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1 Introduction

The diffusion of diseases is crucially affected by the homophily between dif-

ferent groups, namely the tendency of members of a group to interact among

themselves more than across groups. Such a tendency can be affected by poli-

cies aiming at increasing vaccination uptake, when enforcement is imperfect.

With this motivation, we study an environment with two heterogeneous groups

of agents, one with high vaccination rate, the other with a low vaccination rate.

We analyze the impact of a change in homophily on the number of infections

in a world facing a disease that is endemic, in the sense of a non-zero long-run

prevalence, but subject to outbreaks. This mimics what happens for seasonal

flu and for COVID-19. Specifically, we ask what is the impact of homophily

on the amount of infections generated throughout the epidemic: our key result

is that the effect on steady state infection level is diametrically opposite to the

effect on the cumulative number of infected-person-periods generated by an

outbreak.

It is well known that social networks exhibit a high degree of homophily,

and that homophily is one of the network characteristics crucially affecting dif-

fusion and contagion.1 Moreover, when policy makers have to implement cer-

tain policies, such as affecting vaccination uptake, this may affect homophily.

For example, there has been a lot of evidence that in the US private and char-

ter schools have a higher level of non-vaccinated children,2 and this is driven

by a larger number of families that use the possibility of religious or philo-

sophical exemptions.3 There is reason to believe that these more permissive

schools have attracted parents that are more skeptical of vaccinations.4 An-

other example is what happened during the COVID-19 outbreaks in 2021 and

2022, when governments have implemented strong temporary containment and

1See e.g. Jackson (2008).
2 This phenomenon is documented for California by Silverman and Yang (2019). Recent

evidence shows that similar trends happened in Italy and have been considered a cause of a
measles outbreak in Manhattan in April 2019. ,, Mashinini et al. (2020), Shaw et al. (2014).

3Zier and Bradford (2020)
4For example, Sobo (2015) argues that school community norms have an important

impact in vaccine skepticism among families of children attending Steiner schools.
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quarantine policies, such as vaccination passports and, in Italy, the so-called

green pass. These measures, as the compulsory green pass to attend social ac-

tivities such as entering restaurants, are likely to be subject to a wide variety

of enforcement levels, depending on the type of social activity, and the interest

of the owners. As a consequence, this is another measure that can have the

unintended effect of increasing homophily of interaction between people with

similar vaccination rates (Bardosh et al., 2022).

We model the spread of a generic disease using a standard SIS model with

two groups, that differ in their vaccination rates. Vaccination is perfectly

effective. We later endogenize vaccination rates and microfound the discrep-

ancy, using a higher evaluation of costs for a group. With this in mind, we

label the two groups “vaxxers” and “anti-vaxxers”. The homophily of con-

tacts between the two groups is modeled by a parameter h ∈ [0, 1], which is

the percentage of contacts that people have exclusively with others in their

same group, while the rest of contacts is with a fraction of agents drawn at

random from the population. We consider deviations from the steady state of

an amount that is stochastic and has zero mean. As the object of interest, we

analyze the expected discounted aggregate number of infections across all the

periods. This is what we would be interested in if, for example, each period

an agent is ill she cannot work, or has to be cured, thus creating a cost for

the society. If infections are constant, this number is the same as the steady

state prevalence. However, in an outbreak, when infections can vary, the two

objects can be very different. Indeed, one of the messages of this paper is that

the effect of homophily is very different when taking the cumulative infections

into account, rather than the steady state alone.

For tractability, we focus on the linear approximation of the dynamics

around the steady state. We decompose the total number of infections in a

static component, that is the steady-state infection, and a dynamic component,

that depends on the size of a deviation from the steady state, and is the amount

of infections due to the outbreak. This dynamic component can be thought of

as the Bonacich (1987) centrality in the network composed by the two groups,

where the strength of the connection between groups depends on the amount
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of probable infections transmitted. The key result is that, while the steady-

state total infection level is hump-shaped in homophily - namely increasing

for small h and decreasing for large h - cumulative infections are increasing

in homophily for large h and decreasing for h small. Since the size of the

outbreak is zero on average, the long-run steady state can also be thought of

as the average number of cumulative infections generated, while the outbreak

cumulative infections is a measure of the variance of the total number. Hence,

the global effect of homophily depends crucially on the level of risk aversion

that society has.

The key intuition behind the result is as follows. In steady state, a change

in homophily has a direct effect of increasing infections in the group with less

vaccinated agents, because they meet non-vaccinated people more often, and

decrease them in the other, for the symmetric reason. Then, there are indi-

rect effects due to the impact of the steady-state levels on the dynamics. The

key determiants of these indirect effects are (i) a size effect: higher infection

decreases susceptibles, hence decreases future infections; and (ii) a contagion

effect: higher infection increases future infections boosting contagion proba-

bility. When homophily is small, the size effect is symmetric, hence the sign of

the impact of homophily is determined by the contagion effect and is positive;

on the other hand, when homophily is large, the contagion effect is symmetric,

so the sign is determined by the contagion effect (hence is negative).

The effect of homophily on cumulative infections due to an outbreak is

also decomposed in a direct and indirect effect. First, homophily has a direct

effect of changing the dynamics, that we explore in Section 3.2 through a

two-step example. Namely, the level of homophily affects the sign of the gap

between the additional infections generated in the two groups: this acts as a

reversal of the direct effect of homophily on steady-state levels, thus reversing

the behavior when h is large. Second, there is an indirect effect due to the

change in steady-state levels: higher steady-state levels mean that there are

less susceptible individuals that can be infected, hence outbreaks are smaller.

As a consequence, cumulative infections due to the outbreak are decreasing in

the steady-state levels.
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Naturally, vaccination rates are not exogenous. To study the effect of vac-

cination rates that adjust when homophily changes, we explore a model in

which agents trade-off an heterogeneous vaccination cost with their perceived

benefit of vaccination. Furthermore, we assume that the two groups differ only

in (possibly) size, and in their judgment about the real cost of vaccination,

which is deemed higher by anti-vaxxers. This can be thought of as a psycho-

logical cost, a sheer mistake, or any phenomenon that may lead to a difference

in perceived cost: we remain agnostic on the cause of it as our aim is to study

its consequences.5

We explore two different possibilities for the motivation of vaccinations:

vaccinations motivated by avoiding the risk of infections, and vaccinations

motivated by peer pressure. In the former, agents evaluate the benefit of vac-

cination as the negative of the infection rate: the gain in utility if they do not

get the illness. In the latter, agents receive a high benefit from vaccination if

many other agents in their neighborhood are vaccinated. Reality is likely a

mix of the two, so these cases should be thought of as the two extreme cases

in which only one of the two components is visible, for the sake of illustration.

We explore these alternatives because there is a well-documented fact about

vaccine hesitancy that seems hard to reconcile with strategic models: its geo-

graphical and social clustering. Various studies, reviewed, e.g., by Dubé and

MacDonald (2016), find that people are more likely to have positive attitudes

toward vaccination if their family or peers have. In addition, Lieu et al. (2015)

show that vaccine-hesitant people are more likely to communicate together

than with other people. Edge et al. (2019) document that vaccination pat-

terns in a network of social contacts of physicians in Manchester hospitals are

correlated with being close in the network.

5 In recent years many people either refuse drastically any vaccination scheme or reduce
(or delay) the prescribed vaccination. The phenomenon has become more pronounced in
the last decades, especially in Western Europe and in the US. See Larson et al. (2016) for
a general cross country comparison, Phadke et al. (2016) for the US and Funk (2017) for
measles in various European countries. With the model in the main text we mean to capture
not the extremists that would never take a vaccine, but the more general phenomenon of
vaccine hesitancy, which is more widespread and, so, potentially more dangerous (Trentini
et al., 2017).
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We find that the basic result of the different behavior of the static and

dynamic component carries through, because vaccination rates adjust in op-

posite directions, hence the additional effect is never too strong. The group-

level comparative statics are very different under the two vaccination models

though. If vaccinations are motivated by risk of infections, an increase in

homophily has the effect of increasing risk, hence vaccinations, among anti-

vaxxers, and decreasing them among vaxxers. If vaccination is motivated by

peer pressure the mechanism is the opposite: an increase in homophily in-

creases the peer pressure in the group with more vaccinations (the vaxxer

group), hence increasing vaccination among the vaxxers, and decreasing them

among the anti-vaxxers. Homophily is the most harmful to vaccinations in

an hybrid model in which vaxxers vaccinate according to the risk of infection,

while anti-vaxxers according to peer pressure. In such a case homophily un-

ambiguously decreases vaccinations both among vaxxers (because it reduces

risk), and among anti-vaxxers (because it decreases the peer pressure).

Related literature

We contribute to three lines of literature: the literature on epidemics in eco-

nomics, the literature on contagion and diffusion in networks, and the literature

on strategic immunization.

Our contribution to the literature on epidemics in economics is first to study

how homophily impact infections, and more generally to highlight how different

risk and time preferences used to evaluate the welfare impact of an epidemic

may give different weights to the steady state and to the cumulative infection

due to an outbreak. Our cumulative measure of infections can be seen as a

reduced form of various utilitarian welfare functions that have been employed

in the recent literature: the more similar being Rowthorn and Toxvaerd (2012),

Farboodi et al. (2021) and Toxvaerd and Rowthorn (2022). Other papers use

richer models, studying the tradeoffs between economic activity and deaths

(both absent from our model): Acemoglu et al. (2021), Brotherhood et al.

(2021), Bognanni et al. (2020). All of these papers do not consider the effect

6



of the social network. Bisin and Gottardi (2021) consider health and economics

trade-offs, but they do not consider dynamics or homophily. The structure of

the cross-country network is considered in Chandrasekhar et al. (2021), that

also consider as the objective of the planner to minimize the number of infected

person periods, a measure analogous to cumulative infection. None of these

papers study homophily of interactions.

Our contribution to the literature on contagion is to highlight how the

effect of homophily of interactions can be radically different when focusing

on the cumulative number of infections over the outbreak rather than the

steady state. It is well known that homophily might facilitate the diffusion of

a disease, as illustrated, e.g., in Jackson and López-Pintado (2013). However,

they do not study the impact of homophily on the steady state levels, nor the

dynamic cumulative infections. Izquierdo et al. (2018) and Burgio et al. (2022)

study the steady state and find a non-monotonic effect of homophily similar

to our result, but they do not study the dynamic cumulative infection.

Our contribution to the literature on strategic immunization models is to

show that the impact of homophily on group level vaccinations can be opposite

if vaccination is motivated mainly by avoiding the risk of infection, or mainly

by peer pressure. Our model of vaccinations motivated by infection risk is

analogous to Galeotti and Rogers (2013). This paper focuses on the steady

state and not on the dynamic component, which is our focus. In addition,

the endogenous vaccination model in Galeotti and Rogers (2013) generates

symmetric vaccination across the two groups, because it assumes a homoge-

neous vaccination cost, while we use heterogeneous vaccination costs precisely

to microfound and study different vaccination rates. Goyal and Vigier (2015)

studies the interaction between the endogenous level of interaction and vac-

cinations, again in steady state. The fact that vaxxers tend to vaccinate less

when homophily increases is similar to the risk compensation effect studied in

Talamàs and Vohra (2020), that shows that a partially effective vaccination can

decrease welfare. Again, our focus is rather on the static-dynamic trade-offs.

Chen and Toxvaerd (2014) argues that the market mechanism yields ineffi-

ciently low levels of vaccination. No one of these papers explore vaccination
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driven by peer pressure.6

The paper is organized as follows. The next section presents the model.

Section 3 shows results for the mechanical model, when all choices are exoge-

nous. Section 4 explores the robustness of results to endogenous vaccination

rates. Section 5 explores some generalizations and extensions. We conclude

in Section 6. In Appendix A we analyze the model when the disease is not

endemic but has a zero steady state.In Appendix B we prove the formal results

of our paper.

2 The Model

We consider a simple SIS model with vaccination and with two groups of

agents, analogous to the setup in Galeotti and Rogers (2013).

Our society is composed of a continuum of agents of mass 1, partitioned

into two groups. To begin with, in this section this partition is exogenous.

Agents in each group are characterized by their attitude towards vaccination.

In details, following a popular terminology, we label the two groups with a,

for anti-vaxxers, and with v, for vaxxers. Thus, the set of the two groups is

G := {a, v}, with g ∈ G being the generic group. Let qa ∈ [0, 1] denote the

fraction of anti-vaxxers in the society, and qv = 1− qa the fraction of vaxxers.

To ease the notation, we write q for qa, when this does not create ambiguity.

People in the two groups meet each other with an homophilous bias. We

model this by assuming that an agent of any of the two groups has a probability

h to meet only someone from her own group and a probability 1− h to meet

someone else randomly drawn from the whole society.7 This implies that anti-

6There is also a recent literature in applied physics that studies models where the diffusion
is simultaneous for the disease and for the vaccination choices. On this, see the review
of Wang et al. (2015), and the more recent analysis of Alvarez-Zuzek et al. (2017) and
Velásquez-Rojas and Vazquez (2017).

7h is the inbreeding homophily index, as defined in Coleman (1958), Marsden (1987),
McPherson et al. (2001) and Currarini et al. (2009). It can be interpreted in several ways,
as an outcome of choices or opportunities. As we assume that h can be affected by groups’
choices and by policies, we can interpret it as the amount of time in which agents are kept
segregated by group, while in the remaining time they meet uniformly at random.
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vaxxers meet each others at a rate of q̃a := h+ (1− h)qa, while vaxxers meet

each others at a rate of q̃v := h+ (1− h)qv = h+ (1− h)(1− qa). Note that h

is the same for both groups, but if q 6= 1/2 and 0 < h < 1, then q̃a 6= q̃v.

For each g ∈ G, let xg ∈ [0, 1] denote the fraction of agents in group g that

are vaccinated against our generic disease. It is natural to assume, without

loss of generality, that xa < xv, and by now this is actually the only difference

characterizing the two groups. The total number of vaccinated (or average

vaccination rate) is x = qxa + (1 − q)xv. We start by taking xa and xv as

exogenous parameters, and we endogenize them later. Similarly, ρg and Sg

denote respectively the fraction of infected and susceptibles in group g. The

total number of vaccinated is denoted ρ = qρa + (1 − q)ρv. Whenever there

is possible ambiguity, steady-state variables are denoted with an SS apex, so

that the total number of infections in the steady state is denoted ρSS. We omit

the SS apex whenever the context makes it clear that we are using steady-

state values. Let µ be the recovery rate of the disease, whereas its infectiveness

is normalized to 1.

We are going to be concerned with the stable steady state of the system

above, and with outbreaks, deviations from the steady state. Such outbreaks

are stochastic, zero-mean deviations from long-run steady-state values: dρ0 =

(dρ0,a, dρ0,v), where Edρ0,a = Edρ0,v = 0. For simplicity, we assume that the

deviation is symmetric across the two groups: dρ0,a = dρ0,v = dρ0. This is

already sufficient to show the difference between the impact of homophily in

the steady state and in the dynamics, which is our goal; so we stick to this

simplifying assumption. We denote the variance of such stochastic deviation

as σ2 := V ar(dρ0).

2.1 The dynamical system

Setting the evolution of the epidemic in continuous time, we study the fraction

of infected people in each group. For each i ∈ G, let ρi be the share of

infected agents in group i. Since vaccinated agents cannot get infected, we

have ρa ∈ [0, 1− xa] and ρv ∈ [0, 1− xv], respectively.

9



The differential equations of the system are given by:

ρ̇a = Fa(ρa, ρv) = Sa

(
q̃aρa + (1− q̃a)ρv

)
− ρaµ;

ρ̇v = Fv(ρa, ρv) = Sv

(
q̃vρv + (1− q̃v)ρa

)
− ρvµ. (1)

where Sg =
(
1 − ρg − xg

)
∈ [0, 1] are the fraction of agents who are neither

vaccinated, nor infected, and thus susceptible of being infected by other in-

fected agents. Moreover, the shares of infected agents met by anti-vaxxers and

vaxxers are given by ρ̃a :=
(
q̃aρa+(1− q̃a)ρv

)
and by ρ̃v :=

(
q̃vρv+(1− q̃v)ρa

)
,

respectively. Finally, ρaµ and ρvµ are the recovered agents in each group.

First, in the next proposition we characterize some properties of the steady

states.

Proposition 1 (Homophily and endemic disease). The system (1) always

admits a unique stable steady state. For each h ∈ [0, 1], there exists a µ̂(h) > 0

such that (i) if µ < µ̂(h), the stable steady state is interior: ρSSa > 0, ρSSv > 0,

while there is another (unstable) steady state in (0, 0), whereas (ii) if µ > µ̂(h),

the stable steady state is ρSS = (0, 0).

The formal passages of the proof are in Appendix B, as those of the other

results that follow.

In the main body of the paper, we consider the case in which µ < µ̂(h),

and show the results concerning the interior steady state. This might be

the setting more apt to describe the recent behavior of COVID-19, with a

consistent number of baseline cases (the interior steady state), and occasional

outbreaks.8

For analytical tractability, in the following we will approximate the dy-

namics of outbreaks away from the steady state with the linearized dynamics

of the deviation from the steady state dρi,t = ρi,t − ρSSa , for i = a, v.

8The case in which µ > µ̂(h) is consistent with diseases that are not endemic but show
themselves in episodic or seasonal waves. For those diseases, society lays for most of its time
in a steady state where no one is infected. However, exogenous shocks increase the number
of infected people temporarily. Eventually, the disease dies out, as it happens, for example,
for the seasonal outbreaks of flu.
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Definition 1 (Outbreak dynamic). We define the function dρt as the time

evolution that satisfies:(
ḋρa,t

ḋρv,t

)
= J

(
dρt,a

dρt,v

)
, dρ0 =

(
dρ0,a

dρ0,v

)
, (2)

where

J =

(
−ρ̃a − µ+ Saq̃a (1− Sa)q̃a

(1− Sv)q̃v −ρ̃v − µ+ Sv q̃v

)
is the Jacobian matrix of (1) calculated in the steady state, and (dρ0,a, dρ0,v)

′

is the initial magnitude of the outbreak.

Moreover, we denote: dρt = qdρa,t + (1− q)dρv,t.

If µ < µ̂ the steady state is stable, hence it follows that J has negative

diagonal, and in particular −J is an M−matrix. We denote the determinant

of J as |J | and note that it is positive. We note also that µ̂(h) (explicitly

derived in Appendix B) is increasing in h, so that we can highlight a first

important role for h in the comparative statics. If h increases, it is possible

that a disease that was not endemic, because µ > µ̂(h), becomes so as µ̂(h)

increases with h, and the sign of the inequality is reversed. Indeed, higher

homophily counterbalances the negative effect that the recovery rate µ has

on the epidemic outbreak (on this, see also the discussion in Jackson and

López-Pintado, 2013).

2.2 Cumulative infection of the outbreak and society’s

preferences

In the following, we are going to analyze the total cumulative number of in-

fections generated by an epidemic (or the number of infected-person-periods

in the terminology of, e.g., Chandrasekhar et al., 2021). This is equal to a

baseline steady state level, and oscillations around it due to the outbreaks.

A key simplification is that the dynamics dρt,a and dρt,v are by construction

linear in dρ0: hence, the total cumulative number of infections overtime is also

11



linear in dρ0.

Definition 2 (Cumulative infection). Define C̃I as the (normalized) cumula-

tive number of infections due to an outbreak of size dρ0 = (dρ0, dρ0), discounted

with discount rate r:

C̃I := r

(
q

∫ ∞
0

e−rt(ρSSa + dρa,tdt+ (1− q)
∫ ∞

0

e−rt(ρSSv + dρv,t)dt

)
= ρSS + r

∫ ∞
0

e−rtdρtdt

Moreover, thanks to the linearity of dρt, define CI as the coefficient such that:

C̃I(dρ0) = ρSS + CIdρ0 (3)

Notice that the expectation and variance of C̃I are:

E(TI) =ρSS

StDev(TI) =CIσ

(4)

(5)

Hence, ρSS and CI measure, respectively, the average infection level and the

size of the cumulative deviations along an outbreak. What is the relevance of

these measures? Suppose society is risk averse, following a utility function of

the type:

W = −EC̃I −BStDev(C̃I) = −ρSS −BσCI

In this stylized world, welfare depends only on the steady-state level of infec-

tion, the number of infections due to outbreaks, and preference parameters.

In particular, B regulates the aversion to risk of the planner. If society is more

risk averse, it cares more about the development of outbreaks rather than the

long-run steady-state infection level.

When computing the welfare effect of homophily, we calculate:

∂W

∂h
= −∂ρ

SS

∂h
−Bσ∂CI

∂h

12



We can see that the relative contribution of the steady state and the cumulative

infection is regulated by the weight B and the standard deviation σ, that are

arbitrary parameters, independent of the epidemic model. Hence, in case the

two effects countervail each other (which we are going to show is a typical case,

especially for h high), the sign of the welfare effect crucially depends on the

preference parameters of the planner.

In the following, we analyze separately the behavior of ∂ρSS

∂h
and ∂CI

∂h
, and

we show how homophily can have opposite effects on them: hence, the sign

of the welfare impact of homophily crucially depends on how these effects are

combined through risk aversion and discounting parameters.

3 Steady state vs Cumulative infection

In this section we start analyzing the pure epidemic part of the model, taking

the vaccination rates xa and xv as exogenous. Remember that, in this case,

the only difference between the two groups is that xa < xv.

3.1 Homophily in steady state

First, we explore what is the effect of homophily in the steady state. Ho-

mophily has the effect of increasing the social contacts among agents of the

same group: hence, an increase in homophily h has the effect of increasing

the amount of not vaccinated people that anti-vaxxers interact with, with the

result of increasing the steady-state infection level. The opposite effect is true

for the vaxxers. What is the balance of these effects? The next proposition

answers.

Proposition 2 (Homophily in the steady state). In the interior steady state

the derivatives of the infection rates are:

∂hρa = −Sa(1− q)∆ρ
|J |

(Sv − ρ̃v − µ);

∂hρv =
Svq∆ρ

|J |
(Sa − ρ̃a − µ). (6)
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1. Infection among the anti-vaxxers ρa is increasing in homophily;

2. Infection among the vaxxers ρv is always decreasing in homophily if µ <

(1 − x)2/(1 − xa). Otherwise, is hump-shaped: decreasing if h is large

enough, increasing otherwise;

3. The total infection ρ is increasing if homophily is small enough, and

decreasing if homophily is high enough;9

4. Infection in all groups is decreasing in xa, xv.

Moreover, ρ̃a is also increasing in h, and ρ̃v is increasing in h whenever ρv

is.

The intuition for the results on group-level infection rates is the following.

An increase in homophily has a direct effect, due to the change in the meeting

rates across groups; and an indirect effect, due to the effect that a change

in the steady states have. The direct effects are caused by the homophily

changing the probability of infection:

∂hρ̃a = (1− q)∆ρ;

∂hρ̃v = −q∆ρ. (7)

They have opposite signs: anti-vaxxers meet more frequently anti-vaxxers

hence, ceteris paribus, their probability of infection goes up. For vaxxers

the opposite happens.

The indirect effects are due to the impact that each infection level has on

the dynamic increments ρ̇a = Fa(ρa, ρv) and ρ̇v = Fv(ρa, ρv). They can be

9For completeness, we can show it has only one maximum under the assumption that
µ < (1− x)2/(1− xa)
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decomposed as such:

dFa =∂ρa(Saρ̃a)dρa + ∂ρv(Saρ̃a)dρv

=( −µ︸︷︷︸
recovery

effect

− ρ̃a︸︷︷︸
size

effect

+ q̃Sa︸︷︷︸
contagion

effect

)dρa + (1− q̃)Sa︸ ︷︷ ︸
contagion

effect

dρv;

dFv =( −µ︸︷︷︸
recovery

− ρ̃v︸︷︷︸
size

+ q̃vSv︸︷︷︸
contagion

)dρa + (1− q̃v)Sv︸ ︷︷ ︸
contagion

dρv. (8)

For example, for group a, an increase in the steady-state level ρa generates,

for group a: (i) an increase of recovery, (ii) a decrease in the pool of susceptible

agents (size effect), and (iii) a increase in the probability of infection (conta-

gion effect). The recovery effect is constant, and symmetric across groups.

Since the increment in infection comes from a product of the amount of sus-

ceptible agents and of the probability of infection, each of these two effects

are respectively proportional to the level of the other (via the Leibniz differ-

entiation rule). The size effect, that is the reduction of the pool of susceptible

agents, is proportional to the infection probability ρ̃a: hence it is stronger for

anti-vaxxers. The size effect is always negative. Finally, there is the contagion

effect, due to the increase in the probability of meeting an infected person.

This is positive, and its magnitude depends on q, but for q = 1/2 it is pro-

portional to the share of susceptible agents, and so the effect is once again

stronger for anti-vaxxers group. Considering group a, the recovery and the

size effect are only present for a variation of the own steady state level ρa,

while the contagion effect is present both for the own steady state ρa, and for

a variation in the steady state of the other group ρv.

The indirect effects have always opposite sign with respect to the direct

effects, hence the balance is of uncertain sign. The results above state that

the indirect effects are never strong enough to counterbalance the direct effect

in group a, and so ρa is always increasing in ρ0,a. In group v instead, the

derivative can take both signs: it is negative if the direct effect prevails, and

positive otherwise. Since the cross-group contagion is part of the indirect

effect, the direct effect prevails and ρv is decreasing in ρ0,a when h is large,
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that is, when the two groups are almost separated. Instead, when h is small,

the indirect effect may be stronger that the direct one, and ρv can be also

increasing in ρ0,a. This happens when the recovery rate µ is large enough, so

that the contagion effect is a more important driver of infection.10

Note that also the effect of homophily on total infections stems from a

balance of such direct and indirect effects. The expressions for the derivative

in (8) reflect the fact that the variations of the steady state are a combination

of the direct effects from (7), weighted by the responses of the dynamics to a

variation in the steady state, in such a way to leave the dynamics at rest.

Summing up, the sign of ∂hρ is determined by

Sa(ρ̃v + µ)− Sv(ρ̃a + µ)

which represents the balance of the strengths of the contagion effects (whose

magnitude are proportional to Sa and Sv) and of the size effects (whose mag-

nitude are ρ̃a and ρ̃v).

When homophily h is low, the infection probabilities are the same ρ̃a ∼
ρ̃v, hence the size effects, that are proportional to them, do not matter: the

contagion effect, which is positive, dominates and so infections increase in h.

Instead, when homophily is high, the amount of susceptible agents are the same

in the two groups, Sa, Sv → µ, hence the contagion effect does not matter, and

the result is determined by the size effect, which is negative: hence homophily

decreases total infections.11

10Notice that this reasoning holds only when both infection rates do not reach corner
solutions: if for example xv = 1, so that all the vaxxers are vaccinated, then ρv = 0 is a
constant and does not change; in this case the only relevant derivative is:

∂hρa = ∂hρ = −Sa(1− q)∆ρ
J11

> 0

11One might wonder why the population size q has little effect on the result. Note that the
marginal changes in the probability of infection (and hence both ∂hρa and ∂hρv) depend on
the fraction of the population in the other group: this is the amount of the change in people
met for a unit increase in h. The consequence is that when computing the total infection,
the population fractions can be collected, because each term is multiplied by q(1− q), and
do not matter anymore.

16



3.2 Cumulative infection

We now analyze how results are affected once we explicitly model the infection

outbreaks. First, we can note that cumulative infection is closely related to

Bonacich centrality:(
C̃Ia

C̃Iv

)
= r

∫ ∞
0

e(−rI+J)tdρ0dt = (I − 1/rJ)−1dρ0.

We can see that the vector of cumulative infections in the two groups is equal to

the Bonacich centrality in the network defined by the Jacobian matrix J . This

expression is going to be useful to make calculations with cumulative infection.

The intuition can be better grasped considering the associated discrete time

dynamics, in which the outbreak satisfies:(
dρa,t+1

dρv,t+1

)
= J

(
dρa,t

dρv,t

)
. (9)

In such a case, the cumulative infection is simply∑
t

r−tJ tdρ0 = (I − 1/rJ)−1dρ0.

Each step in the time iteration adds a number of infections proportional to

the direct and indirect connections in the weighted connection network defined

above up to step t. The sum of all the total direct and indirect discounted

connections amounts to the total cumulative infection over time, and is equal

to the Bonacich centrality. The continuous time result can be obtained for the

step size going to zero.

The next Proposition is the main result of this section, showing that, es-

pecially for h high, CI has opposite behavior with respect to ρSS.

Proposition 3. The impact of homophily h on CI can be decomposed as:

dhCI = ∂hCI︸ ︷︷ ︸
direct effect

+ ∂ρaCI∂hρa + ∂ρvCI∂hρv︸ ︷︷ ︸
indirect effect

.
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1. The direct effect ∂hCI is positive if h high enough, while, for h → 0,

∂hCI is positive if and only if µ > 1−x
2

;

2. the indirect effect is equal to − 1
detJ

∂hρ.

3. the total effect dhCI is positive when h is low enough, and negative when

h is high enough.

What is the reason for this discrepancy? As discussed above, there is a

direct effect of h on the dynamics, and an indirect effect, due to h affecting also

the steady-state levels. In the following paragraphs we try to give intuitions

for both.

Intuition: direct effect To better understand the intuition behind the

direct effect of h on the cumulative infection, we turn again to the approximate

discrete dynamics (9). Let us analyze a simple two-step discrete version of the

outbreak dynamics. At t = 1 we have:

dρa,1 = (−ρ̃a − µ+ q̃aSa)dρ0 + (1− q̃a)Sadρ0,

dρa,1 = (−ρ̃v − µ+ q̃vSa)dρ0 + (1− q̃v)Svdρ0.

The gap with total infection at the steady state is:

dρ1 =(−ρSS − µ+ qSa + (1− q)Sv)dρ0 = (−2ρSS − µ+ 1− x)dρ0,

and hence we can see that this is independent of homophily h. The fact that the

two groups have an identical initial deviation dρ0 means that only the average

effects matter: the average of the contagion effect terms is equal to the average

(total) number of susceptible agents, while the average size effect is equal to

the total number of infections. Hence, after one period, only population-level

statistics matter.

However, the two deviations dρa,1 and dρv,1 are not identical. After one

period, the gap between groups’ infections dρ1,a − dρ1,v = ∆dρ is:

∆dρ1 = (∆S − h∆ρSS)dρ0,
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which once again, depends on the size and contagion effects previously dis-

cussed. Similarly to the derivatives in (2), both effects are stronger for anti-

vaxxers, so if h is low, since the size effect is symmetric, the contagion effect

dominates and the gap is positive; the opposite happens when h is high. These

effects are analogous to the effects driving the impact of homophily on steady

state infections.

To compute total infections at period 2, we can decompose the new delta

infection rates as deviations from the average number of infected agents:

dρa,1 = dρ1 + (1− q)∆dρ1 and dρv,1 = dρ1− q∆dρ1. Then, we can express the

new total infections at period 2 as:

dρ2 = −dρ2
1 + q(1− q)h(∆S −∆ρSS)∆dρ1. (10)

By linearity, we get two additive terms: one derives from the average compo-

nent dρ1, while the other derives from the deviations, proportional to ∆dρ1.

The first term implies analogous calculations as the total infection at time 1,

when starting from homogeneous initial deviations: hence it is also indepen-

dent of homophily, conditional on the steady state infection.

The second term is the crucial one, containing the effect of homophily h

on the total infections at period 2, conditional on steady state values. Once

again, we see that it depends on the balance of size (∆ρSS) and contagion

(∆S) effects. However, the important part is that the sign of the effect also

depends on the increment at the previous period, whose sign depends itself on

h. In particular, when h is large and the size effect dominates, the gap ∆dρ1

is negative, hence the overall sign is positive, which is the opposite conclusion

than what we get in the steady state.12 The reason is that, as Equation (10)

describes, homophily changes, together with the steady state levels, also the

intermediate steps of the dynamics.

This example shows a short run intuition for the discrepancy between the

static and dynamic effects, that the Proposition above shows formally in infi-

12If, instead, h is small, the gap ∆dρ1 is positive, and the sign of the term ∆S −∆ρSS is
uncertain: for h = 0 it is positive if and only if µ > (1 − x)/2. This is because when µ is
large the contagion effect is more important than past infections.
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nite time. The next paragraph shows how we can get similar long run intuitions

analyzing the behavior of the convergence time, as measured by the smallest

eigenvalue (in absolute value).

Intuition: indirect effect To understand the intuitive connection between

CI and the share of infected agents at steady state, ρSS, it is useful to first

focus on the case in which groups are totally separated, namely h = 1. In this

case, each group follows an independent standard SIS equation (we report the

equation for the a group):13

ρ̇a = Saρa − µρa = (1− ρa − xa)ρa − µρa.

The linearization of this process is given by:

ḋρa = −ρSSa dρa =⇒ dρa = e−ρ
SS
a tρ0

so that we can analytically compute: CI = ρ0
ρSSa +r

: the cumulative infection is

inversely proportional to the steady state infection. The intuition is that the

higher the steady-state infection, the fewer susceptible agents are, so that the

outbreak is smaller and the system goes back to the steady state faster.

If h 6= 1, the dynamics is paired, and a clear analytical inverse proportion-

ality is lost. However, to clarify the dynamic intuition behind the mechanism,

in the next paragraph we show that, following a similar intuitio, the conver-

gence time of the dynamics, as measured by the smallest eigenvalue of J , is

decreasing in the steady state levels.

Convergence time To formalize the intuitions discussed in the previous

two paragraphs, we consider the following classic definition (see e.g. Gabaix

et al., 2016).

13An analogous result can be obtained for h = 0, because in this case we can average the
two equations and obtain an equation for the evolution of the total infection ρ directly:

ρ̇ = (1− ρ− x)ρ− µρ.
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Definition 3 (Speed of convergence). The speed of convergence of the system

after an outbreak of size ρ is

CT = − lim
t→∞

log‖etAρ0‖
t

.

A classic property of linear systems is that the speed of convergence can

be measured by eigenvalues: we show formally that this is the case also here.

Moreover, we formally show that the speed of convergence is decreasing in

both steady-state levels, ρSSa and ρSSv . This provides further intuition behind

the mechanism of the indirect effect of Proposition 3. Futher, we show that,

similarly to Golub and Jackson (2012), also in this context homophily decreases

convergence time, at least when h and µ are large: this provides also a long-run

intuition behind the direct effect in Proposition 3.

Proposition 4. The speed of convergence is equal to the absolute value of the

eigenvalue of smallest modulus of the matrix J − rI:

CT = λ2

When h→ 1, CT is increasing in h. When h→ 0, CT is increasing if and

only if µ > 1−x
2

. Moreover, CT is decreasing in both ρSSa and ρSSv .

4 Vaccination choices

The fraction of vaccinated agents in the population itself might depend on

homophily once we take into account that vaccination is endogenous. We en-

dogenize infections with a variant of the model in Galeotti and Rogers (2013)

with heterogeneous costs, to explore asymmetric equilibria. Agents might vac-

cinate paying a cost, or not vaccinate incurring the risk of becoming infected.

Since in our model, as in Galeotti and Rogers (2013), the fraction of time

agents spend infected is the steady state value, the health disutility of be-

ing not vaccinated is −ρSSa for agents in a, and −ρSSv for agents in v. From

here on, we drop the SS apex. With a descriptive spirit, we microfound the
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discrepancy in vaccination rate assuming that anti-vaxxers have a cost larger

than vaxxers of a uniform amount d. However, our focus being the effect of

homophily on infections, we do not dig deeper in the motivations for this dif-

ferent cost evaluation. Thus, we assume that, for vaxxers, vaccination costs

are cv ∼ U [0, 1/k], whereas for anti-vaxxers ca ∼ U [d/k, 1/k + d/k]. k is a

parameter reflecting the distribution of vaccination costs in the population:

a high k means that vaccination costs are generally small, whereas a low k

means that they are high.14

We assume that agents take vaccination decisions ex-ante, before an epi-

demic actually takes place, and cannot update their decision during the diffu-

sion. This mimics well diseases, like seasonal flu, for which the vaccine takes

a few weeks before it is fully effective, and the disease spreads rapidly among

the population.

Since there is a continuum of agents, each individual takes as given the

fraction of vaccinated in the population as given. Thus, an agent in group a

vaccinates if and only if c < ρa. The fraction of agents that vaccinate is, thus,

xa = kρa−d. Similarly, xv = kρv for vaxxers. The following lemma guarantees

existence and uniqueness of the vaccination equilibrium.

Lemma 1. If kρa > d the equations:xa = kρa − d

xv = kρv
(11)

define a unique equilibrium (x∗a, x
∗
v), whenever the solution is interior. More-

over, x∗a < x∗v, x
∗
a is increasing in h, and x∗v is decreasing in h.

The proof of Lemma 1 uses a version of the global implicit function theo-

rem. The mechanism behind the comparative statics is that, as h increases,

the group with more vaccinated people (the vaxxers) is more protected against

infection, so the expected cost of infection kρv decreases, and as a result, a

14 Our model would not change dramatically if we attribute the difference in perception
to the costs of becoming sick, but we stick to the first interpretation because it makes the
computations cleaner.
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smaller fraction of vaxxers is vaccinated: xv is decreasing in h. The opposite

happens for anti-vaxxers.

4.1 Impact of homophily

Steady state

We have seen that homophily has opposite impacts on the fraction of vacci-

nated agents in the two groups. We now study the balance of these effects on

infection levels. The total derivative of steady state infection is

dhρ = ∂hρ+ ∂xaρ∂hxa + ∂xvρ∂hxv.

If h→ 1, we know that ∂xaρ→ −q and ∂xaρ→ −(1− q). Moreover, using the

expressions obtained above for ∂hxa and ∂hxv, we get:

∂hxa →
k

1 + k
∂hρa,

∂hxv →
k

1 + k
∂hρv.

(12)

(13)

Hence, the total additional effect is − k
1+k

(q∂hρa+(1−q)∂hρv) = − k
1+k

∂hρ > 0.

The decrease in infection among the vaxxers dominates the increase among

anti-vaxxers (the effect discussed in the previous section). This, in turn, trig-

gers a decrease in (total) vaccination and an increase in total infection. How-

ever, since only a fraction of agents vaccinates, this translates in an increase

in infection that is less than proportional to the direct effect, mediated by the

parameter k. As a result, the sign of the derivative is the same, even if the

magnitude is dampened.

If h → 0, we obtain exactly the same result, with symmetric intuitions.

The next proposition sums up the discussion of this section (for details when

h→ 0 see the proof). Let dhρ |x const be the dhρ as in Proposition 2, i.e., with

exogenous vaccination choices.

Proposition 5. If h → 0 or h → 1 the total derivative of the steady state
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total infection with respect to homophily satisfies

dhρ =
1

k + 1
dhρ |x const,

The sign of such derivative is the same as with exogenous vaccination rates,

while the magnitude is smaller.

Cumulative infection

Concerning the cumulative infection of the outbreak, the total derivative can

be decomposed as:

dhCI = dhCI |xa,xv const +dxaCI∂hxa + dxvCI∂hxv

where dhCI |xa,xv const= ∂hCI + ∂ρaCI∂hρa + ∂ρvCI∂hρv is dhCI we calculated

in Proposition 3, with exogenous vaccination choices.

The term dxaCI∂hxa + dxvCI∂hxv, for h → 0 or h → 1 can be shown

to be proportional to −(∂xaρ∂hxa + ∂xvρ∂hxv) that, in turn, by the previous

proposition, is proportional to ∂hρ.

Hence, if h→ 1, the baseline term dhCI |xa,xv const is positive, and also the

additional terms are positive. Hence, the total derivative is positive, with a

magnitude larger than with fixed vaccination rates: dhCI > dhCI |x cost. If

h → 0, the baseline term is negative and the additional effects are negative,

hence the symmetric thing happens. Formally, we can sum up the results in

the following proposition.

Proposition 6. For h large enough, cumulative infection is increasing in ho-

mophily, and the sensitivity is larger than with exogenous vaccination rates:

dhCI > dhCI |x cost> 0. For h small enough, the cumulative infection is

decreasing in homophily, and the sensitivity is larger than with exogenous vac-

cination rates: 0 > dhCI |x cost> dhCI.

Hence, we conclude that the difference of behavior between steady-state

and dynamic infection is magnified by the presence ofendogenous vaccination

rates.
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4.2 Vaccination motivated by peer pressure

In this sectgion we explore an alternative scenario in which vaccination deci-

sions are not driven by a correct evaluation of the infection risk. Instead, we

consideragents who do not know or consider the infection risk at all, but vacci-

nate purely motivated by peer pressure: they vaccinate if a sufficient fraction

of the agents they meet is vaccinated. Under this vaccination model, we show

that if homophily is large enough no one vaccinates, and so infection rates

are higher with respect to the case in which vaccination IS based on infection

risk. Moreover, the behavior of vaccination rates with respect to homophily is

the opposite than what happens with vaccination based on risk of infection:

xa is decreasing in h, while xv is increasing in h. This is because in this case

agents are insensitive to risk, and increasing homophily tends to increase peer

pressure for vaxxers, and to decrease it for anti-vaxxers. Despite these differ-

ences, we show that in this alternative framework, the steady-state and the

cumulative infection display the same qualitative behavior, with respect to a

change in homophily for h → 0 and h → 1, as in the baseline framework we

presented.

Formally, an agent in group a with heterogeneous cost c vaccinates if c <

q̃axa + (1 − q̃a)xv − d/k, and the analogous but with d = 0 happens for an

agent in group v. Hence, the vaccination rates at interior solutions are defined

by:
xa =k(q̃axa + (1− q̃a)xv)− d,

xv =k(q̃vxv + (1− q̃v)xa).

This is a linear system, and the interior solution is (whenever feasible):(
xa

xv

)
=

(
I − k

(
q̃a 1− q̃a

1− q̃v q̃v

))−1(
−d
0

)
.

This formulation highlights how the equilibrium vaccination rates are propor-

tional to Bonacich centralities in the network defined by the meeting rates(
q̃a 1− q̃a

1− q̃v q̃v

)
. If k < 1 the inverse matrix is positive, and so there are

25



no interior solutions, and all the vaccination rates are 0.

When k > 1 interior solutions are given by:

xa =− d(1− k(1− (1− h)q))

(1− k)(1− hk)
,

xv =− d(1− h)kq

(1− k)(1− hk)
.

Thus, if h > 1/k we must have xv = 0, and if h > 1 − k−1
kq

, then xa = 0.

Hence, for h high enough no one vaccinates, and theninfection rates are higher.

The derivatives of the interior solutions with respect to homophily are:

∂hxa =
dk(q − 1)

(hk − 1)2
,

∂hxv =
dkq

(hk − 1)2
,

and we can see that they are identical up to proportionality factors 1− q, and

q. Since, for h → 0, the derivatives of the steady state are proportional to

q and 1 − q, the additional effect of endogenizing vaccination rates is 0 for

h → 0. It is also null for h → 1, because in that case, as we noted above,

both vaccination rates are 0 and so they are not sensitive to homophily. It

follows that under this vaccination model the impact of homophily on both the

steady-state and the cumulative infection for h → 0 and h → 1 are the same

as in the model with exogenous vaccination rates. In particular, the impact on

the steady state and the impact on the cumulative infection are still opposite.

4.3 A mixed model

We now consider a model with mixed motivations. We consider the case in

which anti-vaxxers, instead of evaluating correctly the risk, rely on peer pres-

sure, whereas vaxxers are more prone to evaluate risks. In this case the effect

of homophily is the most negative. In this model for some parameter values an

increase in homophily produces unambiguously a decrease in vaccination rates

in both groups : vaxxers vaccinate less because of lower risk, while anti-vaxxers
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vaccinate less because of peer pressure. To be formal, assume:xa = k(q̃axa + (1− q̃a)xv)− d,

xv = kρv.

Indeed, thanks to the implicit function theorem the derivatives of vaccina-

tion rates are the following:(
∂hxa

∂hxv

)
= − 1

det

(
−(1− k∂xvρv)k(1− h)∆x− k2(1− q̃a)∂hρv
−k2∂xaρv(1− h)∆x− (1− kq̃a)k∂hρv

)

where det = (1−k∂xvρv)(1−kq̃a)−k2(1− q̃a)∂xaρv. If 1 > kq̃a, since ∂xvρv < 0

and ∂xaρv < 0 we have det > 0. Moreover, since ∂hρv < 0 it follows ∂hxv < 0.

Finally, if ∆x is small enough, we also have ∂hxa < 0.

Hence, we conclude that when the group with higher cost evaluation peer

pressure is the driver of vaccination, while in the other group is the fear of

infection, for some parameter values homophily unambiguously decreases equi-

librium vaccinations in both.

5 Generalizations and variations

5.1 Imperfectly effective vaccination

The model can be reinterpreted to explore the effect of an imperfectly effective

vaccination. Indeed, if in the baseline model we reinterpret xa and xv as the

rates of effectively immunized, all the results can be applied in a similar way.

Indeed, suppose that the rate of success of the vaccination is η ∈ [0, 1], and

the vaccination rates are x̂a and x̂v: then the effective fractions of immunized

agents are xa = ηx̂a, xv = ηx̂v: notice that xv > xa if and only if x̂v > x̂a.

Hence, all the results on exogenous vaccination rates remain valid. Also the

results on endogenous vaccination rates remain valid, though, as long as the

rate of success of the vaccination is the same, η, in both groups. Indeed,

∂hxa = η∂hx̂a and similarly for ∂hxv, so that all the derivatives would simply
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be multiplied by η. Hence, for example, Proposition 5 would be modified as:

dhρ =
1 + (1− η)k

1 + k
dhρ |x constant

This variation offers a particularly interesting case: consider a case in which

x̂a = 0 and x̂v = 1. In such a case we can identify the vaxxers with the vac-

cinated and the anti-vaxxers with the non-vaccinated. In such a case, if the

vaccination is perfectly effective, homophily is unambiguously negative, as

it increases contacts between non-vaccinated, hence increasing infection. In-

stead, if the vaccination is imperfectly effective, for homophily high enough the

steady state infection goes down. Hence it follows that perfectly or imperfectly

effective infection can change the qualitative impact of homophily.

5.2 Corner solutions for vaccination rates

The effects described in the previous section crucially rely on the fact that both

vaccination rates adjust when homophily changes. This breaks down when one

of the two groups is at a corner solution: e.g. xa = 0 (which happens when d

is high enough), or if xv = 1. These cases have opposite comparative statics: if

all vaxxers vaccinate, when homophily increases (of a moderate amount), vac-

cinations unambiguously decrease, because the increased risk affects only the

anti-vaxxers, increasing their vaccination level. Instead if no anti-vaxxers vac-

cinate, homophily unambiguously increases vaccinations, because the change

causes a decrease in risk for vaxxers.

6 Conclusion

The problem of vaccine skepticism is a complex one, and requires an analysis

from multiple perspectives, e.g., psychological, medical, and social. The results

of this paper might be relevant for a policy maker interested in minimizing

infection in a world with vaxxers and anti–vaxxers, having available a policy

inducing some degree of segregation, or homophily, h. The key observation
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is that reducing contact with anti–vaxxers may be counterproductive both

from the perspective of vaxxers and of the society as a whole because it slows

down the dynamics of the disease to its steady state, if there is an outbreak.

Homophily may actually increase the duration of the outbreaks and, depending

on the time preferences of the planner, this might crucially change the impact

of the policy.
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Appendix A Zero steady state

If µ is high enough, following Proposition 1, then the only steady state is the

zero infection steady state ρSSa = ρSSv = 0, it is possible to give a sharper

characterization. Indeed, since the steady state infection levels do not vary

with h, the change in cumulative infection is driven uniquely by the direct

effect of h.

Proposition A. If µ > µ̂(h), there is only one steady state, ρSSa = ρSSv = 0,

and is stable.

If dρ0,a = dρ0,v > 0, the cumulative infection satisfies the following.

a) CI = CI and CIa are increasing in h; CIv is decreasing in h;

b) CI, CIa and CIv are decreasing in xv and xa;

c) CI, CIa and CIv are increasing in q.

A.1 Vaccinations

Since the steady state is zero, if we try to apply directly the vaccination model

in the main text, we run into the problem that no agent would have an incentive

to vaccinate. In this case we can assume that agents think about the risk of

infection using a simple heuristic: they estimate it as being proportional to the

fraction of non-vaccinated people that they meet. Agents multiply this fraction

of non-vaccinated people by a factor k > 0, that represents the perceived

damage from the disease, which is the same for the two groups. Thus:

xv = k[q̃v(1− xv) + (1− q̃v)(1− xa)] , (a)

and similarly:

xa = max{k(q̃a(1− xa) + (1− q̃a)(1− xv))− d, 0} , (b)
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One big advantage of this functional specification is that it allows readily

to solve for the interior equilibrium:

xa = 1− 1 + dqa
1 + k

− d(1− qa)
1 + hk

,

xv = 1− 1 + dqa
1 + k

+
dqa

1 + hk
. (c)

This is true provided d < d = min
{

1
k2
, k
k+1

}
. We use this interiority

condition as a maintained assumption for the remainder of this section.

First of all, we note that (i) xv > xa - since vaxxers perceive a lower

vaccination costs than anti-vaxxers; (ii) xa is increasing in h whereas xv is

decreasing in h - since a higher homophily makes vaxxers more in contact

with agents who are less susceptible than anti-vaxxers and, as a consequence,

(xv − xa) is decreasing in h; (iii) xa and xv are increasing in qa - since the

higher the share of anti-vaxxers, the more agents are in touch with other

subjects at risk of infection; (iv) the total number of vaccinated people is

qaxa + (1 − qa)xv = k−dqa
1+k

, it is independent of h, but decreasing in qa. It is

possible to characterize analytically the behavior of the cumulative infection,

as in the following proposition.

Proposition B. If d < d, then CI is increasing in h, though less than in the

case in which vaccination rates are exogenous.

A.2 Corner solution

If d is larger than d the threshold provided above, instead we have an equilib-

rium in which no anti-vaxxer vaccinates, obtaining:

xa = 0 ,

xv =
k

(h− 1)kq + k + 1
, (d)
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provided d < 1/k so that xv 6= 0.15

From the expression we can immediately conclude that xv is decreasing in

h. Again, the mechanisms are similar as discussed in the Section 5.2: since a

change in homophily impacts only the vaccination rate among vaxxers, and,

by Proposition A, CIv is decreasing in h, overall homophily increases CI, and

the impact is larger than with exogenous vaccination rates, and in the interior

equilibrium.

Appendix B Proofs

Proof of Proposition 1 (page 10)

The Jacobian of the dynamical system is:

J =

(
−µ− ρ̃a + q̃aSa (1− q̃a)Sa

(1− q̃v)Sv −µ− ρ̃v + q̃vSv

)
=

(
A B

C D

)

In a 2x2 matrix, we can explicitly write the expression of the eigenvalues

as a function of the entries:

λ1,2 =
1

2

(
A+D ±

√
(A−D)2 + 4BC

)
Now since BC > 0 it follows that the eigenvalues are real and distinct. The

steady state is stable if they are both negative.

Now computing the Jacobian in the (0, 0) steady state we find that it is

stable if and only if µ > µ̂(h) := 1
2

(T + ∆) ∈ [0, 1], where T := q̃a(1 − xa) +

q̃v(1− xv) and ∆ :=
√
T 2 − 4h(1− xa)(1− xv). Notice that this is increasing

in h. �

15This is possible if hk2+k
hkq−kq+k+1 < d < 1

k and either k < 1 or(
1 < k < 1

2

(
1 +
√

5
)
∧ 0 < q < −k2+k+1

k ∧ 0 < h < −k2−kq+k+1
k3−kq

)
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Proof of Proposition 2 (page 14)

We need first to establish some useful relations.

Lemma A. In any steady state in which xa < xv, we have ρa ≥ ρ̃a ≥ ρ̃v ≥ ρv,

Sa > Sv, and xv − xa ≥ ρa − ρv. Moreover ρ̃a − ρ̃v = h(ρa − ρv).

If h→ 1, we have ρSSa → 1− xa − µ, ρSSv → 1− xv − µ, and µ̂→ 1− xa.
If h→ 0, we have ρSSa →

(1−xa)(1−x−µ)
1−x , ρSSv →

(1−xv)(1−x−µ)
1−x , and µ̂→ 1−x,

where x = xaqa + xv(1− qa) is the average number of vaccinated.

Proof. In every nonzero steady state:

Sa
Sv

=
(1− q̃v)ρaρv + q̃v

(1− q̃a)ρvρa + q̃a

If ρa < ρv and xa < xv, then Sa > Sv, but the fraction above implies Sv > Sa,

which is a contradiction. Hence ρa > ρv. From the identity ρ̃a−ρ̃v = h(ρa−ρv)
it follows ρ̃a > ρ̃v, and since they are averages ρa ≥ ρ̃a ≥ ρ̃v ≥ ρv. Finally:

Sa > Sa
ρ̃a
ρa

= Sv
ρ̃v
ρv

> Sv

Now we are ready to prove Proposition 2.

Proof. Using the implicit function theorem we can compute the derivatives of

infection rates in the steady state:

∂hFa = (1− q)Sa∆ρ

∂hFv = −qSv∆ρ

∂hρa = −Sa(1− q)∆ρ
|J |

(Sv − ρ̃v − µ)

∂hρv =
Svq∆ρ

|J |
(Sa − ρ̃a − µ)
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Moreover, Sv− ρ̃v−µ = Sv− ρ̃v−Sv ρ̃vρv < 0 since ρ̃v > ρv, so it follows that ρa

is always increasing in h. From the steady state equation (1−xa−ρa)ρ̃a/ρa =

µ it follows that also ρ̃a is increasing. Concerning the other derivative, if

h → 0, then Sa − ρ̃a − µ = µ1−xa
1−x − (1 − x). This is negative if and only if

µ < (1 − x)2/(1 − xa). Similarly, if h → 1 Sa − ρ̃a − µ = Sa − ρa − Sa ρ̃aρa =

Sa − ρa − Sa < 0. Moreover, by the previous conclusions on ρa and ρ̃a, we

get that ∂hρv can only have one zero (because Sa − ρ̃a is decreasing): so ρv is

either decreasing or hump-shaped with one maximum. From the steady state

equation (1 − xv − ρv)ρ̃v/ρv = µ again it follows that ρ̃v is increasing if and

only if ρv is.

The total is:

∂hρ =
q(1− q)∆ρ
|J |

(−Sa(Sv − ρ̃v − µ) + Sv(Sa − ρ̃a − µ))

=
q(1− q)∆ρ
|J |

(Sa(ρ̃v + µ)− Sv(ρ̃a + µ))

If h = 0 we get: ∂hρ ∝ (∆x−∆ρ)(µ+ρ) > 0, while for h = 1 we get (since

Sa = Sv = µ):

∂hρ ∝ −∆ρµ < 0

Moreover, if µ < (1− x)2/(1− xa), the derivative is monotonically decreasing,

so the total infection is concave (or hump-shaped).

The behavior as a function of the vaccination rates is:

∂xaFa = −ρ̃a ∂xaFv = 0

∂xaρa = − 1

|J |
(−J22ρ̃a) < 0 ∂xaρv = − 1

|J |
(J21ρ̃a) < 0

and analogous for the derivative with respect to xv.
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Proof of Proposition 3 (page 18)

Lemma B. Call the vector of group-level cumulative infection values ~CI =

(CIa, CIv). The derivative of the cumulative infection with respect to a param-

eter y can be expressed as:

∂y ~CI = (q, 1− q)′(rI − J)−1∂yJ(rI − J)−1dρ0

Proof. The vector of the cumulative infections ~CI = (CIa, CIv) is the solution

of:

r ~CI = dρ0 + J ~CI

where ∂yJ is the element by element derivative of J . Differentiating it and

solving we obtain:

∂y ~CI = (rI − J)−1∂yJ(rI − J)−1dρ0

Since rI − J is an M-matrix, the inverse has positive elements.

Now we can prove the Proposition.

Proof. For simplicity, write dρ0 = dρ0,a = dρ0,v. The total derivative is dhCI =

∂hCI + ∂ρaCI∂hρa + ∂ρvCI∂hρv.

Now, since:

∂hJ =

(
−(1− q)∆ρ 0

0 q∆ρ

)
+

(
Sa 0

0 Sv

)(
1− q −(1− q)
−q q

)

using the Lemma we can explicitly calculate the derivatives for h = 0 or h = 1,
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and using µ < 1− x we obtain the following.

∂hCI
out |h=1= −(1− q)qρ0(xa − xv)2(−2r + µ+ xa + xv − 2)

(−r + µ+ xa − 1)2(−r + µ+ xv − 1)2
> 0

∂hCI
out |h=0

=− µ(1− q)qdρ0(xa − xv)2(2µ+ q(xa − xv) + xv − 1)

(q(xa − xv) + xv − 1)2(−r + q(xa − xv) + xv − 1)(−r + µ+ q(xa − xv) + xv − 1)2
> 0

⇐⇒ µ >
1− x

2

because the denominator −r + q(xa − xv) + xv − 1 is negative.

Moreover, the derivative of the Jacobian matrix with respect to infection

rates is:

∂ρaJ =

(
−2q̃a −(1− q̃a)

0 −(1− q̃v)

)
∂ρvJ =

(
−(1− q̃a) 0

−(1− q̃v) −2q̃v

)

so we conclude that the derivative of both cumulative infections with respect to

infection rates are negative. In particular, for h = 0 or h = 1 we can explicitly

write the derivatives of the total CI as:

∂ρaCI |h=1= −((2qdρ0)/(−1 + xa − r + µ)2)ρ0

∂ρvCI |h=1= −(2(1− q)dρ0)/(−1 + xv − r + µ)2ρ0

∂ρaCI |h=0= − 2qdρ0

(−r + µ+ q(xa − xv) + xv − 1)2

∂ρvCI |h=0= − 2(1− q)dρ0

(−r + µ+ q(xa − xv) + xv − 1)2

we conclude that (∂ρaCI, ∂ρvCI) ∝ −(q, 1−q), and so ∂ρaCI∂hρa |h=0 +∂ρvCI∂hρa |h=0∝
−∂hρ.

Hence, for h high both the direct and indirect term in the derivative are

positive, and so the derivative is positive. For h small, the indirect effect is

negative, while the direct depends on µ: for µ < 1−x
2

they have the same sign,

and the derivative is negative. For µ > 1−x
2

, using the results above we can
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compute the total effect, that is:

∂hCI
out |h=0 +∂ρaCI∂hρa |h=0 +∂ρvCI∂hρa |h=0

=
µ(1− q)qdρ0∆x2(−2r + 2µ− 3(1− x)

(1− x)2(r + (1− x))(−r + µ− (1− x))2

that has the same sign as −2r + 2µ − 3(1 − x) < −2r − (1 − x) < 0, since

µ < 1− x. So the indirect effect dominates.

Proof of Proposition 4 (page 21)

Proof. Using the results in Bernstein and So (1993), we can express the expo-

nential matrix as a function of eigenvalues, and directly compute the limit:

− lim
t→∞

log‖etAρ0‖
t

= λ2 − lim
t→∞

log‖
(
λ1−λ2e−(λ1−λ2)t

λ1−λ2 I + 1−e(λ1−λ2)t
λ1−λ2 A

)
‖

t

= λ2 − lim
t→∞

log‖(λ1 − λ2e
−(λ1−λ2)t)I + (1− e−(λ1−λ2)t)A‖

t
= λ2

Concerning the behavior of λ2 as a function of h, we use a standard result

on eigenvalue perturbations (Demmel, 1997, Th 4.4). Namely, if λ is a simple

eigenvalue of J − rI:

∂hλ =
v′∂(J − rI)u

v′u

where v is the left and u the right eigenvector relative to λ.

In our case both eigenvalues are simple and we can explicitly solve for the

eigenvectors. For λ = −λ2, we obtain:

u =

(
2b√

(a− d)2 + 4bc− (a− d)
, 1

)

v =

(
2c√

(a− d)2 + 4bc− (a− d)
, 1

)

and they have both positive components, so v′u > 0: hence the sign of the
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derivative is determined by the numerator. By results of the previous proposi-

tion, ∂ρaJ and ∂ρvJ have both negative elements, hence the derivatives ∂ρaλ2

and ∂ρaλ2 are negative.

Moreover, when h → 1, both eigenvectors converge to (0, 1). So in the

limit of h→ 1 we get:

∂hλ2 = −∂J22 = −q∆ρ− qSv < 0

so that for high enough h, the speed of convergence is increasing in h. Instead,

when h→ 0, the eigenvectors converge to (q, 1− q) and (1− xa, 1− xv), and

the derivative becomes:

∂hλ |h→0= −(1− q)q(1− x− 2µ)∆x2

(1− x)2

that is positive if and only if µ > 1−x
2

.

Proof of Lemma 1 (page 22)

Proof. Define the system of implicit equations:Fa = xa − kρa + d

Fv = xv − kρv

the jacobian is:

JxF =

(
1− k∂xaρa −k∂xvρa
−k∂xaρv 1− k∂xvρv

)
Thanks to the calculation in previous propositions we obtain that the diagonal

is positive. Moreover, the determinant is:

detJF = 1− k∂xaρa − k∂xvρv − k∂xaρa + k2∂xvρv∂xaρa − k2∂xvρa∂xaρv
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now using the expressions found previously:

∂xvρv∂xaρa − ∂xvρa∂xaρv = (ad− bc)ρ̃aρ̃v > 0

and in particular the matrix is invertible, so there is locally a solution of the

system. Moreover the determinant is positive, hence the matrix is positive

definite, so the solution is unique and global thanks to the global implicit

function theorem.

Moreover, if x∗a > x∗v it follows from the initial Lemma that ρa < ρv that

implies x∗a < x∗v, which is a contradiction: hence x∗a < x∗v.

For the second part:

∂hxa =− 1

detJF

(
−(1− k∂xvρv)k∂hρa − k2∂xvρa∂hρv

)
> 0

∂hxv =− 1

detJF

(
−(1− k∂xaρa)k∂hρv − k2∂xaρv∂hρa

)
< 0

(e)

(f)

where the signs follow on known properties of the derivatives listed.

Proof of Proposition 5 (page 24)

Proof. The proof for h→ 1 is in the main text. When h→ 0, since again we

have ∂xaρ → −q and ∂xaρ → −(1 − q), using the expressions obtained in the

Lemma, we can compute:

−q∂hxa − (1− q)∂hxv = − k(1− q)q∆x2µ

(1 + k)(1− x)2

while we have:

∂hρ =
(1− q)q∆x2µ

(1− x)2

from which the thesis follows.
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Proof of Proposition 6 (page 24)

Proof. The total derivative dxaCI is:

dxaCI = ∂xaCI + ∂ρaCI∂xaρa + ∂ρvCI∂xaρv

taking into account the fact that also the steady state adjusts when vaccination

rates change. Reordering, we have:

dxaCI∂hxa + dxvCI∂hxv =

= ∂xaCI∂hxa+∂xvCI∂hxv+∂ρaCI(∂xaρa∂hxa+∂xvρa∂hxv)+∂ρvCI(∂xaρv∂hxa+∂xvρv∂hxv)

Now both if h→ 0 and h→ 1 we have (∂ρaCI, ∂ρvCI) ∝ −(q, 1−q). It follows

that (remembering ρ = qρa + (1− q)ρv):

∂ρaCI(∂xaρa∂hxa+∂xvρa∂hxv)+∂ρvCI(∂xaρv∂hxa+∂xvρv∂hxv) ∝ −∂xaρ∂hxa−∂xvρ∂hxv

Proposition 5 shows that both for h → 0 and h → 1 this term is − k
k+1

∂hρ.

The only additional term to analyze is:

∂xaCI∂hxa + ∂xvCI∂hxv

Now, using the expression for the cumulative infection it is a calculation to

show:

∂xaCI =

−q
dρ0

(r+µ+2ρSSa +xa−1)2
if h→ 1

−q dρ0
(q(2ρa+xa−2ρv−xv)+r+µ+2ρv+xv−1)2

if h→ 0

∂xvCI =

−(1− q) dρ0
(r+µ+2ρSSv +xv−1)2

if h→ 1

−(1− q) dρ0
(q(2ρa+xa−2ρv−xv)+r+µ+2ρv+xv−1)2

if h→ 0

which shows that (∂xaCI, ∂xvCI) ∝ −(q, 1−q), similarly as with the derivatives

with respect to ρa, ρv. With an analogous calculation this yields a term also

proportional to −∂hρ.
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Proof of Proposition A (page 30)

Proof. To analyze stability, we need to identify the values of parameters for

which the Jacobian matrix of the system is negative definite when calculated

in (0, 0). The matrix is:

J =

(
(1− xa) q̃a − µ (xa − 1) (q̃a − 1)

(xv − 1) (q̃v − 1) (1− xv) q̃v − µ

)

We can directly compute the eigenvalues, which are:

e1 = µ̂− µ

e2 = µ̂− µ−∆

where µ̂ := 1
2

(T + ∆) ∈ [0, 1], T := q̃a(1 − xa) + q̃v(1 − xv), and ∆ :=√
T 2 − 4h(1− xa)(1− xv).
The eigenvalues are real and distinct because, given (x+ y)2 > 4xy when-

ever x 6= y, we get

∆2 = T 2 − 4h(1− xa)(1− xv) ≥ 4q̃a(1− xa)q̃v(1− xv)− 4h(1− xa)(1− xv)

Now q̃aq̃v = h2 + h(1− h) + (1− h)2q(1− q) ≥ h, so we conclude ∆2 > 0.

Since eigenvalues are all distinct, the matrix is diagonalizable, and it is neg-

ative definite whenever the eigenvalues are negative. Inspecting the expression,

this happens whenever µ > µ̂.

We are going to need the following lemma.

Lemma C. Let (dρa0, dρ
v
0) be the infected share for each group at the outbreak.
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Then in the linearized approximation around the (0,0) steady state:

CIa =
2 [dρa0 (µ− (1− xv)q̃v) + dρv0 (1− xa) (1− q̃a)]

(T − 2µ−∆)(T − 2µ+ ∆)
;

CIv =
2 [ρa0 (1− xv) (1− q̃v) + ρv0 (µ− (1− xa)q̃a)]

(T − 2µ−∆)(T − 2µ+ ∆)
;

CI =
2 [dρa0 (µ+ (1− xv)(1− 2q̃v)) + dρv0 (µ+ (1− xa)(1− 2q̃a))]

(T − 2µ−∆)(T − 2µ+ ∆)
.

(g)

(h)

(i)

Proof. The linearized dynamics is:

ḋρ(t) = Jdρ(t)

dρ(0) = dρ0

where dρ0 = (ρ0,a, dρ0,v), that is:

ḋρ(t) = Mdρ(0)

dρ(0) = dρ0, M = etJ

and:

M11 =
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xaq̃a + q̃a − µ+

1

2
(2µ− T )

)
+

1

2
∆ cosh

(
∆t

2

))
M12 =

1

∆
(1− xa) (1− q̃a) sinh

(
∆t

2

)
e

1
2
t(T−2µ)

M21 =
1

∆
(1− xv) (1− q̃v) sinh

(
∆t

2

)
e

1
2
t(T−2µ)

M22 =
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xv q̃v + q̃v − µ+

1

2
(2µ− T )

)
+

1

2
∆ cosh

(
∆t

2

))
The cumulative infection in time in the two groups can be calculated ana-

lytically by integration, since it is just a sum of exponential terms. Integration
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yield, for CIv:

CIv =

∫ ∞
0

dρv(t)dt

=
2 (ρa0 (1− xv) (1− q̃v) + ρv0 (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )
+

lim
t−>∞

e
1
2
t(T−2µ)

(
2∆ cosh

(
∆t

2

)
(ρa0 (xv − 1) (q̃v − 1) + ρv0 ((1− xv)q̃v + µ− T )) +

sinh

(
∆t

2

)(
ρv0
(
(T − 2µ) (2 (xv − 1) q̃v + T ) + ∆2

)
− 2ρa0(T − 2µ) (xv − 1) (q̃v − 1)

))
and the limit is zero if µ > µ̂ because the leading term is Exp

(
1
2
t(T − 2µ) + ∆

2

)
=

µ̂− µ. An analogous reasoning for CIa yields:

CIa =

∫ ∞
0

dρa(t)dt =
2 (dρa0 (µ− (1− xv)q̃v) + dρv0 (1− xa) (1− q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

CIv =

∫ ∞
0

dρv(t)dt =
2 (ρa0 (1− xv) (1− q̃v) + ρv0 (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

(j)

(k)

The total CI in the population is CI = qaCI
a + (1− qa)CIv

CI =
2

(−∆− 2µ+ T )(∆− 2µ+ T )
(qa (dρa0 (µ− (1− xv)q̃v) + dρv0 (1− xa) (1− q̃a)) +

(1− qa) (dρ0
a (1− xv) (1− q̃v) + dρ0

v (µ− (1− xa)q̃a)))

= dρa0
2 (qa (µ− (1− xv)q̃v) + (1− qa) (1− xv) (1− q̃v))

(−∆− 2µ+ T )(∆− 2µ+ T )
+

dρv0
2(qa (1− xa) (1− q̃a) + (1− qa) (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

If dρa0 = dρv0 = dρ0 (the case considered in the main part of the paper):

CIa = dρ0
2 ((µ− (1− xv)q̃v) + (1− xa) (1− q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

CIv = dρ0
2 ((1− xv) (1− q̃v) + (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

CI = 2dρ0
µ− (1− xa)(q̃a − q)− (1− xv)(q̃v − 1 + q)

(−∆− 2µ+ T )(∆− 2µ+ T )

(l)

(m)

(n)
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We develop the calculations for generic dρ0,a and dρ0,v.

First, note that µ > µ̂ implies:

µ >1− xa > h(1− xa)

µ >1− xv > h(1− xv)

µ >
h(1− xa)

1− (1− h)q

µ >
h(1− xv)

1− hq

The expressions of the derivatives are:

∂CIa

∂h
=

(q − 1) (xa − 1) (µ+ xv − 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIa

∂qa
=

(h− 1) (xa − 1) (h (xv − 1) + µ) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIa

∂xa
=

((h− 1)q (xv − 1) + µ+ xv − 1) (µ(h(q − 1)− q) (ρa0 − ρv0)− hρa0 (xv − 1)− µρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIa

∂xv
=

(h− 1)(q − 1) (xa − 1) (µ ((h− 1)q (ρv0 − ρa0) + ρv0) + h (xa − 1) ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂h
=

q (xv − 1) (xa + µ− 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂qa
=

(h− 1) (xv − 1) (h (xa − 1) + µ) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂xa
= − (h− 1)q (xv − 1) (hρa0 (µ+ µ(−q) + xv − 1) + µqρa0 + (h− 1)µ(q − 1)ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂xv
=

(h(q − 1) (xa − 1) + q (−xa)− µ+ q) (µ ((h− 1)q (ρv0 − ρa0) + ρv0) + h (xa − 1) ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2
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and combining them, we get:

∂CI

∂h
=

µ(q − 1)q (xa − xv) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CI

∂qa
=

(h− 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1)) (h (xa − 1) (xv − 1) + µ (q (xa − xv) + xv − 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CI

∂xa
= − q (h (xv − 1) + µ) (hρa0 (µ+ µ(−q) + xv − 1) + µqρa0 + (h− 1)µ(q − 1)ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CI

∂xv
=

(q − 1) (h (xa − 1) + µ) (µ ((h− 1)q (ρv0 − ρa0) + ρv0) + h (xa − 1) ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

Note that all the denominators are positive, so to control the sign from

now on we focus on the numerators. In particular, if dρa0 = dρv0 = dρ0, we can

note that CI is increasing in h and CI is increasing in q if and only if xv > xa.

If initial conditions are symmetric:

∂CIa

∂h
> 0⇐⇒− (q − 1)ρa0 (xa − 1) (xa − xv) (µ+ xv − 1) > 0

∂CIa

∂qa
> 0⇐⇒− (h− 1)ρa0 (xa − 1) (xa − xv) (h (xv − 1) + µ) > 0

∂CIa

∂xa
> 0⇐⇒− ρa0 (h (xv − 1) + µ) (µ− (1− h)(1− q) (1− xv)) > 0

∂CIa

∂xv
> 0⇐⇒(h− 1)(q − 1)ρa0 (xa − 1) (h (xa − 1) + µ) > 0

Now, using the first four inequalities presented above, we can conclude that
∂CIa

∂h
> 0, ∂CIa

∂qa
> 0, ∂CIa

∂xa
< 0 and ∂CIa

∂xv
< 0. Similarly, if ρ0,a = 0:

∂CIa

∂h
> 0⇐⇒− (q − 1) (xa − 1) ρv0 (xa + µ− 1) (µ+ xv − 1) > 0

∂CIa

∂qa
> 0⇐⇒− (h− 1) (xa − 1) ρv0 (xa + µ− 1) (h (xv − 1) + µ) > 0

∂CIa

∂xa
> 0⇐⇒− (1− h)(1− q)ρv0 (µ− (1− q)(1− h)(1− xv)) > 0

∂CIa

∂xv
> 0⇐⇒(h− 1)(q − 1) (xa − 1) ρv0 (h (xa − 1) + µ ((h− 1)q + 1)) > 0

and we conclude that ∂CIa

∂h
< 0, ∂CIa

∂qa
< 0, ∂CIa

∂xa
< 0 and ∂CIa

∂xv
< 0.
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If dρ0,v = 0:

∂CIa

∂h
> 0⇐⇒(q − 1)ρa0 (xa − 1) (µ+ xv − 1) 2 > 0

∂CIa

∂qa
> 0⇐⇒(h− 1)ρa0 (xa − 1) (µ+ xv − 1) (h (xv − 1) + µ) > 0

∂CIa

∂xa
> 0⇐⇒− ρa0 (µ− (1− q)(1− h)(1− xv)) (h (µ− (1− xv)) + µ(1− h)q) > 0

∂CIa

∂xv
> 0⇐⇒− (h− 1)2µ(q − 1)qρa0 (xa − 1) > 0

and we conclude that ∂CIa

∂h
> 0, ∂CIa

∂qa
> 0, ∂CIa

∂xa
< 0 and ∂CIa

∂xv
< 0.

The other cases are analogous.

Proof of Proposition B

Proof. Using the derivatives computed in Proposition A, we find that the

additional term due to the fact that vaccination rates adjust is:

∂CI

∂xv

dxv
dh

+
∂CI

∂xa

dxa
dh

=

− dρ0q(1− q)
2(hµ(−qxa + qxv + xv − 1) + h(xa − 1)(xv − 1) + µ(µ+ q(xa − xv) + xv − 1))2

×

dk(1− q)q ((µ− h(1− xv))2 − (µ− h(1− xa))2)

(hk + 1)2

which is negative because since xv > xa we have:

(
(µ− h(1− xv))2 − (µ− h(1− xa))2

)
> 0

The total derivative instead is positive:

dCI

dh
=
∂CI

∂h
+
∂CI

∂xv

dxv
dh

+
∂CI

∂xa

dxa
dh

=
dρ0q(1− q)(xv − xa)2(µ(1− hk) + h2k(2− xa − xv))

2(hµ(−qxa + qxv + xv − 1) + h(xa − 1)(xv − 1) + µ(µ+ q(xa − xv) + xv − 1))2
> 0
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