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Abstract

This paper compares Bayesian decision theory with robust decision theory where the decision maker optimizes
with respect to the worst state realization. For a class of robust decision problems there exists a sequence of
Bayesian decision problems whose solution converges towards the robust solution. It is shown that the limiting
Bayesian problem displays infinite risk aversion and that its solution is insensitive (robust) to the precise
assignment of prior probabilities. Moreover, the limiting Bayesian objective turns out not to be time separable
even if the objective function of the robust decision makers displays time separability.
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1 Introduction

In recent years robust or maxmin decision theory has been put forward as an al-
ternative to standard Bayesian decision theory in macroeconomics (e.g. Hansen
and Sargent (2000), (2001)). The key idea behind robust decision theory is
that agents might face uncertainty that they cannot quantify in terms of prior
probabilities because ’too little is known’ to do so. By introducing uncertainty
aversion robust decision theory provides a mean to calculate optimal decisions
in the absence of prior probabilities, see Gilboa and Schmeidler (1989) for an
axiomatization.!

A key motivation for introducing robust decision makers into macroeconomic
models is that such models can explain behavior that seems not to be rational
from a Bayesian perspective and thereby improve the descriptive performance of
otherwise standard macroeconomic models. Hansen et al. (1999), for example,
show that a slight preference for robustness can explain a substantial part of

the observed equity premiums.

Despite its increasing popularity in applied macroeconomics (e.g. Onatski
and Stock (2000), Tetlow and von zur Muehlen (2001)), the relation of robust
decision theory to standard Bayesian decision theory has received little atten-
tion. Yet, it is important to understand the links between the two problems
since these might inform us in which ways robust decision makers may alter and

improve the descriptive performance of macroeconomic models.

The present paper tries to fill some of this gap and shows that robust decision
problems can be interpreted in terms of the limit of a sequence of Bayesian
decision problems.

Considering a simple class of robust decision problems, I show that there is
a sequence of Bayesian decision problems with infinitely increasing risk aversion
that has the property that the associated optimal decisions converge to the
optimal robust decision. Convergence is robust to the precise assignment of prior
probabilities by the Bayesian as long as strictly positive probability is assigned

to all states over which the robust decision faces unquantifiable uncertainty.

1T use the term robust decision theory synonymous to the term maxmin decision theory, as
put forward by Gilboa and Schmeidler (1989). Hansen et. al. (2001) have shown how these

two classes of problems can be linked.



The independence of the convergence result from the precise assignment of
prior probabilities delivers a Bayesian interpretation of robust decision theory:
it represents the choice of a particular objective function that has the property
that optimal Bayesian decisions are insensitive (or robust) to many different
priors. This may be seen as a reply to Sims (2001) who criticized the use of

minimax approaches in policy making.

However, the interpretation in terms of a Bayesian setting is not fully sat-
isfying and some problems remain that cannot be reconciled with Bayesian
decision theory: since the additional maximization operator which appears in
robust decision problems induces infinite risk aversion only over the domain of
maximization, the decision maker’s risk aversion outside this domain remains
unaltered.

Therefore, robust decision makers seem to have a split personality from the
viewpoint of a Bayesian and act as if they faced two degrees of risk aversion: the
usual one with respect to uncertainty to which they can assign prior probabilities

and an infinite one with respect to unquantifiable uncertainty.

With regard to macroeconomic applications, a Bayesian interpretation of
robust decisions in terms of extreme degrees of risk-aversion may partly explain
why robust decision theory has the potential to generate larger risk premia, see
Hansen et al. (1999).

Besides ever increasing risk-aversion, the sequence of Bayesian decision prob-
lems has a second interesting property: in general utility is not time separable
even if the objective function of the robust decision maker displays time separa-
bility. This result is due to the fact that the worst case evaluated by the robust
decision maker depends on full decision vector and not simply on the decision
of a single period. Like this the additional maximization operator in the robust
decision problem induces non separability of the ratio of marginal utilities in
the equivalent Bayesian problem.

This observation suggests that macroeconomic models with robust decision
makers should deliver results similar to models with Bayesian decision makers
with non-separable utility. Since habit persistence in consumption services may
increase the market price of risk in a model of Bayesian decision making, it
seems natural to expect a similar increase in this price in models with robust
decision makers but seemingly time separable period loss functions, as found by
Hansen et al. (1999).



The next section introduces the decision problem and describes the robust
and Bayesian approach to its solution. Section 3 derives the convergence result
which is illustrated in section 4 with the help of a simple example. Finally,
section 5 extends the setup to infinite dimensional decision problems with dis-

counting.

2 Bayesian and Robust Decision Problems

Consider a decision maker whose objective can be described by a simple loss
function which depends on a decision vector € R™ and an unknown state of
the world s:

L(z,s)

L(-,8) is assumed to be twice continuously differentiable and strictly convex for
all s. The state of the world s is assumed to belong to some finite and known set
Q, = {81, .. S[} and the decision must be chosen from a compact set 2, C R™

of feasible decisions.

First, consider a Bayesian decision maker. Based on Savage’s axioms such a
decision maker can construct subjective prior probabilities p; (¢ = 1,...n) that
describe the likelihood with which the decision maker believes that state s; will

realize. The Bayesian then acts to

min E [I(z,s)] = min > L(z,s)pi (1)

rE€Q, TEQ, 4

Next, consider what has been called a robust decision maker who cannot
assign meaningful priors to the realization of the state s. One reason might be
that some of Savage’s axioms do not hold, e.g. if there is no random variable

with uniform distribution that allows for the calibration of probabilities.

Uncertainty that cannot be quantified in terms of subjective probabilities has
been called Knightian uncertainty in the literature. The existence of Knightian
uncertainty opens many possible ways for modeling the decision problem. One
possible and intuitive way, suggested by Blinder (1998), is to simply average over
the states of the world. The resulting decision problem would be equivalent to

a Bayesian decision problem with p; =+ (i =1,... ,I).



Yet, the most widely used method to model robust decisions and the one
I will consider in this paper advocates to let the decision maker choose an
action x that minimizes the maximum possible loss associated with action z. In
mathematical terms

e g () ?

Let x) denote the solution to minimization part of this problem.

It is useful to rewrite this optimization problem as follows

min R(z) with
TEQ,

R(z) = Z L(z,8:)I(z, s;) (3)

where I(x, s;) is an indicator function that is one if s; is a maximizer of L(z, s;)
2

and that is zero otherwise.

Rewriting the robust objective in this form helps to highlight the relation to
the Bayesian problem (1) since the indicator functions in (3) look almost like
prior probabilities. The difference between the Bayesian prior and the robust
'prior’ is that the robust decision maker always puts all probability weight on
the worst state associated with a given decision x; since this worst state may
shift with =, the "prior’ of the robust decision maker may shift with the chosen

decision, which is not the case for a Bayesian decision maker.

3 Linking Bayesian and Robust Decision Prob-

lems

The objective of this section is to establish a link between the two decision
problems. The main idea is to manipulate the objective function of the Bayesian
decision problem in a way that the Bayesian’s objective function will have the

same minimum as the robust objective.

Since the loss function depends on the action x,altering the Bayesian’s loss

function is a back-door through which one can cause the Bayesian to behave as

21f there are several maximizers I define the indicator function to be 1 only for the state

with the lowest index <.



if her priors were changing across actions. In particular, if the Bayesian was to
maximize a transformed loss function T(L(z, s)) with the property that
I(z,s)
Ds

(4)

where p; is the prior probability for state s, then the Bayesian problem would

be identical to the robust decision problem:

min E [T(L(x, 5))]

TEQ,
! I(z, s;)
= min Y L(z,8)———%p;
e, 4 i
1=1
= e )

Of course, such a transformed ’loss function’ is not a loss function in the strict

sense since it depends on prior probabilities.

Given that direct equivalence between the two problems requires a Bayesian
loss that depends on priors, the strategy to is to construct a sequence of trans-
formed loss functions 7%(L(z,s)) for the Bayesian problem with the property
that these transformed loss functions are independent from the prior. At the
same time the solution z7, to

min F [T%(L(z,s))] (5)

TEQ,

should converge to the robust solution z¥ as & increases without bound, i.e.

tim [fo, — | =0
k— o0

I define the sequence of transforming functions 7%(-) as®

TH(L) = "

Since T%(-) is increasingly convex a Bayesian with objective 7%(L) will become
increasingly risk averse in terms of the coeflicient of absolute risk aversion. As
a result, the value of the transformed loss 7% (L) increases disproportionately

with the size of the loss L. Intuitively, this implies that the largest of all losses

3The particular sequence T* is just chosen for convenience and other sequences might give

the same result.



L associated with some action x obtains increasing relative weight. This should
move the solution to the Bayesian decision problem closer and closer to the

robust solution.

Theorem 1 below shows that this is the case. Robust decisions can be in-
terpreted as decisions of a Bayesian with an infinite degree of risk-aversion and
arbitrary strictly positive priors over the domain to which the robust decision
maker cannot assign prior probabilities. In Bayesian terms robustness repre-
sents a choice of a particular objective function, which has the property that

optimal decisions are robust to the assignment of prior probabilities.

Theorem 1 Let x} denote the solution to the transformed Bayesian decision
problem (5) with prior probabilities p, > 0 (i = 1,...n). Let z} denote the

solution to the robust decision problem (3). Then
Tim [l — ] = 0
Proof of theorem 1: Rename states s such that at z
L(x),s1) > L(x),82) > ... > L(x}, s1)
and let
o = {1l L(xy, 51) = L(zy, 51)}
Then I first show the following auxiliary result:

Lemma 2 V§ > 0 sufficiently smallV d € R™ with ||d|| = § 3¢ > 0
independent of d and a state i € Qpax 8.1

L(x}:+d,s;) — L(x},s;) > ¢
Proof of lemma 2:. The difference can be expressed as
L(xr +d,8) — L(z},8;) = VL(x}, 8)d + d'V2L(x}, 8)d +O(3)  (6)

where O(3) is a third order approximation error. Consider the first order

term: From the optimality of =) follows that

V Lz}, 8)d > 0 (M)



for some i € Q.. Next, fix such an ¢ and consider the second order term.

Since V2L(x, s;) is normal and positive definite, we have
VEL(x}, 8) = U/DU;

where U; is unitary and
D; =diag(Ni1... Nin)

with A; ; > 0 being the eigenvalues of VQL(xjﬁ, s;). Then defining A; yin =

ming )\i,j

d'NV2L(x}, s)d = d'U/D;U;d

> N mind UU;d (8)
- )‘i,mind,d (9)
= Aimind” (10)

Letting Amin = minjcq,,. Aimin it follows from (6), (7), and (10) that

L(x} 4 d, 5)) — L(x}, 8) > Amind> 4+ O(3)

Choosing 6 sufficiently small the third order approximation error can be
made arbitrarily small, e.g. smaller than /\mTi“‘s, then choosing ¢ = /\mTi“‘S

establishes the claim.ll

Next, normalize the transformed objective of the Bayesian decision maker
(5) as follows
k 1 !
2 _ kL(z,8:),,.
(%) = rrgman 2 pi (1)
i=1
Maximizing (11) delivers the same solution as maximizing (5). The limit
of fk(xjﬁ) for k — oo exists and is given by:
—k
lim L (z}) = i
Jim T (x7) .6; P

Next, consider T (x} + d) with d € R" and ||d|| = 6, 6 sufficiently small.

From the auxiliary lemma and (11) it follows that

ek(L(m: ,81)+¢)

—k,
L (xr + d) > ekL(;rji,.h) Prmin



where pnin = min; p;. Therefore, there exists a %k < oo such that for all
E>k

T +d) > T' (@)

>From the strict convexity of Ek() it follows that the minimum zj, of
fk() must be within distance § from z for all & > %, which establishes

the claim. m

4 An Example

Consider the following simple loss function, which has been considered amongst
others by Brainard (1967) and Onatski (2000)

L(z,s) = (sx —7")?

where the variable 7* denotes the inflation target and where sz is the inflation
rate that results when the decision maker chooses policy x and the state of the
world is given by s. If x is the real interest rate, then the factor s represents
the sensitivity of the economy’s inflation rate to the real interest rate, a number
likely to be unknown to the policy maker. Moreover, the policy maker might
have unquantifiable uncertainty over the various values of s.

To keep things simple suppose that the desired target inflation rate is 7* = 2
and that there are only two potential multipliers s; < s, with s; = 1 and s, = 3.

The loss functions associated for each of these multipliers are shown in figure
1. The dotted line in the graph indicates the maximum loss associated with
each action. As figure 1 shows, the optimal robust decision that minimizes the

maximum loss is given by z = 1.4

Next, consider a Bayesian central bank and let its subjective prior place
equal probability on each of the two multipliers. The optimal Bayesian decision
is easily calculated to be x* = 0.8. This is a less aggressive policy than the
one chosen by the robust decision maker. The reason for this result is that
the Bayesian trades off the gains and losses across the different realizations of
s. Clearly at x = 1 the loss functions in figure 1 have different absolute slope

coefficients depending on whether s = s; or s = s;. Therefore, the Bayesian

4Since there is no uncertainty about the sign of the parameters a the optimal robust decision

coincides with the optimal decision under certainty equivalence, as noted by Onatski (2000).
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has an incentive to decrease the interest rate below 1 since the gains made
for the realization s; will exceed the losses for realizations s;, given the prior

probabilities assigned to these states.

When the Bayesian’s objective function is subjected to increasingly convex
transformations Tk(~), then she becomes increasingly risk averse. This implies
that the gains for the state s, will be appreciated less relative to the potential
increase in the loss for the state s;. Graphically one can interpret this as figure
1 being scaled in the direction of the y-axis with each point being scaled by a
factor that is increasing with its distance from the z-axis. As a result, the slope
of I(z,s;) to the left of x = 1 increases much faster than the absolute value
of the slope of L(z,sy,) to the left of this point and the Bayesian decision will
approach the robust decision. Figure 2 shows the optimal Bayesian decision
as a function of k£ and illustrates that the robust decision is approached rather

rapidly as & increases.’

5 Extensions

The loss function considered so far was rather general but has assumed a finite
dimensional decision vector. Yet, macroeconomists tend to use infinite horizon
models with infinite dimensional decision vectors. This section shows that the
results of the previous section extend in a natural way to the infinite horizon
problems with discounting as they are typically used in macroeconomics.

Consider the following loss function
L(x,s) = Zﬁtl(xt,s)
t=0

where z, € R" is the period ¢ decision, the vector x = (2, z},...)’ the stacked
period decisions, and 8 < 1 a discount factor. The period loss function (-, s)
is assumed to be strictly convex and twice continuously differentiable for all s.
The period decision z; must be chosen from a compact set of feasible decisions
1, that might depend on past decisions. Furthermore, there is a compact set
), C R™ such that ; C Q, for all £.

5As the example reveals, the speed of convergence will depend on the prior. If less weight
is attached to the worst state of the optimal robust decision then convergence will be slower

(see also the last bit in the proof of theorem 1).
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The robust decision maker minimizes

o0
. ¢
min  max Uz, 84 12
(@oloe ey} s€9. ;6 (e, 5:) (12)

To construct the transformed Bayesian problem it might seem natural to
alter directly the period loss function i(-,-) to preserve the time separability of

the objective, e.g. to let the Bayesian minimize

I oo
min ﬁtekl(zt,si)pi 13
ity &2 "

However, the solution to this problem will not necessarily converge to the solu-

tion of the robust decision problem, as the following example shows.

Example 3 Let the optimal robust decision be given by x)' = (x}l,x;/y,...)

and the state s; (¢ = 1,2) that mazimizes the loss for this and any neighboring

decisions is given by s1. Next consider the decision
' = +(d',0,0,0...)

which is equal to ' except for the first period. Suppose thal altering the decision
from x) to x causes the loss in period zero to increase by v, > 0 units, which
makes x suboptimal for the robust decision maker.

Next, consider a Bayesian decision maker with objective (13) who considers

a deviation from x) to x. The change Ay in the first period loss is given by
Ak:(gﬂ@mwa+m>_emu%§nml+(gmupwg+w>_em@mwg)p2(L@

where v = Ux) o + d,82) — U] g,82). Suppose 75 < 0 and U(z)g,52) >
Uy, 81) + 71 > 0, which cannot be excluded, then

k— o0

which indicates that a Bayesian with objective function (13) will prefer x to T«

for all sufficiently large k.

As it turns out define the transformed loss function as

T(L(z, 5)) = eM(E 20 Allzes) (15)

11



and let the Bayesian minimize

I
; B(E 720 B 1(2e,55)) 16
min E € Di
)2 (16)

{ze| e €€ P

where p; are prior probabilities, delivers the desired result. Theorem 4 below
shows that, as k increases without bound, the Bayesian solution to problem (16)

converges to the robust solution in terms of the following vector norm:

(o0}
lzllg = et
t=0

Theorem 4 Let x} denote the solution to the transformed Bayesian decision
problem (16) with prior probabilities p; > 0 (i = 1,...m). Let x} denote the

solution to the robust decision problem (12). Then
Tim e — 5 = 0
Proof of theorem 4: Rename states s such that at z
L(x),s1) > L(x),82) > ... > L(x}, s1)
and let
Omaxe = {i|L(z;, 5:) = Lz, 51)}
Then I first show the following auxiliary result:

Lemma 5 V6 > 0 sufficiently small ¥ d € R™ with ||d||; =6 3¢ >0
independent of d and a state i € Qpax 8.1

L(x): +d,s;) — L(z),8) > ¢
Proof of lemma 5:. The difference can be expressed as
L(xf +d,s)) — L(x},8;) = VL(x}, 8:)d + d'V?L(x}, 8:)d + O(3)
= VI(x},s)d+ i B a2, 85)de + O(3)

- (17)

12



where O(3) is a third order approximation error. Consider the first order

term: From the optimality of =) follows that
V L(z},8)d >0 (18)

for some i € Qax.- Next, consider the second order term. Since V%(x;t, 8;)

is normal and positive definite

VQZ(x;t, 8:) = U Dy Uiy
where U ; is unitary and

D; =diag(Nit1 ... Nijtn)

with \; ; ; being the eigenvalues of V%(x;t, 8;). Let Amin denote the min-
imum eigenvalue of VQZ(xt, 8;) over all x € €, and ¢ € §,. Since V21(~, 8;)
is continuous, {2, is compact, and €2, is finite the minimum exists. From

the strict convexity of I(-, s;) follows that Ayin > 0. Then

AV L2}, s)d =Y B'diU} DiyUs dy
t=0

> Ain Y B dyU] Ui oy

t=0
= Amin »_ B'd}d;
t=0
= Amind (19)
It follows from (17), (18), and (19) that
L(xy +d,s;) — L{x), 8) 2 Amind + O(3)

Choosing 6 sufficiently small the third order approximation error can be
made arbitrarily small, e.g. smaller than Aminé’ then choosing ¢ = Amind

2 2
establishes the claim.ll

Next, normalize the transformed objective of the Bayesian decision maker
(15) as follows

I
—k 1 (5520 B1(ws,5:))
T — =0 )21 ; 20
)= e )

13



Maximizing (20) delivers the same solution as maximizing (15). The limit

—k
of L' (z}) for k — oo exists and is given by:

lim fk(x;ﬁ) = Z Di

1€0max

Next, consider T (z; +d) with d € R" and ||d|| ; = 6, § sufficiently small.
From lemma 5 and (20) it follows that
(AT Bl ()

RN R

fk(x;f +d) >

where pi, = min; p;. Therefore, there exists a %k < oo such that for all
kE>k
i@ +d) > T ()

>From the strict convexity of Ek() it follows that the minimum zj, of
fk() must be within distance § from z* for all & > %, which establishes

the claim. m

>From theorem 4 follows that the approximating Bayesian loss functions
is not time separable, even in the limit. Marginal utility for the transformed

Bayesian problem is given by

OF [T*(L(z, s))]
ox

= kﬁt Z vl(,’f,’t’ Si)ek(zzozo @hl(zh75i))pi

Therefore, the limit of the ratio of marginal utilities is given by

OE[T* (L(z,5))]

lim — 2%
b—roo OE[TF(L(z,5))]
et

and depends on the states s that maximize ZZOZO ﬁhl(xh, 8), which are a function
of the whole decision vector . Thus, although the loss function of the robust
decision maker is separable with respect to the decision vectors x;, the fact that
the robust decision maker evaluates each period decision z; with respect to the
state that generates the greatest discounied loss generates non-separability in

the equivalent Bayesian problem.

14
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