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The study on how equilibria behave when perturbations occur in the data of a game is a 
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trembles. In this paper we investigate the asymptotic behavior of the subgame perfect Nash 
equilibrium (SPNE) in one-leader one-follower Stackelberg games under perturbations both of 
the action sets and of the payoff functions. To pursue this aim, we consider a general 
sequence of perturbed Stackelberg games and a set of assumptions that fit the usual types of 
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original game and if the limit of SPNE outcomes of perturbed games is an SPNE outcome of 
the original game. We fully positively answer when the follower’s best reply correspondence is 
single valued. When the follower’s best reply correspondence is not single valued, the answer 
is positive only for the SPNEs outcomes; whereas the answer for SPNEs may be negative, 
even if the perturbation does not affect the sets and affects only one payoff function. However, 
we show that under suitable non-restrictive assumptions it is possible to obtain an SPNE 
starting from the limit of SPNEs of perturbed games, possibly modifying the limit at just one 
point. 
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1 Introduction

The investigation on the asymptotic behavior of equilibria when perturbations affect the actions

and/or the payoffs of the players represents a relevant issue in Game Theory, (see, for example, the

seminal books [18] and [38]) and it goes back to classical topics in Optimization, as the so-called

variational stability or qualitative stability (see, for example, the books [4, 1, 11, 13, 33]). Such

an investigation requires to answer to questions like: given a perturbation of the original game,

does the sequence of equilibria of the perturbed games converge to an equilibrium of the original

game? what conditions on the perturbations ensure that the limit of the sequence of equilibria of

the perturbed games is an equilibrium of the original game? and what about the convergence of

players’ payoffs at equilibrium?

While these questions have been extensively analyzed and positively addressed in simultaneous-

move games, the literature on the behavior of selections of Nash equilibria in sequential games

under perturbations is more confined due to the higher intrinsic complexity of the model. The

results concerning the subgame perfect Nash equilibrium ([35], henceforth SPNE), a classic solution

concept in sequential frameworks, can be collected in the following four strands of literature. Recall

that an SPNE is a strategy profile and an SPNE outcome is the action profile played in an SPNE.

• For finite-action extensive-form games, properties of robustness under perturbations gave

birth to renowned refinements of the SPNE: see e.g. [34, 21, 31, 37].

• In infinite-action games of perfect information with infinite horizon, the limit of ϵ-SPNEs of

perturbed games has been shown to be an SPNE of the original game: see [15, 16, 5] where the

perturbation consists of finite-horizon (truncated) games; see [7] where the payoff functions

are perturbed via sequences of simple functions.

• For N -player N -stage infinite-action games of perfect information, the limit points of SPNE

outcomes of finite-action (discretized) games are shown to be SPNE outcomes of the original

infinite-action game and an analogous result does not hold for the SPNE strategies ([20]).

Results on such an upper semicontinuity property of the SPNE outcomes have been proved

also for infinite-action games with infinite horizon in [6].

• For two-stage infinite-action games of perfect information (one-leader one/two-follower Stack-

elberg games), in [30] a constructive method to approach an SPNE relying on the perturbation

of the followers’ payoff functions via the Tikhonov regularization is proposed. The authors

showed that, starting from the limit of the unique SPNEs of the Tikhonov-perturbed Stack-

elberg games, one can define an SPNE of the original game. Inspired by this result, in [8] a

selection method for SPNEs via a learning approach based on the proximal regularization of

the payoff functions of both players has been defined. The selection is motivated by the play-

ers’ aversion against the costs to face when they deviate from their current actions. Recently,

the same methodology has been used in [29] where a perturbation involving the Shannon’s

entropy affects the payoff functions.

All the results previously mentioned concern specific kinds of perturbation of the action sets

or of the payoff functions and emphasize two features. On the one hand, the SPNE can exhibit
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a “bad” asymptotic behavior under perturbations of the data of the game. On the other hand,

positive results can be achieved by looking at the SPNE outcomes, at the ϵ-SPNE and at the

construction of an SPNE when the limit of perturbed SPNEs is not. Hence, it is natural to ask:

what conditions a game and a perturbation must satisfy in order to guarantee that

• the limit of SPNEs of perturbed games is an SPNE of the original game?

• an SPNE can be obtained even when such a limit is not an SPNE?

• the limit of SPNE outcomes of perturbed games is an SPNE outcome of the original game?

The aim of this paper is to answer to these questions. To pursue such an aim, we investigate the

asymptotic behavior of the SPNEs when general perturbations affect the action sets and the payoff

functions. The analysis is provided for the class of continuous one-leader one-follower Stackelberg

games, that is two-player two-stage perfect-information games where the players have a continuum

of actions.

More precisely, we first consider a general sequence of perturbed Stackelberg games obtained by

perturbing both the action sets and the payoff functions of the original game and we define the set

of assumptions on such perturbed games that will be used in our investigation. The assumptions

easily accommodate many types of perturbations of sets and of functions broadly used in literature

on approximation theory.

Then, we provide the analysis on the asymptotic behavior of SPNEs under perturbation in three

steps. First, the case of uniqueness of the follower’s optimal reaction is addressed. In this situation

both the SPNEs and the SPNE outcomes exhibit a “nice” asymptotic behavior under perturbations;

in fact the limit of the sequence of SPNEs of the perturbed games is an SPNE of the original game

and an analogous result happens for the SPNE outcomes. Secondly, the case of non-uniqueness of

the follower’s optimal reaction is considered. In this situation stability holds only for the SPNE

outcomes (this represents a complementary result of [20]). Instead, stability for SPNEs is not

guaranteed. Indeed, we show through an illustrative example that the limit of the sequence of

SPNEs of the perturbed games could not be an SPNE of the original game, despite the perturbation

affects only one player’s payoff function, the action sets are unperturbed and both the original and

each perturbed game have a unique SPNE. Nevertheless, stability for SPNEs actually happens for

a particular class of games and perturbations. Thirdly, in light of the previous bad behavior result

concerning the SPNEs, the issue of how “far” is the limit of the SPNEs of perturbed games from

an SPNE of the original game is addressed. We prove that, starting from the limit of SPNEs of

perturbed games, it is possible to obtain an SPNE of the original game by modifying the value of

the follower’s strategy at just one point. Hence, stability-but-for-a-point occurs for the SPNEs in

Stackelberg games.

Therefore, the whole analysis allows to obtain a broad and complete view of the behavior of SPNEs

in Stackelberg games when there are perturbations of all data of the game.

We mention that the asymptotic behavior of other solutions concepts in Stackelberg games has been

also investigated in literature. See, for example, [25] for the strong Stackelberg equilibrium and the

last works [24, 23] on the weak Stackelberg equilibrium. Note that stability results for both concepts
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have been achieved thanks to the introduction of approximate solutions. For further considerations

and other results, see for example [9].

The paper is organized as follows. Section 2 displays the framework: the general sequence of

perturbed games is defined and some convergence notions for sets and for functions are recalled.

Section 3 is devoted to the investigation on the asymptotic behavior of SPNEs. We first display

and discuss the assumptions that we consider in the analysis. Then, the following achievements

are obtained: the stability for SPNEs and SPNE outcomes under the uniqueness of the follower’s

optimal reaction, the bad behavior of SPNEs and the stability for SPNE outcomes in the case

of non-uniqueness of the follower’s optimal reaction. In Section 4 we prove the key-result on the

stability but for a point. Finally, conclusions and directions for future research are provided in

Section 5.

2 Preliminaries

In the whole paper, we deal with a Stackelberg game denoted by Γ, a two-person two-stage perfect-

information game where one player, called leader, chooses her action in the first stage and then

one player, called follower, chooses his action after having observed the action of the leader. The

action sets of the leader and of the follower are denoted by X and Y and they are assumed to be

subsets of two Euclidean spaces X and Y, respectively; their payoff functions are denoted by l and

f , respectively, and they are real-valued functions defined on the set of action profiles X × Y . To

emphasize the data of the game, we refer to Γ as ⟨X,Y, l, f⟩. We denote with B the best reply

correspondence of the follower, that is the set-valued map defined on X by

B(x) := argmax
y∈Y

f(x, y) = {y ∈ Y | f(x, y) ≥ f(x, z) for each z ∈ Y }, (1)

and with Y X the set of strategies of the follower, that is Y X := {φ | φ : X → Y }. In this setting,

an SPNE is defined as follows.

Definition 2.1 ([35]) A strategy profile (x̄, φ̄) ∈ X × Y X is a subgame perfect Nash equilibrium

of Γ if the following conditions hold:

(SPE1) φ̄(x) ∈ B(x) for each x ∈ X,

(SPE2) x̄ ∈ argmaxx∈X l(x, φ̄(x)).

It is worth recalling that the existence of SPNEs is guaranteed under the compactness of the action

sets and the continuity of the payoff functions ([17, Theorem 1]).

Having in mind the investigation on the asymptotic behavior of SPNEs in two-player Stackelberg

games under perturbations, let us consider a general sequence of perturbed games (Γn)n obtained

from Γ by perturbing the players’ action sets and payoff functions. More precisely, let

Γn := ⟨Xn, Yn, ln, fn⟩ for each n ∈ N,

that is, Γn is a two-player Stackelberg game whose action sets are Xn and Yn, subsets of X and Y
respectively, and whose payoff functions are ln and fn, real-valued functions defined on Xn × Yn.
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About convergences. For the sake of completeness, we list some notions of convergence for

points, sets and functions that we will use in the paper (see, e.g., [22, 25, 3]). Let (Un)n and (Vn)n
be sequences of subsets of the Euclidean spaces U and V, respectively, and let (φn)n be a sequence

of functions with φn : Un → Vn for each n ∈ N.

• The sequence (un)n ⊆ U converges to u ∈ U (equivalently, u is the limit of the sequence

(un)n), that is limn→+∞ un = u, if for each ϵ > 0 there exists νϵ ∈ N such that ∥un − u∥U < ϵ

for each n > νϵ;

• The lower limit of the sequence of sets (Un)n is the set

Liminf
n→+∞

Un := {u ∈ U | ∃ (un)n converging to u s.t. un ∈ Un ∀n ∈ N},

that is, u ∈ Liminfn→+∞ Un if and only if u is the limit of a sequence (un)n with un ∈ Un for

each n ∈ N;

• The upper limit of the sequence of sets (Un)n is the set

Limsup
n→+∞

Un := {u ∈ U | ∃ (uk)k converging to u

s.t. uk ∈ Unk
for a subsequence (nk)k ⊆ N},

that is, u ∈ Limsupn→+∞ Un if and only if u is a cluster point of a sequence (un)n with

un ∈ Un for each n ∈ N.

• The sequence of sets (Un)n converges to U , that is Limn→+∞ Un = U , if Limsupn→+∞ Un ⊆
U ⊆ Liminfn→+∞ Un.

• The sequence (φn)n pointwise converges to the function φ : U → V (equivalently, φ is the

pointwise limit of the sequence (φn)n) if the sequence (φn(u))n converges to φ(u) for each

u ∈ U , that is limn→+∞ φn(u) = φ(u) for each u ∈ U ;

• The sequence (φn)n continuously converges to the function φ : U → V (equivalently, φ is

the continuous limit of the sequence (φn)n) if for each sequence (un)n, such that un ∈ Un

for each n ∈ N, converging to u ∈ U the sequence (φn(un))n converges to φ(u), that is

limn→+∞ un = u implies limn→+∞ φn(un) = φ(u).

Obviously, if Un = U for each n ∈ N, every continuously convergent sequence is also pointwise

convergent and the pointwise limit coincides with the continuous limit.

We say that the sequence (un, φn)n with (un, φn) ∈ Un × Vn
Un for each n ∈ N pointwise converges

to (u, φ) ∈ U × V U (equivalently, (u, φ) is the pointwise limit of the sequence (un, φn)n), if (un)n
converges to u and (φn)n pointwise converges to φ.

Now, let (x̄n, φ̄n)n be a pointwise convergent sequence of strategy profiles such that (x̄n, φ̄n) is

an SPNE of Γn for each n ∈ N. The main question one aims to answer in the investigation on the

asymptotic behavior of SPNEs under perturbation is:
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(Q) What conditions on Γ and on the perturbed games (Γn)n guarantee that the pointwise limit

of the sequence (x̄n, φ̄n)n is an SPNE of the original game Γ ? And what about the limit of

the sequence of the outcomes (x̄n, φ̄n(x̄n))n ?

In the next section we will give answers to this question.

3 Answers to question (Q)

We first display the assumptions that we will use in the sequel of the paper. Recall that Γ =

⟨X,Y, l, f⟩ and Γn = ⟨Xn, Yn, ln, fn⟩.

(L1) X ⊆ Xn for each n ∈ N and LiminfnXn ⊆ X;

(L2) the sequence (ln)n continuously converges to l;

(F1) Y ⊆ Yn for each n ∈ N and Limsupn Yn ⊆ Y ;

(F2) the sequence (fn)n continuously converges to f ;

(F3) there exists a compact set Ω ⊆ Y such that
⋃

n∈N Yn ⊆ Ω.

For the sake of readability, we denote by (A) the set of all the assumptions (L1), (L2), (F1), (F2),

(F3).

Assumption (A) accommodates the particular cases where the perturbation of Γ involves either

only the action sets or only the payoff functions. In fact, on the one hand, if Xn = X and Yn = Y

for each n ∈ N and if X is closed and Y is compact, then assumptions (L1), (F1), (F3) are

satisfied. On the other hand, if l and f are continuous over
⋃

n∈NXn × Yn and if ln(x, y) = l(x, y)

and fn(x, y) = f(x, y) for each (x, y) ∈ Xn×Yn and each n ∈ N, then assumptions (L2), (F2) hold.

Assumptions (L1), (F1) require that the action sets of the perturbed games approach the sets X

and Y from outside. This is a common condition in approximation theory (see, e.g, [26, 32]). Note

that assumptions (L1), (F1), (F3) imply that X is closed and Y is compact (see, e.g., [3]).

A traditional instance of perturbation of sets satisfying assumptions (L1), (F1) comes by defining

X and Y as the sets of solutions to a finite number of inequalities. In fact, let

X =

mX⋂
i=1

{x ∈ X | gi(x) ≤ 0} and Y =

mY⋂
j=1

{y ∈ Y | hj(y) ≤ 0},

where X and Y are subsets of X and Y, respectively, and gi and hj are continuous real-valued

functions defined on X and Y, respectively. Consider two sequences (ϵXn )n and (ϵYn )n of non-

negative real numbers decreasing to 0 and define the perturbed sets as follows:

Xn =

mX⋂
i=1

{x ∈ X | gi(x) ≤ ϵXn } and Yn =

mY⋂
j=1

{y ∈ Y | hj(y) ≤ ϵYn },
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for each n ∈ N. Then, assumptions (L1), (F1) are satisfied (actually, LimnXn = X and Limn Yn =

Y ). Assumption (F3) holds provided that either Y or Y1 is a compact set.

Assumptions (L2), (F2) hold for many kinds of perturbations of the payoff functions. A broadly

used instance consists in adding to l and f a noisy term that vanishes when n grows. Let kl and

kf be real-valued functions defined on X × Y and define

ln(x, y) = l(x, y) + αnkl(x, y) and fn(x, y) = f(x, y) + βnkf (x, y),

for each (x, y) ∈ X × Y and each n ∈ N, where αn, βn ∈ R (for the sake of readability, we

suppose that Xn = X and Yn = Y for each n ∈ N). The noisy terms αnkl(x, y) and βnkf (x, y)

can be interpreted as discomforts, costs, or general entropic penalties (see, e.g., [10] and [2] where

entropic and costs-to-move perturbations, respectively, are used to approach Nash equilibria in

simultaneous-move games). If X and Y are compact, l and f are continuous and the sequences

(αn)n and (βn)n converge to 0, then the assumptions (L2), (F2) are satisfied.

Finally, looking at assumptions (L1) and (F1), we point out that (L1) is strictly weaker than the

condition X ⊆ Xn for each n ∈ N and LimsupnXn ⊆ X. In fact, consider the following slight

modification of [3, Example 1.1]:

X = {(0, 0)} and Xn =

{
({1/n} × [0, 1]) ∪ {(0, 0)}, if n is even

({1/n} × [−1, 0]) ∪ {(0, 0)}, if n is odd.

We have X ⊆ Xn for each n ∈ N, LiminfnXn = {(0, 0)} and LimsupnXn = {0} × [−1, 1]. Hence

(L1) is satisfied, but LimsupnXn ̸⊆ X. Note that the equivalence can be shown if the sequence

(Xn)n is assumed to be monotone.

Remark 3.1 (well-definedness of the limits of perturbed strategy and action profiles) Assumptions

(L1), (F1) guarantee that, when a sequence of strategy profiles of the perturbed games pointwise

converges, then the limit is a well-defined strategy profile of the original game. In fact, let (xn, φn) ∈
Xn × Y Xn

n for each n ∈ N and suppose that (xn, φn)n pointwise converges to (x∗, φ∗). Since

LiminfnXn ⊆ X then x∗ ∈ X; moreover, sinceX ⊆ Xn then φ∗(x) = limn→+∞ φn(x) is well-defined

for each x ∈ X; finally, since Limsupn Yn ⊆ Y then φ∗(x) ∈ Y for each x ∈ X. Hence, (x∗, φ∗)

belongs to X × Y X and the definition of pointwise convergence of (xn, φn)n towards (x∗, φ∗) ∈
X × Y X is well-posed, with (xn, φn) ∈ Xn × Y Xn

n for each n ∈ N. Analogous considerations hold

also for the sequence of action profiles of perturbed games. Indeed, if (xn, yn) ∈ Xn × Yn for each

n ∈ N and (xn, yn)n converges to (x∗, y∗), then by assumptions (L1), (F1) we have that (x∗, y∗)

belongs to X × Y .

Now let us show a fundamental technical result that will be used in the proofs of the theorems.

Lemma 3.1. Assume that (L1)-(L2) and (F1)-(F2) hold.

Let (x̄n, φ̄n)n be an SPNE of Γn for each n ∈ N and fix x ∈ X and y ∈ Y .

(i) If ȳ(x) is a cluster point of the sequence (φ̄n(x))n, then f(x, ȳ(x)) ≥ f(x, y).

(ii) If (x̄n)n converges to x̄ and ȳ is a cluster point of the sequence (φ̄n(x̄n))n, then f(x̄, ȳ) ≥
f(x̄, y).
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(iii) If (x̄n)n converges to x̄ and there exists a subsequence of integers (nk)k ⊆ N such that

(φ̄nk
(x̄nk

))k converges to ȳ and that (φ̄nk
(x))k converges to ȳ(x), then l(x̄, ȳ) ≥ l(x, ȳ(x)).

Proof. Note that the functions ln and fn are well-defined on X×Y by assumptions (L1) and (F1).

Proof of (i). Let (φ̄nk
(x))k be a subsequence of (φ̄n(x))n converging to ȳ(x). By (F1), then

ȳ(x) ∈ Y . In light of assumption (F2) and the definition of SPNE for Γnk
, we have that

f(x, ȳ(x)) = lim
k→+∞

fnk
(x, φ̄nk

(x)) ≥ lim
k→+∞

fnk
(x, y) = f(x, y).

Proof of (ii). Let (φ̄nk
(x̄nk

))k be a subsequence of (φ̄n(x̄n))n converging to ȳ. By (L1) and (F1),

then x̄ ∈ X and ȳ ∈ Y , respectively. Since (x̄nk
, φ̄nk

(x̄nk
))k converges to (x̄, ȳ), assumption (F2)

and the definition of SPNE for Γnk
guarantee that

f(x̄, ȳ) = lim
k→+∞

fnk
(x̄nk

, φ̄nk
(x̄nk

)) ≥ lim
k→+∞

fnk
(x̄nk

, y) = f(x̄, y).

Proof of (iii). In light of (L1) and (F1), then x̄ ∈ X, ȳ ∈ Y and ȳ(x) ∈ Y . Since (x̄nk
, φ̄nk

(x̄nk
))k

converges to (x̄, ȳ), by assumption (L2), the definition of SPNE for Γnk
and the convergence of

(φ̄nk
(x))k to ȳ(x), we get

l(x̄, ȳ) = lim
k→+∞

lnk
(x̄nk

, φ̄nk
(x̄nk

)) ≥ lim
k→+∞

lnk
(x, φ̄nk

(x)) = l(x, ȳ(x)).

We now investigate question (Q) by analyzing first the case of uniqueness of the follower’s

optimal reaction.

The follower’s optimal reaction is unique: positive answer to (Q)
(stability for both SPNE and SPNE outcomes)
In this case the best reply correspondence of the follower B is single valued. In the next proposi-

tion, the pointwise limit of the sequence (x̄n, φ̄n)n is shown to be an SPNE of Γ and the limit of

the sequence (x̄n, φ̄n(x̄n))n is shown to be an SPNE outcome of Γ. The results heavily rely on the

convergence properties of the sequence (φ̄n(x̄n))n. Such properties have been firstly achieved in [27]

when the follower’s optimal reaction is unique and the perturbation involves only the payoff func-

tions. There, the asymptotic behavior of Stackelberg equilibria under perturbations is investigated

and the continuous convergence of (φ̄n)n is proved.

Theorem 3.1 (SPNE stability and SPNE outcomes stability). Assume that (A) holds and that

the follower’s best reply correspondence B (defined in (1)) is single-valued.

Let (x̄n, φ̄n) be an SPNE of Γn for each n ∈ N.

(i) If (x̄n, φ̄n)n pointwise converges to (x̄, φ̄), then (x̄, φ̄) is an SPNE of Γ.

(ii) If (x̄n, φ̄n(x̄n))n converges to (x̄, ȳ), then (x̄, ȳ) is an SPNE outcome of Γ.

Therefore, stability holds both for the SPNEs and for the SPNE outcomes.
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Proof. Preliminarily, note that assumptions (L1), (F1) ensure that ln(x, y), fn(x, y), φ̄n(x) are

well-defined for each x ∈ X, y ∈ Y , n ∈ N and that (x̄, φ̄) belongs to X × Y X and (x̄, ȳ) belongs

to X × Y (see Remark 3.1).

Proof of (i). Let us prove that (x̄, φ̄) satisfies (SPE1) of Definition 2.1. Fix x ∈ X. Since (φ̄n(x))n
converges to φ̄(x), by Lemma 3.1(i) we have that f(x, φ̄(x)) ≥ f(x̄, y) for each y ∈ Y . Thus

φ̄(x) ∈ B(x). So (SPE1) holds and, by the single-valuedness of the follower’s best reply correspon-

dence, B(x) = {φ̄(x)} for each x ∈ X.

In order to show (SPE2) of Definition 2.1, we first prove that limn→+∞ φ̄n(x̄n) = φ̄(x̄). In light

of assumption (F3), the sequence (φ̄n(x̄n))n ⊆ Ω has a subsequence (φ̄nk
(x̄nk

))k converging to ȳ

and, by assumption (F1), ȳ ∈ Y . Hence, since (x̄n)n converges to x̄, Lemma 3.1(ii) guarantees

that f(x̄, ȳ) ≥ f(x̄, y) for each y ∈ Y . So ȳ ∈ B(x̄) and, since B(x) = {φ̄(x)} for each x ∈ X, then

ȳ = φ̄(x̄). The result above holds for each convergent subsequence of (φ̄n(x̄n))n, hence the whole

sequence (φ̄n(x̄n))n converges to φ̄(x̄).

Now, since (x̄n, φ̄n(x̄n))n converges to (x̄, φ̄(x̄)) and (φ̄n)n pointwise converges to φ̄, by Lemma 3.1(iii)

it follows that l(x̄, φ̄(x̄)) ≥ l(x, φ̄(x)) for each x ∈ X. Hence also condition (SPE2) holds for (x̄, φ̄).

Proof of (ii). Since the follower’s best reply correspondence is single valued, let φ∗ : X → Y such

that B(x) = {φ∗(x)} for each x ∈ X. Let us prove that (x̄, ȳ) is the outcome of the strategy profile

(x̄, φ∗) and that (x̄, φ∗) is an SPNE of Γ.

Since (x̄n, φ̄n(x̄n))n converges to (x̄, ȳ), then f(x̄, ȳ) ≥ f(x̄, y) for each y ∈ Y by Lemma 3.1(ii).

So ȳ ∈ B(x̄) = {φ∗(x̄)}; then ȳ = φ∗(x̄) and (x̄, ȳ) is the outcome of the strategy profile (x̄, φ∗).

By definition of φ∗, the strategy profile (x̄, φ∗) satisfies (SPE1) of Definition 2.1. Let us show that

(SPE2) holds.

Let x ∈ X. In light of assumption (F3), the sequence (φ̄n(x))n is contained in the compact set

Ω, so there is a sequence of integers (nk(x))k(x) ⊆ N such that the subsequence (φ̄nk(x)
(x))k(x) is

convergent. Denoting with ȳx the limit of such a subsequence, by Lemma 3.1(i) we get ȳx ∈ B(x)

and so yx = φ∗(x). Since this holds for each convergent subsequence of (φ̄n(x))n and for each

x ∈ X, the sequence (φ̄n)n pointwise converges to φ∗. Therefore, in light of Lemma 3.1(iii),

l(x̄, ȳ) ≥ l(x, φ∗(x)) for each x ∈ X and so (x̄, φ∗) satisfies (SPE2).

The follower’s optimal reaction is not always unique:
positive answer only for stability of SPNE outomes
In this case the map B is not single valued. Unfortunately, the pointwise limit of the sequence

(x̄n, φ̄n)n is not ensured to be an SPNE of Γ, even when the perturbation affects only the payoff

function of just one player (that is, the action sets and the payoff function of the other player are

not perturbed) and both the original game and the perturbed games have a unique SPNE. This is

shown in the following illustrative example.

Illustrative example. In this example we use a perturbation, namely the perturbation via the

so-called Tikhonov regularization, based on a classical regularization technique in optimization that

we recall below.

Let g : U → R be a real-valued function defined on a subset U of an Euclidean space U. The
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sequence of Tikhonov-perturbed functions (gT
λn
)n related to g is defined by

gT
λn
(u) = g(u)− λn∥u∥2U,

where λn > 0 for each n ∈ N. The quadratic function appearing in gT
λn

represents a penalty

term that increases as the size of the variable increases; for example, in pollution models it can

be interpreted as the damage caused by emissions or a discomfort occurring from consumption. A

key-result on the relation between the maximizers of gT
λn

and of g is mentioned below (see [36] and

also, for example, [13, Chapter 1]).

If the set U is compact and convex, the function g is upper semicontinuous and concave over U

and limn→+∞ λn = 0, then

• gT
λn

has a unique maximizer ūT
n ∈ U for each n ∈ N;

• the sequence (ūT
n)n converges to the minimum norm element in the set of maximizer of g.

In Stackelberg games framework, the sequence of Tikhonov-perturbed Stackelberg games has been

introduced in [28] as follows:

ΓT
βn

:= ⟨X,Y, l, fT
βn
⟩,

where βn > 0, limn→+∞ βn = 0 and

fT
βn
(x, y) := f(x, y)− βn∥y∥2Y.

Note that the function fT
βn

is obtained by perturbing f via the Tikhonov regularization with respect

to the follower’s variable only. Under the concavity of f(x, ·), such a perturbation allows to bypass

the non-single-valuedness of the follower’s best reply correspondence (since the optimal reaction of

the follower becomes always unique in ΓT
βn
) and the limit of the sequence of Stackelberg equilibria

related to ΓT
βn

has been shown to be a so-called lower Stackelberg equilibrium pair, see [28, Propo-

sition 3.6]. Moreover, starting from the sequence of Stackelberg equilibria related to ΓT
βn
, in [30]

a constructive method to approach an SPNE of Γ has been defined. Finally, we mention that a

numerical investigation on the Stackelberg solutions of ΓT
βn

as n goes to infinity has been provided

in [12].

Now let Γ = ⟨X,Y, l, f⟩ be the game where X = Y = [−2, 2], l(x, y) = x + y and f(x, y) = −xy.

The best reply correspondence B is not single-valued and it is defined on [−2, 2] by

B(x) =


{2}, if x ∈ [−2, 0[

[−2, 2], if x = 0

{−2}, if x ∈]0, 2].

Consider the perturbed Stackelberg games Γn = ⟨Xn, Yn, ln, fn⟩ with Xn = X, Yn = Y , ln ≡ l for

each n ∈ N and fn(x, y) = f(x, y) − y2/n, that is (Γn)n is the sequence of Tikhonov-perturbed

Stackelberg games (ΓT
βn
)n with βn = 1/n for each n ∈ N. The follower’s best reply correspondence

in each perturbed game is single-valued and ΓT
βn

has a unique SPNE, namely the strategy profile

(x̄T
n , φ̄

T
n) defined by

x̄T
n = −4/n and φ̄T

n(x) =


2, if x ∈ [−2,−4/n[

−nx/2, if x ∈ [−4/n, 4/n]

−2, if x ∈]4/n, 2]
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for each n ∈ N. The sequence (x̄T
n , φ̄

T
n)n pointwise converges to (x̄T , φ̄T ), where

x̄T = 0 and φ̄T (x) = lim
n→+∞

φ̄T
n(x) =


2, if x ∈ [−2, 0[

0, if x = 0

−2, if x ∈]0, 2].

(2)

The strategy profile (x̄T , φ̄T ) satisfies the condition (SPE1) in Definition 2.1, as φ̄T (x) ∈ B(x) for

each x ∈ [−2, 2], but it does not satisfy the condition (SPE2) in Definition 2.1, because

l(x, φ̄T (x)) =


x+ 2, if x ∈ [−2, 0[

0, if x = 0

x− 2, if x ∈]0, 2],

and argmax
x∈X

l(x, φ̄T (x)) = ∅.

Therefore the pointwise limit (x̄T , φ̄T ) is not an SPNE of Γ.

Note that the original game Γ has a unique SPNE. In fact, let φα with α ∈ [−2, 2] be a selection

of the set-valued map B, that is

φα(x) =


2, if x ∈ [−2, 0[

α, if x = 0

−2, if x ∈]0, 2].

Since the function l(·, φα(·)) has a maximum only if α = 2, the strategy profile (x̄, φ̄) with

x̄ = 0 and φ̄(x) =

{
2, if x ∈ [−2, 0]

−2, if x ∈]0, 2]
(3)

is the unique SPNE of Γ.

Moreover, we point out that the sequence of action profiles (x̄T
n , φ̄

T
n(x̄

T
n))n converges to (x̄, φ̄(x̄)),

i.e. the limit of the sequence of the SPNEs outcomes related to (ΓT
βn
)n is the SPNE outcome of Γ.

The bad behavior illustrated above is not an isolated incident, but it appears also in other

examples (e.g., the games of [28, Example 2.1] and [30, examples 3.2 to 3.4]).

Hence stability is not guaranteed for the SPNE in Stackelberg games under perturbations when

the follower’s best reply correspondence is not single valued, differently from the case where B is

single valued.

Remark 3.2 (related literature) This lack of stability concerning the SPNEs was already noted in

literature. In fact, in [20] an example where the pointwise limit of the SPNEs of perturbed games

is not an SPNE of the original game is showed when the perturbation involves only the action

sets (more precisely, perturbations made of finite-action games are considered). Our illustrative

example proves that stability is lacking even when we keep the action sets unperturbed and we

perturb only the payoff functions.
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At the end of the Illustrative example, we displayed that the limit of the sequence of SPNE

outcomes of the Tikhonov-perturbed Stackelberg games (ΓT
βn
)n is an SPNE outcome of the original

game Γ. The next result proves that there is actually stability for the SPNEs outcomes under

general assumptions, although stability is not ensured for the SPNEs.

Theorem 3.2 (SPNE outcomes stability). Assume that (A) holds.

Let (x̄n, φ̄n) be an SPNE of Γn for each n ∈ N.
If the sequence of outcomes (x̄n, φ̄n(x̄n))n converges to (x̄, ȳ), then (x̄, ȳ) is an SPNE outcome of

Γ. Therefore, “stability of SPNE outcomes” holds.

Proof. As in the proof of Theorem 3.1, we have that ln(x, y), fn(x, y), φ̄n(x) are well-defined for

each x ∈ X, y ∈ Y , n ∈ N and that (x̄, ȳ) belongs to X × Y .

Let x ∈ X. In light of assumption (F3), the sequence (φ̄n(x))n is contained in the compact set

Ω, so there is a sequence of integers (nk(x))k(x) ⊆ N such that the subsequence (φ̄nk(x)
(x))k(x) is

convergent. Denoting by ȳx the limit of such a subsequence, then assumption (F1) guarantees that

ȳx ∈ Y . Hence, the function φ̃ defined by

φ̃(x) :=

{
ȳx, if x ̸= x̄

ȳ, if x = x̄

is well-defined and belongs to Y X . Clearly, the action profile (x̄, ȳ) is an outcome of the strategy

profile (x̄, φ̃). Let us show that (x̄, φ̃) is an SPNE of Γ.

We start by proving (SPE1) of Definition 2.1, that is φ̃(x) ∈ B(x) for each x ∈ X.

Let x ∈ X \ {x̄} and (nk(x))k(x) be the sequence of integers such that (φ̄nk(x)
(x))k(x) converges to

ȳx. By definition of φ̃ and Lemma 3.1(i) we get f(x, φ̃(x)) = f(x, ȳx) ≥ f(x, y) for each y ∈ Y . So

φ̃(x) ∈ B(x) for each x ∈ X \ {x̄}.
Consider x = x̄. Since (x̄n, φ̄n(x̄n))n converges to (x̄, ȳ), in light of the definition of φ̃ and

Lemma 3.1(ii) we have f(x̄, φ̃(x̄)) = f(x̄, ȳ) ≥ f(x̄, y) for each y ∈ Y . Hence φ̃(x̄) ∈ B(x̄)

and the strategy profile (x̄, φ̃) satisfies the condition (SPE1) of Definition 2.1.

Now, let us show (SPE2) of Definition 2.1, that is x̄ ∈ argmaxx∈X l(x, φ̃(x)). Since φ̃(x̄) = ȳ, it is

sufficient to prove that l(x̄, ȳ) ≥ l(x, ȳx) for each x ∈ X \ {x̄}.
Fix x ∈ X \ {x̄} and let (nk(x))k(x) be the sequence of integers such that (φ̄nk(x)

(x))k(x) converges

to ȳx. Moreover, (φ̄nk(x)
(x̄nk(x)

))k(x) converges to ȳ and, thus, Lemma 3.1(iii) guarantees that

l(x̄, ȳ) ≥ l(x, ȳx). Therefore, (x̄, φ̃) satisfies condition (SPE2) of Definition 2.1.

Remark 3.3 (literature on the convergence of the SPNE outcomes) The nice behavior of SPNE

outcomes obtained via Theorem 3.2 has connections with previous results in literature. In N -

player N -stage continuous game with perfect information where one player acts in each stage, [20,

Theorem 1] showed the upper semicontinuity of the SPNE paths when perturbations affect only

the action sets. Since their perturbation consists of a discretization of the sets (from inside) and

this instance does not fit the assumptions (L1)-(F1), our achievement represents a complementary

result in the case of N = 2. Moreover, note that also [30, Theorem 3.1] and [8, Theorem 1]
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lead to the stability of SPNE outcomes for perturbations of the payoff functions via the Tikhonov

regularization and via the proximal regularization, respectively. So we extend such results to general

perturbations both on the action sets and on the payoff functions.

Hence, question (Q) is positively answered with respect to the SPNE outcomes (and non-

positively answered with respect to the SPNE).

However, we mention that for a particular class of games and perturbations the limit of the sequence

(x̄n, φ̄n)n can be shown to be an SPNE of Γ.

Proposition 3.1. Assume that (A) holds and that

(a) f(x, y) = g(x) + h(y) for each (x, y) ∈ X × Y , where g : X → R and h : Y → R;
(b) fn(x, y) = gn(x) + hn(y) for each (x, y) ∈ Xn × Yn and n ∈ N, where gn : Xn → R and

hn : Yn → R.

Let (x̄n, φ̄n) be an SPNE of Γn for each n ∈ N.
If (x̄n, φ̄n)n pointwise converges to (x̄, φ̄), then (x̄, φ̄) is an SPNE of Γ.

Proof. All the functions and pointwise limits involved are well-defined (Remark 3.1).

Assumption (b) implies that the follower’s best reply correspondence in Γn does not depend on the

leader’s variable. So, recalling that (by hypothesis) φ̄n is the follower’s strategy in an SPNE of Γn

and (φ̄n)n pointwise converges to φ̄, then there exists a sequence (ȳn)n ⊆ Y converging to ȳ ∈ Y

such that φ̄n(x) = ȳn for each x ∈ Xn and φ̄(x) = ȳ for each x ∈ X.

Given the above, by using assumptions (a)-(b), (L2)-(F2) and the definition of SPNE for Γn, one

can prove that conditions (SPE1) and (SPE2) of Definition 2.1 are satisfied.

4 Stability but for a point

The previous section showed that, unless the follower’s best reply correspondence is single valued

(Theorem 3.1) or a special class of games and perturbations is involved (Proposition 3.1), the

question (Q) of Section 2 cannot be fully positively addressed under the general assumption (A)

displayed in Section 3. However, by looking at the Illustrative example, the pointwise limit of

(x̄T
n , φ̄

T
n)n found in (2) and the unique SPNE of the game Γ in (3) are very “close” to each other:

they differ just in one value of the follower’s strategy. Hence, it is natural to ask:

(Q’) From the pointwise limit of a sequence (x̄n, φ̄n)n of SPNEs related to (Γn)n is it possible to

achieve an SPNE of the original game Γ (even when such a limit is not an SPNE of Γ)? And

how?

The first positive answer to question (Q’) has been shown in [30] in the case of the perturbation via

the Tikhonov regularization. Then, an analogous result has been proved in [8] when both players’

payoff functions are perturbed via the so-called proximal regularization. The next key-result does

not involve a specific perturbation and provides sufficient conditions on the game Γ and on the

perturbed games (Γn)n that allow to answer to question (Q’) under general assumptions.
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Theorem 4.1 (SPNEs stability but for a point). Assume that (A) holds.

Let (x̄n, φ̄n) be an SPNE of Γn for each n ∈ N.
If (x̄n, φ̄n)n pointwise converges to (x̄, φ̄), then there exists ȳ ∈ Y such that the strategy profile

(x̄, φ̂) where

φ̂(x) :=

{
φ̄(x), if x ̸= x̄

ȳ, if x = x̄

is an SPNE of Γ.

Therefore, “stability but for a point” holds for the SPNEs.

Proof. As in the proof of Theorem 3.1, we have that ln(x, y), fn(x, y), φ̄n(x) are well-defined for

each x ∈ X, y ∈ Y , n ∈ N and that (x̄, φ̄) belongs to X × Y X .

In light of assumption (F3), the sequence (φ̄n(x̄n))n is contained in the compact set Ω, so it has a

subsequence (φ̄nk
(x̄nk

))k converging to ȳ. By assumption (F1), then ȳ ∈ Y and the strategy profile

(x̄, φ̂) belongs to X × Y X .

Now, let us show that (x̄, φ̂) is an SPNE of Γ.

We start by proving (SPE1) of Definition 2.1, that is φ̂(x) ∈ B(x) for each x ∈ X.

Let x ∈ X \ {x̄}. Since (φ̄n(x))n converges to φ̄(x), Lemma 3.1(i) and the definition of φ̂ implies

that f(x, φ̂(x)) = f(x, φ̄(x)) ≥ f(x, y) for each y ∈ Y . Hence, φ̂(x) ∈ B(x) for each x ∈ X \ {x̄}.
Let x = x̄. As (φ̄nk

(x̄nk
))k converges to ȳ, by Lemma 3.1(ii) we have f(x̄, φ̂(x̄)) = f(x̄, ȳ) ≥ f(x̄, y)

for each y ∈ Y . So φ̂(x̄) ∈ B(x̄) and (x̄, φ̂) satisfies the condition (SPE1) of Definition 2.1.

Now, let us show (SPE2) of Definition 2.1, that is x̄ ∈ argmaxx∈X l(x, φ̂(x)). Since φ̂(x̄) = ȳ, it is

sufficient to prove that l(x̄, ȳ) ≥ l(x, φ̄(x)) for each x ∈ X \ {x̄}.
Fix x ∈ X \ {x̄}. In light of the convergence of (φ̄nk

(x))k and of (φ̄nk
(x̄nk

))k to φ̄(x) and ȳ,

respectively, Lemma 3.1(iii) ensures that l(x̄, ȳ) ≥ l(x, φ̄(x)). Therefore, (x̄, φ̂) satisfies condition

(SPE2) of Definition 2.1.

Remark 4.1 (weakening of the assumptions) The assumptions on the payoff functions in Theo-

rem 4.1 can be weaken. More precisely, (L2) and (F2) can be replaced with the weaker conditions

used in [27, Propositions 3.1 and 3.2]; see also [27, Remark 2.3] for further discussion on the con-

nections between such conditions and existing notions of convergence. The same holds also for

Theorems 3.1 and 3.2. We preferred to make stronger assumptions only for reasons of readability.

Therefore, even when the pointwise limit of (x̄n, φ̄n)n is not an SPNE of Γ, the asymptotic be-

havior of the sequence (x̄n, φ̄n)n allows to recover an SPNE of Γ. In fact, according to Theorem 4.1,

an SPNE of Γ can be defined from the sequence (x̄n, φ̄n)n by possibly modifying at just one point

the pointwise limit (x̄, φ̄). Moreover, the proof of Theorem 4.1 tells also how an SPNE can be

defined, that is how the point in the limit should be modified. In fact, taking into account each

cluster point of the sequence (φ̄n(x̄n))n, one can obtain different SPNEs by replacing the value of

the follower’s strategy φ̄(x̄) with the limit of a convergent subsequence of (φ̄n(x̄n))n. So question

(Q’) is addressed.

Remark 4.2 (on the continuous convergence of (φ̄n)n) We point out that, if the sequence (φ̄n)n is

continuously convergent to φ̄, then in Theorem 4.1 we have ȳ = φ̄(x̄) and so (x̄, φ̄) is an SPNE of Γ.
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However, even when Γ is a “nice” game and (Γn)n is a “nice” perturbation (meaning that the action

sets are compact and convex, the payoff functions are smooth and (ln)n and (fn)n continuously

converge to l and f), the sequence (φ̄n)n is not guaranteed to be continuously convergent. This has

been shown in [28, Remark 3.1] for perturbations via the Tikhonov regularization. In fact, consider

in Illustrative example the sequence (x̄T
n)n = (−4/n)n, which converges to x̄T = 0. Then, we have

lim
n→+∞

φ̄T
n(x̄

T
n) = 1 ̸= 0 = lim

n→+∞
φ̄T
n(x̄

T ).

Hence, the sequence (φ̄T
n)n does not continuously converge (even though the action sets and the

leader’s payoff function are not perturbed and the sequence (fT
βn
)n continuously converge to f).

Obviously, the continuous convergence of (φ̄n)n to φ̄ is guaranteed in the trivial situation where φ̄n

and φ̄ are constant functions, which happens for example when fn and f are additively separable

(see Proposition 3.1). For further discussion on achievements involving the continuous convergence

of (φ̄n)n, see [14, Section 5].

5 Conclusions

In this paper we investigated the asymptotic behavior of the SPNE in Stackelberg games when

perturbations affect both the action sets and the payoff functions. Our analysis focused on the

following questions:

Is the limit of a sequence of SPNEs of perturbed games an SPNE of the original game? If not, how

far is such a limit from an SPNE? And what about the limit of the sequence of SPNE outcomes?

In order to address these questions, we took into account a set of assumptions on the perturbed

games which easily accommodate broadly used kinds of perturbations of sets and of functions

(assumption (A) in Section 3). Under such assumptions we showed that

• when the follower’s best reply correspondence is single valued, the limit of a sequence of

SPNEs of perturbed Stackelberg games is ensured to be an SPNE of the original game and

the limit of a sequence of SPNE outcomes of perturbed Stackelberg games is ensured to be

an SPNE outcome of the original game (Theorem 3.1);

• when the follower’s best reply correspondence is not single valued,

⋄ stability result for SPNEs does not hold, even when the action sets are unperturbed,

only one payoff function is perturbed and both the original and the perturbed games

have a unique SPNE (Illustrative example);

⋄ stability result for SPNEs outcomes holds (Theorem 3.2);

⋄ stability result for SPNEs holds if a particular class of games and perturbations is in-

volved (Proposition 3.1);

• if the limit of a sequence of SPNEs of perturbed games is not an SPNE of the original game,

an SPNE can be achieved by modifying the value of the follower’s strategy at just one point

(Theorem 4.1).
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In summary, we can state that there is stability but for a point for the SPNEs, there is stabil-

ity for SPNEs under the single-valuedness of the follower’s best reply correspondence or under a

particular class of games and perturbations and there is stability for the SPNE outcomes. Note

that the assumptions on the payoff functions (L2)-(F2) can be replaced with weaker convergence

requirements (as noted in Remark 4.1) and, since our analysis is carried out in continuous setting,

all the results holds also for the mixed extension of Stackelberg games with finite action sets.

These achievements leave a first significant picture on the topic of asymptotic behavior of SPNEs

in Stackelberg games under perturbation and so they contribute to fill the gap with respect to the

richer literature on the asymptotic behavior of Nash equilibria in simultaneous-move games.

For a further step on this subject, some extensions could be taken into account for future

research.

A first extension of our investigation could be to consider the more general case where the set

of actions available for each player depends on the choice of the other player. This includes the

case of constraints defined by parametric inequalities, parametrized by the actions of the other

player. Furthermore, it is worth considering the extension to an infinite-dimensional framework

which would allow to deal with differential games (see, e.g., [19]) and where a classical example of

perturbation is a discretization associated to the Galerkin method.

Finally, another direction of research could be to consider more general classes of games, as the N -

player N -stage perfect-information games analyzed in [20] or the multistage infinite-horizon games

examined in [6].
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