
 

 

 

WORKING PAPER NO. 678 

 

Decentralization in Non-Convex Economies 

with Externalities 
Preliminary Version 

 

Maria Gabriella Graziano, Marialaura Pesce, and Vincenzo Platino 

 

 
June 2023 

 

 

 

 

 
 
 

 

University of Naples Federico II 

 
   University of Salerno 

         
       Bocconi University, Milan 

CSEF - Centre for Studies in Economics and Finance  
DEPARTMENT OF ECONOMICS AND STATISTICS – UNIVERSITY OF NAPLES FEDERICO II 

80126 NAPLES - ITALY 
Tel. and fax +39 081 675372 – e-mail: csef@unina.it 

ISSN: 2240-9696 

mailto:csef@xcom.it




 
 
 

WORKING PAPER NO. 678 

 
Decentralization in Non-Convex Economies 

with Externalities 
Preliminary Version 

 
Maria Gabriella Graziano*, Marialaura Pesce†, and Vincenzo Platino ‡ 

 
 
Abstract 
We consider a pure exchange economy with externalities. Individual preferences are affected 
by the consumption of all other agents in the economy, and to each agent i is exogenously 
associated a nonempty set Ai, representing the individuals agent i cares about.We adopt a 
cooperative approach to equilibrium analysis, allowing each individual to cooperate with others 
and to form coalitions. Following Vasil’ev (2016), Husseinov (1994) and Graziano (2001), we 
study a notion of generalized fuzzy core and show that, in the case of non-convex 
preferences, the set of coalitions can be enlarged in such a way that a core allocation can be 
supported as an A-equilibrium by some price system. In the second part of the paper, we 
consider an economy with Arrowian markets for consumption externalities. For an appropriate 
definition of generalized fuzzy core, we show that a core allocation can be decentralized as an 
Information equilibrium in terms of personalized and market prices. 
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1 Introduction

We consider pure exchange economies with a finite number of commodities and
individuals. In our framework, preferences may be affected by consumption
externalities with each individual i taking care of a group of agents exogenously
given. We allow each agent to cooperate with others and to form coalitions
and for this model we analyze core solutions. The purpose of the paper is
to show that, under suitable definitions of generalized fuzzy core, it is still
possible to restore equivalence theorems and decentralize core allocations in
terms of prices.

The importance of consumption externalities has been widely recognized in
the recent literature on other-regarding preferences, fairness and altruism 1 .
On the other hand, collective models of household consumption incorporate
a theory of human caring into a general equilibrium setting 2 . Real-life exam-
ples where an individual cares for others who are unable to make their own
decisions are very common 3 . These situations deserve to be analyzed in a
more general theoretical framework since can have a relevant impact on the
economic environment. In the models of pure exchange economies analyzed
in the paper, externalities and human caring are both taken into account.
Moreover, the analysis accommodates non-convex preferences. Indeed, it is
well known that the assumption of convex individual preferences is especially
problematic in the presence of consumption externalities (see for example the
discussion in Starrett (1972)).

In the first part, we fix our attention on the model of A-economy introduced
by Vasil’ev (2016), which extends the classical general equilibrium model with
externalities assuming that the set Ai of agents affecting individual i is not
necessarily the same for all individuals and is exogenously given. The asso-
ciated A-equilibrium notion is a natural generalization of the classical com-
petitive equilibrium à la Nash given in Arrow and Hahn (1971) and Laffont
(1988). Under such equilibrium, each individual chooses the best consump-
tion bundle for each member of the associated group Ai, taking as given the
commodity prices, the aggregate wealth of the members of the group, and the
choices of every other agent in the economy. As usual, the resulting alloca-
tion must be feasible with respect to the initial resources of the economy. The
economy and the related equilibrium notion are general enough to cover im-
portant benchmark cases presented in the literature. Indeed, if for any agent
the associate group reduces to the singleton represented by the agent him-

1 See for instance Levine (1998), Fehr and Schmidt (1999) and Dufwenberg et al.
(2011).
2 See for example, Haller (2000) and Gersbach and Haller (2001).
3 This is for example the case of elderly persons or children relying on outside help
when buying goods or services.
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self, we recover the classical Walrasian economy with externalities, and the
notion of A-equilibrium coincides with the competitive equilibrium à la Nash.
If the group is made up of all the agents in the economy other than the
individual it is associated with, we end-up with a Berge economy, and the
corresponding equilibrium is a natural transposition of the Berge equilibrium
for non-cooperative games 4 . This solution notion may be interpreted in some
cases as a fully altruistic criteria, since each individual maximizes the goals
of all the other agents in the economy. It is worth noting that in addition to
these two polar cases, other models are covered by the general framework of
an A-economy. A relevant example is the family economy analyzed in Section
5.3, which is in the spirit of Haller (2000) and Gersbach and Haller (2001).
In a family economy, the collection of the groups Ai forms a partition of the
set of agents, and each Ai is interpreted as a family. Furthermore, under this
specification, any individual must belong to her related set (her family), and
all the members of the same family should be associated with the same set.

It is well known that, in the presence of externalities, a competitive allocation
is not necessarily a Pareto optimal allocation. As a consequence, one should
not expect that an A-equilibrium allocation belongs to the core defined in a
standard way. In order to restore a version of the equivalence theorem when the
preferences are convex, an appropriate fuzzy A-core notion has been introduced
by Vasil’ev (2016) relying on fuzzy coalitions. This definition is in the spirit of
Florenzano (1989, 1990), and has the feature that agents in a blocking coalition
are myopic in the sense that they ignore the choices of the other coalition
members. Furthermore, this notion is based on an optimistic behavior of the
blocking coalition with respect to the reactions of the outsiders 5 , and the rate
of participation in the coalition of an individual may take any nonnegative
value. 6

In this paper, we relax the convexity assumption on preferences and provide
a version of the Core Equivalence Theorem. We prove our result following the
seminal work by Husseinov (1994) and the related contributions by Husseinov
and Páscoa (1997) and Graziano (2001). We allow agents to participate in
more that one fuzzy coalition, by introducing the notion of fuzzy coalition
matrix. Moreover, we introduce the concept of generalized fuzzy A-core, by
naturally adapting the fuzzy A-core to our setting and by showing that, under
convexity, these two notions coincide. Finally, we prove that an A-equilibrium
allocation belongs to the core, and by using standard techniques we show that

4 See Berge (1957) for more details.
5 We refer to Graziano et al. (2017) and Di Pietro et al. (2022) for difference between
optimistic and pessimistic attitude of coalition agents with respect to the behavior
of outsiders.
6 Following Aubin (1979), the rate of participation may be normalized to take all
values in the real interval [0, 1].
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a core allocation can be supported as an equilibrium allocation for some price
system. Our result, as well as the one of Vasil’ev (2016), is based on the crucial
assumption that the exogenous family of sets Ai associated to agents must be
balanced in the sense of Bondareva with full support. This condition is not
too demanding, and it is trivially satisfied by all particular examples analyzed
in Section 5.

In the second part of the paper, following Arrow (1969), Laffont (1976),
Makarov (1982), Vasil’ev (1996) and the recent paper by Bonnisseau et al.
(2023), among others, we consider a pure exchange economy with Arrowian
markets for consumption externalities 7 . We show that a core allocation can
be decentralized as an equilibrium allocation, and a version of the equivalence
theorem can still be obtained even without the convexity assumption on pref-
erences. The focus is on an equilibrium notion named Information equilibrium
characterized by personalized and market prices. Our result is closely related
to the work of Vasil’ev (1996), which assumes convexity and builds on the
hypothesis that the agents are not spiteful 8 . In the last part of the paper,
we compare some classical equilibrium solutions with the Information equi-
librium. In particular, we show that a Walrasian equilibrium allocation for a
pure exchange economy without externalities, and a distributive Lindahl equi-
librium as defined by Bergstrom (1970), are particular cases of Information
equilibrium.

The paper is organized as follows. Section 2 presents the model and the basic
assumptions; Section 3 introduces the notions of A-equilibrium, fuzzy A-core
and the generalized fuzzy A-core, and proves the equivalence of the two core
notions under convexity; Section 4 is devoted to our main result, that is the
equivalence theorem. Section 5 compares some economic models and the re-
lated equilibrium notions studied in literature with the market structure con-
sidered in the paper: Subsections 5.1, 5.2 and 5.3 deal respectively with a
a classical pure exchange economy with externalities, a Berge economy and
family economy. Section 6 discusses the Information equilibrium, the fuzzy
information core and the generalized fuzzy information core. We also empha-
size that the two core notions coincide under convexity. Section 7 deals with
the proof of the equivalence theorem. Section 8 discusses some classical solu-
tions and their relation with the Information equilibrium: Subsection 8.1 deals
with a competitive equilibrium of a pure exchange economy without external-

7 Bonnisseau et al. (2023) deals with the existence of quasi-equilibria and equilib-
ria under suitable irreducibility and survival conditions. The idea under the paper
is based on the intuition of Arrow (1969), that the equilibrium allocations of a pure
exchange economy with Arrowian markets for consumption externalities coincide
with the equilibrium allocations of an appropriate constant returns to scale pro-
duction economy without externalities. In contrast with other related works, see for
example Vasil’ev (1987), the authors do not assume monotonicity of preferences.
8 The preference are nondecreasing in their domain.
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ities, and Subsection 8.2 with the distributive Lindahl equilibrium. Section 9
summarizes our results and discusses some hints of future research.

2 A-Economy: The model and the basic assumptions

There is a finite number l of commodities. The commodity space is Rl. There
is a finite number of individuals (agents or traders) denoted by the subscript
i ∈ N := {1, . . . , n}. To each agent is exogenously associated a nonempty set
Ai ⊆ N describing the individuals agent i cares about; A B (Ai)i∈N 9 . The
consumption set associated to each agent is the standard positive cone Rl+,
xi B (x1

i , . . . , x
l
i) denotes the consumption of individual i, and x B (xi)i∈N

is a vector of consumption bundles. A price vector p is an element of Rl,
where pc is the price of one unit of the commodity c. Each agent chooses the
consumption of all the individuals he cares about. In this respect, we use the
following additional notation: XAi B R

l·|Ai|
+ , xAi B (xij)j∈Ai , XN\Ai B R

l·|N\Ai|
+ ,

xN\Ai B (xh)h∈N\Ai . The set Di B {h ∈ N : i ∈ Ah} denotes the agents that
takes care of i 10 . Given xAi and xN\Ai , without loss of generality, we denote
x by (xAi , xN\Ai). We also denote x by (xi, x−i), where x−i B (xk)k,i, when
we compare our economy with classical models treated in the literature.

The individual preferences %i of an agent i are affected by the consumption
of all the agents, Pi(x) B

{
x′ ∈ Rl·n+ : x′ �i x

}
denotes the set of consumption

bundles which are strictly preferred by i to x. PAi(x) B
{
x′Ai ∈ XAi : (x′Ai , xN\Ai) ∈ Pi(x)

}
is the set of bundles strictly preferred by i to x, when the consumption of any
agent h ∈ N \ Ai is fixed at xh 11 . The initial endowment of individual i is
ωi B (ω1

i , . . . , ω
l
i) > 0, and ω B (ωi)i∈N ∈ Rl·n+ .

A vector x = (xi)i∈N ∈ Rl·n is an allocation if it satisfies the physical feasibility
condition ∑

i∈N
xi ≤

∑
i∈N

ωi

and F denotes the set of allocations.

The economy under consideration is thus formalized by the list of elements
summarized below:

E B 〈N,Rl+, (Ai,%i, ωi)i∈N〉.
In order to adopt a cooperative approach to equilibrium analysis, we introduce
the notion of (fuzzy) coalition matrix.

9 Notice that we are not necessarily requiring that agent i belongs to Ai.
10 Given a set B, we denote by |B| its cardinality.
11 The strict preference relation �i⊆ Rl·n+ × Rl·n+ is defined in the usual way, i.e.,
x �i y if and only if x %i y and not y %i x .
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Definition 1 A (fuzzy) coalition matrix α = (αji ) is a matrix of dimension
r × n, where r ∈ N, and αj B (αji )i∈N ∈ Rn+ with αj , 0 for any j = 1, . . . , r.

A coalition matrix is interpreted as a finite collection of coalitions (j =
1, . . . , r). Agent i may participate to any of such coalition employing the
share αji of her resources for any j. If r = 1 and α1

i takes only {0, 1}-
values for any i, we have usual (crisp) coalitions. For a given coalition ma-
trix α = (αji ), we denote by supp(αj) the support of αj, i.e., supp(αj) B{
i ∈ N : αji > 0

}
, and supp(α) B ⋃r

j=1 supp(αj). Furthermore, we also define
Di(αj) B Di

⋂ supp(αj), αjAi B
∑
h∈Di(αj) α

j
h and αi(r) B

∑r
j=1 α

jA
i

12 . In the
case in which r = 1, we simply denote α1 by α.

We make the following survival assumption for the aggregate endowments.

Assumption 2 The aggregate endowment ∑i∈N ωi belongs to Rl++.

The previous assumption has an important role in order to show that the
vector p resulting by the application of the Separation Theorem is strictly
positive, and consequently, can be interpreted as a supporting prices vector
(see the proof of Lemma 14 for details).

The basic assumptions on preference relations %i⊆ Rl·n+ ×Rl·n+ are listed below.

Assumption 3 For any agent i,

(1) %i are complete, transitive and continuous over Rl·n+ .
(2) For any vector xN\Ai ∈ XN\Ai, %i are strongly monotone over XAi ×
{xN\Ai}.

Notice that we do not require any convexity assumption on preferences. More-
over, although in this paper we do not make use of utilities, the assumptions
stated for preferences ensure that the preference relation %i can be represented
by a continuous utility function ui defined over the commodity space.

In the rest of the paper, the exogenous family A = (Ai)i∈N satisfies the fol-
lowing set of assumptions.

Assumption 4 (1) N ⊆ ⋃i∈N Ai;
(2) A = (Ai)i∈N is balanced in the sense of Bondareva with full support, i.e.,

there exists weights β = (βi)i∈N ∈ Rn++, such that ∑h∈Di βh = 1, for any
i ∈ N .

Point 1 of Assumption 4 assures that each agent is taken into consideration by

12 In the paper, we follow the convention that the empty sum is defined to be equal
to the additive identity, i.e. zero. For example, αjAi = 0 if Di(αj) = ∅.
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at least one agent in the economy, i.e. Di , ∅ for any i, and so, at the equilib-
rium solution, any agent may potentially consume. Point 2 of Assumption 4
assures that, given an allocation x, if for any agent i, the consumption bundles
xAi lay on the budget hyperplane of i, then the market clearing condition is
satisfied (see the proof of Theorem 16 for details). Point 2 of Assumption 4 is
equivalent to assume that the following set BA is nonempty, i.e.,

BA B

{
β ∈ Rn++ :

∑
i∈N

βiχAi = χN

}
, ∅

where, for a given set S ⊆ N , we denote by χS B (χhS)h∈N ∈ Rn the charac-
teristic vector of S ⊆ N , i.e.,

χhS B

1 if h ∈ S
0 if h < S

3 A-Equilibrium and Generalized Fuzzy A-Core

In this section, we introduce the equilibrium and the core notions of our econ-
omy. The A-equilibrium is a natural generalization of the classical competitive
equilibrium in the presence of externalities (see Vasil’ev (2016)). The (fuzzy)
A-core extends the fuzzy core introduced by Aubin (1979) to our contest. In
the spirit of Husseinov (1994), we further extend the notion of core introduc-
ing the Generalized (fuzzy) A-Core, and we show that, under convexity, the
two notions coincide.

Definition 5 (A-equilibrium) (x, p) ∈ Rl·n+ × Rl++ is an A-equilibrium for
the economy E if

1. xAi ∈ BAi(p, ω) for all i ∈ N ;

2. PAi(x)⋂BAi(p, ω) = ∅ for all i ∈ N ;

3.
∑
i∈N

xi =
∑
i∈N

ωi

where BAi(p, ω) B
{
xAi ∈ XAi : p ·

(∑
h∈Ai xih

)
≤ p ·

(∑
h∈Ai ωh

)}
denotes the

budget set of agent i.

Notice that, agent i considers in the budget constraint the endowments of all
the agents belonging to Ai. Conditions 1 and 2 state that, for every agent i,
xAi maximizes the preference of agent i over the budget set, and point 3 is the
classical market clearing condition. Given an economy E, we denote by Ω(E)
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the set of A-equilibria, and by W (E) the set of A-equilibrium allocations, i.e.,
W (E) B

{
x ∈ Rl·n+ | ∃ p� 0: (x, p) ∈ Ω(E)

}
.

We introduce now the notion of (fuzzy) A-core.

Definition 6 (Fuzzy A-Core) Given an allocation x ∈ F and a coalition
α ∈ Rn+ with α , 0, we say that α A-improves upon x whenever, for every
agent i ∈ N , there exists a vector x′Ai ∈ XAi such that

1. x′Ai ∈ PAi(x) for any i ∈ supp(α);

2.
∑
i∈N

∑
h∈Di(α)

αhx
′
hi ≤

∑
i∈N

αAi ωi.

The set of allocations which cannot be A-improved upon by any coalition is
called (fuzzy) A-Core, and it is denoted by Cf (E).

We point out that an agent in the blocking coalition is myopic with respect
the decision taken by the others coalition members. Furthermore, this notions
is based on an optimistic behavior of the blocking coalition with respect to
the reactions of the outsiders. It is proved by Vasil’ev (2016) that the A-core
introduced with Definition 6 is equivalent to the set W (E) of A-equilibria. To
investigate the validity of the equivalence theorem in our framework where
the preferences are not necessarily convex, we adapt below the fuzzy core à la
Husseinov (1994) to our economy.

Definition 7 (Generalized Fuzzy A-Core) Given an allocation x ∈ F
and a coalition matrix α = (αji ), we say that α A-improves x whenever, for
every agent i ∈ N , there exist vectors zjAi ∈ XAi with j = 1, . . . , r such that

1. zjAi ∈ PAi(x), for any i ∈ supp(αj);

2.
∑
i∈N

r∑
j=1

∑
h∈Di(αj)

αjhz
j
hi ≤

∑
i∈N

αi(r)ωi.

The set of allocations which cannot be A-improved upon by any coalition matrix
is called generalized (fuzzy) A-core (or (fuzzy) core à la Husseinov), and it is
denoted by Ch(E).

Remark 8 Notice that Ch(E) ⊆ Cf (E), since the fuzzy coalitions are obtained
for r = 1.

In our framework, PAi(x) is not required to be convex. However, just for
completeness, we conclude this section, by showing that, if PAi(x) is convex
for any x ∈ Rl·n, then the fuzzy A-core and the generalized fuzzy A-core
coincide.
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Theorem 9 Under convexity of preference relations, Ch(E) = Cf (E).

Proof. By Remark 8, it remains to show that Cf (E) ⊆ Ch(E). Let x ∈ Cf (E)
and suppose by contradiction that x < Ch(E). So, there exist an r×n coalition
matrix α = (αji ) with αj = (αji )i∈N ∈ Rn+ \ {0}, and vectors zjAi ∈ XAi , with
i ∈ N and j = 1, . . . r, such that zjAi ∈ PAi(x) (i ∈ supp(αj), with j = 1, . . . , r),
and∑i∈N

∑r
j=1

∑
h∈Di(αj) α

j
hz

j
hi ≤

∑
i∈N αi(r)ωi. For any agent i such that there

exists j(i) with Di(αj(i)) , ∅, define a vector yi B
∑r
j=1

∑
h∈Di(αj) α

j
h

αi(r) zjhi
13 .

Notice that yi belongs to PAi(x) since this set is convex and yi is a con-
vex combination of elements of PAi(x) 14 . Finally notice that ∑i∈N αi(r)yi =∑
i∈N

∑r
j=1

∑
h∈Di(αj) α

j
hz

j
hi ≤

∑
i∈N αi(r)ωi. This contradicts the fact that x

belongs to the core Cf (E), since (αi(r))i∈N is a blocking coalition.

4 An equivalence theorem for A-Equilibria

The next theorem shows that A-equilibrium allocations belong to the gener-
alized fuzzy A-core.

Theorem 10 W (E) ⊆ Ch(E).

Proof. Let x ∈ W (E). Suppose by contradiction that x < Ch(E). So there
exist an r×n coalition matrix α and vectors zjAi ∈ XAi , with j = 1, . . . , r and
i ∈ N, such that zjAi ∈ PAi(x) for any i ∈ supp(αj) 15 . Since x ∈ W (E), it must
be the case that zjAi < BAi(p, ω), where p � 0 is the associated equilibrium
price, i.e., (x, p) ∈ Ω(E). Thus, for any j = 1, . . . , r, we have p ·∑h∈Ai α

j
iz
j
ih >

p ·∑h∈Ai α
j
iωh for each i ∈ supp(αj). The previous inequalities can be written

as p ·∑h∈N α
j
i z̃
j
ih > p ·∑h∈N α

j
i ω̃h for each i ∈ supp(αj), where the vectors z̃ji

and ω̃i belong to Rl·n+ , and they are defined by z̃jih B zjih and ω̃ih B ωh if h ∈ Ai,
and they are equal to zero otherwise. Summing over i ∈ supp(αj) and using
the associative and commutative properties of the sum operators, one gets
p ·
(∑

h∈N
∑
i∈supp(αj) α

j
i z̃
j
ih

)
> p ·

(∑
h∈N

∑
i∈supp(αj) α

j
i ω̃ih

)
, which is equivalent

to p ·
(∑

h∈N
∑
i∈Dh(αj) α

j
iz
j
ih

)
> p ·

(∑
h∈N α

jAωh
)
. Finally, summing over j and

rearranging, one obtains p ·
(∑

h∈N
∑r
j=1

∑
i∈Dh(αj) α

j
iz
j
ih −

∑
h∈N α(r)ωh

)
> 0,

13 By the nonemptiness of Ai, i ∈ N and N ⊆
⋃
i∈N Ai, there exists at least one

agent i such that Di(αj(i)) , ∅ for some j(i).
14 By αh(r) > 0 and

⋃r
j=1Di(αj) , ∅, one gets

∑
h∈Di(αj) α

j
h

αh(r) ≥ 0 for any j = 1, . . . , r

and
∑r
j=1

∑
h∈Di(αj) α

j
h

αi(r) = 1. Thus, the bundle yi is a linear convex combination of
elements of PAi(x).
15 Notice that, zjAi ∈ PAi(x) and Point 2 of Assumption 3 implies zjAi , 0.
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which contradicts the fact that the coalition matrix α blocks the allocation x
via vectors zjAi ∈ XAi , with j = 1, . . . , r.

For any x ∈ Rl·n+ and for each i ∈ N , define the set

Fi(x, ω) B
{ ∑
h∈Ai

zih ∈ Rl+ : zAi = (zih)h∈Ai ∈ PAi(x)
}
−
{ ∑
h∈Ai

ωh

}

Notice that the set Fi(x, ω) is nonempty by Point 2 of Assumption 3. Denote
by co (⋃i∈N Fi(x, ω)) its convex hull.

Lemma 11 If x ∈ Ch(E) then 0 < co (⋃i∈N Fi(x, ω)).

Proof. By contradiction, suppose 0 ∈ co (⋃i∈N Fi(x, ω)). Therefore, for any
i ∈ N there exist vectors zj(i)Ai

∈ XAi and scalars αj(i)i ≥ 0 with j(i) = 1, . . . , ri
such that ∑i∈N

∑ri
j(i)=1 α

j(i)
i = 1 which meet ∑i∈N

∑ri
j(i)=1 α

j(i)
i

∑
h∈Ai(z

j(i)
ih −

ωh) = 0. By the Caratheodory theorem, we have ∑i∈N ri ≤ l + 1. Consider a
(l + 1) × n matrix M with element mj

i = α
j(i)
i for j ≤ ri and mj

i = 0 for any
j > ri, and for any i ∈ N . Define for any i ∈ N and for any j = 1, . . . , l + 1,
vectors z̃ji and ω̃i of Rl·n+ , given by z̃jih B z

j(i)
ih and ω̃ih B ωh if h ∈ Ai and j ≤ ri,

and equal to zero otherwise. Thus, 0 = ∑
i∈N

∑ri
j(i)=1

∑
h∈Ai α

j(i)
i (zj(i)ih − ωh) =∑

h∈N
∑l+1
j=1

∑
i∈N m

j
i (z̃

j
ih − ω̃ih) = ∑

h∈N
∑l+1
j=1

∑
i∈Dh(mj) m

j
i (z

j
ih − ωh) implying

that the l+ 1 coalitions (mj)l+1
j=1 = ((mj

i )i∈N)l+1
j=1 block allocation x in sense of

Husseinov.

By Lemma 11, if x ∈ Ch(E) then co (⋃i∈N Fi(x, ω)) ∩ {0} = ∅. So, applying
the Separating Hyperplane Theorem, there exists a vector p ∈ Rl with p , 0
such that p · ζ ≥ 0 for any ζ ∈ co (⋃i∈N Fi(xi, ω)).

Lemma 12 The vector p, with p , 0, is nonnegative.

Proof. By strong monotonicity of the preferences over XAi × {xN\Ai}, one
gets PAi(x) + XAi ⊆ PAi(x) for any agent i, which implies Fi(x, ω) + Rl+ ⊆
Fi(x, ω) 16 . From Fi(x, ω) ⊆ co (⋃i∈N Fi(x, ω)), it follows that co (⋃i∈N Fi(x, ω))
contains a shifted nonnegative orthant. Therefore, we must have p > 0. In-
deed, suppose pc < 0 for some commodity c. Then, one may choose an element
ζ of co (⋃i∈N Fi(xi, ω)) with ζc large enough, such that p · ζ < 0, obtaining a
contradiction.

The next lemma shows that allocations of the generalized fuzzy A-core, lay
on the budget hyperplane associated to the vector p.
16 Indeed, let yi ∈ Fi(x, ω)+Rl+. So, there exists v ∈ Rl+ such that yi = ηi+v for some
ηi ∈ Fi(x, ω). Since ηi ∈ Fi(x, ω), there exists zAi = (zih)h∈Ai ∈ PAi(x) such that
ηi =

∑
h∈Ai(zih−ωh). Finally, notice that yi = (

∑
h∈Ai zih + v)−

∑
h∈Ai ωh belongs

to Fi(x, ω) since zAi + ṽ ∈ PAi(x) +XAi ⊆ PAi(x), with ṽ = (v, 0 . . . , 0) ∈ XAi .
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Lemma 13 If x ∈ Ch(E) then p ·∑h∈Ai xih = p ·∑h∈Ai ωh for any i ∈ N .

Proof. Since xAi belongs to clPAi(x), there exists a sequence (xνAi)ν∈N =
((xνih)i∈Ai)ν∈N ⊆ PAi(x) such that xνAi converges to xAi . Notice that, by con-
struction, for any agent i and any ν ∈ N, ∑h∈Ai(xνih − ωh) ∈ Fi(xi, ω) which
is included in co (⋃i∈N Fi(xi, ω)). So, by x ∈ Ch(E), it must be true that
p ·∑h∈Ai x

ν
ih ≥ p ·∑h∈Ai ωh for any agent i and any ν ∈ N. Taking the limit, we

get p ·∑h∈Ai xh ≥ p ·∑h∈Ai ωh for each agent i ∈ N . Suppose by contradiction
that there exists k such that p·∑h∈Ak xh > p·∑h∈Ak ωh. By Point 2 of Assump-
tion 4, the set BA is non empty. So, take β = (βi)i∈N ∈ BA and multiply each
of the previous inequality by the corresponding weigh βi > 0. Summing over
i ∈ N one gets p ·∑i∈N βi

∑
h∈Ai xh > p ·∑i∈N βi

∑
h∈Ai ωh. By an argument

similar to the one used in the proof of Theorem 10 or Lemma 11, the previous
inequality can be written as p ·∑h∈N

∑
i∈Dh(β) βixh > p ·∑h∈N

∑
i∈Dh(β) βiωh

17 .
Since supp(β) = N , then we get p · ∑h∈N

∑
i∈Dh βi(xh − ωh) > 0. Finally,∑

i∈Dh βi = 1, implies p ·∑h∈N(xh − ωh) > 0, which contradicts the fact that
x is an allocation, since p > 0.

We show now that the vector p is strictly positive.

Lemma 14 The vector p is strictly positive.

Proof. We first claim that there exists an agent k, such that p·∑h∈Ak x
′
kh > p·∑

h∈Ak ωk for any x′Ak ∈ PAk(x), with x ∈ Ch(E). Since p > 0 and ∑i∈N ωi � 0,
then by Point 1 of Assumption 4, there exists k such that p ·∑h∈Ak ωh > 0.
Consider this agent. By Fk(x, ω) ⊆ co (⋃i∈N Fi(x, ω)), one gets p ·∑h∈Ak x

′
kh ≥

p·∑h∈Ak ωh for any x′Ak ∈ PAk(x). Suppose that p·∑h∈Ak x
′′
Ak

= p·∑h∈Ak ωk > 0
for some x′′Ak ∈ PAk(x). By continuity of the preference, there exists Vδ(x′′Ak) B
{ξAk ∈ XAk : (ξAk , xN\Ak) ∈ Nδ(x′′Ak , xN\Ak) ∩ R

l·n
+ } included in PAk(x), where

Nδ(x′′Ak , xN\Ak) ⊆ R
l·n is an open ball centered at (x′′Ak , xN\Ak) with radius

δ > 0. Let ε > 0 such that 0 < (1 − ε)‖x′′Ak‖ < δ and consider the vector
(εx′′Ak , xN\Ak). Thus, εx′′Ak ∈ Vδ(x′′Ak) and consequently p · ∑h∈Ak εx

′′
kh ≥ p ·∑

h∈Ak ωh since εx′′Ak ∈ PAk(x). By p ·∑h∈Ak x
′′
kh = p ·∑h∈Ak ωk > 0 and ε < 1,

we get εp ·∑h∈Ak x
′′
kh < p ·∑h∈Ak x

′′
kh. So,

p ·
∑
h∈Ak

ωk ≤ εp ·
∑
h∈Ak

x′′kh < p ·
∑
h∈k

x′′kh = p ·
∑
h∈Ak

ωh

and a contradiction. This completes the proof of the claim.
Fix an agent h ∈ Ak and a commodity c. By strong monotonicity, xAk +
17 Indeed, p ·

∑
i∈N βi

∑
h∈Ai xh > p ·

∑
i∈N βi

∑
h∈Ai ωh can be written as p ·∑

i∈N βi
∑
h∈N x̃ih > p ·

∑
i∈N βi

∑
h∈N ω̃ih, where for any agent i, x̃ih B xh and

ω̃ih B ωh if h ∈ Ai, and they are equal to zero otherwise. Using the associative
and commutative properties of the sum operators, one gets p ·

∑
h∈N

∑
i∈N βix̃ih >

p ·
∑
h∈N

∑
i∈N βiω̃ih, which is equivalent to p ·

∑
h∈N

∑
i∈Dh(β) βixh > p ·∑

h∈N
∑
i∈Dh(β) ωh.
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eAk(h, c) ∈ PAk(x), where eAk(h, c) B (eh(h, c))h∈Ak = ((ech(h, c))lc=1)h∈Ak is
a vector in Rl·|Ak| with ech(h, c) = 0 for any c , c and ec

h
(h, c) = 1. So p ·∑

h∈Ak(xh+eh(h, c)) > p ·∑h∈Ak ωh by the previous claim. Since x ∈ Ch(E), by
Lemma 13 and the property of the inner product, one gets p·∑h∈Ak eh(h, c) > 0
which implies, by the definition of eAk(h, c), that pc > 0. Repeating the same
argument for any commodity c, one obtains, p� 0.

Lemma 15 If x ∈ Ch(E) then p · ζ > 0 for any ζ ∈ co (⋃i∈N Fi(x, ω)).

Proof. Suppose otherwise that there exists ζ ∈ co (⋃i∈N Fi(x, ω)) such that
p · ζ = 0. Furthermore, ζ = ∑r

j=1 α
jζj for some scalars αj > 0 with j =

1, . . . , r, r ∈ N and r , 0, such that ∑r
j=1 α

j = 1 and ζj ∈ ⋃i∈N Fi(x, ω) ⊆
co (⋃i∈N Fi(x, ω)) for any j = 1, . . . , r. Therefore, p·ζj = 0 for any j = 1, . . . , r,
otherwise one gets a contradiction with 0 = p · ζ = p ·∑r

j=1 α
jζj, since αj > 0

for any j 18 . Consider the agent i(j) such that ζj ∈ Fi(j)(x, ω). We claim that
PAi(j)(x) ⊆ XAi(j) \ {0}. By Point 2 of Assumption 3, (xAi(j) , xN\Ai(j)) %i(j)
(0, xN\Ai(j)), therefore, by transitivity, PAi(j)(x) ⊆ PAi(j)(0, xN\Ai(j)). Since the
binary relation �i(j) is irreflexive, then 0 < PAi(j)(0, xN\Ai(j)) and consequently,
PAi(j)(x) ⊆ XAi(j) \ {0}, which completes the proof of the claim. So, there
exists x′Ai(j)

> 0 such that: (i) (x′Ai(j)
, xN\Ai(j)) �i(j) (xAi(j) , xN\Ai(j)), (ii) ζj =∑

h∈Ai(j)
(x′i(j)h − ωh) and (iii) p · ζi(j) = 0. By continuity of the preference

relation and (i), there exists x̃Ai(j) < x′Ai(j)
such that ∑h∈Ai(j)

(x̃i(j)h − ωh) ∈
Fi(j)(x, ω). Furthermore, by x̃Ai(j) < x′Ai(j)

, (ii), (iii) and p � 0, we get p ·∑
h∈Ai(j)

(x̃i(j)h − ωh) < 0. This is a contradiction, since by x ∈ Ch(E) and∑
h∈Ai(j)

(x̃i(j)h − ωh) ∈ co (⋃i∈N Fi(xi, ω)) one should have p ·∑h∈Ai(j)
(x̃i(j)h −

ωh) ≥ 0.

As a consequence of Lemma 15, for any agent i and for any x′Ai ∈ PAi(x), the
inequality p ·∑h∈Ai x

′
ih > p ·∑h∈Ai xh = p ·∑h∈Ai ωh holds true (by Lemma

13). We are now ready to prove the equivalence theorem.

Theorem 16 (Equivalence Theorem) The set of A-equilibrium allocations
concides with the set of the generalized fuzzy core: W (E) = Ch(E).

Proof. Take x ∈ Ch(E). We are going to show that (x, p) belongs to Ω(E). By
Lemma 13, one gets xAi ∈ BAi(p, ω), and by Lemma 15, PAi(x)∩BAi(p, ω) =
∅ holds true for any agent i ∈ N . Finally, it remains to show that when
x ∈ Ch(E) then market clearing condition is satisfied. Indeed, by Lemma
13, x ∈ Ch(E) implies p · ∑h∈Ai xh = p · ∑h∈Ai ωh for any i ∈ N . By
Point 2 of Assumption 4, the family A is balanced in the sense of Bon-
dareva with full support. So there exists βi > 0 with i ∈ N such that∑
i∈N βiχAi = χN . So, p · βi

∑
h∈Ai xh = p · βi

∑
h∈Ai ωh for any agent i, and

18 Since x ∈ Ch(E) and {ζj : j = 1, . . . , k} ⊆ co (
⋃
i∈N Fi(x, ω)), then p · ζj ≥ 0 for

any j = 1, . . . , r.
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consequently p · ∑i∈N βi
∑
h∈Ai xh = p · ∑i∈N βi

∑
h∈Ai ωh. As in the proof of

Theorem 10 or Lemma 11, the previous equality can be written in the form
p ·∑h∈N

∑
i∈Dh(β) βixh = p ·∑h∈N

∑
i∈Dh(β) ωh

19 . Since supp(β) = N , we get
p ·∑h∈N

∑
i∈Dh βi(xh − ωh) = 0. Finally, by β ∈ BA, one gets ∑i∈Dh βi = 1,

and thus p ·∑h∈N(xh−ωh) = 0. As a consequence, market clearing condition is
satisfies by p� 0 and the fact that x is an allocation i.e., ∑h∈N(xh−ωh) ≤ 0.
Therefore, all the conditions in the definition 5 are verified. So, x ∈ W (E).

In the case in which the preferences are convex, as a consequence of Theorem
9 one trivially obtains that W (E) = Cf (E).

5 Economic models analyzed in literature - Part I

This section focuses on economies studied in literature and compares them
with anA-economy. For simplicity, we suppose that preferences are represented
by utility functions.

5.1 Walrasian Economy

Suppose that the family A is the following partition: A = {Ai = {i} : i ∈ N},
i.e., the only agent contributing to i’s wealth is i, or equivalently, each agent
cares only about himself. In this framework, (x, p) is an equilibrium if

1. xi ∈ arg max
x′i∈R

l
+

{ui(x′i, x−i) | p · x′i ≤ p · ωi}, for all i ∈ N ;

2.
∑
i∈N

xi =
∑
i∈N

ωi.

The reader may notice that, under this specification of the family A, an A-
economy coincides with the standard pure exchange economy with externali-
ties, and the definition of A-equilibrium coincides with the one of competitive
equilibrium à la Nash 20 .

We now look at the core. Notice that, when A = {Ai = {i} : i ∈ N}, the set of

19 Indeed, p ·
∑
i∈N βi

∑
h∈Ai xh = p ·

∑
i∈N βi

∑
h∈Ai ωh can be written as p ·∑

i∈N βi
∑
h∈N x̃ih = p ·

∑
i∈N βi

∑
h∈N ω̃ih, where for any agent i, x̃ih B xh and

ω̃ih B ωh if h ∈ Ai, and they are equal to zero otherwise. Using the associative
and commutative properties of the sum operators, one gets p ·

∑
h∈N

∑
i∈N βix̃ih =

p ·
∑
h∈N

∑
i∈N βiω̃ih, which is equivalent to p ·

∑
h∈N

∑
i∈Dh(β) βixh = p ·∑

h∈N
∑
i∈Dh(β) ωh.

20 See for example Borglin (1973).
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agents whose consumption is affected by i is just the singleton Di = {i} for any
agent i, and thus αAi = αi. Under this specification, a coalition α = (αi)i∈N
blocks a status quo x if there exist assignments x′i = x′Ai = (x′ih)h∈{i} = x′ii,
for each i ∈ supp(α) such that

1. ui(x′i, x−i) > ui(x) for any i ∈ supp(α);

2.
∑
i∈N

αix
′
i ≤

∑
i∈N

αiωi.

Each agent improves her utility when the preferences are evaluated over (x′i, x−i).
Thus, the assignment changes over agent i, but it is fixed for all the others.
If there are no externalities at all, we have the usual notion of fuzzy core. If,
in the presence of externalities, α is an ordinary coalition, that is, α = χS,
with S ⊆ N , then a coalition S blocks a status quo x if for any agent which
belongs to the blocking coalition, there exists an assignment x′i, such that
ui(x′i, x−i) > ui(x) for any i ∈ S and ∑i∈S x

′
i ≤

∑
i∈S ωi. This is the coopera-

tive solution concept analyzed by Florenzano (1989, 1990).

5.2 Berge Economy

Suppose that the structure A is now given by A = {Ai = N \ {i} : i ∈ N}. In
this situation, each agent is affected by all the other agents, and A is not a
partition. Equivalently, one may thing that agents are supposed to act using
an altruistic behaviour, regardless to their own consumption. Thus, (x, p) is
an equilibrium if

1. x−i ∈ arg max
x′−i∈R

l·(n−1)
+

{ui(x′−i, xi) | p ·
∑
h∈N\{i} x

′
h ≤ p ·∑N\{i} ωh}, for all i ∈ N ;

2.
∑
i∈N

xi =
∑
i∈N

ωi.

This definition can be considered as an adaptation of the classical Berge equi-
librium for non-cooperative games 21 .

We now look at the cooperative solution. When A = {Ai = N \ {i} : i ∈ N},
then the set of agents whose consumption is affected by i is the set Di = {j ∈
N : i ∈ N \ {j}} = N \ {i}. Thus, given a fuzzy coalition α = (αi)i∈N one has
αAi = ∑

j∈N\{i} αj = ∑
j,i αj. Under this framework, α blocks an allocation x

if there exist vectors x′−i = x′Ai = (x′ih)h,i with i ∈ N such that

1. ui(x′−i, xi) > ui(x) for any i ∈ supp(α);

21 See for instance, Berge (1957) and Vasil’ev (2016).
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2.
∑
i∈N

∑
h∈supp(α)\{i}

x′ih ≤
∑
i∈N

∑
h∈supp(α)\{i}

αhωh.

The consumption of agent i is fixed for each member in the coalition, and each
member proposes a different consumption plan. When α is a crisp coalition,
S ⊆ N blocks the status quo x if ui(x′−i, xi) > ui(x) for any i ∈ S, and∑
i∈N

∑
h∈(S\{i}) x

′
ih ≤

∑
i∈N |S \ {i}| · ωh.

5.3 Family Economy

Assume that H B {Hj : j = 1, . . . , k}, with k ≤ n is a partition of the set
of agents, and interpret each Hj ∈ H as a family. For every i ∈ N , define
Ai as the element of H containing i, i. e., Ai B {Hj ∈ H : i ∈ Hj}. Notice
that, in this case, the sets Ai are not necessarily different, and i ∈ Ai for each
i ∈ N . In particular, observe that members of the same family are associated
with the same Ai, and as consequence the budget set in the definition of an
A-equilibrium is the same for all members of the same family (see Section
3). In particular, the budget set of the family Ai is given by BAi(p, ω) B{
xAi ∈ XAi : p ·

(∑
h∈Ai xih

)
≤ p ·

(∑
h∈Ai ωh

)}
, where p ·

(∑
h∈Ai ωh

)
is the in-

come of the family. Therefore, (x, p) is an equilibrium if

1. xAi ∈ arg max
x′Ai
∈Rl·|Ai|+

{ui(x′Ai , xN\Ai) | p ·
∑
h∈Ai x

′
h ≤ p ·∑h∈Ai ωh}, for all i ∈ N ;

2.
∑
i∈N

xi =
∑
i∈N

ωi.

In equilibrium, the consumption bundle of the family Ai maximizes the utility
of all the members h ∈ Ai under the same budget constraint. Notice also
that the utility may be different for members of the same family. We call
this equilibrium family equilibrium for the following reason. Suppose that the
family structure H is given, and the utility of each member of the family
Ai only depends on the members of the family, i.e., uh(x) = uh(xAi), for all
h ∈ Ai. This form of externalities is known in the literature as intra-household
externalities 22 . Thus, we end up with the notion of equilibrium defined by
Haller (2000) and Gersbach and Haller (2001) for they collective consumption
models 23 .

We now look at the core. A coalition α blocks an allocation x if there exists a

22 See for instance, Haller (2000) and Gersbach and Haller (2001).
23 Haller (2000) and Gersbach and Haller (2001) define a competitive equilibrium
among households as a pair (x, p) such that,

∑
i∈N xi =

∑
i∈N ωi, and for any i ∈ N :

(1) xAi ∈ BAi(p, ω); (2) there is no zAi ∈ BAi(p, ω) which meets uh(zAi) ≥ uh(xAi)
for any h ∈ Ai, and uh(zAi) > uh(xAi) for some h ∈ Ai.
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plan for the family x′Ai = (x′ih)h∈Ai , with i ∈ N , such that

1. ui(x′Ai , xN\Ai) > ui(x) for each i ∈ supp(α);

2.
∑
i∈N

∑
h∈Ai∩supp(α)

αhx
′
hi ≤

∑
i∈N

∑
h∈Ai∩supp(α)

αhωi.

In this setting, Di(α) = Ai ∩ supp(α) for each agent i. If α = χS, then S
blocks x if ui(x′Ai , xN\Ai) > ui(x) for each i ∈ S and ∑

i∈N
∑
h∈Ai∩S x

′
hi ≤∑

i∈N
∑
h∈Ai∩S |Ai ∩ S| · ωi. Assume the following restriction on coalition for-

mation: α is an admissible coalition if αi , 0 for a member i of a family Ai
implies αh , 0 for any other member h of Ai. For a crisp coalition, this con-
dition implies that a coalition is formed by the union of families. In this case,
each family proposes an alternative plan for the family and globally for the
coalition S.

6 Information equilibrium and Generalized Fuzzy Information-Core

In this section, we consider an A-economy in which Ai = N for any agent
i. To simplify the notation, we will denote the economy by E, that is, E B
〈N,Rl+, (%i, ωi)i∈N〉. Given a bundle x, the set Pi(x) =

{
x′ ∈ Rl·n+ : x′ �i x

}
co-

incides with PAi(x). Following Arrow (1969), Laffont (1976), Makarov (1982)
and Vasil’ev (1996), we introduce below the Information equilibrium 24 . In
contrast with the notion of A-equilibrium which is characterized by a unique
price system, in the Information equilibrium there are a personalized price
system π B (p(i))i∈N , with p(i) B (pih)h∈N , and a market price p. The person-
alized price pih is interpreted as the vector which make up the information for
agent i about the consumption of agent h. An element zAi = (zih)h∈N , will be
denoted by z(i).

Below we introduce the equilibrium notion for market with externalities.

Definition 17 (Information equilibrium) (x, π, p) = ((xi, p(i))i∈N , p) ∈ Rl·n+ ×
Rl·n

2 × Rl is an information equilibrium for the economy E if

1. x ∈ Bi(π, p, ω) for all i ∈ N ;

2. Pi(x)⋂Bi(π, p, ω) = ∅ for all i ∈ N ;

3.
∑
i∈N

xi =
∑
i∈N

ωi;

24 We follow the terminology of Vasil’ev (1996).
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4.
∑
i∈N

pih = p, for all h ∈ N

where the set Bi(π, p, ω) B
{
xi ∈ Rl·n+ : p(i) · x ≤ p · ωi

}
denotes the budget set

of agent i.

Notice that the budget is defined in terms of the personalized and market
prices. In contrast with the budget set in the definition of an A−equilibrium, in
an information equilibrium, agent i considers her own endowment. Conditions
1 and 2 state that, for every agent i, x maximizes preference under the budget
constraint, point 3 is the classical market clearing condition, and point 4 is
a feasibility condition for prices. Given an economy E, we denote by ΩI(E) the
set of information equilibria, and WI(E) B

{
x ∈ Rl·n+ | ∃ (π, p) ∈ Rl·n2 × Rl : (x, π, p) ∈ ΩI(E)

}
is the set of all information equilibrium allocations.

The Basic Assumptions 3 on preference relations %i⊆ Rl·n+ × Rl·n+ stated in
Section 2, are replaced by the following,

Assumption 18 For any agent i,

(1) %i are complete, transitive and continuous over Rl·n+ .
(2) For any vector xi ∈ Rl+, %i are strongly monotone over Rl+ × {x−i}, and

non-decreasing over Rl·n+ . 25

We remark that Assumptions 4 is trivially satisfies. We report below the notion
of fuzzy Information-Core, introduced by Vasil’ev (1996).

Definition 19 (Fuzzy Information-Core) Given an allocation x ∈ F and
a coalition α ∈ Rn+ with α , 0, we say that α (information)-improves upon x
whenever, for every agent i ∈ N , there exists a vector (z(i), ξi) = ((zih)h∈N , ξi) ∈
Rl·n+ × Rl+ such that

1. z(i) ∈ Pi(x) for any i ∈ supp(α);

2.
∑
i∈N

αiξi ≤
∑
i∈N

αiωi;

3. αiz(i) = (αhξh)h∈N for any i ∈ supp(α).

The set of allocations which cannot be (information)-improved upon by any
coalition is called (fuzzy) Information-Core, and it is denoted by C I

f (E).

As in section 3, we adapt below the generalized fuzzy core to our economy. For
a coalition matrix α, with αj ∈ Rn+ with αj , 0, denote by αi(r) the element

25 A preference relation %i⊆ Rł·n
+ ×Rł·n

+ is non-decreasing if for any x ∈ Rł·n
+ and for

any vector v ∈ Rl·n+ , one has x+ v %i x.
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∑r
j=1 α

j
i .

Definition 20 (Generalized Fuzzy Information-Core) Given an alloca-
tion x ∈ F and a coalition matrix α = (αji ), with αj ∈ Rn+ with αj , 0, we
say that α (information)-improves upon x whenever, for every agent i ∈ N ,
there exist vectors (zj(i), ξ

j
i ) = ((zjih)h∈N , ξ

j
i ) ∈ Rl·n+ × Rl+ with j = 1, . . . , r such

that

1. zj(i) ∈ Pi(x), for any i ∈ supp(αj);

2.
∑
i∈N

r∑
j=1

αji ξ
j
i ≤

∑
i∈N

αi(r)ωi;

3.
r∑
j=1
αjiz

j
(i) =

 r∑
j=1
αjhξ

j
h


h∈N

for any i ∈ supp(α).

The set of allocations which cannot be (information)-improved by any coali-
tion matrix is called generalized (fuzzy) information-core (or fuzzy core à la
Husseinov) and it is denoted by C I

h (E).

Remark 21 Notice that C I
h (E) ⊆ C I

f (E), since the fuzzy coalitions are ob-
tained for r = 1.

Under convexity, the fuzzy information-core and the generalized fuzzy information-
core coincide.

Theorem 22 Under convexity of preference relations, C I
h (E) = C I

f (E).

Proof. By Remark 21, it remains to show that C I
f (E) ⊆ C I

h (E). Let x ∈
C I
f (E) and suppose by contradiction that x < C I

h (E). So, there exist an r× n
coalition matrix α = (αji ) and vectors (zj(i), ξ

j
i ) ∈ Rl·n+ × R+, with i ∈ N

and j = 1, . . . r, such that zj(i) ∈ Pi(x) (i ∈ supp(αj), with j = 1, . . . , r),∑
i∈N

∑r
j=1 α

j
i ξ
j
i ≤

∑
i∈N αi(r)ωi and ∑r

j=1 α
j
iz
j
(i) = (∑r

j=1 α
j
hξ
j
h)h∈N for each

i ∈ supp(α). For any agent i, define a vector

(y(i), ηi) B
∑r

j=1 α
j
i

αi(r)
zj(i),

∑r
j=1 α

j
i

αi(r)
ξji

 ∈ Rl·n+ × Rl+

Notice that y(i) belongs to Pi(x) since Pi(x) is a convex set and y(i) is a linear
convex combination of elements of Pi(x) 26 . Furthermore,

∑
i∈N

αi(r)ηi =
∑
i∈N

r∑
j=1

αji ξ
j
i ≤

∑
i∈N

αi(r)ωi

26 Notice that αj
h

αi(r) ≥ 0 for any j = 1, . . . , r, and
∑r
j=1

αj
h

αh(r) = 1 for any agent h.
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and

αi(r)y(i) =
r∑
j=1

αjiz
j
(i) =

 r∑
j=1

αjhξ
j
h


h∈N

=
αh(r)

∑r
j=1 α

j
hξ
j
h

αh(r)


i∈N

= (αh(r)ηh)h∈N .

This contradicts the fact that x ∈ C I
f (E), since (αi(r))i∈N is a blocking coali-

tion.

7 An equivalence theorem for Information equilibria

We start the section by proving that an informational equilibrium allocation
belongs to the generalized fuzzy information-core.

Theorem 23 WI(E) ⊆ C I
h (E).

Proof. Let x ∈ WI(E) and suppose that x < C I
h (E). There exists a coalition

matrix α = (αji ) such that zj(i) ∈ Pi(x) for any i ∈ supp(αj) and for any
j = 1, . . . , r. Since x ∈ WI(E), it must be the case that zj(i) < Bi(π, p, ω),
where π and p are such that (x, π, p) ∈ ΩI(E). Thus, p(i) · αjiz

j
(i) > p · αjiωi

for any agent i ∈ supp(αj) and for any j = 1, . . . , r. Summing over i ∈
supp(αj), we get ∑i∈supp(αj) p(i) ·αjiz

j
(i) > p·∑i∈supp(αj) α

j
iωi, which is equivalent

to ∑i∈N p(i) ·αjiz
j
(i) > p ·∑i∈N α

j
iωi. Summing with respect to j = 1, . . . , r and

inverting the sum operators, we obtain ∑i∈N p(i)·
∑r
j=1 α

j
iz
j
(i) > p·∑i∈N αi(r)ωi.

Using the fact that∑r
j=1 α

j
iz
j
(i) = (∑r

j=1 α
j
hξ
j
h)h∈N for any i ∈ supp(α), for some

ξjh, the previous inequalities can be written as ∑i∈N
∑
h∈N pih ·

∑r
j=1 α

j
hξ
j
h >

p · ∑i∈N αi(r)ωi. Finally, inverting the sum operators on the left side of the
inequality, and using the fact that ∑i∈N pih = p, for all h ∈ N we get ∑h∈N p ·∑r
j=1 α

j
hξ
j
h > p ·∑i∈N αi(r)ωi = p ·∑h∈N αh(r)ωh. Therefore,

p ·
∑
h∈N

 r∑
j=1

αjhξ
j
h − αh(r)ωh

 > 0

which contradicts the fact that the coalition matrix α blocks the allocation x.

We now introduce some notations. Define the set Q as follows,

Q B {(i, h)| i, h ∈ N, i , h} ∪ {(0, 0)}
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the linear mapping ϕi : z(i) ∈ Rl·n+ 7→ ϕi(z(i)) ∈ Rl·|Q|+ , by

ϕqi (z(i)) B


zii if q = (0, 0)
−zii if q = (h, i)
zih if q = (i, h)
0 otherwise

and the vector ω̂ ∈ Rl·|Q|, by

ω̂qi B

ωi if q = (0, 0)
0 otherwise

For any x ∈ Rl·n+ and for any agent i ∈ N , consider the set

Gi(x, ω) B
{
ϕi(z(i)) ∈ Imϕi : z(i) ∈ Pi(x)

}
− {ω̂i} .

Notice that the set Gi(x, ω) ⊆ Rl·|Q| is nonempty by Point 2 of Assumption
18. Denote by co (⋃i∈N Gi(x, ω)) its convex hull.

Lemma 24 If x ∈ C I
h (E) then 0 < co (⋃i∈N Gi(x, ω)).

Proof. By contradiction, suppose 0 ∈ co (⋃i∈N Gi(x, ω)). Therefore, for any
i ∈ N , there exist vectors zj(i)(i) ∈ Pi(x) ⊆ R1·n

+ and scalars αj(i)i ≥ 0 with j(i) =
1, . . . , ri such that∑i∈N

∑ri
j(i)=1 α

j(i)
i = 1 which meet∑i∈N

∑ri
j(i)=1 α

j(i)
i (ϕi(zj(i)(i) )−

ω̂i) = 0. By the Caratheodory theorem, we have ∑i∈N ri ≤ l + 1. Consider
a (l + 1) × n matrix M with element mj

i = α
j(i)
i for j ≤ ri and mj

i = 0 for
any j > ri, and for any i ∈ N . Thus 0 = ∑

i∈N
∑ri
j(i)=1 α

j(i)
i (ϕi(zj(i)(i) ) − ω̂i) =∑

i∈N
∑l+1
j=1 m

j
i (ϕi(z

j
(i)) − ω̂h). By the definition of ϕi and ω̃i, for any agent i,

we have

0 =
∑
i∈N

l+1∑
j=1

mj
i (ϕ

(0,0)
i (zj(i))− ω̂

(0,0)
h ) =

∑
i∈N

l+1∑
j=1

mj
i (z

j
ii − ωh)

Defining ξji B zjii for any agent i and any j, we get

∑
i∈N

l+1∑
j=1

mj
iξ
j
i ≤

∑
i∈N

mi(l + 1)ωi

Furthermore, for any q ∈ Q, with q , (0, 0), we obtain∑l+1
j=1 m

j
hz

j
hh = ∑l+1

j=1 m
j
iz
j
ih

for any i, h ∈ supp(m) ⊆ N . By ξjh = zjhh for any agent h, one gets

l+1∑
j=1

mj
iz
j
(i) =

l+1∑
j=1

mj
hξ
j
h


h∈N

∀i ∈ supp(m)
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implying that the l+ 1 coalitions (mj)l+1
j=1 = ((mj

i )i∈N)l+1
j=1 block the allocation

x.

By Lemma 24, if x ∈ C I
h (E ) then co (⋃i∈N Gi(x, ω)) ∩ {0} = ∅. So, applying

the Separating Hyperplane Theorem, there exists a vector p̂ = (p̂q) ∈ Rl·|Q|,
with p̂ , 0, such that p̂ · ζ ≥ 0 for any ζ ∈ co (⋃i∈N Gi(xi, ω)). Define the
vector (π, p) = ((pi)i∈N , p) ∈ Rl·n

2 × Rl as follows,

p B p̂(0,0) and p(i) = (pih)h∈N with pih B

p̂(i,h) if i , h
p̂(0,0) −∑k,i p̂

(k,h) if i = h

Notice that ∑i∈N pih = p, for all h ∈ N . Indeed,∑
i∈N

pih = phh +
∑
i,h

pih = p̂(0,0) −
∑
i,h

p̂(i,h) +
∑
i,h

p̂(i,h) = p̂(0,0) = p.

The following results show important properties of the hyperplane associated
to (π, p).

Lemma 25 For any i ∈ N and for any z(i) ∈ Pi(x) , p(i) · z(i) ≥ p · ωi holds
true.

Proof. By Gi(x, ω) ⊆ co (⋃i∈N Gi(x, ω)), one gets p̂ · ϕ(z(i)) > p̂ · ω̂ for any
z(i) ∈ Pi(x). By the definition of ϕ(·),∑
q∈Q

p̂q · ϕq(z(i)) = p̂(0,0) · zii +
∑
h,i

p̂(h,i) · (−zii) +
∑
h,i

p̂(i,h) · (zih) +
∑

h,i,k,i

p̂(h,k) · 0 =

=
(
p̂(0,0) −

∑
h,i

p̂(h,i)
)
· zii +

∑
h,i

p̂(i,h) · (zih)

≥
∑
q∈Q

p̂q · ω̂qi = p̂(0,0) · ωi +
∑
q,0

p̂q · 0 = p̂(0,0) · ωi

Finally, by the definition of (π, p), we get the desired result.

Lemma 26 The vector (π, p), with (π, p) , (0, 0), is nonnegative.

Proof. By Point (ii) of Assumption 18, the preference relation %i is non-
decreasing over Rl·n+ . Thus, one gets Pi(x) + Rl·n+ ⊆ Pi(x) for any agent i,
which implies that π = (p(i))i∈N ≥ 0. Indeed, suppose that there exists an
agent i such that pcih < 0 for some individual h and a commodity c, then,
since ωci is exogenously given, one may choose an element z(i) ∈ Pi(x) with zcih
large enough, such that p(i) ·z(i) < p ·ωi, and obtain a contradiction. Moreover,
by ∑

i∈N pih = p, we get p ≥ 0, which implies that (π, p) is nonnegative. It
remains to show that (π, p) is different from the null vector. It follows from
the fact that p must be different from the null vector. Indeed, if p = p̂(0,0) = 0,
then ∑

i∈N pih = p = 0 for any h ∈ N , and p(i) ≥ 0, imply that p(i) = 0 for
any agent i. This implies p̂ = 0 which is a contradiction.
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Remark 27 By Lemma 26, it follows that π > 0 and p > 0. Indeed, we
have already proved that (π, p) is non negative with p , 0. The fact that π is
different from the null vector follows from ∑

i∈N pih = p > 0 for any h ∈ N . In
particular, for any agent h there is an agent i such that pih > 0.

Lemma 28 If x ∈ C I
h (E) then p(i) · x = p · ωi for any i ∈ N .

Proof. As a consequence of Lemma 25, one obtains p(i) · x ≥ p · ωi for any
agent i ∈ N . Indeed, since x ∈ clPi(x), we may find a sequence (xν(i)) ⊆ Pi(x)
converging to x. By Lemma 25, we obtain p(i) · xν(i) ≥ p · ωi for any ν ∈ N. So,
taking the limit we get p(i) ·x ≥ p·ωi. Suppose that there exists an agent h such
that p(h) · x > p · ωh. Summing over h, we derive ∑h∈N p(h) · x > p ·∑h∈N ωh.
By p = ∑

h∈N phi for any agent i, the previous inequality can be written as∑
h∈N(∑i∈N phi ·xi) = ∑

i∈N(∑h∈N phi) ·xi = p · (∑i∈N xi) > p ·∑h∈N ωh, which
is equivalent to p ·∑i∈N(xi−ωi) > 0. This is a contradiction since x ∈ F and
p > 0.

Lemma 29 The vector p is strictly positive.

Proof. By p > 0 and ∑i∈N ωi � 0, there exists an agent h such that p·ωh > 0.
We first claim that for this agent h, it must be the case that p(h) ·z(h) > p·ωh for
any z(h) ∈ Ph(x), with x ∈ C I

h (E). By Lemma 25 we know that p(h)·z(h) ≥ p·ωh
for any z(h) ∈ Ph(x). Suppose that p(h) ·z′(h) = p·ωh > 0 for some z′(h) ∈ P(h)(x).
By continuity of preferences, there exists Vδ(z′(h)) B Nδ(z′(h))∩Rl·n+ included in
Ph(x), where Nδ(z′(h)) ⊆ Rl·n is an open ball centered at z′(h) with radius δ > 0.
Let ε > 0 such that 0 < (1 − ε)‖z′(h)‖ < δ and consider the vector εz′(h)

27 .
Thus, εz′(h) ∈ Vδ(z′(h)) and consequently p(h) · εz′(h) ≥ p ·ωh since εz′(h) ∈ Ph(x).
By p(h) · z′(h) = p · ωh > 0 and ε < 1, we get εp(h) · z′(h) < p(h) · z′ = p · ωh.
Therefore,

p · ωh ≤ εp(h) · z′(h) < p(h) · z′(h) = p · ωh
which is a contradiction. This completes the proof of the claim. We now
claim that the vector phh is strictly positive. Fix a commodity c. By strong
monotonicity of the preference of agent h with respect to her own consump-
tion, x + e(h, c) ∈ Ph(x), where e(h, c) B (ei(h, c))i∈N = ((esi (h, c))ls=1)i∈N
is a vector in Rl·n with esi (h, c) = 0 for any s , c and ech(h, c) = 1. So
p(h) · (x+ e(h, c)) > p · ωh by the previous claim. Since x ∈ C I

h (E ), by Lemma
28 and the bilinearity property of the inner product, one gets p(h) · e(h, c) > 0
which implies, by definition of e(h, c), that pchh > 0. Repeating the same ar-
gument for any commodity s, one obtains, phh � 0, which proves the claim.
Finally, by p = ∑

i∈N pih one gets p� 0.

27 Notice that, since �i is not reflexive, then z(i) , x. Thus, z(i) ∈ Pi(x) and the non-
decreasing assumption implies that z(i) is different from the null vector. Therefore,
εz′(h) < z′(h).
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Lemma 30 If x ∈ C I
h (E) then p(i) · z(i) > p · ωi for any i ∈ N and for any

z(i) ∈ Pi(x).

Proof. By p(i) · z(i) ≥ p · ωi, p � 0 and ωi > 0, we get p(i) · z(i) > 0 for any
z(i) ∈ Pi(x). By continuity of preferences, one my find a vector z′(i) ∈ Pi(x)
such that p(i) · zi > p(i) · z′(i) 28 . Since z′(i) ∈ Pi(x), by Lemma 25, we must have
p(i) · z(i) > p(i) · z′(i) ≥ p · ωi, which completely proves the statement.

We are now ready to prove the equivalence theorem.

Theorem 31 (Equivalence Theorem) The set of information equilibrium
allocations concides with the generalized fuzzy information-core.

Proof. Take x ∈ C I
h (E). We are going to show that (x, (π, p)) belongs to

ΩI(E). By Lemma 28, one gets x ∈ Bi(π, p, ω), by Lemma 30, Pi(x)∩Bi(π, p, ω) =
∅ holds true for any agent i ∈ N , and by the definition of (π, p), one has∑
i∈N pih = p for all h ∈ N . Finally, it remains to show that if x ∈ C I

h (E)
then market clearing condition is satisfied. Indeed, by Lemma 28, x ∈ C I

h (E)
implies ∑h∈N pih · xh = p · ωi for any i ∈ N . So summing with respect to
i, inverting the sum operator and using the bilinearity property of the inner
product, we get∑

i∈N

∑
h∈N

pih · xh =
∑
h∈N

∑
i∈N

pih · xh = p ·
∑
i∈N

ωi = p ·
∑
h∈N

ωh

By ∑i∈N pih = p, the previous equality is equivalent to p ·∑h∈N(xh−ωh) = 0.
Since p� 0, the feasibility of x implies ∑h∈N xh = ∑

h∈N ωh.

8 Economic models analyzed in literature - Part II

In this section, we underline that a Walrasian equilibrium allocation for a pure
exchange economy without externalities and a distributive Lindahl equilibrium
for an economy with externalities are both particular cases of information
equilibrium.

8.1 Pure exchange economy without externalities

If E is a pure exchange economy without externalities at all, then a competitive
equilibrium allocation x is also an Information equilibrium allocation. Indeed,
28 As in the proof of Lemma 29, we can define z′(i) B εz(i), with ε > 0 such that
0 < (1− ε)‖z(i)‖ < δ. Thus, z′(i) ∈ Vδ(z(i)) B Nδ(z(i)) ∩ Rl·+ ⊆ Pi(x), where Nδ(z(i))
is an appropriate open ball in Rl·n.

23



if p is the equilibrium price, then the corresponding personalized price of agent
i is given by pih B 0 for any agent h , i, and pii B p. Under this setting, the
budget set of agent i is Bi(π, p, ω) = {x ∈ Rl·n+ : p·xi ≤ p·ω} and the feasibility
condition for the personalized prices is trivially satisfied.

8.2 Distributive Lindahl equilibrium

Define the set of admissible Lindahl shares as the set Γ of n × n matrices
given by Γ B {γ = (γih) : γih ≥ 0,∑i∈N γ

i
h = 1,∀ h ∈ N}. For an agent

i, one may interpret the vector (γih)h∈N as the contribution of agent i to
the cost of consumption of all the other agents. The total contribution to
consumption of one agent is normalized to 1. Given a price system p ∈ Rl+
and admissible Lindahl shares γ ∈ Γ, the budget set of agent i is Bi(γ, p, ω) B
{x ∈ Rl·n+ : ∑h∈N γ

i
hp·xh ≤ p·ωi}. Thus, (x, γ, p) ∈ Rl·n+ ×Γ×Rl+ is a distributive

Lindahl equilibrium for the economy E if

1. x ∈ arg max
x′∈Rl·n+

{ui(x′) |
∑
h∈N γ

i
hp · xh ≤ p · ωi}, for all i ∈ N ;

2.
∑
i∈N

xi =
∑
i∈N

ωi.

In a distributive Lindahl equilibrium, individual bundles are the public goods
of the economy, and as such, they are enjoyed by every agent in the same
amount. Equilibrium shares are personalized in such a way that these bundles
are an optimal choice for each agent. Given a price system p, in a distribu-
tional Lindahl equilibrium, there is a procedure which assigns to each agent a
share in the consumption of every other agent, so that at equilibrium agents
agree on the share. Notice that a distributive Lindahl equilibrium is an In-
formation equilibrium. Indeed, suppose that (x, γ, p) is a distributive Lindahl
equilibrium, then for every agent i, one may define a system of personalized
price π = (p(i))i∈N as pih B γihp for any h ∈ N . Notice that, condition 4 in
Definition 17 is satisfied, since ∑i∈N pih = ∑

i∈N γ
i
hp = p. Finally observe that

the budget set of an agent in the distributive Lindahl equilibrium coincides
with the one of the Information equilibrium with (π, p) sistem of prices, since
Bi(γ, p, ω) = {x ∈ Rl·n+ : ∑h∈N γ

i
hp · xh ≤ p · ωi} = {x ∈ Rl·n+ : ∑h∈N pih · xh ≤

p · ωi} = Bi(π, p, ωi). Therefore, a distributive Lindahl equilibrium is an in-
formation equilibrium in which prices of agent i are all on the same direction,
given by p.
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9 Conclusions

We have shown that the equivalence theorem can be restored for two non-
standard market models with externalities and non-convex preferences. For
an equilibrium allocation to be a core allocation, an appropriate blocking pro-
cedure is needed. In particular, (i) an agent in the blocking coalition needs
to be myopic with respect to the choices of all the other agents; (ii) an opti-
mistic behavior of the blocking coalition with respect to the reactions of the
outsiders is required. Vice-versa, to show that a core allocation belongs to
the set of the equilibrium allocations, we use a standard approach based on
Separation theorems. In order to overcome the difficulties arising by remov-
ing the convexity assumption, we adapt the idea of Husseinov (1994) to our
frameworks by allowing agents to participate in more than one fuzzy coalitions
simultaneously. In the A-economy, our main result is based on the assumption
that the family of the exogenously given sets A = (Ai)i∈N is balanced in the
sense of Bondereva with full support. This assumption is trivially satisfied for
the model studied in the second part of the paper, that is a pure exchange
economy with Arrowian markets for externalities. The proof of the equivalence
theorem for this latter case requires the additional assumption of non spiteful
agents. We have also shown that the two market models analyzed in the paper
are sufficiently general to cover some well-known cases. Several important as-
pects of these two non-classical market models deserve to be investigated. In
the absence of externalities, non-convex preferences are easily accommodated
in models of exchange economy with a continuum of agents. In our ongoing
research, following the idea of Husseinov (1994) and Husseinov and Páscoa
(1997), the fuzzy core will be related to the core of an appropriate economy
with a continuum of agents. Although it is natural, this correspondence is not
easy to construct due to the presence of externalities. Moreover, due to limited
availability of resources and the impact on the economic environment of an
inefficient allocation, the concept of resources-core and its characterization in
terms of a measure of social loss deserve to be studied 29 .
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