik and Schorfheide, 2003). Building upon

Kormilitsina (2013), Sorge (2020) formally shows that the determinacy/indeterminacy

properties of DSGE models complying with the conventional, unrestricted timing

protocol are generically (in a measure-theoretic sense) inherited by their restricted

counterparts. That is, when a given, unrestricted model exhibits saddle-path stabil-

ity, so will its analogue featuring timing restrictions: the model’s fundamentals (pa-

rameters and shocks) will therefore fully characterize the equilibrium representation

of the model. In our Monte Carlo simulation experiment, we explicitly restrict at-

tention to the determinate equilibrium version of Benati and Surico (2009)’s model,

so that variation in the likelihood across the two information structures (restricted

vs. unrestricted) is to be ascribed to the presence of timing restrictions solely, on

the assumption that the structural model is correctly specified.5

4.2 Monte Carlo simulation

In this section we investigate the empirical performance of the bootstrap test using

the New Keynesian structure (26)-(27)-(28) as our data generating process (DGP).

More specifically, we consider two DSGE-based equilibrium state space representa-

tions, denoted as DGP under timing restrictions and DGP with unrestricted timing,

respectively. In the former, it is assumed that the data are generated by the deter-

minate equilibrium representation that emerges in the presence of structural timing

restrictions embodied in (30); in the latter, artificial series are rather generated by

allowing for contemporaneous effects of policy innovations on the inflation rate and

the output gap (i.e. when no informational constraints are at work), again imposing

equilibrium determinacy.

To keep our analysis focused on the testing problem, we calibrate all structural

parameters to Benati and Surico (2009)’s posterior median estimates over the Great

5See Fanelli (2012) and Dave and Sorge (2021) for an analysis of identification and estimation
issues arising in Benati and Surico (2009)’s model in the presence of equilibrium indeterminacy;
and Angelini and Sorge (2021) for a discussion of the implications of the co-existence of timing
restrictions and equilibrium indeterminacy.
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Moderation period – see Table (1). Then, for both the restricted and the unre-

stricted versions of the model, artificial data samples are generated by simulating

the model’s determinate solution when shock realizations are independently drawn

from the assumed mean-zero, unit variance Gaussian densities at any given period.

Operationally, for each of the two DGPs we consider K = 1000 simulations and a

sample size T ∈ {100, 250, 500} with a burn-in of 200 observations. We then in-

vestigate the empirical size of the LR test, using the restricted model a the actual

DGP (column DGP under timing restrictions), and its power, when the unrestricted

model is rather serves as the underlying DGP (column DGP with unrestriced timing)

Structural parameters
γ δ β α κ ρ φπ φg ρg ρπ ρi

0.744 8.062 0.99 0.059 0.044 0.834 1.749 1.146 0.796 0.418 0.404

Table 1: Elected parameterization of Benati and Surico (2009)’s model for simulation
experiment.

The key parameters that we estimate on the artificial data are the slope of the

Phillips curve (κ), a function of the degree of price-stickiness in the economy that fil-

ters the relative response of non-policy variables to an unanticipated deviation from

the systematic component of policy equation (28); the feedback parameters γ and α,

measuring the degree of backward dependence in the intertemporal IS relationship

(26) and the Phillips curve (27) respectively, both influencing the inertial properties

of the dynamic evolution of non-policy variables (whether or not timing restrictions

are over-imposed); and the interest rate smoothing parameter ρ that governs the

partial adjustment of the current policy rate to its own lag, a further source of en-

dogenous time series persistence in the dynamic responses of inflation and output

(gap) to shocks. The bootstrap-based test for the non-linear cross-equation restric-

tions obtained from the ML estimation of the determinate reduced form solution to

either model (restricted vs. unrestricted) is then implemented.6

6We are implicitly assuming that state space systems (9) and (12) are in minimal form and also
identified (locally). In general, state space representations can be manipulated so as to deliver an
identified system in minimal form. This latter can then be readily used as the DGP implied by
the structural DSGE model under scrutiny, see e.g. see Komunjer and Ng (2011).
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DGP under timing restrictions DGP with unrestricted timing
T=100

κ = 0.044 0.044(0.045) 0.043(0.044)
γ = 0.744 0.748(0.753) 0.742(0.755)
α = 0.059 0.058(0.059) 0.055(0.056)
ρ = 0.834 0.833(0.833) 0.813(0.804)
LRT χ2

x, RejRate = 0.082[0.052] χ2
x, RejRate = 0.194[0.106]

T=250
κ = 0.044 0.045(0.045) 0.044(0.044)
γ = 0.744 0.746(0.751) 0.741(0.746)
α = 0.059 0.062(0.060) 0.057(0.060)
ρ = 0.834 0.833(0.831) 0.812(0.808)
LRT χ2

x, RejRate = 0.068[0.048] χ2
x, RejRate = 0.464[0.296]

T=500
κ = 0.044 0.044(0.044) 0.043(0.043)
γ = 0.744 0.744(0.746) 0.739(0.741)
α = 0.059 0.057(0.055) 0.052(0.055)
ρ = 0.834 0.834(0.833) 0.813(0.811)
LRT χ2

x, RejRate = 0.066[0.045] χ2
x, RejRate = 0.836[0.690]

Table 2: Monte Carlo experiment, estimation of the parameters κ, γ, α and ρ, average
across M = 1000 simulations (bootstrap estimates in parentheses). LRT is the likelihood
ratio test of the restricted model against the unrestricted counterpart (bootstrap p-values
in square brackets).

Results are summarized in Table 2. It is apparent that the bootstrap tends

to mitigate the discrepancy between actual and nominal probabilities of type-I

error. Indeed, when asymptotic critical values taken from the χ2
x distribution

(x = dim(φ) − dim(θ)) are employed, the rejection frequency of the LR test for

the timing restrictions is 8.2%, 6.8% and 6.6% for T = 100, 250 and 500 respec-

tively. Therefore, the bootstrap seems to effectively mitigate the tendency of the

standard LR test to over-reject the CERs associate with the restricted timing pro-

tocol with rejection frequencies close to the 5% level. Interestingly, from the DGP

free of timing restrictions, the bootstrap test shows satisfactory power.
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5 Conclusion

This paper develops a simple bootstrap-based testing procedure for the relevance of

timing restrictions and ensuing shock transmission delays in general DSGE model

environments. While here applied to a rather standard New Keynesian model of

the monetary transmission mechanism, our approach is designed to handle virtu-

ally any linearized DSGE model whose equilibrium conditions can be represented

as a system of expectational stochastic difference equations (see e.g. Schmitt-Grohé

and Uribe, 2004), to be estimated against real world data via likelihood-based meth-

ods. Remarkably, the computer code is consistent with standard MATLAB packages

– such as Sims (2002)’s – that are routinely used to compute first-order approxi-

mate solutions to dynamic macroeconomic models; and can be straightforwardly

adapted to allow for relatively more sophisticated recursive timing structures than

those considered herein, e.g. those involving multi-period informational partitions

(Kormilitsina, 2013).
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