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Abstract 
The literature on strategic ambiguity in classical games provides generalized notions of equilibrium in 
which each player best responds to ambiguous or imprecise beliefs about hisopponents’ strategy 
choices. In a recent paper, strategic ambiguity has been extended topsychological games, by taking into 
account ambiguous hierarchies of beliefs and maxmin preferences. Given that this kind of preference 
seems too restrictive as a general method to evaluate decisions, in this paper we extend the analysis by 
taking into account α-maxmin preferences in which decisions are evaluated by a convex combination of 
the worst-case (with weight α) and the best-case (with weight 1−α) scenarios. We give the definition of 
α-maxmin Psychological Nash Equilibrium; an illustrative example shows that the set of equilibria is 
affected by the parameter α and the larger is ambiguity the greater is the effect. We also provide a result 
of stability of the equilibria with respect to perturbations that involve the attitudes toward ambiguity, the 
structure of ambiguity and the payoff functions: converging sequences of equilibria of perturbed games 
converge to equilibria of the unperturbed game as the perturbation vanishes. Surprisingly, a final 
example shows that existence of equilibria is not guaranteed for every value of α. 
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1 Introduction

It is well known that the Nash equilibrium concept for strategic games prescribes that: i) each

player chooses his best strategy in response to the beliefs he has about his opponents’ strategy

choices; ii) each player’s beliefs are correct, that is, each player believes with probability 1 that

opponents will follow their equilibrium strategies. The evidence arising from Decision Theory tells

us that beliefs cannot always be assumed to be correct. The literature that focuses on the issue

strategic ambiguity in classical strategic form games provides generalized notions of equilibrium in

which each player best responds to ambiguous or imprecise beliefs about his opponents’ strategy

choices, that is, beliefs may take the form of a capacity or of a set of probability distributions (see

[Dow, Werlang, 1994], [Eichberger, Kelsey, 2000], [Lehrer, 2012], [Riedel, Sass, 2013], [Battigalli

et al., 2015], [De Marco, Romaniello, 2015] and references therein). There might be many sources

of strategic ambiguity in a game; for example, [Lehrer, 2012] focuses on the case in which players

do not have precise knowledge of the mixed strategy chosen by each of the other players but

rather know only the probability of some subsets of pure strategies, being not aware of the precise

subdivision of probabilities within those subsets.

In [De Marco et al., 2022], the study of strategic ambiguity has been extended to psychological

games, by looking at ambiguous or imprecise hierarchies of beliefs. Psychological games provide a

generalization of classical games that aims to explicitly take into account emotions, opinions, and

intentions of the decision makers in the strategic interaction2. This class of games is characterized

by the assumption that each player’s payoff depends on his hierarchy of beliefs, that is, it depends

not only on what every player does but also on what he thinks every player believes, on what

he thinks every player believes the others believe, and so on. The main solution concept for

psychological games is presented in Geanakoplos et al. [1989] and it is based on the idea that the

entire hierarchy of beliefs of each player must be correct in equilibrium.

Since beliefs about opponents’ strategy choices can be regarded as first-order beliefs, the litera-

ture on strategic ambiguity substantially looks at games in which first-order beliefs are ambiguous.

[De Marco et al., 2022], instead, looks at ambiguity regarding the entire hierarchy of beliefs as,

for instance, partial knowledge may appear directly in the second (or higher) order beliefs, or

strategic ambiguity produces ambiguous higher order beliefs as a natural consequence. Therefore,

the function that maps strategy profiles to the correct hierarchies of beliefs, that is used in the

classical definition of psychological Nash equilibria, is therein replaced by a set-valued map (called

ambiguous belief correspondence), that maps strategy profiles to the subsets of those hierarchies

of beliefs that players perceive to be consistent with the corresponding strategy profile. In the

corresponding equilibrium notion presented in [De Marco et al., 2022], players are assumed to be

2The literature on psychological games has increased considerably in the past decades; we recall [Battigalli,

Dufwenberg, 2009] for further theoretical findings, [Rabin, 1993], [Battigalli, Dufwenberg, 2007], [Attanasi et al.,

2010] for some applications, just to quote a few, and [Attanasi, Nagel, 2008] and [Battigalli, Dufwenberg, 2020] for

surveys on psychological games and references.
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completely pessimistic as they are endowed with maxmin preferences (also called MEU preferences,

see [Gilboa, Schmeidler, 1989]): each player maximizes (with respect to his own strategy) the min-

imum expected utility computed along the graph of the ambiguous belief correspondence whose

values, in turn, depend on the entire strategy profile.

The maxmin approach turns to be analytically convenient; furthermore, it has a clear axiomatic

foundation. Nevertheless, it seems to be too restrictive as a general approach because only the

“worst-case scenario” is relevant for the evaluation of a decision so that the analysis is limited to an

extreme form of pessimism3. The restrictiveness of the MEU model can be naturally overcome by

considering the so called α-maxmin preferences (also called α-MEU or Hurwicz Preferences), firstly

introduced in [Hurwicz, 1951]. In this model, decisions are evaluated by a convex combination of

the worst-case (with weight α) and the best-case (with weight 1− α) scenarios.

In this paper we extend the analysis of psychological games under ambiguity to α-maxmin

preferences and provide the notion of α-MEU Psychological Nash Equilibrium (α-PNE) for the

situations in which players have Hurwicz preferences. The weights α that characterize the attitudes

of the players toward ambiguity turn to be a key tool to understand how equilibria change according

to their degree of pessimism/optimism. We present an illustrative example showing not only that

the set of equilibria depends on the parameter α but also that differences are emphasized by

the amount of ambiguity in the game: the larger is ambiguity the greater are the differences.

The example highlights another relevant feature: equilibria corresponding to a given value of

α cannot always be approached by sequences of equilibria of games in which the parameter α

is slightly perturbed, meaning that equilibria are unstable with respect to perturbations on the

degree of pessimism/optimism. From the mathematical point of view, this results in a lack of

lower semicontinuity of psychological Nash equilibria under Hurwicz preferences. The failure of

this property is not suprising since lack of lower semicontinuity of the equilibrium correspondence is

a common feature in most of the game models. We show, instead, that the α-PNE correspondence

satisfies a upper semicontinuity-like stability: converging sequences of equilibria of perturbed games

converge to equilibria of the unperturbed game as the perturbation vanishes. The issue of the upper

semicontinuity properties of equilibria has been largely investigated in the literature for classical

games (see for instance [Yu, 1999], [Carbonell-Nicolau, 2010], [Scalzo, 2019] and references therein)

and turns out to be a key property to build refinements of equilibria based on stability with respect

to trembles. In this paper, we obtain stability of equilibria under general perturbations that involve

the attitudes toward ambiguity, the structure of ambiguity and the payoff functions.

The most surprising feature of α-PNE is, however, a negative result. Although for psychological

Nash equilibria and psychological Nash equilibria under maxmin preferences an existence result

was obtained under standard assumptions, in this paper we provide a counterexample in which a

game has no α-PNE. This negative result comes from the fact that the best reply correspondence

of the summary utility function (that is used to obtain equilibrium existence) does not have convex

images and therefore fixed points, in general.

3Optimistic and intermediate attitudes actually have a strong empirical support (see for example [Ivanov, 2011]).
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The paper is organized as follows: Section 2 defines the game and the equilibrium concept.

Section 3 presents the illustrative example while Section 4 is dedicated to the upper-semicontinuity

property of equilibria. In Section 5 the issue of the lack of existence of equilibria is studied.

2 Model and Equilibria

We consider a finite set of players I = {1, . . . n}, and, for each player i, we denote with Ai =

{a1i , . . . , a
k(i)
i } the (finite) pure strategy set of player i. As usual, the set of strategy profiles A is

the cartesian product of the strategy sets of each player, that is A = A1× · · ·×An =
∏

i∈I Ai, and

A−i = A1× · · ·×Ai−1×Ai+1× · · ·×An =
∏

j ̸=i Aj. Let Σi be the set of mixed strategies of player

i, where each mixed strategy σi ∈ Σi is a nonnegative vector σi = (σi(ai))ai∈Ai
∈ Rk(i)

+ such that∑
ai∈Ai

σi(ai) = 1. Denote also with Σ =
∏

i∈I Σi and with Σ−i =
∏

j ̸=i Σj. We use (σi, σ−i) with

σi ∈ Σi and σ−i ∈ Σ−i to represent σ ∈ Σ.

Hierarchies of beliefs

The beliefs structure is constructed following [Geanakoplos et al., 1989]. Recall that, for any set S,

∆(S) denotes the set of probability measures on S. For every player i and for every k ∈ N, k > 1,

the k−th order beliefs set is defined recursively as follows:

B1
i = ∆(Σ−i), B

2
i = ∆(Σ−i ×B1

−i), . . . , B
k
i := ∆(Σ−i ×B1

−i ×B2
−i × · · · ×Bk−1

−i ), . . .

where Bk
−i :=

∏
j ̸=i B

k
j . The set of all hierarchies of beliefs of player i is Bi =

∏∞
k=1B

k
i . Note that

for every k, Bk
i is compact and can be metrized as a separable metric space. Consequently, since Bi

is a countable product of separable and compact metric spaces, it is also a separable and compact

metric space4.

We will restrict the attention to the subset of collectively coherent beliefs Bi ⊂ Bi, that is, the

compact set of beliefs of player i in which he is sure that it is common knowledge that beliefs are

coherent. Precisely, a belief bi = (b1i , b
2
i , . . . ) ∈ Bi is said to be coherent if, for every k ∈ N, the

marginal probability of bk+1
i on Σ−i ×B1

−i ×B2
−i × · · · ×Bk−1

−i coincides with bki , that is

marg(bk+1
i ,Σ−i ×B1

−i ×B2
−i × · · · ×Bk−1

−i ) = bki .

You can find the construction of the set of collectively coherent beliefs in [Geanakoplos et al., 1989]

and the proof of its compactness in [De Marco et al., 2022]. In the remainder of the paper, with

an abuse of notation we will denote with Bi the set of collectively coherent beliefs or any of its

compact subsets.

As in [De Marco et al., 2022], we allow for ambiguity in the beliefs, therefore beliefs are compact

subsets Ki ⊆ Bi. We denote with Ki the set of all compact subsets of Bi. This choice enables

4See [De Marco et al., 2022] for additional details on the topological and metric structure of the beliefs space.
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to consider the ambiguity players come up against during the game, due to the uncertainty about

other players’ actions and beliefs: the agent does not have a precise belief bi but knows that the

belief can be any bi ∈ Ki. If Ki is a singleton, then the belief is not ambiguous, leading the theory

back to the standard case.

Game and equilibria

Following the model in [Geanakoplos et al., 1989], each agent i is endowed with an utility function

of the form

ui : Bi × Σ → R, (1)

depending not only on the mixed strategy profile but also on agent’s beliefs: ui(bi, σ) represents

the payoff to player i if he believed bi and the strategy profile σ is actually played. Indeed, fixing

bi, ui(bi, ·) can be (but not necessarily) the classical expected utility function as it is assumed in

[Geanakoplos et al., 1989]. As agents face set-valued beliefs Ki ∈ Ki, they have a set-valued payoff

{ui(bi, σ)}bi∈Ki
for every given ambiguous belief Ki ∈ Ki and strategy profile σ ∈ Σ. There are

several ways in which agents’ ambiguity might be solved depending on the agents’ attitudes towards

ambiguity. In [De Marco et al., 2022] it was considered the case in which players are ambiguity

averse, modeling the utility functions as maxmin preferences. In order to include a large spectrum

of ambiguity attitude, in this paper we focus on the so called α-maxmin preferences, which allow

us to range from the ambiguity seeking attitude (as α = 0) to the ambiguity aversion attitude (as

α = 1). In this framework, each agent i has an utility function of the form Uα
i : Ki × Σ → R

defined, for αi ∈ [0, 1], by

Uα
i (Ki, σ) = αi

[
inf

bi∈Ki

ui(bi, σ)

]
+ (1− αi)

[
sup
bi∈Ki

ui(bi, σ)

]
∀(Ki, σ) ∈ Ki × Σ, (2)

where α denotes the vector α = (α1, . . . , αn) ∈ [0, 1]n. Now, it is possible to define the game.

Definition 2.1: A α-MEU normal form psychological game is defined by

Gα = {A1, · · · , An, U
α
1 , · · · , Uα

n }

where the utility functions Uα
i are defined as in formula (2) for every i ∈ N .

In the models of strategic ambiguity where players have partial knowledge of the strategies

played by their opponents, players’ beliefs depend on the actual strategy and take the form of

set-valued maps (correspondences) from the set of strategy profiles to the set of probability dis-

tributions over opponents’ strategies (see [Lehrer, 2012], [Battigalli et al., 2015], [De Marco, Ro-

maniello, 2012]). In [De Marco et al., 2022] this approach is generalized to hierarchies of beliefs:

agent i is endowed with a set-valued map γi : Σ⇝ Bi, (called ambiguous belief correspondence of

player i), where each image γi(σ) is a not empty and compact set, i.e.:

∅ ≠ γi(σ) ∈ Ki ∀σ ∈ Σ.

5



Each subset γi(σ) ⊆ Bi provides the set of hierarchies of beliefs that player i perceives to be

consistent given the strategy profile σ. The set-valued maps γi are exogenous and have a different

structure depending on the specific problem , therefore they can be considered as parameters of

the game. In this paper we follow the approach in [De Marco et al., 2022]:

Definition 2.2: A α-MEU Psychological Nash Equilibrium (henceforth α-PNE) of the game Gα

with belief correspondences γ = (γ1, . . . , γn) is a pair (K∗, σ∗), where K∗ = (K∗
1 , . . . , K

∗
n) with

K∗
i ⊆ Bi and σ∗ ∈ Σ such that, for every player i:

i) K∗
i = γi(σ

∗);

ii) Uα
i (K

∗
i , σ

∗) ⩾ Uα
i (K

∗
i , (σi, σ

∗
−i)) for every σi ∈ Σi.

In this case, we can also say that (γ(σ∗), σ∗) is a α-MEU Psychological Nash Equilibrium.

We point out that the definition above captures, in a natural way, the main features of the

classical equilibrium notion since condition ii) requires that the equilibrium strategy of each player

is optimal given his beliefs and condition i) requires that beliefs must be consistent with the

equilibrium strategy profile.

Similarly to [Geanakoplos et al., 1989], α-PNE have a characterization as Nash equilibria. Let

wα
i : Σ× Σ → R be the summary utility function defined by

wα
i (σ, τ) = Uα

i (γi(σ), τ) = αi

[
inf

bi∈γi(σ)
ui(bi, τ)

]
+ (1− αi)

[
sup

bi∈γi(σ)
ui(bi, τ)

]
∀(σ, τ) ∈ Σ×Σ. (3)

Then, it immediately follows from the definition that

Lemma 2.3: The profile (γ(σ∗), σ∗) is a α-MEU Psychological Nash Equilibrium if and only if, for

every player i,

wα
i (σ

∗, (σ∗
i , σ

∗
−i)) ⩾ wα

i (σ
∗, (yi, σ

∗
−i)) ∀yi ∈ Σi. (4)

Remark 2.4: In [Geanakoplos et al., 1989] equilibrium beliefs of each agent i are described by

the correct beliefs function βi : Σ → Bi which, for every σ ∈ Σ, specifies the unique hierarchy of

beliefs of player i that is correct, given σ. Now, if we replace γi with βi in definition 2.2 we get

back the definition of classical psychological Nash equilibria. On the other hand, if we replace γi
with βi in (3) we obtain the original summary utility function defined [Geanakoplos et al., 1989].

3 An Illustrative Example

In this section, we present an example of a psychological game under ambiguity in which players

have Hurwicz preferences. The goal is twofold: on the one hand, we aim to put definitions to work

and show how to find psychological Nash equilibria under ambiguity in simple models. On the

other hand, the example highlights in which way the equilibria may be sensitive to variations in
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the amount or the structure of ambiguity of the game and in the attitudes of the players toward

ambiguity. More precisely, we consider a specific form of ambiguity: players’ beliefs are provided

by a perturbation of the correct belief function that takes the form of a ball of radius ε around the

correct belief. This approach resembles the contamination model approach and allows to analyze

the sensitivity of α-PNE with respect to the unique parameter ε. Moreover, as the attitude towards

ambiguity of each player i is parametrized by the corresponding value of αi, we study the sensitivity

of equilibria with respect to αi.

The game considered in the example is the Bravery Game that has been firstly analyzed, in

the framework of standard psychological games, by [Geanakoplos et al., 1989]. In [De Marco et al.,

2022] it has been shown that allowing for ambiguous hierarchies of beliefs may significatively affect

the set of equilibria when players are endowed with maxmin preferences. In this work, we study

the game with respect to the double parametrization ε and αi.

Example 3.1: The game is so described: Player 1 (John) has to publicly take a decision, and he

is concerned about what Player 2 (Anne) will think about him. He can either be bold, exposing

himself to the possibility of danger, or he can opt for a timid decision; therefore John’s pure

strategy set is A1 = {Bold, T imid}. Anne is inactive during the whole interaction but her beliefs

about John has an impact on John’s behavior; indeed, his payoff depends not only on what he

does but also on what he believes Anne thinks he will do. Suppose that John chooses Bold with

probability p and Timid with probability 1 − p. We consider the case in which John cares only

about the expectation q̃ of his belief about the expectation q of Anne’s first order belief. Moreover,

John would rather be timid, unless he thinks Anne is expecting him to be bold, in which case he

prefers not to disappoint her. Anne prefers to think of her friend as bold, and it is better for her

if he opts for the bold decision. The game and payoffs are described below:

John

3(1−q̃), 1−q

T imid1− p

2−q̃, 2(1+q)

Bo
ld

p

Since Anne is a non-active player, the mixed strategy profile is given only by John’s mixed strategy

p. With an abuse of notation, the correct belief functions are defined as follows: β2(p) = p tells

that the expectation of Anne’s first order correct beliefs about John’s strategy p must be equal

7



to p; β1(p) = p tells that the expectation of John’s correct second order beliefs about Anne’s

expectation of correct first order belief about John’s strategy p must be equal to p as well.

The expected utility of John takes the following form:

u1(q̃, p) = p(2− q̃) + 3(1− p)(1− q̃) = p(2q̃ − 1) + 3(1− q̃).

In the case of non-ambiguous beliefs, the game has three psychological equilibria, as shown in

[Geanakoplos et al., 1989]:

- p = 1 = q̃ = q: John chooses to be Bold;

- p = 0 = q̃ = q: John chooses to be Timid;

- p = 1/2 = q̃ = q: John randomizes with probability p = 1/2.

If John is supposed to have ambiguous belief, then John’s belief is represented by the map γε
1(p) =

[p− ε, p+ ε]∩ [0, 1] with 0 < ε ≤ 1. Let us now look at what happens if one allows player to have

different attitude towards ambiguity, considering α-MEU. In order to compute John’s summary

utility function, we firstly compute, for every pair of John’s mixed strategies (p, y) the followings:

argmin
q̃∈γε

1(p)

u1(q̃, y) =

{
q̃′ ∈ [0, 1] |u1(q̃

′, y) = min
q̃∈γε

1(p)
u1(q̃, y)

}
,

argmax
q̃∈γε

1(p)

u1(q̃, y) =

{
q̃′ ∈ [0, 1] |u1(q̃

′, y) = max
q̃∈γε

1(p)
u1(q̃, y)

}
.

We get

argmin
q̃∈γε

1(p)

u1(q̃, y) = argmin
q̃∈[p−ε,p+ε]∩[0,1]

[q̃(2y − 3) + 3− y] = min {p+ ε, 1} , ∀ y ∈ [0, 1].

Similarly,

argmax
q̃∈γε

1(p)

u1(q̃, y) = argmax
q̃∈[p−ε,p+ε]∩[0,1]

[q̃(2y − 3) + 3− y] = max {p− ε, 0} , ∀ y ∈ [0, 1].

If p+ := min {p+ ε, 1} and p− := max {p− ε, 0}, for every pair of John’s mixed strategies (p, y)

and for every α ∈ [0, 1], we have that:

wα
1 (p, y) = α

[
min

q̃∈γε
1(p)

q̃(2y − 3) + 3− y

]
+ (1− α)

[
max
q̃∈γε

1(p)
q̃(2y − 3) + 3− y

]
=

α[p+(2y − 3) + 3− y] + (1− α)[p−(2y − 3) + 3− y] =

y[2α(p+ − p−) + 2p− − 1]− 3α(p+ − p−) + 3(1− p−).
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Recall that p gives a psychological Nash equilibrium under ambiguity if and only if

wα
1 (p, p) ⩾ wα

1 (p, y) ∀y ∈ [0, 1], α ∈ [0, 1].

It is clear that equilibria depend on α and ε, therefore we will discuss different cases.

CASE 1. Suppose 0 < ε ⩽ 1
2
. In this case the summary utility function takes the form:

wα
ε (p, y) =


y [2α (p+ ε)− 1]− 3α (p+ ε) + 3 if 0 ⩽ p ⩽ ε,

y[4αε+ 2(p− ε)− 1]− 6αε+ 3(1− p+ ε) if ε < p < 1− ε

y [2α (1− p+ ε) + 2(p− ε)− 1] + (3− 3α) (1− p+ ε) if 1− ε ⩽ p ⩽ 1.

Let p̃ = 1
2
+ ε(1− 2α), p∗ = 1

2α
− ε, and p̂ = 1−2α

2−2α
+ ε.

a) Denote with h1(y) := y [2α (p+ ε)− 1] − 3α (p+ ε) + 3. If α = 0, the function h1(y) is

decreasing in the entire interval [0, 1]. If α > 0, h1(y) is decreasing in the entire interval [0, 1]

for p < p∗, constant in [0, 1] for p = p∗ and increasing in [0, 1] for p > p∗. Moreover, p∗ ⩾ 0

for all α ∈]0, 1] while p∗ ⩽ ε if and only if α ∈
[

1
4ε
, 1
]
.

b) Denote with h2(y) := y[4αε + 2(p − ε) − 1] − 6αε + 3(1 − p + ε). The function h2(y) is

decreasing in the entire interval [0, 1] for p < p̃, constant in [0, 1] for p = p̃ and increasing

in [0, 1] for p > p̃. Moreover, p̃ > ε if and only if α ∈
[
0, 1

4ε

[
while p̃ < 1 − ε if and only if

α ∈
]
1− 1

4ε
, 1
]
.

c) Denote with h3(y) := y [2α (1− p+ ε) + 2(p− ε)− 1] + (3 − 3α) (1− p+ ε). If α = 1 the

function h3(y) is increasing in the entire interval [0, 1]. If α < 1 the function h3(y) is

decreasing in [0, 1] for p < p̂, constant in [0, 1] for p = p̂ and increasing in the entire interval

[0, 1] if p > p̂. Moreover, p̂ ⩽ 1 for every α ∈ [0, 1[ while p̂ ⩾ 1−ε if and only if α ∈
[
0, 1− 1

4ε

]
.

Note that, if ε < 1/4 then [0, 1] ⊂
[
1− 1

4ε
, 1
4ε

]
, if ε = 1/4 then

[
1− 1

4ε
, 1
4ε

]
= [0, 1] while if ε > 1/4

then
[
1− 1

4ε
, 1
4ε

]
⊂ [0, 1]. Therefore:

- If ε < 1/4, the function y → wα
ε (p, y) is decreasing in [0, 1] for p < p̃, constant for p = p̃,

increasing for p > p̃.

- If ε ⩾ 1/4, the function y → wα
ε (p, y) is decreasing in [0, 1] for p < P , constant for p = P ,

increasing for p > P , where

P =


p̂ if α ∈

[
0, 1− 1

4ε

]
,

p̃ if α ∈
]
1− 1

4ε
, 1
4ε

[
,

p∗ if α ∈
[

1
4ε
, 1
]
.
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So equilibria are computed as follows:

SUBCASE 1.1: If ε < 1
4
, for every α ∈ [0, 1] it follows that:

wα
ε (p, 0) > wα

ε (p, y) ∀y ∈]0, 1], if p < p̃;

wα
ε (p, 1) > wα

ε (p, y) ∀y ∈ [0, 1[, if p > p̃;

wα
ε (p, y) = 3/2 ∀y ∈ [0, 1], if p = p̃.

Therefore, for every α ∈ [0, 1], we have the equilibria: p = 0, p = 1 and p = p̃.

SUBCASE 1.2: If ε ⩾ 1
4
,

i) For α ∈
[
0, 1− 1

4ε

]
,

wα
ε (p, 0) > wα

ε (p, y) ∀y ∈]0, 1], if p < p̂;

wα
ε (p, 1) > wα

ε (p, y) ∀y ∈ [0, 1[, if p > p̂;

wα
ε (p, y) = 3/2 ∀y ∈ [0, 1], if p = p̂.

Therefore, we get the equilibria: p = 0, p = 1, and p = p̂.

ii) For α ∈
]
1− 1

4ε
, 1
4ε

[
,

wα
ε (p, 0) > wα

ε (p, y) ∀y ∈]0, 1], if p < p̃;

wα
ε (p, 1) > wα

ε (p, y) ∀y ∈ [0, 1[, if p > p̃;

wα
ε (p, y) = 3/2 ∀y ∈ [0, 1], if p = p̃.

Therefore, we get the equilibria: p = 0, p = 1, and p = p̃.

iii) For α ∈
[

1
4ε
, 1
]
,

wα
ε (p, 0) > wα

ε (p, y) ∀y ∈]0, 1], if p < p∗;

wα
ε (p, 1) > wα

ε (p, y) ∀y ∈ [0, 1[, if p > p∗;

wα
ε (p, y) = 3/2 ∀y ∈ [0, 1], if p = p∗.

Therefore, we get the equilibria: p = 0, p = 1, and p = p∗.

CASE 2. Suppose 1
2
< ε ⩽ 1. In this case the summary utility function takes the form:

wα
ε (p, y) =


y [2α (p+ ε)− 1]− 3α (p+ ε) + 3) if 0 ⩽ p ⩽ 1− ε

y[2α− 1]− 3α + 3 if 1− ε < p < ε.

y [(p− ε)(2− 2α) + 2α− 1] + (3− 3α)(1− p+ ε) if ε ⩽ p ⩽ 1,

Note that 0 < 1− 1
2ε
⩽ 1

2
⩽ 1

2ε
< 1; consider again p∗ = 1

2α
− ε and p̂ = 1−2α

2−2α
+ ε.

10



a) Denote with h1(y) := y [2α (p+ ε)− 1] − 3α (p+ ε) + 3). If α = 0, the function h1(y) is

decreasing in the entire interval [0, 1]. If α > 0, h1(y) is decreasing [0, 1] if p < p∗, constant

in [0, 1] if p = p∗ and increasing in [0, 1] if p > p∗. Moreover, p∗ ⩾ 0 if and only if α ∈
]
0, 1

2ε

]
while p∗ ⩽ 1− ε if and only if α ∈

[
1
2
, 1
]
.

b) Denote with h2(y) := y[2α−1]−3α+3; the function h2(y) is decreasing in the entire interval

[0, 1] if α < 1
2
, constant in the interval [0, 1] if α = 1

2
and increasing in the entire interval

[0, 1] if α > 1
2
.

c) Denote with h3(y) := y [(p− ε)(2− 2α) + 2α− 1]+(3−3α)(1−p+ε). If α = 1 the function

h3(y) is increasing in the entire interval [0, 1]. If α < 1 the function h3(y) is decreasing in

[0, 1] for p < p̂, constant in [0, 1] for p = p̂ and increasing in the entire interval [0, 1] if p > p̂.

Moreover, p̂ ⩽ 1 if and only if α ∈
[
1− 1

2ε
, 1
[
while p̂ ⩾ ε if and only if α ∈

[
0, 1

2

]
.

It follows that:

- If α ∈
[
0, 1− 1

2ε

[
, the function y → wα

ε (p, y) is decreasing in [0, 1] for every p ∈ [0, 1].

- If α = 1− 1
2ε

then the function y → wα
ε (p, y) is decreasing in [0, 1] for p < p̂ = 1, constant in

[0, 1] for p = p̂ = 1.

- If α ∈
]
1− 1

2ε
, 1
2

[
, the function y → wα

ε (p, y) is decreasing in [0, 1] for p < p̂, constant in [0, 1]

for p = p̂, increasing in [0, 1] for p > p̂.

- If α = 1
2
, the function y → wα

ε (p, y) is decreasing in [0, 1] for p < 1− ε, constant in [0, 1] for

1− ε ⩽ p ⩽ ε, increasing in [0, 1] for p > ε.

- If α ∈
]
1
2
, 1
2ε

[
, the function y → wα

ε (p, y) is decreasing in [0, 1] for p < p∗, constant in [0, 1]

for p = p∗, increasing in [0, 1] for p > p∗.

- If α = 1
2ε

the function y → wα
ε (p, y) is increasing in [0, 1] for p > p∗ = 0, constant for

p = p∗ = 0.

- If α ∈
]

1
2ε
, 1
]
, the function y → wα

ε (p, y) is increasing in [0, 1] for every p ∈ [0, 1].

Equilibria are computed as follows:

i) For α ∈
[
0, 1− 1

2ε

[
,

wα
ε (p, 0) > wα

ε (p, y) ∀y ∈]0, 1], for all p ∈ [0, 1].

Therefore, we have only the equilibrium: p = 0.
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ii) For α ∈
[
1− 1

2ε
, 1
2

[
,

wα
ε (p, 0) > wα

ε (p, y) ∀y ∈]0, 1], if p < p̂;

wα
ε (p, 1) > wα

ε (p, y) ∀y ∈ [0, 1[, if p > p̂;

wα
ε (p, y) = 3/2 ∀y ∈ [0, 1], if p = p̂.

Therefore we have the equilibria: p = 0, p = 1, and p = p̂. Note that for α = 1− 1
2ε

we get

p̂ = 1.

iii) For α = 1
2
,

wα
ε (p, 0) > wα

ε (p, y) ∀y ∈]0, 1], if p < 1− ε;

wα
ε (p, 1) > wα

ε (p, y) ∀y ∈ [0, 1[, if p > ε;

wα
ε (p, y) = 3/2 ∀y ∈ [0, 1], if 1− ε ⩽ p ⩽ ε.

In this case we have an infinite number of equilibria: p = 0, p = 1, and every p ∈ [1− ε, ε].

iv) For α ∈
]
1
2
, 1
2ε

]
,

wα
ε (p, 0) > wα

ε (p, y) ∀y ∈]0, 1], if p < p∗;

wα
ε (p, 1) > wα

ε (p, y) ∀y ∈ [0, 1[, if p > p∗;

wα
ε (p, y) = 3/2 ∀y ∈ [0, 1], if p = p∗.

Therefore we have again three equilibria: p = 0, p = 1, and p = p∗. Note that for α = 1
2ε
,

p∗ = 1.

v) For α ∈
]

1
2ε
, 1
]
,

wα
ε (p, 1) > wα

ε (p, y) ∀y ∈ [0, 1[, for all p ∈ [0, 1].

Therefore we have the unique equilibrium: p = 1.

Results are summarized in the following table, that is filled with the corresponding values of

the parameter α which ensures the existence of the corresponding equilibrium.

p = 0 p = 1 p = 1
2
+ ε(1− 2α) p = 1

2α
− ε p = 1−2α

2−2α
+ ε p ∈]1− ε, ε[

ε < 1
4

[0, 1] [0, 1] [0, 1] ∅ ∅ ∅

1
4
⩽ ε ⩽ 1

2
[0, 1] [0, 1]

]
1− 1

4ε
, 1
4ε

[ [
1
4ε
, 1
] [

0, 1− 1
4ε

]
∅

1
2
< ε ≤ 1

[
0, 1

2ε

]
[1− 1

2ε
, 1] ∅

[
1
2
, 1
2ε

] [
1− 1

2ε
, 1
2

]
{1
2
}
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Note that, for ε = 0, we obtain the three equilibria (p = 1, p = 0 and p = 1
2
) of the original game

in [Geanakoplos et al., 1989] while for α = 1 we get same equilibria as the model with maxmin

preferences computed in [De Marco et al., 2022]. Note that, as ambiguity increases with ε, the set

of equilibria in the two extreme cases α = 0 and α = 1 shrinks to an unique equilibrium for ε > 1
2
,

but the two equilibria are different (i.e. p = 1 and p = 0 respectively). More generally, the table

above shows that the difference among the different attitudes toward ambiguity becomes sharper

as ε increases. In particular, the set of values of α that sustain a given equilibrium generally shrinks

as ε converges to 1. There is one exception: for ε > 1
2
, the value α = 1

2
is a kind of singularity as it

sustains the interval of equilibria [1− ε, ε]. As a consequence, when α = 1
2
, for ε = 1 all p ∈ [0, 1]

are α-PNE.

4 A Sensitivity Analysis

The example in the previous section shows some interesting features concerning the sensitivity of

equilibria with respect to perturbations on the attitudes toward ambiguity. In particular, we notice

that equilibria do not satisfy the lower semicontinuity-like stability, that is, an equilibrium cannot

always be approached by a sequence of equilibria of perturbed games if we consider a perturbation

on the parameter α. For example:

Example 4.1: Consider ε = 3
4
and α = 1

2
, we get that every p ∈ [1− ε, ε] =

[
1
4
, 3
4

]
is a α-PNE. In

particular, pick p = 2
5
∈
[
1
4
, 3
4

]
. Now, fixing ε = 3

4
, consider a sequence {αν}ν∈N such that αν → 1

2

as ν → ∞ with αν ̸= α for every ν. Since ε = 3
4
, the only αν-PNE, for αν sufficiently close to

α are p = 0, p = 1, p = 1
2αν

− 3
4
and p = 1−2αν

2−2αν
+ 3

4
. It follows immediately that any converging

sequence of αν-PNE might converge only to p = 0, p = 1, p = 1
2 1
2

− 3
4
= 1

4
and p =

1−2 1
2

2−2 1
2

+ 3
4
= 3

4
.

Therefore, p = 2
5
cannot be approached by any sequence of αν-PNE.

Lack of lower semicontinuity-like stability is a common feature for equilibria in games. Ex-

ample 3.4 in [De Marco et al., 2022] shows that in case of maxmin preferences (that is α = 1)

a psychological Nash equilibrium under ambiguity cannot always be approached by a sequence of

equilibria of perturbed games if we consider perturbations on the parameter ε5.

The previous example, in turn, shows that the set of equilibria satisfy an upper semicontinuity-

like stability either if we consider a perturbation on the parameter α or a perturbation on the

parameter ε: converging sequences of equilibria of perturbed games converge to equilibria of the

unperturbed game as the perturbation vanishes. The issue of the upper semicontinuity properties

of equilibria is a relevant topic in game theory and it has been largely investigated in the literature,

under many different assumptions and for different solution concept (for instance, see [Yu, 1999],

[Carbonell-Nicolau, 2010], [Scalzo, 2019] and references therein). Moreover, these properties are

5The game considered in Example 3.4 in [De Marco et al., 2022] is different from the one presented in the present

paper; however ambiguous hierarchies of beliefs have the same structure.
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key to build refinements of equilibria based on stability with respect to trembles on the strategies

or on payoffs. In [De Marco et al., 2022], the upper semicontinuity property is investigated for

equilibria in psychological games under ambiguity in case of maxmin preferences; in particular,

the main result therein shows in which way ambiguous belief should converge to correct beliefs so

that sequences of psychological equilibria under perturbation converge to psychological equilibria

of the unperturbed game. In this paper, we extend this result looking also at the stability with

respect to the attitudes toward ambiguity parametrized by the weights αi.

In order to state the stability problem in a clear way, let us firstly construct a sequence of

perturbed games:

Definition 4.2: For every player i and for every ν ∈ N, let

a) {ui,ν}ν∈N be a sequence of functions with ui,ν : Bi × Σ → R;

b) {γi,ν}ν∈N be a sequence of set-valued maps γi,ν : Σ⇝ Bi;

c) {αν}ν∈N be a sequence with αν = (α1,ν , . . . , α1,ν) ∈ [0, 1]n;

d) {Uαν
i,ν }ν∈N be the sequence of functions Uαν

i,ν : Ki × Σ → R defined by

Uαν
i,ν (Ki, σ) = αi,ν

[
inf

bi∈Ki

ui,ν(bi, σ)

]
+ (1− αi,ν)

[
sup
bi∈Ki

ui,ν(bi, σ)

]
∀(Ki, σ) ∈ Ki × Σ.

Then the sequence {Gαν
ν }ν∈N, with Gαν

ν =
{
A1, · · · , An, U

αν
1,ν , · · · , Uαν

n,ν

}
for every ν ∈ N, is a

sequence of α-MEU psychological games.

Therefore:

Problem Statement 4.3: Find conditions under which the sequence {Gαν
ν }ν∈N converges to the

game Gα so that any converging sequence {σ∗
ν}ν∈N of αν-PNE of Gαν

ν has a limit σ∗ that is a

α-PNE of Gα.

In order to state and prove this limit result, we firstly recall definitions on variational conver-

gence of sequences of functions and set-valued maps.

Preliminary definitions

We referred mainly to the paper [Lignola, Morgan, 1992] for the following definitions and results.

Definition 4.4: Let X be a topological space. Consider a sequence of functions6 {gν}ν∈N with

gν : X ⊂ Rk → R for every ν ∈ N and a function g : X ⊂ Rk → R.
6For technical reasons, we consider the case where functions take values in R = R ∪ {−∞,+∞}.
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Then, the sequence {gν}ν∈N sequentially converges (or continuously converges) to the function

g if for every x ∈ X and for every sequence {xν}ν∈N ⊂ X converging to x in X it follows that:

g(x) = lim
ν→∞

gν(xν) = lim sup
ν→∞

gν(xν) = lim inf
ν→∞

gν(xν). (5)

The next definition is devoted to set-valued maps.

Definition 4.5: Let X and Y be metric spaces. Let {Γν}ν∈N be a sequence of set-valued maps

with Γν : X ⇝ Y for every ν ∈ N and let Γ : X ⇝ Y be a set-valued map. Let S(y, ε) be the ball

in Y with center in y and radius ε and

Lim inf
ν→∞

Γν(xν) = {y ∈ Y | ∀ε > 0, ∃ν s.t. for all ν ≥ ν, S(y, ε) ∩ Γν(xν) ̸= ∅},

Lim sup
ν→∞

Γν(xν) = {y ∈ Y | ∀ε > 0, ∀ν, ∃ν ≥ ν s.t. S(y, ε) ∩ Γν(xν) ̸= ∅}.

Then, the sequence {Γν}ν∈N is sequentially convergent to Γ if, for every x ∈ X and for every

sequence {xν}ν∈N ⊂ X converging to x in X, it follows that:

Lim sup
ν→∞

Γν(xν) ⊆ Γ(x) ⊆ Lim inf
ν→∞

Γν(xν).

The stability result

Now we can state the limit theorem.

Theorem 4.6: Let Gα = {A1, · · · , An, U
α
1 , · · · , Uα

n } be a α-MEU psychological game and {Gαν
ν }ν∈N

be a sequence of α-MEU psychological games as constructed in Definition 4.2. Assume that, for

every player i,

i) the sequence {ui,ν}ν∈N sequentially converges to the function ui;
7

ii) each function ui,ν and the function ui are continuous in Bi × Σ;

iii) the sequence {αν}ν∈N converges to α = (α1, . . . , αn);

iv) the sequence {γi,ν}ν∈N sequentially converges to the set-valued map γi. Suppose additionally

that each γi,ν and γi have compact and not-empty values for every σ ∈ Σ.

If the sequence {σ∗
ν}ν∈N ⊂ Σ converges to σ∗ ∈ Σ and (γν(σ

∗
ν), σ

∗
ν) is a α-MEU psychological Nash

equilibrium of Gαν
ν , for every ν ∈ N, then it follows that (γ(σ∗), σ∗) is a α-MEU psychological Nash

equilibrium of Gα.

7The function ui is the one appearing in the construction of Ui (see equation (2)).
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Proof. For every player i and every ν ∈ N, let wαν
i,ν be the summary utility function of the game

Gαν
ν , that is

wαν
i,ν (σ, τ) := αi,ν

[
inf

bi∈γi,ν(σ)
ui,ν(bi, τ)

]
+ (1− αi,ν)

[
sup

bi∈γi,ν(σ)
ui,ν(bi, τ)

]
∀(σ, τ) ∈ Σ× Σ,

and wα
i be the summary utility function of the game Gα, that is

wα
i (σ, τ) := αi

[
inf

bi∈γi(σ)
ui(bi, τ)

]
+ (1− αi)

[
sup

bi∈γi(σ)
ui(bi, τ)

]
∀(σ, τ) ∈ Σ× Σ.

The continuous convergence of the sequence of functions {wαν
i,ν}ν∈N to the function wα

i , for every

i ∈ I, guarantees the result. In fact, if {σ∗
ν}ν∈N ⊂ Σ is a sequence converging to σ∗ ∈ Σ such that,

for every ν ∈ N, (γν(σ∗
ν), σ

∗
ν) is a α-MEU psychological Nash equilibrium of Gαν

ν , then it follows

that, for every player i,

wαν
i,ν (σ

∗
ν , σ

∗
ν) ⩾ wαν

i,ν (σ
∗
ν , (yi, σ

∗
−i,ν)) ∀yi ∈ Σi.

Applying the continuous convergence of {wαν
i,ν}ν∈N to wα

i we get

wα
i (σ

∗, σ∗) = lim
ν→∞

wαν
i,ν (σ

∗
ν , σ

∗
ν) ⩾ lim

ν→∞
wαν

i,ν (σ
∗
ν , (yi, σ

∗
−i,ν)) = wα

i (σ
∗, (yi, σ

∗
−i)) ∀yi ∈ Σi.

This latter inequality implies that (γ(σ∗), σ∗) is a α-MEU psychological Nash equilibrium of Gα.

Therefore, the proof reduces in verifying the continuous convergence of {wαν
i,ν}ν∈N to wα

i . That is,

we need to check that for every (σ, τ) ∈ Σ× Σ and for every sequence {(σν , τν)}ν∈N converging to

(σ, τ) we get the inequalities

lim sup
ν→∞

wαν
i,ν (σν , τν) ⩽ wα

i (σ, τ) ⩽ lim inf
ν→∞

wαν
i,ν (σν , τν). (6)

Denote with

wm
i,ν(σ, τ) = inf

bi∈γi,ν(σ)
ui,ν(bi, τ), w

M
i,ν(σ, τ) = sup

bi∈γi,ν(σ)
ui,ν(bi, τ),

and

wm
i (σ, τ) = inf

bi∈γi(σ)
ui(bi, τ), w

M
i (σ, τ) = sup

bi∈γi(σ)
ui(bi, τ).

Consider (σ, τ) ∈ Σ×Σ and take a sequence {(σν , τν)}ν∈N converging to (σ, τ). Now we prove that

lim sup
ν→∞

wm
i,ν(σν , τν) ⩽ wm

i (σ, τ) ⩽ lim inf
ν→∞

wm
i,ν(σν , τν),

and

lim sup
ν→∞

wM
i,ν(σν , τν) ⩽ wM

i (σ, τ) ⩽ lim inf
ν→∞

wM
i,ν(σν , τν).
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Firstly, we show that

wm
i (σ, τ) ⩽ lim inf

ν→∞
wm

i,ν(σν , τν)

(
resp. wM

i (σ, τ) ⩾ lim sup
ν→∞

wm
i,ν(σν , τν)

)
.

Suppose by contradiction that

wm
i (σ, τ) > lim inf

ν→∞
wm

i,ν(σν , τν)

(
resp. wM

i (σ, τ) < lim sup
ν→∞

wm
i,ν(σν , τν)

)
. (7)

This means that along a subsequence {(σνk , τνk)}k∈N we get

lim
k→∞

wm
i,νk

(σνk , τνk) < wm
i (σ, τ)

(
resp. lim

k→∞
wM

i,νk
(σνk , τνk) > wM

i (σ, τ)
)
. (8)

Additionally, continuity of ui and ui,ν for every ν and compactness of the images of γi and

γi,ν , for every ν, guarantees that there exist bmi ∈ γi(σ) and bmi,ν ∈ γi,ν(σν), (resp. bMi ∈ γi(σ) and

bMi,ν ∈ γi,ν(σν)), for every ν, such that

wm
i (σ, τ) = ui(b

m
i , τ) = inf

bi∈γi(σ)
ui(bi, τ),

(
resp. wM

i (σ, τ) = ui(b
M
i , τ) = sup

bi∈γi(σ)
ui(bi, τ)

)

and

wm
i,ν(σν , τν) = ui,ν(b

m
i,ν , τν) = inf

bi,ν∈γi,ν(σν)
ui,ν(bi,ν , τν),(

resp. wM
i,ν(σν , τν) = ui,ν(b

M
i,ν , τν) = sup

bi,ν∈γi,ν(σν)

ui,ν(bi,ν , τν)

)
.

Consider the sequence of beliefs {bmi,νk}k∈N, (resp. {bMi,νk}k∈N), obtained along the subsequence

{(σνk , τνk)}k∈N as in (8). The sequence {bmi,νk}k∈N, (resp. {b
M
i,νk

}k∈N), has a subsequence {bmi,νh}h∈N,
(resp. {bMi,νh}h∈N ), which converges to a point b̂mi ∈ Bi, (resp. b̂

M
i ∈ Bi ), since Bi is compact. The

point b̂mi , (resp. b̂
M
i ), actually belong to γi(σ). In fact, by definition, the upper limit Lim sup

ν→∞
γi,ν(σν)

contains the limits of every converging subsequence of {bmi,νk}k∈N, (resp. {b
M
i,νk

}k∈N); that is

b̂mi , b̂
M
i ∈ Lim sup

ν→∞
γi,ν(σν).

Moreover {γi,ν}ν∈N is sequentially upper convergent to γi, meaning that Lim sup
ν→∞

γi,ν(σν) ⊆ γi(σ);

therefore, b̂mi , b̂
M
i ∈ γi(σ). By construction ui(b

m
i , τ) ⩽ ui(b̂

m
i , τ) (resp. ui(b

M
i , τ) ⩾ ui(b̂

M
i , τ)). The

sequence {ui,ν}ν∈N sequentially converges to ui; since (bmi,νh , τνh) → (b̂mi , τ), (resp. (bMi,νh , τνh) →
(b̂Mi , τ)), we get :

ui(b̂
m
i , τ) = lim

h→∞
ui,νh(b

m
i,νh

, τνh),
(
resp. ui(b̂

M
i , τ) = lim

h→∞
ui,νh(b

M
i,νh

, τνh)
)
.
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Hence

wm
i (σ, τ) = ui(b

m
i , τ) ⩽ ui(b̂

m
i , τ) = lim

h→∞
ui,νh(b

m
i,νh

, τνh) = lim
h→∞

wm
i,νh

(σνh , τνh),(
resp. wM

i (σ, τ) = ui(b
M
i , τ) ⩾ ui(b̂

M
i , τ) = lim

h→∞
ui,νh(b

M
i,νh

, τνh) = lim
h→∞

wM
i,νh

(σνh , τνh)
)
.

Then, inequality (8) implies that

wm
i (σ, τ) ⩽ lim

h→∞
wm

i,νh
(σνh , τνh) < wm

i (σ, τ),(
resp. wM

i (σ, τ) ⩾ lim
h→∞

wM
i,νh

(σνh , τνh) > wM
i (σ, τ)

)
,

which results in a contradiction. So

wm
i (σ, τ) ⩽ lim inf

ν→∞
wm

i,ν(σν , τν),

(
resp. wM

i (σ, τ) ⩾ lim sup
ν→∞

wM
i,ν(σν , τν)

)
.

Now we show that

wm
i (σ, τ) ⩾ lim sup

ν→∞
wm

i,ν(σν , τν),
(
resp. wM

i (σ, τ) ⩽ lim inf
ν→∞

wM
i,ν(σν , τν)

)
.

Let bmi ∈ γi(σ) (resp. b
M
i ∈ γi(σ)) be such that

ui(b
m
i , τ) = inf

bi∈γi(σ)
ui(bi, τ) = wm

i (σ, τ)

(
resp. ui(b

M
i , τ) = sup

bi∈γi(σ)
ui(bi, τ) = wM

i (σ, τ)

)
.

The points bmi and bMi exist because of the continuity of ui and the compactness of γi(σ) for every

σ ∈ Σ. Since the sequence {γi,ν}ν∈N is sequentially convergent to γi, that is,

γi(σ) ⊆ Lim inf
ν→∞

γi,ν(σν),

then, by definition, there exists a sequence {b̂mi,ν}ν∈N converging to bmi , (resp. {b̂Mi,ν}ν∈N converging

to bMi ), such that, for every ν, b̂mi,ν ∈ γi,ν(σν) (resp. b̂
M
i,ν ∈ γi,ν(σν)).

The sequence {ui,ν}ν∈N sequentially converges to ui; it follows that

lim sup
ν→∞

ui,ν(b̂
m
i,ν , τν) ⩽ ui(b

m
i , τ),

(
resp. lim inf

ν→∞
ui,ν(b̂

M
i,ν , τν) ⩾ ui(b

M
i , τ)

)
.

By construction, for every ν ∈ N, it follows that

wm
i,ν(σν , τν) ⩽ ui,ν(b̂

m
i,ν , τν),

(
resp. wM

i,ν(σν , τν) ⩾ ui,ν(b̂
M
i,ν , τν)

)
.

This finally implies that

lim sup
ν→∞

wm
i,ν(σν , τν) ⩽ lim sup

ν→∞
ui,ν(b̂

m
i,ν , τν) ⩽ ui(b

m
i , τ) = wm

i (σ, τ),
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(
resp. lim inf

ν→∞
wM

i,ν(σν , τν) ⩾ lim sup
ν→∞

ui,ν(b̂
M
i,ν , τν) ⩾ ui(b

M
i , τ) = wM

i (σ, τ)

)
So we finally get

lim sup
ν→∞

wm
i,ν(σν , τν) ⩽ wm

i (σ, τ) ⩽ lim inf
ν→∞

wm
i,ν(σν , τν)

and

lim sup
ν→∞

wM
i,ν(σν , τν) ⩽ wM

i (σ, τ) ⩽ lim inf
ν→∞

wM
i,ν(σν , τν).

Hence, from the properties of upper and lower limits we get

lim sup
ν→∞

wαν
i,ν (σν , τν) = lim sup

ν→∞

[
αi,νw

m
i,ν(σν , τν) + (1− αi,ν)w

M
i,ν(σν , τν)

]
⩽

lim sup
ν→∞

αi,νw
m
i,ν(σν , τν) + lim sup

ν→∞
(1− αi,ν)w

M
i,ν(σν , τν) ⩽(

lim sup
ν→∞

αi,ν

)(
lim sup
ν→∞

wm
i,ν(σν , τν)

)
+

(
lim sup
ν→∞

(1− αi,ν)

)(
lim sup
ν→∞

wM
i,ν(σν , τν)

)
⩽

αiw
m
i (σ, τ) + (1− αi)w

M
i (σ, τ),

and

αiw
m
i (σ, τ) + (1− αi)w

M
i (σ, τ) ⩽(

lim inf
ν→∞

αi,ν

)(
lim inf
ν→∞

wm
i,ν(σν , τν)

)
+
(
lim inf
ν→∞

(1− αi,ν)
)(

lim inf
ν→∞

wM
i,ν(σν , τν)

)
⩽

lim inf
ν→∞

αi,νw
m
i,ν(σν , τν) + lim inf

ν→∞
(1− αi,ν)w

M
i,ν(σν , τν) ⩽

lim inf
ν→∞

[
αi,νw

m
i,ν(σν , τν) + (1− αi,ν)w

M
i,ν(σν , τν)

]
= lim inf

ν→∞
wαν

i,ν (σν , τν).

Condition (6) is satisfied and {wαν
i,ν}ν∈N continuously converges to wα

i .

5 Existence of Equilibria: A Counterexample

Differently from [Geanakoplos et al., 1989] and [De Marco et al., 2022] in which an existence

theorem was proved respectively for psychological Nash equilibria and psychological Nash equilibria

under ambiguity (in case of maxmin preferences), here we cannot provide an analogous result for

α-PNE. In fact, existence fails in very simple examples as the one shown below. For the sake of

simplicity, in the example we consider the extreme form of ambiguity, given by full ignorance, and

the extreme form of optimism, that is α = 0.

Example 5.1: We consider a two player game: the pure strategy set of Player 1 (Anne) is A1 =

{Accept, Reject} and the pure strategy set of Player 2 (John) is A2 = {Accept, Reject}. We

denote with p the mixed strategy of Player 1, where, with an abuse of notation, p is the probability

of Accept and 1 − p is the probability of Reject. Similarly r is the mixed strategy of Player 2;

19



again, with an abuse of notation, r is the probability of Accept and 1 − r is the probability of

Reject. It is assumed that John’s utility does not depend on beliefs while Anne’s utility depends

on her second-order beliefs. Moreover, as done in the previous example, it is considered the case

in which only the expectations of beliefs play a role in Anne’s utility function. We denote with

q ∈ [0, 1] the expectation of John’s first-order beliefs about Anne’s mixed strategy p and q̃ ∈ [0, 1]

the expectation of Anne’s second-order beliefs about the expectation q of John’s first-order beliefs.

The game is represented below:

John

Anne
Accept Reject

Accept −2q̃ − 1, 0 2, 1

Reject 2, 1 2q̃ − 3, 0

A mixed strategy profile is identified by the pair (p, r). The correct belief functions simply map

the strategy profiles (p, r) to correct expectation of beliefs; more precisely, β1(p, r) = p tells that

the expectation of John’s correct first-order beliefs about Anne’s strategy p must be equal to p

and β2(p, r) = p tells that the expectation of Anne’s correct second-order beliefs about John’s

first-order belief about Anne’s strategy p must be equal to p as well.

The expected utility for Anne (Player 1) having second-order belief q̃ and given the mixed

strategy profile (p, r) is

u1(q̃, (p, r)) = −8pr + (5− 2q̃)p+ (5− 2q̃)r + 2q̃ − 3 = 2q̃[1− p− r]− 8pr + 5p+ 5r − 3

We consider the case in which there is full ambiguity about Anne’s second-order beliefs. More

precisely, Anne’s second order belief is given by γ1(p, r) = [0, 1] for every strategy profile (p, r).

Moreover, we focus on the case in which Anne is ambiguity seeking, that is α1 = 0. For every pair

of strategy profiles (p, r) and (x, y), we have that:

Uα
1 (γ1(x, y), (p, r)) = max

q̃∈γ1(x,y)
u1(q̃, (p, r)).

We get

argmax
q̃∈γ1(x,y)

u1(q̃, (p, r)) = argmax
q̃∈[0,1]

u1(q̃, (p, r)) =

argmax
q̃∈[0,1]

[2q̃(1− p− r)− 8pr + 5p+ 5r − 3] =


1 if p < 1− r,

[0, 1] if p = 1− r,

0 if p > 1− r.
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Therefore, given the two strategy profiles (x, y) and (p, r),

wα
1 ((x, y), (p, r)) = Uα

1 (γ1(x, y), (p, r)) =

max
q̃∈[0,1]

[2q̃(1− p− r)− 8pr + 5p+ 5r − 3] =

{
−8pr + 3p+ 3r − 1 if p < 1− r,

−8pr + 5p+ 5r − 3 if p ⩾ 1− r.

Now, for every (x, y) it follows that:

- If r < 3/8, wα
1 ((x, y), (·, r)) is strictly increasing in [0, 1] and attains the maximum in p = 1.

- If 3/8 ⩽ r < 1/2, wα
1 ((x, y), (·, r)) is weakly decreasing in [0, 1− r] and strictly increasing in

[1− r, 1] and attains the maximum in p = 1.

- If r = 1/2, wα
1 ((x, y), (·, r)) is strictly decreasing in [0, 1/2] and strictly increasing in [1/2, 1]

and attains the maximum in p = 0 and p = 1.

- If 1/2 < r ⩽ 5/8, wα
1 ((x, y), (·, r)) is strictly decreasing in [0, 1− r] and weakly increasing in

[1− r, 1] and attains the maximum for p = 0.

- If 5/8 < r ⩽ 1, wα
1 ((x, y), (p, r)) is strictly decreasing in [0, 1] and attains the maximum in

p = 0.

Now, let

BRα
1 (r) = {p ∈ Σ1 |wα

1 ((p, r), (p, r)) ⩾ wα
1 ((p, r), (x, r)), ∀x ∈ Σi}.

It follows that

BRα
1 (r) =


1 if r ∈ [0, 1/2[,

{0, 1} if r = 1/2,

0 if r ∈]1/2, 1].
On the other hand, the best reply of Player 2 can be easily computed, as there are no psychological

effects:

BR2(p) =


0 if p ∈ [0, 1/2[,

[0, 1] if p = 1/2,

1 if p ∈]1/2, 1].
It immediately follows that this game has no equilibria as there are no fixed points for these best

reply correspondences.

Remark 5.2: It is natural to imagine that lack of a general existence theorem depends on a

general lack of convexity of the images of the best reply correspondences. This is actually true,

but it is useful to understand what kind of best reply we refer to. To this purpose, let wi(σ, τ)

be the summary utility function of player i (it can be the one in [Geanakoplos et al., 1989] or in

[De Marco et al., 2022] or the general wα
i considered in this work). Then there are two possible

best replies that can be defined for a player i:
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(1) BRi : Σ−i ⇝ Σi, where

BRi(σ
∗
−i) =

{
σi ∈ Σi | wi((σi, σ

∗
−i), (σi, σ

∗
−i)) ⩾ wi((σi, σ

∗
−i), (τi, σ

∗
−i)) ∀τi ∈ Σi

}
,

(2) BRi : Σ⇝ Σi, where

BRi(σ
∗) =

{
σi ∈ Σi | wi((σ

∗
i , σ

∗
−i), (σi, σ

∗
−i)) ⩾ wi((σ

∗
i , σ

∗
−i), (τi, σ

∗
−i)) ∀τi ∈ Σi

}
.

It follows from the definition that σ∗ is a psychological Nash equilibrium if and only if it is a

fixed point for the set-valued map (1) BR1 × · · · × BRn, or (2) BR1 × · · · × BRn. Now, in the

examples in [Geanakoplos et al., 1989] or in [De Marco et al., 2022] the set-valued maps BRi do not

have convex images even if for these games the equilibrium existence theorem holds. In fact, the

existence theorem follows from the convexity of the images of the set-valued maps BRi, which for

the models in [Geanakoplos et al., 1989] or in [De Marco et al., 2022] results to be guaranteed. On

the contrary, in the example above it is also the set-valued map BRi that has not convex images,

leading to the nonexistence of equilibria.
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