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propose LM and Wald statistics for the null hypothesis of stability and derive their asymptotic 
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1 Introduction

Financial asset returns exhibit a factor structure, as a handful of common factors drives their

cross-sectional dependence.1 This empirical evidence has generated a large number of contribu-

tions on factor models in asset pricing: see Giglio et al. (2021) for an overview of the literature. In

estimating asset pricing models, it has been common to assume that all factors are strong, mean-

ing that they are pervasive and influence almost all securities: see Fama and MacBeth (1973),

and Shanken (1992). The assumption of strong factor structure may be restrictive in practice,

as some of the factors may not be strong and do not actually drive the cross-section of all securi-

ties: Kan and Zhang (1999), Kleibergen (2009), Bryzgalova (2016), Burnside (2016), Gospodinov

et al. (2017), and Anatolyev and Mikusheva (2021), study this scenario when factors are known

and observable; in the spirit of Connor and Korajczyk (1986), Lettau and Pelger (2020), Bai and

Ng (2021), Freyaldenhoven (2021), Giglio et al. (2021), and Uematsu and Yamagata (2023a,b)

consider specifications in which all factors are latent and estimated.

We focus on observable factors. We follow Chudik et al. (2011) and define the strength of

a factor based on how the sum of squared betas grows with the number of test assets N . We

classify a factor as being strong, semi-strong or weak, depending on whether the sum of squared

betas grows at a rate equal to N , between N1/2 (excluded) and N (excluded), or less than or

equal to N1/2, respectively. Bailey et al. (2021), Connor and Korajczyk (2022), and Pesaran

and Smith (2021a,b), employ the same classification scheme. Bailey et al. (2021) develops an

estimator for the factor strength that is based on the fraction of statistically significant betas

and takes into account the associated multiple testing problem. Pesaran and Smith (2021b)

show that the convergence rate of the Fama and MacBeth (1973) two-pass estimator depends on

pricing errors and factors strength, and thus an estimation of the latter is required.

To the very best of our knowledge, existing studies that allow for semi-strong and weak factors

assume that the factor strength is stable over the estimation period. This assumption may not

be supported by the data. Bailey et al. (2021), and Pesaran and Smith (2021b), document

time-variation in factor strength in large cross-sections of equity returns over rolling estimation

windows. Based on the results in Pesaran and Smith (2021b), detecting breaks in factor strength

1For example, see Litterman and Scheinkman (1991), Fama and French (1993), and Lustig et al. (2011), in
relation to U.S. government bonds, equity returns, and exchange rates, respectively
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is important as these breaks may affect the convergence rate of two-pass estimators.

This paper fills a gap in the literature by addressing the problem of instability of factor

strength in asset pricing models. It introduces a general testing strategy for the null hypoth-

esis of strength stability. We build LM and Wald-type test statistics based on the difference

between the estimator for the factor strength before and after the break. They differ in their

variance being estimated under the null and under the alternative, respectively. We derive their

asymptotic distribution under the null and show that it is normal. Under the alternative, both

statistics asymptotically diverge. Our results are corroborated by an extensive set of Monte

Carlo simulations, which shows the good performance of our tests in finite samples.

We stress that we focus on instability in the factor strength and not in the factor betas.

Strength instability can only occur if the corresponding betas experience a break, and betas

instability is a necessary condition for strength instability. This has implications for deriving

the asymptotic distribution of our test statistics under the null. In particular, our proposed test

statistics do not suffer from the problem of a nuisance parameter being identified only under the

alternative: see Davies (1977, 1987). Stability of factor strength is tested after a break in the

betas is detected and the break fraction is identified both under the null and the alternative.

Finally, we illustrate the usefulness of our procedure for empirical work through an analysis

of equity portfolios.2 We consider a large set of 739 portfolios from Chen and Zimmermann

(2021). We set up a factor model for the cross-sectional variation of returns and apply our

testing procedure using rolling estimation windows of suitable length. Our results shed light

on the dynamics of local instability of factor strength over time for the set of test assets and

the factor model specification we consider. From an asset pricing perspective, they imply that

stability of factor strength may not be a realistic assumption for empirical purposes. Strength

instability should be accounted for when running inference on risk premia in order to avoid

potentially misleading inferential results.

The rest of the paper is organized as follows. Section 2 sets up the problem. Section 3

introduces the tests. Section 4 runs a set of Monte Carlo experiments. Section 5 performs the

empirical analysis. Section 6 concludes. Mathematical proofs are provided in Appendix A.

Notation: I (·) denotes the indicator function; ⌊·⌋ is the integer part of the argument; given

2The data used in the empirical analysis are described in details in Section 5.1
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a positive integer A, ιA is the A×1 vector of ones; |·| is the absolute value of the argument; Φ (·)

is the cumulative distribution function of the standard normal distribution, and Φ−1 (·) is its

inverse;
d→ denotes convergence in distribution; vec (A) denotes the vectorization of the matrix

A; the norm of a generic matrix A is ∥A∥ = [tr (A′A)]1/2, where tr (B) denotes the trace of a

square matrix B;
a.s.→ denotes almost sure convergence.

2 Set up

2.1 Econometric model

We assume that asset (excess) returns are generated according to

Rit = I (t /T ≤ τ) (α1i + β′
1ift) + I (t /T > τ) (α2i + β′

2ift) + eit, (1)

for i = 1, . . . , N, and t = 1, . . . , T , where N is the total number of assets, and T is the time series

dimension: Rit is the return on asset i at time t; 0 < τ < 1 is the break fraction, which can be

either known or unknown; αji is the asset-specific intercept, for j = 1, 2; βji = (βji1, . . . , βjiK)
′

is the K × 1 vector of regression betas, for j = 1, 2; ft = (f1t, . . . , fKt)
′ is the K × 1 vector of

observable traded factors; eit is the idiosyncratic component for return i at time t.3 We further

assume that the cross-sectional dispersion of regression betas evolves according to

βjik ̸= 0, i = 1, . . . ,
⌊
Nλjk

⌋
,

βjik = 0, i =
⌊
Nλjk

⌋
+ 1, . . . , N,

, 0 ≤ λjk ≤ 1, j = 1, 2, k = 1, . . . , K, (2)

where the ordering of the betas is for ease of exposition only and it is not required for the validity

of our results, as it becomes clear in the condition in (4) below.

We are interested in the null hypothesis H0k against the alternative H1k defined as

H0k : λ1k = λ2k, H1k : λ1k ̸= λ2k, k ∈ {1, . . . , K} : (3)

3We focus on the case in which the factors in ft are all traded. If some of the factors in ft are not returns
themselves, following Breeden (1979) we conjecture that our results can be extended using a “mimicking-portfolio”
approach. A similar idea underlies the model comparison tests of Barillas et al. (2020). We aim at formalising
this interesting extension in future work.
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for any k such that k ∈ {1, . . . , K}, λ1k is equal to λ2k under the null hypothesis, whereas λ1k

and λ2k are different from each other under the alternative hypothesis. From (3), we can see

that our framework is analogous to Bai and Perron (1998), and Qu and Perron (2007), in that

we model a break as a discrete change in the parameters of interest.

From an econometric perspective, (1) describes a factor model subject to structural instability

occurring at the break fraction τ . The evolution of regression betas in (2) determines the strength

of the factors before and after the break. In particular, the strength of the k − th factor within

regime j is determined by the parameter λjk, for j = 1, 2, and k = 1, . . . , K. Following Chudik

et al. (2011), and Pesaran and Smith (2021a,b), we classify the k − th factor within regime j as

strong, semi-strong, and weak, depending on whether λjk = 1, 0.5 < λjk < 1, and 0 ≤ λjk ≤ 0.5,

respectively. Connor and Korajczyk (2022) use a similar classification. The role played by the

factor strength within our testing procedure is discussed in details in Section 3.2.1. Finally, the

condition on the cross-sectional dispersion of the betas in (2) may be written more generally as

N−λjk

N∑
i=1

β2
jk → Cjk, 0 < Cjk < ∞, j = 1, 2, k = 1, . . . , K, (4)

as N → ∞, which states that the sum of squared betas for factor k within regime j grows at

rate Nλjk : this extends the analogous condition given for linear asset pricing models in Pesaran

and Smith (2021a,b) and employed in Connor and Korajczyk (2022).

2.2 Interpretation of instability in factor strength

The null and alternative hypotheses H0k and H1k, respectively, in (3) deserve further consid-

erations. In particular, they do not refer to the regression betas in (1), but to the parameters

λjk that govern the strength of the factors within each regime. In other words, the null and the

alternative hypotheses in (3) relate to the stability of the factor strength and not to the stability

of the regression betas. The two concepts are distinct although related. In a system of equations

with observable factors such as (1), the stability of the regression betas may be assessed through

the procedure developed in Qu and Perron (2007) for systems of equations, which suitably ex-

tends the seminal work by Bai and Perron (1998) for single equation models. Clearly, instability

in the betas is a necessary condition for instability in the factor strength. Therefore, a break
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in the factor strength can occur only conditional upon a break in the factor betas: we explore

this intuition in Section 3.3, where we let the break fraction τ be unknown. On the other hand,

instability in the factor strength is a sufficient condition for instability in the factor betas.

Structural instability in the betas in (1) relates our set up to latent factor models with

structural breaks and, more generally, with discrete shifts in the loadings: see Barigozzi and

Massacci (2022), and Massacci (2017, 2023), and references therein. To the very best of our

knowledge, this literature has mainly worked under the maintained assumption that all latent

factors are strong. We explicitly focus on the model in (1) with observable factors.

Finally, the model in (1) has one break fraction. We handle the case of multiple breaks

in two ways. We let T be the whole time series dimension and estimate the multiple break

fractions using a sequential algorithm, as outlined in Section 3.4 below. Alternatively, (1) may

be seen as a local model that applies to a window of length T strictly shorter than the whole

available time series. This second approach allows to test the null hypothesis of local stability.

The notion of local (as opposed to global) stability is not new. For example, in an out-of-

sample framework, Giacomini and Rossi (2010) develop a measure of local relative forecasting

performance between two competing predictive models, and assess the stability of this measure

through a suitable inferential procedure. As further discussed in Section 5.2, inference on local

stability is consistent with existing studies, which document a high degree of time-variation in

the factor strength by using rolling window estimation strategies: see Bailey et al. (2021), and

Pesaran and Smith (2021a).

2.3 Asset pricing implications

Define Rt = (R1t, . . . , RNt)
′, αj = (αj1, . . . , αjN)

′, Bj = (βj1, . . . ,βjN)
′, and et = (e1t, . . . , eNt)

′,

for j = 1, 2. The model in (1) can then be written as

Rt = I (t /T ≤ τ) (α1 +B1ft) + I (t /T > τ) (α2 +B2ft) + et. (5)

Let Γj =
(
γj0,γ

′
j1

)′
, where γj0 is the zero-beta rate, and γj1 is the K × 1 vector of factor risk

premia, for j = 1, 2. Define as Xj = (ιN ,Bj) the N × (K + 1) beta matrix augmented by the

N × 1 vector of ones ιN .
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Consider first the case when the number of test assets N is finite. Since ft is a vector of

traded factors, then α1 and α2 are vectors of pricing errors. Therefore, under the assumption of

exact pricing (correct model specification), it holds that α1 = α2 = 0. In this case, the vector

of asset expected returns µt is state-dependent and defined as

µt = E (Rt) = I (t /T ≤ τ)X1Γ1 + I (t /T > τ)X2Γ2.

Under correct model specification, the model in (1) allows for structural instability in the quantity

and in the price of risk, as measured by Xj and Γj, respectively, for j = 1, 2.

In linear asset pricing models, Pesaran and Smith (2021b) show that it is still possible to

estimate the risk premia in the presence of non-zero pricing errors as N → ∞. For a given

factor, Pesaran and Smith (2021b) show that the rate of convergence as N → ∞ of the Fama and

MacBeth (1973) two-pass estimator for the risk premium monotonically increases and decreases

in the strength of the factor and of the pricing errors, respectively. The estimator for the risk

premia is consistent if the strength of the factor is greater than the strength of the pricing errors,

and the convergence rate is slower the smaller the difference between the two.

The result shown for linear asset pricing models in Pesaran and Smith (2021b) holds within

each regime of the piecewise linear model in (1) in relation to the risk premia Γ1 and Γ2. This

is true regardless of whether the break fraction τ is known, or it is unknown and has to be

estimated. Following Qu and Perron (2007), and as also discussed in details in Section 3.3, this

is because the convergence rate of the least squares estimator for τ is faster than that of the

remaining set of parameters in (1). Following Pesaran and Smith (2021b), this implies that the

convergence rate of the Fama and MacBeth (1973) two-pass estimator for the risk premium of

the k− th factor within regime j is N−(λjk−λαj)/2, where λαj regulates the strength of the pricing

errors in regime j. Formally, λαj satisfies

N−λαj

N∑
i=1

α2
ji → Cαj, 0 < Cαj < ∞, j = 1, 2,

which means that, within regime j, the sum of squared pricing errors grows at rate Nλαj as

N → ∞. Therefore, provided that the strength of the pricing errors is stable over time, testing
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for stability in factor strength gives valuable information about the stability of the convergence

rate of the Fama and MacBeth (1973) two-pass estimator. More generally, inference on the

stability of factor strengths is informative to conduct inference on the stability of risk premia.

This is an important question in asset pricing.

Existing contributions have studied whether cross-sectional risk premia are stable over time.

Fama and MacBeth (2021) asses the stability of the value premium by splitting the sample

between the period July 1963 – June 1991 and the period July 1991 – June 2019. This is analogous

to considering a model like (1) with a known value of the break fraction τ , which corresponds

to a break occurring in June 1991. In a Bayesian setting, Smith and Timmermann (2021) study

the more general problem of stability in risk premia by allowing for multiple unknown breaks in

the data generating process of asset returns. This setting in analogous to the one discussed in

Section 3.4 below. To the best of our knowledge, no existing contribution accounts for the role of

factor strength in assessing the stability of risk premia. We make a contribution on this respect

by formally studying whether factor strength is constant over time. We do so in the empirical

analysis in Section 5 by testing for local stability as discussed in Section 2.2.

3 Detecting instability in factor strength

3.1 Estimation of factor strength under structural instability

In order to estimate the factor strength before and after the break, we extend the estimator

developed in Bailey et al. (2021) to allow for the piecewise linear setting of our framework. For

ease of exposition, we start by assuming that the break fraction τ in (1) is known. Section 3.3

deals with the case in which τ is unknown and has to be estimated.

We consider the multi-factor model in (1), and the null and the alternative hypothesis in (3).

Let I1t (τ) = I (t /T ≤ τ), I2t (τ) = I (t /T > τ), and the matrix IjT (τ) be

IjT (τ) =



Ij1 (τ) 0 · · · 0

0
. . .

...

...
. . .

...

0 · · · IjT (τ)


, j = 1, 2,
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which is the T×T diagonal matrix with t−th diagonal element equal to Ijt (τ). For k = 1, . . . , K,

define the T ×K matrix Fj,−k (τ) as

Fj,−k (τ) = IjT (τ)
(
ιT , f1, . . . , fk−1, fk+1, fK

)
,

where fk = (fk1, . . . , fkT )
′: the matrix Fj,−k (τ) collects all but the k − th factor and it is

augmented by the T × 1 vector of ones ιT . Let the T × T matrix MjT,−k (τ) be

MjT,−k (τ) = IjT (τ)− Fj,−k (τ)
[
Fj,−k (τ)

′ Fj,−k (τ)
]−1

Fj,−k (τ)
′ ,

and the T × 1 vector f jkT (τ) as

f jkT (τ) = MjT,−k (τ) fk = [fjk1 (τ) , . . . , fjkT (τ)]′ .

Given the estimator β̂jikT (τ) for βjik defined as

β̂jikT (τ) = [f ′kMjT,−k (τ) fk]
−1

[f ′kMjT,−k (τ)Ri]

=
[
f jkT (τ)′ f jkT (τ)

]−1 [
f jkT (τ)′ Ri

]
,

(6)

with Ri = (Ri1, . . . , RiT )
′, the relevant test statistic for the significance of βjik is

t̂jikT (τ) =
β̂jikT (τ)√
ω̂jiT (τ)

=

[
f jkT (τ)′ f jkT (τ)

]−1 [
f jkT (τ)′ Ri

]√
ω̂jiT (τ)

,

where

ω̂jiT (τ) = γ̂ji0 (τ) + 2
L∑
l=1

(
1− l

L+ 1

)
γ̂jil (τ) (7)

with

γ̂jil (τ) =

∑Tj(τ)
t=l+1 fjkt (τ) êjit (τ) fjk,t−l (τ) êji,t−l (τ)

Tj (τ)
,

Tj (τ) =
∑T

t=1 Ijt (τ) is the number of time series observations within regime j, L is the length

of the bandwidth of the Bartlett kernel, and

êjiT (τ) = [êji1 (τ) , . . . , êjiT (τ)]′ = MjT,−k (τ)
[
Ri − fkβ̂jikT (τ)

]
.
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Therefore, ω̂jiT (τ) is the Newey and West (1987) estimator, which allows for time series depen-

dence and heteroskedasticity in the error terms eit in line with Assumption 1 below.

For given nominal size of the individual tests p and critical value exponent δ > 0, from Chudik

et al. (2018) define the critical value function cp (N) as

cp (N) = Φ−1
(
1− p

2N δ

)
. (8)

Following Bailey et al. (2021), the factor strength λjk is estimated as

λ̂jkNT (τ) = I [π̂jkNT (τ) > 0] λ̃jkNT (τ) , (9)

where

d̂jikT (τ) = I
[∣∣t̂jikT (τ)

∣∣ > cp (N)
]
, π̂jkNT (τ) =

1

N

N∑
i=1

d̂jikT (τ) , (10)

with

λ̃jkNT (τ) = 1 +
ln π̂jkNT (τ)

lnN
, π̂jkNT (τ) > 0. (11)

From (9), λ̂jkNT (τ) = 0 if π̂jkNT (τ) = 0, and λ̂jkNT (τ) = λ̃jkNT (τ) if π̂jkNT (τ) > 0, with

π̂jkNT (τ) and λ̃jkNT (τ) defined in (10) and (11), respectively. By construction, 0 ≤ π̂jkNT (τ) ≤

1, since π̂jkNT (τ) is the proportion of cross-sectional units with non-zero beta on the factor within

regime j. Also, λ̂jkNT (τ) and λ̃jkNT (τ) are asymptotically equivalent since the probability of

the event π̂jkNT (τ) = 0 is equal to zero as N → ∞.

3.2 Testing for strength instability

3.2.1 Test statistics

Our inferential procedure tests for stability of the strength using the estimators obtained before

and after the break as described in Section 3.1. In doing so, we assume the break fraction τ in

(1) is known. We relax this assumption in Section 3.3, in which we let the break fraction τ be

unknown so that it has to be estimated.
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Given d̂jikT (τ) and π̂jkNT (τ) as in (10), define

D̂jkNT (τ) =
N∑
i=1

d̂jikT (τ) = N λ̂jkNT (τ), DjkN =
N∑
i=1

djik = Nλjk , djik = I (βjik ̸= 0) ,

so that

D̂jkNT (τ)

DjkN

=
N λ̂jkNT (τ)

Nλjk
= N λ̂jkNT (τ)−λjk .

Given

ÂjkNT (τ) =

∑N
i=1

{
d̂jikT (τ)− E

[
d̂jikT (τ)

]}
Nλjk

, BjkNT (τ) =

∑N
i=1 E

[
d̂jikT (τ)

]
−Nλjk

Nλjk
,

the approximate equality

[ln (N)]
[
λ̂jkNT (τ)− λjk

]
= ÂjkNT (τ) +BjkNT (τ) , (12)

holds.4 Given (12), interest lies in the difference

[ln (N)]
{[

λ̂1kNT (τ)− λ1k

]
−
[
λ̂2kNT (τ)− λ2k

]}
=

[
Â1kNT (τ) +B1kNT (τ)

]
−
[
Â2kNT (τ) +B2kNT (τ)

]
.

(13)

Under H0k : λ1k = λ2k, (13) simplifies to

[ln (N)]
[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
=

[
Â1kNT (τ) +B1kNT (τ)

]
−
[
Â2kNT (τ) +B2kNT (τ)

]
.

Under Assumptions 1 - 3 in Section 3.2.2 below, for 0 < C1, C2, C3, C4 < ∞,

Var
[
ÂjkNT (τ)

]
=

N −Nλjk

N2λjk
CT

p

N δ

(
1− CT

p

N δ

)
+O

[
exp

(
−C1T

C2
)

Nλjk

]
(14)

and

BjkNT (τ) =
N −Nλjk

Nλjk
CT

p

N δ
+O

[
exp

(
−C3T

C4
)]

, (15)

for some 0 < CT < ∞ such that CT → 1 as T → ∞.5

4See equation (A.1) in Appendix A.
5See the proof of Theorem 3.1 in Appendix A.
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From (15), the bias terms B1kNT (τ) and B2kNT (τ) are both asymptotically negligible pro-

vided that δ > 1 − min {λ1k, λ2k}. More importantly, B1kNT (τ) + B2kNT (τ) converges to zero

exponentially fast as T → ∞ under H0k : λ1k = λ2k.

From (14), both Â1kNT (τ) = op (1) and Â2kNT (τ) = op (1) if δ > 1 − 2min {λ1k, λ2k}. This

general condition links the factor strength to the critical value exponent δ: in particular, for δ > 0,

it is satisfied for 0.5 < min {λ1k, λ2k} ≤ 1, and the k− th factor is at least semi-strong before and

after the break. This is consistent with the empirical findings in Section 5.2, which show that

the factors are always either strong of semi-strong given the empirical model we employ. Also,

ÂjkNT (τ) = Op

(
N1/2−δ/2−λjk

)
if 0 ≤ λjk < 1, for j = 1, 2: as noted in Bailey et al. (2021), when

λjk = 1 the distribution of ÂjkNT (τ) is degenerate as the convergence rate is exponential. This

implies that a test for the null hypothesis H0k : λ1k = λ2k against the alternative H1k : λ1k ̸= λ2k

can be implemented only if δ > 1 − 2min {λ1k, λ2k} and 0 ≤ min {λ1k, λ2k} < 1: in particular,

either Â1kNT (τ) or Â2kNT (τ) (or both) need to have a non-degenerate asymptotic distribution

under H1k. It is important to note that the test can be implemented if either 0 ≤ λ1k < 1

or 0 ≤ λ2k < 1: therefore, the test can be implemented if the factor strength were to change

from unity to a lower value. From the empirical results in Section 5.2, the more restrictive case

δ > 1− 2min {λ1k, λ2k} and 0.5 < min {λ1k, λ2k} < 1 is relevant in practice.

Consider the quantity

φN (λjk) =
N −Nλj1k

N2λjk

p

N δ

(
1− p

N δ

)
, (16)

defined in Bailey et al. (2021): φN (λjk) = O
(
N1−δ−2λjk

)
for 0 ≤ λjk < 1 and φN (λjk) = 0 for

λjk = 1. Therefore, φN (λjk) is a consistent estimator for Var
[
ÂjkNT (τ)

]
in (14) as N, T → ∞.

In order to test the null hypothesis H0k : λ1k = λ2k against the alternative H1k : λ1k ̸= λ2k, we

propose the test statistics L̂MkNT (τ) and ŴkNT (τ) respectively defined as

L̂MkNT (τ) =
[ln (N)]

[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
[
2max

{
φN

[
λ̂1kNT (τ)

]
, φN

[
λ̂2kNT (τ)

]}]1/2 . (17)
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and

ŴkNT (τ) =
[ln (N)]

[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
{
φN

[
λ̂1kNT (τ)

]
+ φN

[
λ̂2kNT (τ)

]}1/2
. (18)

The statistics L̂MkNT (τ) and ŴkNT (τ) in (17) and (18), respectively, differ in the es-

timator for the asymptotic variance of [ln (N)]
[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
. The Wald statistic

ŴkNT (τ) employs the unrestricted estimator
{
φN

[
λ̂1kNT (τ)

]
+ φN

[
λ̂2kNT (τ)

]}
. The LM

statistic L̂MkNT (τ) uses the restricted estimator
{
2max

{
φN

[
λ̂1kNT (τ)

]
, φN

[
λ̂2kNT (τ)

]}}
,

which deserves some attention. The null hypothesis H0k : λ1k = λ2k does not rule out a break in

the factor loadings, as this may occur even if the factor strength is constant over time. Therefore,

the factor strength cannot be estimated over the full sample period under the null hypothesis, as

the loadings may still experience a break. The denominator of L̂MkNT (τ) accounts for this by

taking the maximum between φN

[
λ̂1kNT (τ)

]
and φN

[
λ̂2kNT (τ)

]
: λ̂1kNT (τ) and λ̂2kNT (τ) con-

verge to the same probability limit underH0k : λ1k = λ2k; max
{
φN

[
λ̂1kNT (τ)

]
, φN

[
λ̂2kNT (τ)

]}
accounts for the small sample discrepancy between λ̂1kNT (τ) and λ̂2kNT (τ) by making L̂MkNT (τ)

more conservative in finite samples.

3.2.2 Asymptotic properties of test statistics

In order to study the asymptotic distribution of the test statistics L̂MkNT (τ) and ŴkNT (τ) in

(17) and (18), respectively, we consider the following set of assumptions.

Assumption 1 The error terms eit, and the demeaned factors ft−E (ft), are martingale differ-

ence processes with respect to Fui
t = σ (uit−s, s ≤ t) and Ff

t = σ (ft−s, s ≤ t), respectively. The

error terms eit are independent over i and of ft.

Assumption 2 E
{
[ft − E (ft)] [ft − E (ft)]

′} = Σf , where Σf is a positive definite matrix.

Assumption 3 There exist sufficiently large positive constants C1, C2 > 0, and q > 0 such that

supi,t Pr (|eit| > ν) ≤ C1 exp (−C2ν
q) , ∀ν > 0,

and

supk,t Pr (|fkt| > ν) ≤ C1 exp (−C2ν
q) , ∀ν > 0.
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Assumption 4 The breaks in the regressions betas satisfy B2 − B1 = ∆, where ∆ ̸= 0 is

independent of the time series dimension T .

Assumption 5 The break fraction τ satisfies 0 < τ < 1.

Assumption 6 The size of the bandwidth L in (7) is such that L = O
(
T 1/3

)
.

Assumptions 1 - 3 are the same as the homologous Assumptions 1 - 3 in Bailey et al. (2021)

and allow to use results in Lemma A.10 in Chudik et al. (2018). According to Assumption

1, the error terms eit are cross-sectionally independent, which ensures that the central limit

theorem that underlies Theorem 3.1 below still holds. On this respect, Assumption 1 could be

weakened by assuming some suitable spatial mixing condition, as discussed in Bailey et al. (2021).

Assumption 1 also restricts the demeaned factors ft to be a martingale difference sequence, as

in Chudik et al. (2018): weaker mixing conditions could be employed at the expense of higher

mathematical complexity, as discussed in Bailey et al. (2021). Assumption 2 imposes a standard

regularity condition on the covariance matrix of the factors, which ensures that the estimators

in (6) is well defined. Note that Assumption 2 accommodates a break in the covariance matrix

of the factors ft, as it does not rule out regime-specific covariance matrices: this is important

in modelling financial returns, as discussed in Baele et al. (2010). Assumption 3 imposes thin

probability tail conditions used for the asymptotic distribution of the test statistics in (17) and

(18) stated in Theorem 3.1 below. Assumption 4 is analogous to Assumption A6 in Qu and

Perron (2007) and captures the feature of a large shift in the regression betas: this is required

because a break in the factor strength can occur only if a break in the betas takes place, as

discussed in Section 2.2. Assumption 5 is standard in the literature and allows to identify the

model before and after the break: see Assumption A8 in Qu and Perron (2007). Assumption 6

restricts the growth rate of the bandwidth L in (7) (see Hansen (1992)). The following Theorem

3.1 states the properties of the test statistics in (17) and (18).

Theorem 3.1 Consider the model in (1), and let Assumptions 1 - 6 hold. Further, assume

that the break fraction τ is known. For k ∈ {1, . . . , K}, if 0 ≤ λ1k < 1 or 0 ≤ λ2k < 1 (or

both), with δ > 1 − 2min {λ1k, λ2k}, then the test statistics L̂MkNT (τ) and ŴkNT (τ) defined

in (17) and (18), respectively, are such that for N, T → ∞: (a) L̂MkNT (τ)
d→ N (0, 1) and
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ŴkNT (τ)
d→ N (0, 1) under the null H0k : λ1k = λ2k; (b) Pr

(∣∣∣L̂MkNT (τ)
∣∣∣ > C1

)
→ 1 and

Pr
(∣∣∣ŴkNT (τ)

∣∣∣ > C2

)
→ 1 for any positive constants C1 and C2 under the alternative H1k :

λ1k ̸= λ2k.

For k ∈ {1, . . . , K}, Theorem 3.1 formally shows the validity of the test statistics defined in

(17) and (18) for the null hypothesis H0k : λ1k = λ2k against the alternative H1k : λ1k ̸= λ2k.

The results in the theorem are valid provided that either 0 ≤ λ1k < 1 or 0 ≤ λ2k < 1 (or both):

if λjk = 1, from (14) it follows that ÂjkNT (τ)
p→ 0 exponentially fast as T → ∞; therefore,

the asymptotic distribution of the test statistics no longer holds under the null hypothesis H0k :

λ1k = λ2k = 1. This implies that we can still test the null hypothesis H0k : λ1k = λ2k even if

λjk⋆ = 1, for j = 1 or j = 2 (or both), k⋆ ∈ {1, . . . , K} and k⋆ ̸= k. It also implies that we can

test if the factor strength changes from unity to a lower value. The results in Theorem 3.1 hold

when the break fraction τ is known: Section 3.3 deals with the scenario in which τ is treated as

unknown and has to be estimated.

3.3 Unknown change point

Theorem 3.1 holds if the break fraction τ is known. We now relax this assumption and consider

the case in which the break fraction τ is unknown and needs to be estimated. The multi-factor

model in (1) can be cast within the general framework considered in equation (1) in Qu and

Perron (2007). We thus employ relevant findings obtained therein to show that the results

stated in Theorem 3.1 apply also when τ no longer is known and needs to be estimated.

Recall the formulation in (5), which we repeat for ease of exposition,

Rt = I1t (τ) (α1 +B1ft) + I2t (τ) (α2 +B2ft) + et.

Let τ̂ , α̂j and B̂j be the least squares estimators for τ , αj and Bj, respectively, for j = 1, 2. De-

note by θ̂ =

[
τ̂ , α̂′

1, vec
(
B̂′

1

)′
, α̂′

2, vec
(
B̂′

2

)′
]′
the estimator for θ =

[
τ,α′

1, vec (B
′
1)

′ ,α′
2, vec (B

′
2)

′]′:
θ̂ solves

θ̂ = argmin
θ

1

NT

T∑
t=1

∥Rt − I1t (τ) (α1 +B1ft)− I2t (τ) (α2 +B2ft)∥2 .

For given τ , the estimators α̂j (τ) and B̂j (τ) for αj and Bj, respectively, are obtained by
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concentrating out τ as

[
α̂j (τ) , B̂j (τ)

]
=

[
T∑
t=1

Ijt (τ)Rtg
′
t

][
T∑
t=1

Ijt (τ)gtg
′
t

]
,

for j = 1, 2, where gt = (1, f ′t)
′: the estimator τ̂ for τ is then obtained as

τ̂ = argmin
τ

1

NT

T∑
t=1

∥∥∥Rt − I1t (τ)
[
α̂1 (τ) + B̂1 (τ) ft

]
− I2t (τ)

[
α̂2 (τ) + B̂2 (τ) ft

]∥∥∥2

.

Given τ̂ , the test statistics L̂MkNT (τ) and ŴkNT (τ) in (17) and (18) can be modified as

L̂MkNT (τ̂) =
[ln (N)]

[
λ̂1kNT (τ̂)− λ̂2kNT (τ̂)

]
[
2max

{
φN

[
λ̂1kNT (τ̂)

]
, φN

[
λ̂2kNT (τ̂)

]}]1/2 , (19)

and

ŴkNT (τ̂) =
[ln (N)]

[
λ̂1kNT (τ̂)− λ̂2kNT (τ̂)

]
{
φN

[
λ̂1kNT (τ̂)

]
+ φN

[
λ̂2kNT (τ̂)

]}1/2
, (20)

respectively. In order to derive the asymptotic properties of L̂MkNT (τ̂) and ŴkNT (τ̂), we

consider the following additional set of assumptions.

Assumption 7 For l1 ≤ ⌊τT ⌋ and l2 ≤ T − ⌊τT ⌋, (1 /l1 )
∑l1

t=1 ftf
′
t

a.s.→ Q1 as l1 → ∞, and

(1 /l2 )
∑⌊τT ⌋+l2

t=⌊τT ⌋+1 ftf
′
t

a.s.→ Q2 as l2 → ∞, where Q1 and Q2 are nonrandom positive definite

matrices non necessarily equal to each other.

Assumption 8 There exists a l0 > 0 such that for all l > l0 the minimum eigenvalues of

(1 /l )
∑⌊τT ⌋

t=⌊τT ⌋−l ftf
′
t and of (1 /l )

∑⌊τT ⌋+l
t=⌊τT ⌋+1 ftf

′
t are bound away from zero.

Assumption 9
∑l

t=q ftf
′
t is invertible for l − q ≥ q0 for some 0 < q0 < ∞.

Assumptions 7, 8 and 9 are analogous to Assumptions A.1, A.2 and A.3, respectively, in Qu

and Perron (2007), and impose restrictions on a local neighbourhood of the break fraction τ ,

which allow for consistent estimation of τ itself. Assumption 7 is stronger than Assumption 2 and

still allows the factors to have different distributions before and after the break. Assumption 8

rules out local collinearity. Assumption 9 is an invertibility requirement. The remaining relevant
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conditions in Assumptions A.4 through A.8 in Qu and Perron (2007) are implied by Assumptions

1, 3, 4, and 5. The asymptotic properties of L̂MkNT (τ̂) and ŴkNT (τ̂) defined in (19) and (20),

respectively, are stated in Theorem 3.2 below.

Theorem 3.2 Consider the model in (1). Let Assumptions 1, and 3 - 9 hold. For k ∈

{1, . . . , K}, if 0 ≤ λ1k < 1 or 0 ≤ λ2k < 1 (or both), with δ > 1 − 2min {λ1k, λ2k}, then

the results in (a) and (b) of Theorem (3.1), and stated for L̂MkNT (τ) and ŴkNT (τ), remain

valid for L̂MkNT (τ̂) and ŴkNT (τ̂), respectively, as defined in (19) and (20).

Theorem 3.2 shows that the asymptotic distribution of L̂MkNT (τ̂) and ŴkNT (τ̂) under the

null hypothesis is the same as it would be if τ was known and did not have to be estimated by

τ̂ : following from Corollary 1 in Qu and Perron (2007), the limiting distribution of the estimator

for the betas is the same as it would be if τ was known and the result in Theorem 3.2 naturally

follows from Theorem 3.1. Also, neither L̂MkNT (τ̂) nor ŴkNT (τ̂) suffer from the problem of

having one parameter being identified only under the alternative originally addressed in Davies

(1977, 1987), since both statistics are constructed under the maintained assumption that τ is

identified also under the null hypothesis: this is because a necessary condition for a break in

factor strength is the occurrence of a break in the betas, as stated in Assumption 4; this allows

to identify τ regardless of whether the factor strength remains stable over time.

3.4 Multiple change points

So far, we have worked under the maintained assumption of a single structural break. In the

case of multiple breaks, the specification in (1) generalizes to the following model with J break

fractions τj such that 0 < τj < 1, for j = 1, . . . , J , and J + 1 regimes

Rit =



α1i + β′
1ift + eit, t /T ≤ τ1,

α2i + β′
2ift + eit, τ1 < t /T ≤ τ2,

...
...

αJ+1,i + β′
J+1,ift + eit, t /T > τJ ,

, (21)
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where αji is the asset-specific intercept, and βji = (βji1, . . . , βjiK)
′, for j = 1, . . . , J + 1. In this

case, the cross-sectional dispersion of betas in (2) becomes

βjik ̸= 0, i = 1, . . . ,
⌊
Nλjk

⌋
,

βjik = 0, i =
⌊
Nλjk

⌋
+ 1, . . . , N,

, 0 ≤ λjk ≤ 1, j = 1, . . . , J + 1, k = 1, . . . , K, (22)

where the ordering of the betas is for ease of exposition only. We then consider the following

null and alternative hypotheses H0j1j2k and H1j1j2k, respectively,

H0j1j2k : λj1k = λj2k, H1j1j2k : λj1k ̸= λj2k, j1, j2 = 1, . . . , J + 1, j1 ̸= j2, k ∈ {1, . . . , K} :

we can then test for factor strength equality over any two regimes even if they are not consecutive.

Let τ̂j be the estimator for τj, for j = 0, . . . , J + 1, where τ̂0 = τ0 = 0 and τ̂J+1 = τJ+1 = 1: τ̂j

can be estimated using the procedure in Qu and Perron (2007), for j = 1, . . . , J . From (21) and

(22), λjk is the strength of factor k in regime j = 1, . . . , J +1, which occurs for τj−1 < t /T ≤ τj.

Given the estimators τ̂j−1 and τ̂j for τj−1 and τj, respectively, we can estimate λjk following

steps analogous to those detailed in Section 3.1. Let λ̂jkNT (τ̂j−1, τ̂j) denote the estimator for λjk

obtained within the interval τ̂j−1 < t /T ≤ τ̂j, for j = 1, . . . , J + 1. For j1, j2 = 1, . . . , J + 1,

with j1 ̸= j2, and k ∈ {1, . . . , K}, the test statistics L̂MkNT (τ̂) and ŴkNT (τ̂) defined in (19)

and (20), respectively, generalize to

L̂MkNT (τ̂j1−1, τ̂j1 , τ̂j2−1, τ̂j2) =
[ln (N)]

[
λ̂j1kNT (τ̂j1−1, τ̂j1)− λ̂j2kNT (τ̂j2−1, τ̂j2)

]
[
2max

{
φN

[
λ̂j1kNT (τ̂j1−1, τ̂j1)

]
, φN

[
λ̂j2kNT (τ̂j2−1, τ̂j2)

]}]1/2 ,
and

ŴkNT (τ̂j1−1, τ̂j1 , τ̂j2−1, τ̂j2) =
[ln (N)]

[
λ̂j1kNT (τ̂j1−1, τ̂j1)− λ̂j2kNT (τ̂j2−1, τ̂j2)

]
{
φN

[
λ̂j1kNT (τ̂j1−1, τ̂j1)

]
+ φN

[
λ̂j2kNT (τ̂j2−1, τ̂j2)

]}1/2
,

respectively. Under conditions analogous to those in Theorem 3.2, L̂MkNT (τ̂j1−1, τ̂j1 , τ̂j2−1, τ̂j2)

and ŴkNT (τ̂j1−1, τ̂j1 , τ̂j2−1, τ̂j2) inherit the properties of the asymptotic distribution of L̂MkNT (τ̂)

and ŴkNT (τ̂), respectively, as stated in Theorem 3.2.
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4 Monte Carlo study

4.1 Data generating process

For s = 1, . . . , S, i = 1, . . . , N , and t = 1, . . . , T , we consider the DGP

Rs
it = I (t /T ≤ τ) (α1i + β1i1f

s
1t + β1i2f

s
2t) + I (t /T > τ) (α2i + β2i1f

s
1t + β2i2f

s
2t) + eit,

where s is the replication index and S is the total number of replications, with S = 2000. We

consider N, T ∈ {100, 200, 500, 1000}. We look at two values for the break fraction τ , namely

τ = 1/2 and τ = 1/3. We generate the intercept α1i as α1i ∼ IIDN (0, 1) fixed in repeated

samples and we set α2i = α1i, for i = 1, . . . , N .

The factors f s
1t and f s

2t are generated as

f s
kt = ρfkf

s
k,t−1 +

√
1− ρ2fkε

s
kt, k = 1, 2, t = −99, . . . , T, f s

k,−100 = 0,

with ρf1 = ρf2 = 0.5 and εskt ∼ IIDN (0, 1), so that Var (f s
kt) = Var (εskt) = 1. We minimize the

effect of the starting value f s
k,−100 = 0 by discarding the first 100 observations in the DGPs for

f s
kt, for k = 1, 2.

We consider two cases for the idiosyncratic components eit: (a) eit ∼ IIDN (0, σ2
i ), with

σ2
i ∼ χ2 (1) fixed in repeated samples; (b) eit = σi [(uit − 2) /2], with uit ∼ IIDχ2 (2). In both

cases, we have E (eit) = 0, Var (eit) = σ2
i and limN→∞

∑N
i=1Var (eit) = 1. In (a) the idiosyncratic

components are normally distributed. In the set up in (b), which is analogous to the one used

in Chudik et al. (2018), they have a non-Gaussian distribution.

As for the factor loadings, we first consider those on f s
1t. We begin by generating vi ∼

IIDU (µv − dv, µv + dv) fixed in repeated samples, with µv = 1.00 and dv = 0.2. We then

randomly assign
⌊
Nλ11

⌋
elements of vi to

⌊
Nλ11

⌋
elements of the sequence {β1i1}Ni=1 and set to

zero the remaining elements of {β1i1}Ni=1. In a similar way, we randomly assign
⌊
Nλ21

⌋
elements

of vi to
⌊
Nλ21

⌋
elements of the sequence {β2i1}Ni=1 and set to zero the remaining elements of

{β2i1}Ni=1. In this way, under the null hypothesis H01 : λ11 = λ21 = λ1, the sequences {β1i1}Ni=1

and {β2i1}Ni=1 have the same number of non-zero elements, although those elements may be
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different since they are obtained from independent draws from {vi}Ni=1. Under the alternative

hypothesis H11 : λ11 ̸= λ21, the sequences {β1i1}Ni=1 and {β2i1}Ni=1 have a different number of

non-zero elements: in this case, we define κ1 = λ21 − λ11, so that if κ1 < 0 the factor strength

decreases, whereas f s
1t becomes stronger if κ1 > 0.

As for the loadings of f s
2t, we consider two cases: (a) the one-factor model with β1i2 = β2i2 = 0,

for i = 1, . . . , N ; (b) the two-factor model such that, for j = 1, 2, we randomly assign
⌊
Nλj2

⌋
elements of vi generated as described above to as many elements of the sequence {βji2}Ni=1 and

set to zero the remaining elements of {βji2}Ni=1, with λ12 = λ22 = 0.85. Therefore, the strength

of f s
2t is kept fixed, although its betas may experience a break as in the latter case.

4.2 Results

We group our results in relation to the underlying Monte Carlo experiment and consider five

scenarios given by Experiments 1 through 5 as discussed below: Experiments 1 through 4 treat

the break fraction τ as known and study the test statistics L̂MkNT (τ) and ŴkNT (τ) defined

in (17) and (18), respectively; Experiment 5 assumes that τ is unknown and looks at the test

statistics L̂MkNT (τ̂) and ŴkNT (τ̂) in (19) and (20), respectively. In all experiments we run, we

follow Bailey et al. (2021) and implement the critical value function in (8) by setting p = 0.10

and δ = 1/4. We consider the size of L̂MkNT (τ̂) and ŴkNT (τ̂) as being equal to 0.05.

4.2.1 Experiment 1

The focus is on the size of the test statistics. We set τ = 0.50. We also choose λ1 =

0.75, 0.80, 0.85, 0.90, 0.95, 0.99. Finally, we consider two scenarios, namely Experiments 1A and

1B, depending on whether the DGP is a one-factor or a two-factor model, and whose results are

displayed in Tables 1A and 1B, respectively.

Tables 1A and 1B about here

The results in Table 1A show that the L̂MkNT (τ) statistic has good size properties for

T = 500, 1000 irrespective of the values of N and λ1, and of the distribution of the idiosyncratic

components (see Panel A). On the other hand, the ŴkNT (τ) statistic tends to overreject the null
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hypothesis more often than the L̂MkNT (τ) statistic does (see Panel B): intuitively, this is due

to the different estimator for the asymptotic variance of [ln (N)]
[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
, which

we discuss extensively in Section 3.2.1. In particular, the ŴkNT (τ) statistic overrejects when

λ1 = 0.99 for N = 500, 1000 and T = 1000, when instead the L̂MkNT (τ) statistic performs

particularly well: this result is relevant within the set up of the empirical analysis in Section

5, to which we refer to for further comments. The results from Experiment 1B shown in Table

1B confirm for the two-factor model the findings for the one-factor model shown in Table 1A.

We conclude that the L̂MkNT (τ) statistic has the right empirical coverage for large enough T

irrespective of N and λ1, and it also has a hedge over the ŴkNT (τ) statistic.

4.2.2 Experiment 2

We study the power of the test statistics. We fix τ = 0.5 and consider the two-factor model only.

We fix T = 500 and consider κ1 = −0.02,−0.01, 0.01, 0.02 with the exception of λ11 = 0.99, in

which case we consider κ1 = −0.02,−0.01, 0.01 only.

Table 2 about here

The results from Experiment 2 are collected in Table 2. The L̂MkNT (τ) and ŴkNT (τ)

statistics have similar power properties: it increases in the cross-sectional dimension N , in the

factor strength λ11, and in the magnitude of the break as measured by κ1. These findings hold

true irrespective of the distribution of the idiosyncratic components. We can thus conclude that

both L̂MkNT (τ) and ŴkNT (τ) have good empirical power properties.

4.2.3 Experiment 3

The aim is to verify the robustness of the size of the test statistics with respect to the location

of the break fraction, which we now set to τ = 1/3. As in Experiment 1, we have λ1 =

0.75, 0.80, 0.85, 0.90, 0.95, 0.99. For ease of exposition, we only show results for the two-factor

model with non-Gaussian idiosyncratic components.

Table 3 about here
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The results collected in Table 3 show that the L̂MkNT (τ) and ŴkNT (τ) statistics are rel-

atively unaffected by the location of the break fraction τ , as the results are similar to the

homologous findings shown in Table 1B.

4.2.4 Experiment 4

This complements Experiment 3 by looking at the power of the test statistics when τ = 1/3. As

in Experiment 2, we show results for T = 500 and consider κ1 = −0.02,−0.01, 0.01, 0.02, with

the exception of λ11 = 0.99, in which case we consider κ1 = −0.02,−0.01, 0.01 only.

Table 4 about here

The results in Table 4 are aligned with the homologous findings in Table 2 and show that,

even when τ = 1/3, the two test statistics have good empirical power properties: in particular,

the power increases in N , λ11 and κ1.

4.2.5 Experiment 5

Experiment 5 studies how the two test statistics under consideration perform when the break

fraction τ is estimated and no longer assumed to be known. In line with Experiments 1

and 2, we consider T = 500, τ = 1/2, λ12 = λ22 = 0.85, λ21 = λ11 + κ1, with λ11 =

0.75, 0.80, 0.85, 0.90, 0.95, 0.99 and κ1 = −0.02,−0.01, 0.00, 0.01, 0.02: when κ1 = 0.00, we study

the size of the test, whereas the power is computed for the remaining values of κ1. We esti-

mate τ using the algorithm detailed in Section 3.3 through a grid of values made of the set

{0.05, 0.10, 0.15, . . . , 0.85, 0.90, 0.95}.

Table 5 about here

The findings shown in Table 5 support the theoretical results stated in Theorem 3.2: the

asymptotic behaviour of the test statistics under consideration is unaffected by the estimation

noise induced by the estimator τ̂ for τ . In particular, the statistics L̂MkNT (τ̂) is correctly sized

(with size computed for κ1 = 0.00), with power that increases in N , λ11 and in the magnitude of
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κ1. The statistics ŴkNT (τ̂) is more often oversized, especially when N = 1000 and λ11 = 0.99.

4.3 Discussion

The Monte Carlo results presented in Section 4.2 support the validity of the theoretical findings

of this paper. In particular, the L̂MkNT (τ) statistic has an edge over the ŴkNT (τ) statistic in

terms of superior empirical size properties, especially when N and T are large and the factor

strength is very close to unity. For this reason, in the empirical analysis in Section 5 we will

focus upon the L̂MkNT (τ) statistic.

5 Empirical analysis

5.1 Data and empirical specification

We study the Chen and Zimmermann (2021) large dataset of equity portfolios and use the April

2021 version of it. Given 205 characteristics, Chen and Zimmermann (2021) build a number of

portfolios whose returns are then provided; we then obtain the excess returns of those portfolios

by subtracting the risk-free rate measured as the one-month Treasury bill rate.6 The sample

period of interest runs from July 1967 through December 2020, a total of T = 690 time series

observations. To ensure that inference on the factor strength is not affected by the time-varying

dimension and nature of the cross-section, we balance the dataset and retain only those portfolios

that are available over the entire sample period. This results in N = 739 portfolios.

We consider the six factor model proposed in Fama and French (2016).7 This is made of

the following factors: the market return in excess of the risk-free rate as measured by the one-

month Treasury bill rate (RmRf), size (SMB), value (HML), operating profitability (RMW ),

investment (CMA), and momentum (MOM).

We estimate our empirical model using rolling windows of length equal to 240 months. Given

the discussion in Section 4.3, we then test for the stability of the factor strength over two

consecutive non-overlapping windows using the L̂MkNT (τ) test defined in (17) and discussed in

6The Chen and Zimmermann (2021) dataset is available at https://www.openassetpricing.com/ .
7The data for the pricing factors are available from Kenneth French website at https://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html.
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Section 3.2. From a methodological standpoint, this is equivalent to estimating the model over

T = 480 time series observations and testing for a break in factor strength at a known break

fraction τ = 0.50. This set up is consistent with the Monte Carlo results in Section 4, which

show the good finite sample properties of the L̂MkNT (τ) statistic for T approximately equal

to 500, as stressed in Section 4.3. This strategy therefore is informative about local stability of

factor strength, which we further motivate in Section 5.2 below. Note also that pre-break and

post-break estimation windows of 240 month are aligned with the set up in Fama and MacBeth

(2021), who consider the first and the second half of the July 1963–June 2019 period to test

for the stability of the value premium. As in the Monte Carlo experiments in Section 4, we set

p = 0.10 and δ = 1/4 in (8). We consider the size of L̂MkNT (τ̂) and ŴkNT (τ̂) equal to 0.05.

5.2 Results

We first empirically motivate the detection of local instability as discussed in Section 5.1. Follow-

ing the strategy adopted in Bailey et al. (2021), and Pesaran and Smith (2021a), we document

substantial time-variation in the strength of the six factors included in our specification: this is

a first empirical contribution of our paper. As discussed in Section 5.1, we estimate the model

using rolling windows of length equal to 240 months.

Figure 1 and Figure 2 about here

The sequences of estimated strength for the six factors are displayed in Figure 1. The factor

RmRf is strong over the whole sample period, since its estimated strength is always equal to

unity: as such, given Theorem 3.1, in this case we cannot run inference on the strength stability.

Turning to SMB, it is a semi-strong factor, although its estimated strength always lies in the

proximity of unity: in particular, the estimated values fall between 0.991 and 0.993. The re-

maining factors displays a higher degree of strength variation over time: HML is characterized

by a cyclical behaviour around an average value of 0.921; RMW displays a clear upward trend,

starting from 0.808 at the beginning of the sample, and reaching an average value of approxi-

mately 0.941 from early 2000s onwards; CMA has a very pronounced cyclical behaviour, with a

peak of 0.945 in January 2000 and a trough of 0.748 in October 1990; MOM reaches an average
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value approximately equal to 0.986 from January 2000 onwards.

We conduct inference on the local stability as discussed in Section 5.1. Figure 2 displays the

evolution over time of the L̂MkNT (τ) test statistic together with the 95% confidence band. The

SMB factor is stable over the whole sample period. To a different degree, the remaining factors

display evidence of strength instability: HML is locally unstable at the beginning of the sample

and during a short spell between January 1996 and September 1998; RMW exhibit significant

local increases until January 2000, whereas this behaviour is somehow reverted after June of the

same year; CMA is unstable from April 1995 onwards; MOM has dynamics similar to those of

RMW , in that local increases in factor strength take place almost until the end of the sample.

6 Conclusions

This paper studies the detection of structural instability in factor strength in asset pricing mod-

els for financial returns. We distinguish between strong and weaker factors. We construct LM

and Wald statistics and show that they are asymptotically normally distributed under the null

hypothesis of factor strength stability. The empirical analysis conducted over a rolling estimation

window uncovers the dynamics of factor strength instability in empirical models for equity port-

folio returns. Given the tools we have developed, future work will focus upon the consequences

of structural instability in factor strength for asset pricing and portfolio choice.
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Figure 1: Factor strength, equity portfolios, six-factor model

(a) RmRf
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Figure 2: LM statistic, equity portfolios, six-factor model

(a) SMB

-9

-6

-3

0

3

6

9

Jun-83 Jun-88 Jun-93 Jun-98

(b) HML

-9

-6

-3

0

3

6

9

Jun-83 Jun-88 Jun-93 Jun-98

(c) RMW

-9

-6

-3

0

3

6

9

Jun-83 Jun-88 Jun-93 Jun-98

(d) CMA

-9

-6

-3

0

3

6

9

Jun-83 Jun-88 Jun-93 Jun-98

(e) MOM

-9

-6

-3

0

3

6

9

Jun-83 Jun-88 Jun-93 Jun-98

35



Supplementary material to “Instability of Factors

Strength in Asset Returns”

A Appendix: proofs of theorems

Proof of Theorem 3.1. For k ∈ {1, . . . , K}, consider d̂jikT (τ) defined in (10), and let

D̂jkNT (τ) =
N∑
i=1

d̂jikT (τ) = N λ̂jkNT (τ), DjkN =
N∑
i=1

djik = Nλjk , djik = I (βjik ̸= 0) .

We have

[ln (N)]
[
λ̂jkNT (τ)− λjk

]
= ln

[
D̂jkNT (τ)

DjkN

]

= ln

[
D̂jkNT (τ) +Nλjk −Nλjk

Nλjk

]

= ln

[
1 +

D̂jkNT (τ)−Nλjk

Nλjk

]
≃ D̂jkNT (τ)−Nλjk

Nλjk

=

∑N
i=1 d̂jikT (τ)−Nλjk

Nλjk

=

∑N
i=1

{
d̂jikT (τ)− E

[
d̂jikT (τ)

]}
Nλjk

+

∑N
i=1 E

[
d̂jikT (τ)

]
−Nλjk

Nλjk

= ÂjkNT (τ) +BjkNT (τ) ,

(A.1)

where

ÂjkNT (τ) =

∑N
i=1

{
d̂jikT (τ)− E

[
d̂jikT (τ)

]}
Nλjk

, BjkNT (τ) =

∑N
i=1 E

[
d̂jikT (τ)

]
−Nλjk

Nλjk
.

Since E
[
d̂jikT (τ)

]
= πjik = Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N)

]
, then

BjkNT (τ) =

∑N
i=1 Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N)

]
−Nλjk

Nλjk

=

∑⌊Nλjk⌋
i=1 Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N) |βjik ̸= 0

]
−Nλjk

Nλjk

+

∑N

i=⌊Nλjk⌋+1
Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N) |βjik = 0

]
Nλjk

.

(A.2)
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Following steps analogous to those in the proof of Theorem 1 in Bailey et al. (2021),

Pr
[∣∣t̂jikT (τ)

∣∣ > cp (N) |βjik ̸= 0
]
= 1− exp

(
−C1T

C2
)
, (A.3)

for some 0 < C1, C2 < ∞, so that

∑⌊Nλjk⌋
i=1 Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N) |βjik ̸= 0

]
−Nλjk

Nλjk
= exp

(
−C1T

C2
)
. (A.4)

Further,

Pr
[∣∣t̂jikT (τ)

∣∣ > cp (N) |βjik = 0
]
≤ CT

p

N δ
, (A.5)

for some 0 < CT < ∞ such that CT → 1 as T → ∞, since the distribution of t̂jikT (τ) converges

to a standard normal for T → ∞. This implies that

∑N

i=⌊Nλjk⌋+1
Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N) |βjik = 0

]
Nλjk

= CT

p
(
N −Nλjk

)
N δ+λjk

. (A.6)

Therefore, taking into account (A.2), (A.4) and (A.6), it follows that

BjkNT (τ) = CT

p
(
N −Nλjk

)
N δ+λjk

+O
[
exp

(
−C1T

C2
)]

.

Under Assumption (1), the error terms eit are cross-sectionally independent and

Var
[
ÂjkNT (τ)

]
= Var


{∑N

i=1 d̂jikT (τ)− E
[
d̂jikT (τ)

]}
Nλjk


=

1

N2λjk

N∑
i=1

Var
{
d̂jikT (τ)− E

[
d̂jikT (τ)

]}
=

1

N2λjk

N∑
i=1

πjikT (τ) [1− πjikT (τ)]

=
1

N2λjk

N∑
i=1

πjikT (τ)− 1

N2λjk

N∑
i=1

[πjikT (τ)]2

=
1

N2λjk

⌊Nλjk⌋∑
i=1

πjikT (τ) +
1

N2λjk

N∑
i=⌊Nλjk⌋+1

πjikT (τ)

− 1

N2λjk

⌊Nλjk⌋∑
i=1

[πjikT (τ)]2 − 1

N2λjk

N∑
i=⌊Nλjk⌋+1

[πjikT (τ)]2 .
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Therefore, taking into account (A.3) and (A.5), we have

Var
[
ÂjkNT (τ)

]
=

1

N2λjk

⌊Nλjk⌋∑
i=1

[
1− exp

(
−C1T

C2
)]

+
1

N2λjk

N∑
i=⌊Nλjk⌋+1

CT
p

N δ

− 1

N2λjk

⌊Nλjk⌋∑
i=1

[
1− exp

(
−C1T

C2
)]2 − 1

N2λjk

N∑
i=⌊Nλjk⌋+1

(
CT

p

N δ

)2

=
1− exp

(
−C1T

C2
)

Nλjk
+ CT

p
(
N −Nλjk

)
N δ+2λjk

−
[
1− exp

(
−C1T

C2
)]2

Nλjk
+

N −Nλjk

N2λjk

(
CT

p

N δ

)2

=
1

Nλjk

[
1− exp

(
−C1T

C2
)] {

1−
[
1− exp

(
−C1T

C2
)]}

+
N −Nλjk

N2λjk
CT

p

N δ

(
1− CT

p

N δ

)
=

N −Nλjk

N2λjk
CT

p

N δ

(
1− CT

p

N δ

)
+O

[
exp

(
−C1T

C2
)

Nλjk

]
.

This implies that, for 0 ≤ λjk < 1 we have

ÂjkNT (τ) = Op

(
N1/2−δ/2−λjk

)
.

whereas for λjk = 1

ÂjkNT (τ) = Op

[
exp

(
−C1T

C2
)
/N0.5λjk

]
.

Recall φN (λjk) defined in (16) and define ζN (λjk) as

ζN (λjk) =
p
(
N −Nλjk

)
N δ+λjk

.

Consider the case 0 ≤ λjk < 1, for j = 1, 2. For some 0 < C3, C4 < ∞, we then have

φN (λ1k)
−1/2

{
[ln (N)]

[
λ̂1kNT (τ)− λ1k

]}
21/2

−
φN (λ2k)

−1/2
{
[ln (N)]

[
λ̂2kNT (τ)− λ2k

]}
21/2

=
φN (λ1k)

−1/2 {Op

(
N1/2−δ/2−λ1k

)
+O (1) ζN (λ1k) +O

[
exp

(
−C1T

C2
)]}

21/2

−
φN (λ2k)

−1/2 {Op

(
N1/2−δ/2−λ2k

)
+O (1) ζN (λ2k) +O

[
exp

(
−C3T

C4
)]}

21/2
.
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Under H0k : λ1k = λ2k = λ1, it follows that φN (λ1k) = φN (λ2k) = φN (λk), and ζN (λ1k) =

ζN (λ2k) = ζN (λk), and

[ln (N)]
[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
[2φN (λk)]

1/2

d→ N (0, 1) :

the result in (a) follows since

{
2max

{
φN

(
λ̂1k

)
, φN

(
λ̂2k

)}}
p→ 2φN (λk)

and [
φN

(
λ̂1k

)
+ φN

(
λ̂2k

)]
p→ 2φN (λk)

as N → ∞ under H0k : λ1k = λ2k = λk. Under H1k : λ1k ̸= λ2k it follows that

φN (λ1k)
−1/2 [ln (N)] λ̂1kNT (τ)− φN (λ2k)

−1/2 [ln (N)] λ̂2kNT (τ)

=
{
φN (λ1k)

−1/2 {[ln (N)]λ1k +O (1) ζN (λ1k)} − φN (λ2k)
−1/2 {[ln (N)]λ2k +O (1) ζN (λ2k)}

}
+Op (1) +

{
φN (λ1k)

−1/2 O
[
exp

(
−C1T

C2
)]

− φN (λ2k)
−1/2 O

[
exp

(
−C3T

C4
)]}

,

and

∣∣∣φN (λ1k)
−1/2 {[ln (N)]λ1k +O (1) ζN (λ1k)} − φN (λ2k)

−1/2 {[ln (N)]λ2k +O (1) ζN (λ2k)}
∣∣∣ → ∞

as N → ∞, which is sufficient to prove (b). This completes the proof of the theorem.

Proof of Theorem 3.2. By Corollary 1 in Qu and Perron (2007), the limiting distribution

of the betas is the same as it would be if τ was known. The result in the theorem then follows

from the same steps as in the Proof of Theorem 3.1.
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