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Abstract 
I study the dynamics of collective search in networks. Bayesian agents act in sequence, 
observe the choices of their connections, and privately acquire information about the qualities 
of different actions via sequential search. If search costs are not bounded away from zero, 
maximal learning occurs in sufficiently connected networks where individual neighborhood 
realizations weakly distort agents’ beliefs about the realized network. If search costs are 
bounded away from zero, maximal learning is possible in several stochastic networks, 
including almost-complete networks, but generally fails otherwise. When agents observe 
random numbers of immediate predecessors, the learning rate, the probability of wrong herds, 
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indirect connections affects convergence rates. Network transparency has short-run 
implications for welfare and efficiency. 
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1 Introduction
Search models provide a classical framework to study information acquisition and choice prob-
lems. When searching for the best option, agents seldom act in isolation. Social information, 
i.e., the choices and experiences of other agents, is readily available via direct observation 
and online social networks. Despite the abundant theoretical and empirical evidence in the 
social learning literature demonstrating how heavily social information shapes individual be-
havior (for comprehensive reviews, see Mobius and Rosenblat, 2014; Golub and Sadler, 2016; 
Bikhchandani, Hirshleifer, Tamuz, and Welch, 2022), search models typically posit that agents 
search in isolation, ignoring the information contained in the choices of their connections.
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However, the interplay between learning from others and the incentives for individual
search raises new questions. Does social information mitigate or even eliminate search fric-
tions? That is, can societies learn to perform as well as an agent with access to the best search
technology in the environment, thanks to the exploitation of social information? Conversely,
could excessive exploitation of social information reduce individual incentives for search,
effectively exacerbating search frictions? In this paper, I address these questions by studying
the dynamics of collective search in networks and show that the answers to them depend
significantly on the properties of the search technology and on those of the network structure.

Formally, I embed the standard search model of Weitzman (1979) into an observational
learning setting in general networks à la Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) and
Lobel and Sadler (2015). A countably infinite number of Bayesian agents act in sequence,
each choosing between two actions whose qualities are i.i.d. draws about which agents are
initially uninformed. First, each agent observes a subset of earlier choices, the agent’s
neighborhood. Neighborhoods are drawn from a joint distribution, the network topology.
Next, the agent engages in costly sequential search. Searching for an action reveals its
quality. After the first free search, the agent decides to sample the second action at a cost
(i.i.d. across agents) or not. Finally, the agent takes the best between the sampled actions.
Individual neighborhoods, search costs, and sampling decisions are private information, i.e.,
remain unobserved to other agents. The network topology shapes how effectively agents can
learn from social information (exploitation), while the search technology shapes their ability
to acquire private information (exploration). Maximal learning occurs if, in the long run,
the probability that agents take the best action converges to that with which a searcher—an
agent with the lowest possible search cost and no social information—does so.

I provide two main sets of results. First, I identify sufficient and necessary conditions on
network topologies and search technologies for maximal learning. Second, by allowing for gen-
eral network topologies, I obtain new insights into how the speed and efficiency of collective
search depend on the network structure. In the complete network, my model reduces to that of
Mueller-Frank and Pai (2016) (MFP). However, we study different long-run learning metrics.
In particular, MFP focus on the more demanding benchmark of complete learning, which oc-
curs if, in the long run, the probability that agents take the best action converges to 1. Given a
search technology, I argue that maximal learning is the best achievable long-run outcome, from
which my focus on this less stringent requirement follows. Moreover, as an immediate corollary
of my results, I show that no side of MFP’s equivalence that complete learning occurs if and
only if search costs are not bounded away from 0 needs to hold beyond the complete network.

I characterize equilibrium search behavior by connecting an agent’s optimal search policy
to the probability that some agents in his subnetwork (i.e., the agents directly or indirectly
linked to him) sampled both actions. Since by sampling both actions agents can assess their
relative quality, the latter probability is a lower bound for the agent’s probability of taking
the best action. This connection makes the study of maximal learning possible.

Theorem 1 shows that if search costs are not bounded away from zero (i.e., arbitrarily
low search costs have positive probability), maximal learning occurs if the network topology
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is sufficiently connected and neighborhood realizations weakly distort agents’ beliefs about
the realized network—the complete network being the simplest in this class.

I identify sufficient conditions for maximal learning by developing an improvement princi-
ple (IP). According to the IP, improvements upon imitation—a heuristic—suffice for maximal
learning. If agents’ beliefs about the realized network conditional on their neighborhood
are not too distorted—in a specific sense—compared to the actual network topology, each
agent can pick a reliable neighbor to observe and determine the search policy regardless of
what others have done. If search costs are not bounded away from zero, the agent samples
both actions and takes the best one with a higher probability than his chosen neighbor
unless the latter already does so. If, in addition, information paths are long enough, such
improvements last until maximal learning occurs.

Theorem 2 characterizes network topologies where maximal learning occurs independently
of whether search costs are bounded away from zero. In these networks, there are two sets of
agents. The first set—the core—consists of infinitely many isolated agents (i.e., agents with
no neighbors) and infinitely many agents that observe all and only their isolated predecessors.
The share of the former vanishes in the long run. The second set is the rest of the network.
Neighborhood realizations weakly distort agents’ beliefs, and agents are sufficiently connected
to recent predecessors in the core. The core may form the entire network but also consist of
an arbitrarily small portion of it—such as almost-complete networks, where the probability
that late-moving agents observe all predecessors converges to one.

The intuition is the following. As the choices of the infinitely many isolated agents are
independent, the share of observed choices suffices to late-moving non-isolated agents in the
core to sample first the action a searcher would take. Since isolated agents vanish, maximal
learning occurs within the core. Agents in the core learn via a large-sample principle (LSP),
i.e., by observing and aggregating the information in large samples of individual choices.
Once it occurs within the core, maximal learning extends to the rest of the network via
imitation, as late-moving agents are likely to observe some recent non-isolated agents in the
core and can pick the correct neighbor to rely on.

Theorem 3 characterizes necessary conditions for maximal learning. Independently of
search costs, maximal learning fails if agents are (directly or indirectly) connected to only
finitely many other agents. When search costs are bounded away from zero, maximal learning
fails in the complete network, if agents have at most one neighbor, and if agents observe
(possibly correlated) random numbers of immediate predecessors (OIP networks).1

The IP and the LSP have limitations. First, when search costs are bounded away from
zero, improvements upon imitation are precluded to late-moving agents. Thus, societies
that rely on the IP perform worse than a searcher in all network topologies. Second, the
model’s information structure leaves large-sample and martingale convergence arguments
with little room to operate, as no social belief forming a martingale plays a role in the
equilibrium characterization. Thus, learning via the LSP remains limited to agents with
a specific structure, such as the core in Theorem 2.

1To fix ideas, let 1 ≤ `n < n; agents n− `n, . . . , n− 1 are the `n immediate predecessors of agent n. The
complete network is the OIP network where each agent n observes his n− 1 immediate predecessors.
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The second part of the paper studies the speed and efficiency of learning as a function of
the network structure. First, the convergence rate to the best action, the probability of wrong
herds, and long-run welfare and efficiency (i.e., when discounting future payoffs with factor
δ → 1) are the same in all OIP networks. Hence, in such networks, these equilibrium outcomes
are independent of network transparency, the density of connections, and their correlation.
This striking result holds because, in all OIP networks, agents’ subnetworks consist of all their
predecessors. As agents’ search policy depends on the probability that some agent in their
subnetwork sampled both actions, agents’ performance in all OIP networks must be the same.

Second, I consider a social planner who makes all choices, internalizes future gains of
today’s search, and samples each action only once along each information path. Equilibrium
welfare in OIP networks converges to that implemented by the social planner if δ → 1 and
search costs are not bounded away from zero. Otherwise, welfare losses remain significant.

Third, reducing network transparency leads to inefficient duplication of costly searches
as agents who do not observe all prior choices fail to recognize actions revealed as inferior by
some of their predecessors’ choices. The resulting welfare loss remains sizable for all δ < 1.

Finally, the density of indirect connections affects convergence rates. Convergence to the
best action is faster than polynomial in OIP networks but only faster than logarithmic under
uniform random sampling of one past agent. Learning is slower under uniform random sam-
pling because the cardinality of agents’ subnetworks grows more slowly than in OIP networks,
and so does the probability that some agent in the subnetworks samples both actions.

Related Literature. In the sequential social learning model (SSLM), agents wish to match
their actions with an unknown state of nature, observe a free private signal—informative
about all options’ relative quality—and the choices of all (Banerjee, 1992; Bikhchandani,
Hirshleifer, and Welch, 1992; Smith and Sørensen, 2000), or subsets of (Acemoglu and
Ozdaglar, 2011; Lobel and Sadler, 2015), predecessors before making their choice. My
setting differs from the SSLM in three key aspects. First, private information is generated
in equilibrium and not exogenously available. Second, sampling an action reveals its quality
only and perfectly, whereas exogenous signals are imperfectly informative about all actions’
relative quality. Third, the inferential challenge differs: agents maximize the value of a
sequential information acquisition program and not an ex-ante expected utility.

Like most earlier work on observational learning implicitly or explicitly does, I organize
positive and negative long-run learning results around an IP and an LSP.2 Because of the
substantial differences in informational environments and learning metrics outlined above,
the working and applicability of these principles differ from those in the SSLM. First, the
IP only holds if agents have access to arbitrarily low search costs in my mode; in contrast,
it does independent of whether private signals are arbitrarily informative in the SSLM.
Second, the scope of large-sample and martingale convergence arguments in my model is
more limited than in the SSLM (and most other social learning models).

Burguet and Vives (2000), Hendricks, Sorensen, and Wiseman (2012), Ali (2018), and
2The IP for the SSLM relates to the welfare improvement principle (Banerjee and Fudenberg, 2004;

Smith and Sørensen, 2014) and the imitation principle (Bala and Goyal, 1998; Gale and Kariv, 2003).
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Bobkova and Mass (2022) study information acquisition in a social learning game over the
complete network. None of these papers focuses on the network structure. Because of
technical challenges, previous work on social learning in networks with costly information
acquisition (see, e.g., Perego and Yuksel, 2016; Salish, 2017; Sadler, 2020; Board and Meyer-
ter Vehn, 2021, 2023) mostly focuses on particular network structures or properties, or posits
boundedly rational decision rules. Yet, it acknowledges the importance of a general analysis
within the Bayesian benchmark (see, e.g., Sadler, 2014; Golub and Sadler, 2016). Assuming
agents move sequentially, I accommodate Bayes rationality and general network topologies.

Recent papers (Lobel, Acemoglu, Dahleh, and Ozdaglar, 2009; Monzón and Rapp, 2014;
Hann-Caruthers, Martynov, and Tamuz, 2018; Harel, Mossel, Strack, and Tamuz, 2021;
Dasaratha and He, 2023) study the speed and efficiency of social learning with exogenous
private information. Because of technical challenges, existing results focus on simple network
structures. My paper is the first to study how the speed and efficiency of learning vary with
the network with endogenous private information. Despite the complications introduced
by costly information acquisition, a rich and tractable analysis emerges in my setting.

Rosenberg and Vieille (2019) define learning to be efficient in the SSLM if the expected
number of incorrect choices under a 0-1 loss function is finite. Learning is efficient in the
complete network if and only if it is so when agents only observe the immediate predecessor.
In my setting, the irrelevance of how far in the past agents observe holds more generally.
First, not only does it hold for long-run welfare, but also for the probability of wrong
herds and the convergence rate. Second, it neither depends on the number of immediate
predecessors that agents observe nor on the density and correlation among connections.

Road Map. Section 2 introduces the model. Section 3 provides positive and negative
learning results. Section 4 studies the speed and efficiency of learning. Section 5 concludes
and discusses extensions. Proofs and omitted details are in the Appendices.

2 Collective Search Environment

Agents and Actions. A countably infinite set of agents, indexed by n ∈ N := {1, 2, . . . },
sequentially take a single action each from the set X := {0, 1}. Agent n acts at time n. Let
x denote an action in X, ¬x the action in X other than x, and an the action agent n takes.

State Process. Actions’ qualities, denoted by q0 and q1, are i.i.d. draws from a probability
measure PQ over Q ⊆ R+ := {s ∈ R : s ≥ 0}. The state of the world ω := (q0, q1) ∈ Ω :=
Q×Q has probability measure PΩ := PQ × PQ and is drawn once and for all at time 0.

To take the action with the highest quality, each agent n first observes a subset of past
choices and then privately engages in costly sequential search.

Network Topology. Agent n observes the choices of a subset B(n) of past agents, referred
to as agent n’s neighborhood. Neighborhoods B(n) ∈ 2Nn , where 2Nn is the power set of
Nn := {m ∈ N : m < n}, are random variables with probability measure Q on B := ∏

n∈N 2Nn .
Realizations of B(n) are agent n’s private information. If n′ ∈ B(n), then n observes an′ and
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knows the identity of n′. Agent n is isolated if B(n) = ∅. Neighborhoods are independent
of the state process and search costs (introduced below).

The network model follows Acemoglu et al. (2011) and Lobel and Sadler (2015); it
allows for correlated neighborhoods, independent neighborhoods, and deterministic networks.
The framework nests most networks observed in the data and studied in the literature:
complete network, observation of the most recent predecessors, random sampling from the
past, networks with influential agents, preferential attachment, small-world networks, etc.

Search Technology. After observing B(n) and the choices of the agents in B(n), agent n
decides which action s1

n ∈ X to sample first to perfectly learn its quality qs1
n
. After observing

qs1
n
, agent n decides whether to sample the remaining action, s2

n = ¬s1
n, to perfectly learn

q¬s1
n
, or to discontinue searching, s2

n = d. Let Sn denote the set of actions agent n samples.
After the sampling has stopped, the agent takes an action an ∈ Sn. When each agent
observes all past choices, the model reduces to that of Mueller-Frank and Pai (2016).

The first search is free. The second search costs cn ∈ C ⊆ R+. Search costs cn are
i.i.d. draws across agents from a probability measure PC over C, with CDF FC , and are
independent of the network topology and the state process. An agent’s search cost and
sampling decisions are his private information. Search costs are not bounded away from
0 if there is a positive probability of arbitrarily low search costs.

Definition 1. Let c := min supp (PC). Search costs are bounded away from 0 if c > 0;
search costs are not bounded away from 0 if c = 0.

Payoffs. The net utility of agent n is given by the difference between the quality of the
action he takes and the search cost he incurs: qan − cn(|Sn| − 1).

Information. Agent n has three information sets: I1
n := {cn, B(n), ak ∀ k ∈ B(n)} corre-

sponds to n’s information prior to sampling any action; I2
n := I1(n)∪{(s1

n, qs1
n
)} corresponds

to n’s information after sampling the first action; Ian := {cn, B(n), ak ∀ k ∈ B(n), {(x, qx) :
x ∈ Sn}} corresponds to n’s information once search ends. The classes of all possible
information sets of agent n are denoted by I1

n, I2
n, and Ian. The game is common knowledge.

Strategies. A strategy for agent n is a triple of mappings σn := (σ1
n, σ

2
n, σ

a
n), where

σ1
n : I1

n → ∆({0, 1}), σ2
n : I2

n → ∆({¬s1
n, d}), and σan : Ian → ∆(Sn). The sequence of deci-

sions ((s1
n, s

2
n, an))n∈N is a stochastic process whose probability measure—generated by the

state process, the network topology, the search technology, and agents’ strategy profiles
σ := (σn)n∈N—I denote by Pσ.

Equilibrium Notion. The solution concept is perfect Bayesian equilibrium, hereafter
referred to as equilibrium. A strategy profile σ is an equilibrium if, for all n ∈ N, σn is an
optimal policy for agent n’s sequential search and action choice problems given other agents’
strategies σ−n := (σ1, . . . , σn−1, σn+1, . . . ).

Agents’ decisions are discrete choice problems with a well-defined solution that only
requires randomization in case of indifference. Given tie-breaking criteria, an inductive
argument shows that the set of equilibria is nonempty. To ease exposition, I focus on the
equilibrium where agents sample the second action in case of indifference and break other ties
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uniformly at random. This equilibrium selection does not affect the results. As no confusion
arises, I identify agent n’s (equilibrium) strategy (σ1

n, σ
2
n, σ

a
n) with his decisions (s1

n, s
2
n, an).

2.1 Equilibrium Strategies

I first recall the notion of an agent’s subnetwork from Lobel and Sadler (2015) and introduce
that of an agent’s subnetwork relative to action x. The equilibrium characterization follows.

Definition 2. Agent m is in agent n’s subnetwork, denoted by B̂(n), if there is a sequence
of agents, starting with m and terminating with n, with each element of the sequence in the
neighborhood of the next. Agent m is in agent n’s subnetwork relative to action x, denoted
by B̂(n, x), if m ∈ B̂(n) and am = x.

B̂(n) consists of the agents that are, directly or indirectly, connected to agent n. B̂(n, x)
consists of the agents that are, directly or indirectly, connected to agent n and take action x.

Choice. Agent n takes the best between sampled actions, randomizing uniformly if indif-
ferent.

First Search. Consider agent n and the events

Ex
n :=

{
s2
k = d ∀ k ∈ B̂(n, x)

}
for all x ∈ X.

Ex
n occurs when none of the agents in agent n’s subnetwork relative to action x samples

both actions. For x = 0, 1, the complement of Ex
n, denoted by Ex

n
C , occurs when at least

one agent in n’s subnetwork relative to action x samples both actions. For each action x:
1. If agent n knew that event Ex

n occurred, his posterior belief on the quality of action
¬x is the same as the prior PQ.

2. If agent n knew that event Ex
n
C occurred, his posterior belief on Ω is PΩ|qx≥q¬x

, as
agents sampling both actions take the one with the highest quality.

Thus, agent n computes the conditional probabilities

Pn(x) := Pσ−n

(
Ex
n | I1

n

)
for all x ∈ X. (1)

If Pn(x) < Pn(¬x), agent n’s belief about the quality of action x strictly first-order stochas-
tically dominates his belief about the quality of action ¬x (see Appendix A for the formal
argument). By Weitzman (1979)’s optimal search rule, as extended by Gergatsouli and
Tzamos (2023) to correlated actions’ qualities, agent n samples action x first (actions qual-
ities need no longer be independent in the eyes of agent n, i.e., conditional on I1

n). If
Pn(x) = Pn(¬x), agent n’s beliefs about the qualities of the two actions are identical, and
n samples the first action uniformly at random.

Second Search. After sampling a first action of quality qs1
n
, agent n samples the second

action if and only if the expected gain from doing is no less than his search cost. If B(n) = ∅,
the expected gain from the second search is

t∅
(
qs1

n

)
:= EPQ

[
max

{
q − qs1

n
, 0
}]
. (2)
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If B(n) 6= ∅, agent n benefits from the second search only if action ¬s1
n was not sampled

by any of the agents in B̂(n, s1
n). Thus, agent n computes the conditional probability

Pn
(
qs1

n

)
:= Pσ−n

(
Es1

n
n | I2

n

)
. (3)

Otherwise, at least one of those agents sampled action ¬s1
n but took action s1

n, in which
case s1

n must be (weakly) superior. Hence, n’s expected gain from the second search is

tn
(
qs1

n

)
:= Pn

(
qs1

n

)
t∅
(
qs1

n

)
. (4)

2.2 Maximal Learning

An isolated agent having access to the smallest search costs the search technology allows
for has (i) the best search opportunities and (ii) the strongest motivation to explore. To
understand (ii), note that, by (2)–(4), t∅(qs1

n
) ≥ tn(qs1

n
); that is, given qs1

n
, the expected gain

from the second search when agent n is isolated is larger than when he is not. Such an
agent, hereafter called a searcher, takes the best action with probability 1 if and only if

ω ∈ Ω(c) :=
{
ω ∈ Ω : FC

(
max

{
t∅(q0), t∅(q1)

})
> 0 or q0 = q1

}
.

The next assumption rules out uninteresting environments. If part (i) fails, no agent
searches twice. If part (ii) fails, isolated agents always take the best action when ω ∈ Ω(c),
and non-isolated agents copy any neighbor. The assumption implies PΩ(ω ∈ Ω(c)) > 0.

Assumption 1. Let Q(c) := {q ∈ Q : FC(t∅(q)) > 0}. Assume that: (i) PQ(Q(c)) > 0; (ii)
there is q̃ ∈ Q(c) such that PQ(q > q̃) > 0 and FC(t∅(q̃)) < 1, i.e., with positive probability,
isolated agents discontinue searching after sampling an action of quality q̃ or higher.

Maximal learning occurs if the probability that agents take the best action converges to 1
whenever a searcher does so. It is the best achievable long-run outcome in this environment.

Definition 3. Maximal learning occurs if

lim
n→∞

Pσ
(
an ∈ arg max

x∈X
qx
∣∣∣ ω ∈ Ω(c)

)
= 1.

Remark 1. The probabilities Pn(x) and Pn(qx) in definitions (1) and (3) suffice to describe
agent n’s equilibrium search policy and link agent n’s search policy to the probability that
he takes the best action, which is what matters for maximal learning, as

Pσ
(
an ∈ arg max

x∈X
qx

)
≥ Pσ−n

({
s2
k = ¬s1

k for some k ∈ B̂
(
n, s1

n

)})
= 1− Pσ−n

(
Es1

n
n

)
.

The inequality holds as if some agent in B̂(n, s1
n) samples both actions and takes action s1

n,
then s1

n (and so an) must be superior. The equality holds as the events are complements.
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3 Long-Run Learning

The following definitions recall some notions on network topologies introduced by Lobel and
Sadler (2015), to which I refer for further discussion. Expanding subnetworks is a connectivity
property requiring that the size of B̂(n) grows without bound as n becomes large.

Definition 4. A network topology has expanding subnetworks if, for all K ∈ N,

lim
n→∞

Q
(
|B̂(n)| < K

)
= 0.

If this property fails, the network topology has non-expanding subnetworks.

A neighbor choice function is a particular agent’s means of selecting a neighbor from
any realization of his neighborhood. Given a network topology and a sequence of neighbor
choice functions, one implicitly defines a new network topology, called the chosen neighbor
topology, that includes only those links in the original network selected by the neighbor
choice functions. In other words, the chosen neighbor topology is the network where agents
discard all unselected neighbors.

Definition 5. Let a network topology be given:
(a) A function γn : 2Nn → Nn ∪ {0} is a neighbor choice function for agent n if, for all

B(n) ∈ 2Nn, we have γn ∈ B(n) when B(n) 6= ∅, and γn = 0 otherwise. Agent γn is
called agent n’s chosen neighbor.

(b) A chosen neighbor topology consists of the links in the given network topology selected
by a sequence of neighbor choice functions γ := (γn)n∈N.

3.1 Maximal Learning via the Improvement Principle

If search costs are not bounded away from 0, maximal learning occurs if the network is suf-
ficiently connected, and agents’ beliefs about the network conditional on their neighborhood
are not too distorted—in a specific sense—compared to the actual network topology.

Theorem 1. Maximal learning occurs if the following conditions hold:
(i) Search costs are not bounded away from 0;

(ii) The network topology has a sequence of neighbor choice functions (γn)n∈N such that:

(a) The corresponding chosen neighbor topology has expanding subnetworks;
(b) For all ε, η > 0, there is Nεη ∈ N such that, for all n > Nεη, with probability at

least 1− η,

Pσ
(
aγn ∈ arg max

x∈X
qx
∣∣∣ γn

)
≥ Pσ

(
aγn ∈ arg max

x∈X
qx

)
− ε. (5)

To prove Theorem 1, I establish an auxiliary result: the improvement principle (IP). The
IP benchmarks the performance of Bayesian agents against improvements upon imitation—a
heuristic that is simpler to analyze and can be improved upon by Bayes rationality. The
IP works as follows. Each agent selects one neighbor to rely on and determines his optimal
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policies regardless of the other neighbors’ choices. The IP holds if: (∗) the probability with
which an agent takes the best action increases compared to that of his chosen neighbor; (∗∗)
such increases last until maximal learning occurs.

For (∗) to hold, search costs must not be bounded away from 0 (condition (i) in Theorem
1). Consider agent n and his chosen neighbor b. Agent n finds it optimal to begin searching
from the action taken by b. Moreover, unless b takes the best action with probability 1, n’s
expected gain from the second search is positive. Therefore, if search costs are not bounded
away from 0, agent n samples both actions with positive probability and takes a better
action than the one he samples first. Hence, there is a strict improvement in the probability
of taking the best action that n has over b.

In turn, (∗∗) requires the network to be sufficiently connected (condition (ii)–(a) in
Theorem 1). An information path for agent n is a sequence (π1, . . . , πk) with πk = n and
πi ∈ B(πi+1) for all i ∈ Nk. If arbitrarily long information paths almost surely occur,
improvements last until agents take the best action with probability 1. In addition, (∗∗)
requires that agents can single out the correct neighbor to rely on (condition (ii)–(b) in
Theorem 1). Agent n can rely on agent γn only if γn ∈ B(n). With correlated neighbor-
hoods, the probability that γn takes the best action conditional on n observing γn is not
the same as the unconditional probability. That is, n earns γn’s probability of taking the
best action conditional on choosing to rely on γn. Thus, Pσ(aγn ∈ arg max x∈X qx | γn) and
Pσ(aγn ∈ arg max x∈X qx) must be approximately equal for large n to ensure that agent n
can single out the correct neighbor to rely on.

A variety of explicit and intuitive conditions on the network topology only suffice for
condition (ii)–(b) in Theorem 1 to hold (independent of equilibrium selection). I refer to
Appendix B for such conditions. However, Theorem 1 is more general: condition (ii)–(b)
holds whenever the network topology is such that an agent’s belief about the realized network
given his neighborhood realizations—a conditional probability measure—is not too different
from the unconditional probability measure—i.e., the network topology.

Limits to the Improvement Principle. If search costs are bounded away from 0, late-
moving agents cannot improve upon imitation, and maximal learning via the IP fails in
all network topologies. To understand why the IP is fragile to perturbations of the search
technology, suppose c > 0, ω ∈ Ω(c), and the IP holds. Then, in some chosen neighbor
topology, the probability of none of the agents in B̂(n)∪{n} sampling both actions converges
to 0 as n → ∞. Thus, the expected gain from the second search for all agents moving
after some sufficiently late time m is below c > 0. As a result, no such agent in the chosen
neighbor topology will sample the second action. By Assumption 1 and the equilibrium
characterization, the probability that none of the agents in B̂(m)∪{m} samples both actions
is positive for any finite m. Thus, a contradiction arises, as the probability of none of the
agents in B̂(n) ∪ {n} sampling both actions remains bounded away from 0.
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3.2 Maximal Learning via the Large-Sample Principle

The next theorem provides sufficient conditions on network topologies under which maximal
learning occurs independently of whether search costs are bounded away from 0.

First, I introduce some notation. For all n ∈ N, let B∅n := {k ∈ Nn : B(k) = ∅} be the
set of agent n’s isolated predecessors. Moreover, let S := {n ∈ N : B(n) ∈ {∅, B∅n}} the set
of agents whose neighborhood is either empty or consists of all their isolated predecessors.

Theorem 2. For all search technologies, maximal learning occurs if the network topology
satisfies the following conditions:

(i) For all n ∈ N, Q(n ∈ S) > 0;

(ii) ∑n∈NQ(B(n) = ∅) =∞ and limn→∞Q(B(n) = ∅ | n ∈ S) = 0;

(iii) For all n ∈ N such that Q(1 ∈ B(n)) > 0, Q(B(n) = B∅n | 1 ∈ B(n)) = 1;

(iv) For all K ∈ N,

lim
n→∞

Q
(

max
b∈B(n)∩S

b < K

)
= 0;

(v) For all ε, η > 0, there is Nεη ∈ N such that, for all n > Nεη, with probability at least
1− η,

Pσ
(
aγn ∈ arg max

x∈X
qx
∣∣∣ γn

)
≥ Pσ

(
aγn ∈ arg max

x∈X
qx

)
− ε

for all sequences of neighbor choice functions (γn)n∈N.

By Theorem 2, maximal learning occurs in networks where there are two sets of agents.
The first set is S and forms the core of the network. Within set S, there are two groups
of agents: an infinite but vanishing group of isolated agents (conditions (i) and (ii) in
Theorem 2); agents that observe all and only their isolated predecessors and know they are
doing so (condition (iii) in Theorem 2). Maximal learning occurs within S because of the
following argument. When ω ∈ Ω(c) and actions do not have the same quality, each isolated
agent takes the best action with a probability larger than 1/2. Moreover, the choices of
the infinitely many isolated agents are independent. Thus, the share of earlier choices is
sufficient for non-isolated agents in S to sample the best action at the first search with
probability 1 as n→∞. As the share non-isolated agents in S converges to 1 as n→∞,
maximal learning occurs within S. Agents in S learn via a large-sample principle, i.e., by
observing and aggregating the information in large samples of individual choices.

The second set is N \ S and forms the rest of the network. By condition (iv) in Theorem
2, late-moving The second set is N \ S and forms the rest of the network. By condition
(iv) in Theorem 2, late-moving agents observe recent choices from non-isolated agents in
S with a high probability. By condition (v) in Theorem 2, agents’ beliefs about the network
conditional on their neighborhood are not too distorted compared to the actual network
topology—similarly to condition (ii)–(b) in Theorem 1, but now (5) has to hold for all
sequences of neighbor choice functions. Thus, each late-moving agent in N \ S can carefully
select one of his most recent neighbors and sample this neighbor’s action at the first search.
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This strategy suffices for agents in N \ S to sample the best action at the first search with
probability 1 as n→∞ whenever ω ∈ Ω(c). Intuitively, once maximal learning occurs via
the LSP within the core, the remaining agents learn via imitation (even though search costs
that are bounded away from 0 may preclude improvements upon imitation).

Example 1. The class of networks where maximal learning occurs is large and diverse, and
the core S may form the entire network or consist of an arbitrarily small portion of it. For
instance, the following network topologies satisfy the conditions of Theorem 2.

1. For all n, let Q(B(n) = ∅) = 1/n and Q(B(n) = B∅n) = 1− 1/n. In this case, S = N.

2. For all n > 2, let Q(B(n) = ∅) = 1/n, Q(B(n) = B∅n) = 1/
√
n, and Q(B(n) =

{2, . . . , n − 1}) = 1 − (1 +
√
n)/n. In this case, S consists of an arbitrarily small

portion of the network. This is an almost-complete network, in the sense that the
probability that agent n observes all his predecessors converges to 1 as n→∞.

Limits to the Large-Sample Principle. The positive result in Theorem 2 crucially
relies on the assumption that non-isolated agents in S: (i) observe only isolated agents;
(ii) know that they are observing isolated agents. Under this premise, the first search
for non-isolated agents in S depends only on the relative shares of choices they observe.
When non-isolated agents in S observe more or are unsure whether the agents they observe
are isolated, connecting their optimal search policy to the ratio of observed choices is no
longer possible. Thus, the positive results in Theorem 2 are hardly extendable to a general
characterization where we allow non-isolated agents in S to know only that some agents
they observe are isolated or that the agents they observe have some positive probability of
being isolated. The major impediment arises because no social belief that forms a martingale
also plays a role in the equilibrium characterization. Formally, (Pσ(Ex

n))n∈N, x = 0, 1, do
not form a martingale even when conditioning on public histories an−1 := (a1, . . . , an−1).
Therefore, large-sample and martingale convergence arguments play a limited role.

3.3 Failure of Maximal Learning

In this section, I focus on negative learning results. To begin, I define a class of networks
which will be extensively discussed in the rest of the paper. For all n ∈ N and `n ∈ Nn, let
B`n
n := {k ∈ Nn : k ≥ n− `n} be the set consisting of the `n most immediate predecessors

of agent n. Hereafter, the acronym OIP stands for “observation of immediate predecessor”.

Definition 6. A network topology is an OIP network if, for all n ∈ N,

Q
( ⋃

`n∈Nn

(
B(n) = B`n

n

))
= 1.

The class of OIP networks is large, ranging from deterministic networks to stochastic
networks with independent or correlated neighborhoods, as the following examples show.

1. If Q(B(n) = Bn−1
n ) = 1 for all n, we have the complete network.

2. If Q(B(n) = B1
n) = 1 for all n, each agent observes only his immediate predecessor.

3. Let neighborhoods be independent and, for all n, Q(B(n) = B1
n) = (n − 1)/n and
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Q(B(n) = Bn−1
n ) = 1/n. Here, each agent either observes his immediate predecessor,

or all of them, with the latter event becoming less and less likely as n grows large.

4. Let Q(B(2) = B1
2) = 1, Q(B(3) = B1

3) = Q(B(3) = B2
3) = 1/2, and, for all n > 3,

Q(B(n) = B1
n | B(3) = B1

3) = 1 and Q(B(n) = Bn−1
n | B(3) = B2

3) = 1. Here, neigh-
borhoods are correlated, and each agent observes either the immediate predecessor
or all of them, depending on agent 3’s neighborhood realization.

The next theorem characterizes necessary conditions for maximal learning.

Theorem 3. Maximal learning fails if:
(i) The network topology has non-expanding subnetworks.

(ii) Search costs are bounded away from 0 and the network topology:

(a) Is an OIP network, or
(b) Satisfies Q(|B(n)| ≤ 1) = 1 for all n ∈ N.

By Theorem 3–(i), maximal learning always fails with non-expanding subnetworks. The
intuition is the following. Suppose c > 0 and ω ∈ Ω(c). By Assumption 1 and the equilibrium
characterization, the probability that none of finitely many agents samples both actions
is positive. Since non-expanding subnetworks have with positive probability an infinite
subsequence of agents with finite subnetwork, the probability of no agent in B̂(n) ∪ {n}
sampling both actions remains bounded away from 0. As a result, maximal learning fails.

By Theorem 3–(ii), when search costs are bounded away from 0, maximal learning fails
in OIP networks and if agents have at most one neighbor. In such networks, the probability
of taking the best action under Bayes rationality is the same as under the IP. As the IP
fails when search costs are bounded away from 0, so does Bayesian learning.

The analysis shows a discontinuity in learning outcomes between complete and almost-
complete networks. By Theorem 3–(ii)–(a), search costs that are not bounded away from 0
are necessary for maximal learning in the complete network. In contrast, part 2 of Example
1 exhibits an almost-complete network where search costs that are not bounded away from
0 are not necessary for maximal learning.

4 Convergence Rate, Welfare, and Efficiency

Since several insights on the speed and the efficiency of social learning emerge in OIP
networks, I begin by sketching equilibrium strategies in such networks (the formalities are
in Appendix E). First, I introduce the relevant terminology.

Definition 7. In OIP networks, action x is:
(a) Revealed inferior to agent n if aj = x and aj+1 = ¬x for some agents j, j + 1 ∈ B(n).

(b) Revealed inferior by time n if aj = x and aj+1 = ¬x for some agents j, j + 1 < n.

(c) Inferior by time n if an agent j < n sampled both actions and aj = ¬x.

13



Equilibrium Strategies in OIP Networks. Fix n ≥ 2. At the first search, agent n
samples the action taken by his immediate predecessor: s1

n = an−1.
At the second search, the optimal policy is as follows.
• If ¬s1

n is revealed inferior to agent n, then n discontinues searching. To see why, sup-
pose aj = ¬s1

n and aj+1 = s1
n for some j, j + 1 ∈ B(n). Since each agent samples the

action taken by his immediate predecessor first, agent j + 1 must have sampled action
¬s1

n first and takes aj+1 = s1
n only if he sampled action s1

n as well, and qs1
n
≥ q¬s1

n
.

• If ¬s1
n is not revealed inferior to agent n, the expected gain from the second search is

the same as in the complete network if the action is not revealed inferior by time n. The
intuition goes as follows. In all OIP networks, agent n’s subnetwork, {1, . . . , n− 1},
coincides with n’s neighborhood in the complete network. Moreover, each agent
samples first the action taken by the immediate predecessor. Thus, given qs1

n
, the

probability that none of the agents in B̂(n, s1
n) sampled both actions must be the same.

But then, if ¬s1
n is not revealed inferior to agent n, the expected gain from the second

search is the same as in the complete network if ¬s1
n is not revealed inferior by time n.

The next important implications follow: the order of search, the cutoff for sampling a
second action that is not revealed inferior to an agent, and the probability that each agent
takes the best action are the same in OIP networks. Thus, network transparency, the density
of connections, and their correlation pattern do not affect several equilibrium outcomes.

Proposition 1. In all OIP networks, the probability of wrong herds—i.e., that all sufficiently
late-moving agents take the same wrong action—is the same as in the complete network.
Moreover, if search costs are not bounded away from 0, the convergence rate to the best
action is the same as in the complete network.

4.1 Convergence Rate

The following property will be useful to establish the results on convergence rates.

Definition 8. Let q := min supp (PQ). Search costs have a polynomial shape if, for some
K,L ∈ R with K ≥ 0 and 0 < L < 2K+1

(K+2)t∅(q)K , FC(c) ≥ LcK for all c ∈
(
0, t∅

(
q
)
/2
)

.

The density of indirect connections affects convergence rates. Whereas the convergence
rate to the best action is faster than polynomial in OIP networks, it is only faster than
logarithmic under uniform random sampling of one past agent. Learning occurs faster in
OIP networks because the cardinality of agents’ subnetworks grows faster, and so does the
probability that at least one agent in the subnetworks samples both actions.

Theorem 4. Suppose search costs are not bounded away from 0 and have a polynomial shape.
(a) In OIP networks,

Pσ
(
an 6∈ arg max

x∈X
qx

)
= O

(
1

n
1

K+1

)
.
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(b) If neighborhoods are independent and Q(B(n) = {b}) = 1/(n− 1) for all b ∈ Nn,

Pσ
(
an 6∈ arg max

x∈X
qx

)
= O

 1
(log n)

1
K+1

.
4.2 Equilibrium Welfare and Efficiency in OIP Networks

In this section, I characterize how network transparency affects equilibrium welfare and
compare equilibrium welfare against the efficiency benchmark in which a social planner
makes all choices. To aid analysis, I assume PC admits density fC with fC(c) > 0.

Equilibrium Welfare across OIP Networks. Equilibrium welfare is not the same across
OIP networks. To see why, suppose aj = x and aj+1 = ¬x for some agents j, j + 1. Hence,
action x is revealed inferior by time j + 2. In the complete network, action x is revealed
inferior to any agent n ≥ j + 2 and so is never sampled again. In other OIP networks,
instead, agent j need not be in the neighborhood of agent n ≥ j + 2. Therefore, n fails to
realize from agent j + 1’s choice that qx ≤ q¬x and may inefficiently samples action x again.

Inefficient duplication of costly searches is more severe the shorter in the past agents
can observe. Hence, the complete network is the most efficient OIP network, whereas the
network where agents observe only the most immediate predecessor is the least efficient OIP
network. In all other OIP networks, equilibrium welfare is between these two bounds. The
next proposition shows that welfare losses due to duplication of costly searches vanish in
arbitrarily patient societies (equivalently, in the long run) but remain significant otherwise.

Proposition 2. Suppose future payoffs are discounted at rate δ ∈ (0, 1). For all δ ∈ (0, 1),
the equilibrium social utility is larger in the complete network than in the network where
agents observe only their most immediate predecessor. The difference vanishes as δ → 1.

Social Planner Benchmark. Consider a social planner who draws a new search cost in each
period and faces the same connections’ structure as the agents. The social planner discounts
future payoffs at rate δ ∈ (0, 1), internalizes future gains of the current search, and samples
each action once along the same information path. In OIP networks, each agent is (directly
or indirectly) linked to all his predecessors, and so all agents lie on the same information
path. Hence, the social planner achieves the same social utility in all OIP networks.

Equilibrium behavior in OIP networks gives rise to two sources of inefficiency:
(i) Agents do not internalize future gains of the current search. As a result, exploration

and convergence to the best action are too slow in equilibrium.

(ii) Equilibrium behavior displays inefficient duplication of costly search for two reasons:

(a) Agent n fails to recognize an action that is inferior and not revealed so by time n.
(b) Agent n fails to recognize an action x that is revealed inferior by time n, i.e.,

with aj = x and aj+1 = ¬x for some agents j, j + 1 < n, unless j ∈ B(n).

Whereas (a) occurs in all OIP networks, (b) does not in the complete network.
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Equilibrium welfare losses disappear if and only if maximal learning occurs and the
society is arbitrarily patient. If search costs are bounded away from 0, or the focus is on
short- and medium-run outcomes, welfare losses can be significant.

Proposition 3. In OIP networks, the equilibrium social utility converges to the social
planner’s as δ → 1 if and only if search costs are not bounded away from 0.

5 Concluding Remarks

I conclude by discussing some modeling choices and extensions.

Search Technology. No result changes if both searches are costly, but agents cannot
abstain and must search at least once. That both searches cost the same captures that
information acquisition costs are idiosyncratic to agents but not to actions, which are ex-ante
identical. Assuming that agents cannot abstain is standard in the social learning literature.

More than Two Actions. In Section I, I sketch the analysis for more than two available
actions. In short, with more than two actions: (i) the results on maximal learning (Theorems
1–3) remain unchanged; (ii) the results on the speed and efficiency of social learning need
not always hold as stated, but most of the insights they highlight remain valid.

Heterogeneous Preferences. Preference heterogeneity arises if agents’ payoffs depend on
a common and a private component. In the SSLM with heterogeneous preferences, the IP
suffers, as imitation no longer guarantees the neighbor’s payoff, whereas the LSP has more
room to operate (see Lobel and Sadler, 2016). In my setting, the IP has more bite than
the LSP, suggesting that preference heterogeneity may disrupt positive learning results.

Design of Collective Search. In Section J, I show that letting agents observe the shares
of earlier choices reduces inefficiency in several network topologies. Interestingly, this simple
policy is common in practice: many online platforms aggregate past decisions by sorting
items according to their popularity or sales rank. Characterizing more sophisticated incentive
schemes, which combine monetary transfers with information management tools to further
reduce inefficiencies and foster social exploration, may be interesting for future work.3

Related Work. In Lomys and Tarantino (2023), we investigate how social learning affects
the identification and estimation of search models. In Bigoni, Boldrini, Lomys, and Tarantino
(2023), we experimentally study how social information influences individual search behavior
and how behavioral biases and the perceived reliability of the information source affect this
process.

3A growing literature study incentivized social learning (see, e.g., Slivkins, 2019, 2023, for surveys).
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A Proofs for Section 2.1
Fix any x ∈ X and q with min supp (PQ) < q < sup supp (PQ), and note:

PQ(qx ≤ q) = PQ(q¬x ≤ q), (6)
PΩ|q¬x≥qx(qx ≤ q) = PΩ|qx≥q¬x(q¬x ≤ q), (7)

and PΩ|q¬x≥qx(qx ≤ q) > PQ(qx ≤ q). (8)

Pick any n ∈ N. Under Assumption 1, Exn and Exn
C occur with positive probability for all x

and n. From the discussion of the optimal first search in Section 2.1, we have:
1. Given Exn, agent n’s posterior belief on the quality of action ¬x is the same as the prior PQ:

Pσ−n
(
q¬x ≤ q | Exn, I1

n

)
= PQ(q¬x ≤ q). (9)

2. Given Exn
C , agent n’s posterior belief on Ω is PΩ|qx≥q¬x :

Pσ−n
(
q¬x ≤ q | Exn

C , I1
n

)
= PΩ|qx≥q¬x(q¬x ≤ q). (10)

Suppose Pn(x) < Pn(¬x). Given I1
n, agent n’s belief about the quality of action x strictly

first-order stochastically dominates that about the quality of action ¬x. To see why, note that

Pσ−n
(
q¬x ≤ q | I1

n

)
= Pσ−n

(
q¬x ≤ q | Exn, I1

n

)
Pσ−n

(
Exn | I1

n

)
+ Pσ−n

(
q¬x ≤ q | Exn

C , I1
n

)
Pσ−n

(
Exn

C | I1
n

)
= PQ(q¬x ≤ q)Pn(x) + PΩ|qx≥q¬x(q¬x ≤ q)(1− Pn(x))
= PQ(qx ≤ q)Pn(x) + PΩ|q¬x≥qx(qx ≤ q)(1− Pn(x))
> PQ(qx ≤ q)Pn(¬x) + PΩ|q¬x≥qx(qx ≤ q)(1− Pn(¬x))

= Pσ−n
(
qx ≤ q | E¬xn , I1

n

)
Pσ−n

(
E¬xn | I1

n

)
+ Pσ−n

(
qx ≤ q | E¬xn

C , I1
n

)
Pσ−n

(
E¬xn

C | I1
n

)
= Pσ−n

(
qx ≤ q | I1

n

)
,

(11)

where: the first and the last equalities hold by the law of total probability; the second equality
holds by (1), (9), and (10); the third equality holds by (6) and (7); the inequality holds by (8)
and the assumption Pn(x) < Pn(¬x); the fourth equality holds by (1), (9), and (10). If, instead,
Pn(x) = Pn(¬x), the inequality in (11) becomes equality, and so Pσ−n

(
q¬x ≤ q | I1

n

)
= Pσ−n

(
qx ≤

q | I1
n

)
, i.e., agent n’s beliefs about the qualities of the two actions conditional on I1

n are identical.�

B Sufficient Conditions for (ii)–(b) in Theorem 1
If the network topology satisfies any of the conditions 1–6 below, then it has a sequence of neighbor
choice functions satisfying condition (ii)–(b) in Theorem 1.

1. The network topology is deterministic.
2. The network topology has independent neighborhoods.
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3. The network topology has deterministic information paths. That is, there is a sequence of
neighbor choice functions such that the corresponding chosen neighbor topology is deter-
ministic (this is so, for instance, in OIP networks).

4. The network topology has a sequence of neighbor choice functions such that neighborhoods
{B(k)}mk=1 are independent of the event γn = m for all n,m ∈ N with n > m.

5. The network topology has a sequence of neighbor choice functions such that the corresponding
chosen neighbor topology has low network distortion.

6. The network topology is Markovian: neighborhoods {B(n)}n∈N are conditionally independent
given the state of an underlying Markov chain with finitely many states.

Under conditions 1–4, we have

Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

)
− Pσ

(
aγn ∈ arg max

x∈X
qx

)
= 0, (12)

and so condition (ii)–(b) in Theorem 1 trivially follows. Regarding conditions 5 and 6, I refer
to Section 5 in Lobel and Sadler (2015) for the formal definitions of low network distortion and
Markovian network topology. Under such conditions, the equality in (12) need not hold. However,
Lobel and Sadler (2015) show that, under such conditions, there is a sequence of neighbor choice
functions such that the difference in the left-hand side of (12) is arbitrarily small (with arbitrarily
large probability) for large enough n.

C Proof of Theorem 1
Theorem 1 follows by combining two propositions which, combined, form the IP. The first proposition
provides sufficient conditions for maximal learning via improvements upon imitation to occur.

Proposition 4. Maximal learning occurs if there is a sequence of neighbor choice functions (γn)n∈N
and a continuous, increasing function Z : [1/2, 1]→ [1/2, 1] with the following properties:

(a) The corresponding chosen neighbor topology has expanding subnetworks;
(b) Z(β) > β for all β ∈ [1/2, 1), and Z(1) = 1;
(c) For all ε, η > 0, there is Nεη ∈ N such that, for all n > Nεη, with probability at least 1− η,

Pσ

(
an ∈ arg max

x∈X
qx
∣∣ γn

)
≥ Z

(
Pσ

(
aγn ∈ arg max

x∈X
qx

))
− ε.

Condition (c) requires the existence of a strict lower bound on the increase in the probability
that an agent takes the best action over his chosen neighbor’s probability. The second proposition
shows that this is possible if search costs are not bounded away from 0.

Proposition 5. Suppose search costs are not bounded away from 0, and let (γn)n∈N be a se-
quence of neighbor choice functions. Then, there is an increasing and continuous function
Z : [1/2, 1]→ [1/2, 1], with Z(β) > β for all β ∈ [1/2, 1), and Z(1) = 1, such that, for all n ∈ N,

Pσ

(
an ∈ arg max

x∈X
qx
∣∣ γn

)
≥ Z

(
Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

))
.

The next two sections contain the proofs of Propositions 4 and 5.
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C.1 Proof of Proposition 4
Preliminaries. The next lemma shows that each agent does at least as well as the first agent in
terms of the probability of sampling the best action at the first search.

Lemma 1. For all n ∈ N, we have

Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
.

Proof. If n = 1, the claim trivially holds. Now fix any n > 1. If B(n) = ∅, agent n’s problem is
identical to agent 1’s, and the desired result follows. If B(n) 6= ∅, by the characterization of the
equilibrium decision s1

n in Section 2.1, we have Pσ
(
E
s1
n
n | I1

n

)
≤ Pσ

(
E
s1

1
n | I1

n

)
. By integrating over

all possible search costs, choices of the agents in the neighborhood, and neighborhoods, we have
Pσ
(
E
s1
n
n

)
≤ Pσ

(
E
s1

1
n

)
. Then, the distribution of the quality of action s1

n first-order stochastically
dominates (in the case of a strict inequality), or is the same as (in the case of equality), that of
action s1

1. That Pσ
(
s1
n ∈ arg max x∈X qx

)
≥ Pσ

(
s1

1 ∈ arg max x∈X qx
)

follows. �

C.1.1 Proof of Proposition 4

First, I construct two sequences, (αk)k∈N and (φk)k∈N, such that, for all k ∈ N, there holds

Pσ

(
an ∈ arg max

x∈X
qx

)
≥ φk for all n ≥ αk. (13)

Second, I show that φk → 1 as k →∞. The desired result follows.

Part 1. By assumptions (a) and (c), for all α ∈ N and ε > 0, there are N(α, ε) ∈ N and a sequence
of neighbor choice functions (γk)k∈N such that

Q
(
γn = b, b < α

)
<
ε

2 , (14)

Pσ

(
Pσ

(
an ∈ arg max

x∈X
qx
∣∣ γn

)
< Z

(
Pσ

(
aγn ∈ arg max

x∈X
qx

))
− ε < ε

2 (15)

for all n ≥ N(α, ε). Set φ1 := 1
2 and α1 := 1. Define (φk)k∈N, (αk)k∈N, and (εk)k∈N recursively by

φk+1 := φk + Z(φk)
2 , αk+1 := N(αk, εk), εk := 1

2

(
1 + Z(φk)−

√
1 + 2φk + Z(φk)2

)
.

Given the assumptions on Z, these sequences are well-defined. I use induction on k to prove (13).
Since the qualities of the two actions are i.i.d. and agent 1 has no prior information,

Pσ

(
s1

1 ∈ arg max
x∈X

qx

)
= 1

2 . (16)

Moreover, note that

Pσ

(
an ∈ arg max

x∈X
qx

)
≥ Pσ

(
s1
n ∈ arg max

x∈X
qx

)
≥ 1

2 ∀n ≥ 1, (17)

where: the first inequality holds because agent n takes the best action between those he sampled;
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the second inequality holds by Lemma 1 and (16). Then, (17), together with α1 = 1 and φ1 = 1
2 ,

establishes (13) for k = 1. Assume that (13) holds for an arbitrary k, and consider some agent
n ≥ αk+1. Let Bγn be the set of agents 0 ≤ b < n that γn selects with positive probability. To
establish (13) for n ≥ αk+1, observe that

Pσ

(
an ∈ arg max

x∈X
qx

)
=

∑
b∈Bγn

Pσ

(
an ∈ arg max

x∈X
qx
∣∣ γn = b

)
Q
(
γn = b

)
≥ (1− εk)(Z(φk)− εk) ≥ φk+1,

where the inequalities follows from (14) and (15), the inductive hypothesis, the assumption that
Z is increasing, and the definitions of φk, φk+1, and εk.

Part 2. By assumption (b), Z(β) ≥ β for all β ∈ [1/2, 1]; it follows from the definition of φk that
(φk)k∈N is a non-decreasing sequence. Since it is also bounded, it converges to some φ∗. Taking the
limit in the definition of φk, we obtain 2φ∗ = 2 limk→∞ φk = limk→∞

[
φk + Z(φk)

]
= φ∗ + Z(φ∗),

where the third equality holds by continuity of Z. This shows that φ∗ is a fixed point of Z. Since
the unique fixed point of Z is 1, we have φk → 1 as k →∞, as claimed. �

C.2 Proof of Proposition 5
Proposition 5 follows by combining several lemmas, which I next present.

Let
(
s̃1
n, s̃

2
n, ãn

)
denote agent n’s coarse optimal policies when he only uses information from

his chosen neighbor. The following remark, which is obvious, states that an agent’s coarse optimal
policies coincide with the optimal one if the agent has at most one neighbor.

Remark 2. If |B(n)| ≤ 1, then
(
s̃1
n, s̃

2
n, ãn

)
= (s1

n, s
2
n, an).

Hereafter, I assume agent n samples action aγn if indifferent. This does not affect the results.
Moreover, I use the convention aγn = 1

2 ◦ 0 + 1
2 ◦ 1, where

∑
x ξ(x) ◦x denotes the mixture assigning

probability ξ(x) to action x, whenever γn = 0 (or, equivalently, B(n) = ∅).

Lemma 2. If Pσ
(
E
aγn
n | γn, aγn

)
≤ Pσ

(
E
¬aγn
n | γn, aγn

)
, then s̃1

n = aγn .

Proof. By the optimal search policy, s̃1
n ∈ arg min x∈X Pσ(Exn | cn, γn, aγn). The desired result

follows by observing that Exn is independent of cn for all x. �

The next lemma shows that Lemma 2 applies to network topologies where Q(|B(n)| ≤ 1) = 1
for all n, and so to all chosen neighbor topologies.

Lemma 3. If Q(|B(n)| ≤ 1) = 1 for all n ∈ N, then Pσ
(
E
aγn
n | γn, aγn

)
≤ Pσ

(
E
¬aγn
n | γn, aγn

)
.

Proof. Proceed by induction. The first agent has an empty neighborhood. Hence, his subnetworks
relative to the two actions are empty and the statement is vacuously true.

Now suppose Pσ
(
E
aγn
n | γn, aγn

)
≤ Pσ

(
E
¬aγn
n | γn, aγn

)
for all n ≤ k. If B(k + 1) = ∅, agent

k’s problem is identical to that of agent 1, and the desired result follows. If B(k + 1) = {b},
take γk+1({b}) = b and let (π1, . . . , πl) be the sequence of agents in B̂(k + 1) ∪ {k + 1}. That is,
π1 = min B̂(k+1), πl = k+1 and, for all g with 1 < g ≤ l, B(πg) = {πg−1}. When B̂(k+1) = {b},
the desired result trivially holds. When B̂(k + 1) contains more than one agent, the desired result
follows by observing that, under the inductive hypothesis, each agent in (π1, . . . , πl−1) finds it
optimal to sample the action taken by his immediate predecessor first. �
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Definition 9. The following objects are defined:

qmin := min{q0, q1} and qmax := max{q0, q1},

P bn(qmin) := Pσ
(
E s̃

1
n
n

∣∣ γn, qs̃1
n

= qmin

)
,

P bn(qmax) := Pσ
(
E s̃

1
n
n

∣∣ γn, qs̃1
n

= qmax

)
,

β := Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

)
.

Remark 3. For all n and γn, we have β ≥ 1
2 . That is, any agent takes the best action at least

with the same probability with which he would do so by sampling an action uniformly at random.

The next two lemmas provide an expression for the probability of agent n taking the best
action when using the coarse policies

(
s̃1
n, s̃

1
n, ãn

)
.

Lemma 4. Suppose Pσ
(
E
aγn
n | γn, aγn

)
≤ Pσ

(
E
¬aγn
n | γn, aγn

)
. Then,

Pσ
(
ãn ∈ arg max

x∈X
qx
∣∣ γn) = β + Pσ

(
s̃2
n = ¬s̃1

n | γn
)

(1− β). (18)

Proof. Note that

Pσ

(
ãn ∈ arg max

x∈X
qx
∣∣ γn

)
= Pσ

(
ãn ∈ arg max

x∈X
qx
∣∣ γn, s̃2

n = ¬s̃1
n

)
Pσ
(
s̃2
n = ¬s̃1

n | γn
)

+ Pσ

(
ãn ∈ arg max

x∈X
qx
∣∣ γn, s̃2

n = d

)
Pσ
(
s̃2
n = d | γn

)
= Pσ

(
s̃2
n = ¬s̃1

n | γn
)

(19)

+ Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

)(
1− Pσ

(
s̃2
n = ¬s̃1

n | γn
))

= Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

)

+ Pσ
(
s̃2
n = ¬s̃1

n | γn
)(

1− Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

))
.

The first equality holds by the law of total probability. The second equality holds because: (i) when
agent n samples both actions, he takes the best one, and so Pσ

(
ãn ∈ arg max x∈X qx | γn, s̃2

n =
¬s̃1

n

)
= 1; (ii) when agent n only samples one action, he takes that action, and so, since s̃1

n = aγn
by Lemma 2, Pσ

(
ãn ∈ arg max x∈X qx | γn, s̃2

n = d
)

= Pσ
(
aγn ∈ arg max x∈X qx | γn

)
. The desired

result follows from (19) and the definition of β. �

Lemma 5. Suppose Pσ
(
E
aγn
n | γn, aγn

)
≤ Pσ

(
E
¬aγn
n | γn, aγn

)
. Then,

Pσ

(
ãn ∈ arg max

x∈X
qx
∣∣ γn

)
= β + (1− β)

[
βFC

(
P bn(qmax)t∅(qmax)

)
+ (1− β)FC

(
P bn(qmin)t∅(qmin)

)]
.
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Proof. Note that

Pσ
(
s̃2
n = ¬s̃1

n | γn
)

= Pσ

(
s̃2
n = ¬s̃1

n

∣∣ γn, s̃1
n ∈ arg max

x∈X
qx

)
Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn

)

+ Pσ

(
s̃2
n = ¬s̃1

n

∣∣ γn, s̃1
n 6∈ arg max

x∈X
qx

)
Pσ

(
s̃1
n 6∈ arg max

x∈X
qx
∣∣ γn

)

= βPσ

(
s̃2
n = ¬s̃1

n

∣∣ γn, s̃1
n ∈ arg max

x∈X
qx

)
(20)

+ (1− β)Pσ

(
s̃2
n = ¬s̃1

n

∣∣ γn, s̃1
n 6∈ arg max

x∈X
qx

)
,

where: the first equality holds by the law of total probability; the second equality holds because,
by Lemma 2, s̃1

n = ab, and the definition of β. By the equilibrium characterization in Section
2.1, we have: conditional on γn and s̃1

n ∈ arg max x∈X qx, s̃2
n = ¬s̃1

n ⇐⇒ cn ≤ P bn(qmax)t∅(qmax);
conditional on γn and s̃1

n 6∈ arg max x∈X qx, s̃2
n = ¬s̃1

n ⇐⇒ cn ≤ P bn(qmin)t∅(qmin). Thus,

Pσ

(
s̃2
n = ¬s̃1

n

∣∣ γn, s̃1
n ∈ arg max

x∈X
qx

)
= FC

(
P bn(qmax)t∅(qmax)

)
,

and Pσ

(
s̃2
n = ¬s̃1

n

∣∣ γn, s̃1
n 6∈ arg max

x∈X
qx

)
= FC

(
P bn(qmin)t∅(qmin)

)
.

Hence, (20) can be rewritten as

Pσ
(
s̃2
n = ¬s̃1

n | γn
)

= βFC
(
P bn(qmax)t∅(qmax)

)
+ (1− β)FC

(
P bn(qmin)t∅(qmin)

)
. (21)

The desired result follows by combining (18) and (21). �

The improvement (1− β)[βFC(P bn(qmax)t∅(qmax)) + (1− β)FC(P bn(qmin)t∅(qmin))] in the prob-
ability that agent n takes the best action over his chosen neighbor’s probability is still unsuitable
for the analysis to come as it depends on P bn(qmin) and P bn(qmax), which are difficult to handle.
The next lemma provides a simpler lower bound on the amount of this improvement.

Lemma 6. Suppose Pσ
(
E
aγn
n | γn, aγn

)
≤ Pσ

(
E
¬aγn
n | γn, aγn

)
. Then,

Pσ

(
ãn ∈ arg max

x∈X
qx
∣∣ γn

)
≥ β + (1− β)2

FC
(

(1− β)t∅(qmax)
)
.

Proof. If at least one of the agents in B̂(n, aγn) samples both actions, then aγn ∈ arg max x∈X qx.
Thus, β ≥ 1− Pσ

(
E
aγn
n | γn

)
, or

1− β ≤ Pσ
(
Eaγnn | γn

)
. (22)

Moreover, by the law of total probability,

Pσ
(
Eaγnn | γn

)
= Pσ

(
Eaγnn

∣∣ γn, aγn ∈ arg max
x∈X

qx

)
Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

)

+ Pσ

(
Eaγnn

∣∣ γn, aγn 6∈ arg max
x∈X

qx

)
Pσ

(
aγn 6∈ arg max

x∈X
qx
∣∣ γn

)
(23)

= βP bn(qmax) + (1− β)P bn(qmin).
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Combining (22) and (23) yields 1− β ≤ βP bn(qmax) + (1− β)P bn(qmin), and therefore

max
{
P bn(qmin), P bn(qmax)

}
≥ 1− β. (24)

Finally, observe that

(1− β)
[
βFC

(
P bn(qmax)t∅(qmax)

)
+ (1− β)FC

(
P bn(qmin)t∅(qmin)

)]
≥ (1− β)

[
(1− β)FC

(
P bn(qmax)t∅(qmax)

)
+ (1− β)FC

(
P bn(qmin)t∅(qmin)

)]
= (1− β)2

[
FC
(
P bn(qmax)t∅(qmax)

)
+ FC

(
P bn(qmin)t∅(qmin)

)]
(25)

≥ (1− β)2
[
FC
(
P bn(qmax)t∅(qmax)

)
+ FC

(
P bn(qmin)t∅(qmax)

)]
≥ (1− β)2 max

{
FC
(
P bn(qmax)t∅(qmax)

)
, FC

(
P bn(qmin)t∅(qmax)

)}
≥ (1− β)2

FC
(

(1− β)t∅(qmax)
)
.

Here, the first inequality holds as β ≥ (1− β) (by Remark 3, β ≥ 1/2); the second inequality holds
as t∅(qmax) ≤ t∅(qmin) and the CDF FC is increasing; the third inequality holds because FC is
non-negative; the last inequality follows as max{FC(P bn(qmax)t∅(qmax)), FC(P bn(qmin)t∅(qmax))} ≥
FC((1− β)t∅(qmax)), which holds because of (24) and the fact that FC is increasing. The desired
result follows from Lemma 5 and (25). �

To study the limiting behavior of improvements, I define the function Z : [1/2, 1]→ [1/2, 1] as

Z(β) := β + (1− β)2
FC
(

(1− β)t∅(qmax)
)
. (26)

Hereafter, I call (1− β)2
FC((1 − β)t∅(qmax)) the improvement term of function Z. Lemma 6

establishes that, when Pσ
(
E
aγn
n | γn, aγn

)
≤ Pσ

(
E
¬aγn
n | γn, aγn

)
, we have

Pσ

(
ãn ∈ arg max

x∈X
qx
∣∣ γn

)
= Z

(
Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

))
.

That is, the function Z acts as an improvement function for the evolution of the probability of
taking the best action. The next lemma presents some useful properties of Z.

Lemma 7. The function Z, defined by (26), satisfies the following properties:
(a) For all β ∈ [1/2, 1], Z(β) ≥ β.
(b) If search costs are not bounded away from 0, then Z(β) > β for all β ∈ [1/2, 1).
(c) It is left-continuous and has no upward jumps: Z(β) = limr↑β Z(r) ≥ limr↓β Z(r).

Proof. Since FC is a CDF and (1− β)2 ≥ 0, the improvement term of function Z is always
non-negative. Part (a) follows. For all β ∈ [1/2, 1), (1− β)t∅(qmax) > 0 and so, if search costs are
not bounded away from 0, FC((1− β)t∅(qmax)) > 0.4 Since also (1− β)2

> 0 for all β ∈ [1/2, 1),
the improvement term of function Z is positive. Part (b) follows.

For part (c), set α := (1− β)t∅(qmax). Since FC is a CDF, it is right-continuous and has no
downward jumps in α. Hence, FC is left-continuous and has no upward jumps in β. Since β
and (1− β)2 are continuous functions of β, and so also left-continuous with no upward jumps,

4Note that t∅(qmax) = 0 if qa1
b

= qmax = max supp
(
PQ
)

whenever such max exists. However, in such
cases, we would trivially have β = 1, which is not the case considered here.
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the desired result follows because products and sums of left-continuous functions with no upward
jumps are left-continuous with no upward jumps. �

Next, I construct a related function Z that is monotone and continuous while maintaining the
same improvement properties of Z. In particular, define Z : [1/2, 1]→ [1/2, 1] as

Z(β) := 1
2

(
β + sup

r∈[1/2,β]
Z(r)

)
. (27)

Lemma 8. The function Z, defined by (27), satisfies the following properties:
(a) For all β ∈ [1/2, 1], Z(β) ≥ β.
(b) If search costs are not bounded away from 0, then Z(β) > β for all β ∈ [1/2, 1).
(c) It is increasing and continuous.

Proof. Parts (a) and (b) immediately result from the corresponding parts of Lemma 7. The
function supr∈[1/2,β]Z(r) is non-decreasing and the function β is increasing. Thus, the average
of these two functions, which is Z, is increasing, establishing the first part of (c). I establish
continuity of Z in [1/2, 1) by contradiction. Suppose Z is discontinuous at some β′ ∈ [1/2, 1). If
so, supr∈[1/2,β]Z(r) is discontinuous at β′. Since supr∈[1/2,β]Z(r) is non-decreasing, it must be
that limβ↓β′ supr∈[1/2,β]Z(r) > supr∈[1/2,β′]Z(r), from which it follows that there is some ε > 0
such that, for all δ > 0, supr∈[1/2,β′+δ]Z(r) > Z(β) + ε for all β ∈ [1/2, β′). This contradicts that
Z has no upward jumps, which was established by Lemma 7–(c). Continuity of Z at β = 1 follows
from part (a). �

The next lemma shows that the function Z is also an improvement function for the evolution
of the probability of taking the best action.

Lemma 9. Suppose Pσ
(
E
aγn
n | γn, aγn

)
≤ Pσ

(
E
¬aγn
n | γn, aγn

)
. Then,

Pσ

(
ãn ∈ arg max

x∈X
qx
∣∣ γn

)
≥ Z

(
Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

))
.

Proof. If Z(β) = β, the result follows from Lemma 5. Suppose next that Z(β) > β. By (27), this
implies that Z(β) < supr∈[1/2,β]Z(r). Thus, there is β ∈ [1/2, β] such that

Z(β) ≥ Z(β). (28)

I next show that Pσ
(
ãn ∈ arg max x∈X qx | γn

)
≥ Z(β), from which the desired result follows.

Agent n can always make his decision even coarser by observing a fictitious agent whose action,
denoted by ãγn , is generated as

ãγn =


aγn with probability (2β − 1)/(2β − 1)

0 with probability (β − β)/(2β − 1)

1 with probability (β − β)/(2β − 1)

, (29)

with the realization of ãγn independent of the rest of n’s information set. Let ˜̃an denote the
choice of agent n upon observing the choice of the fictitious agent. Under the assumption
Pσ
(
E
aγn
n | γn

)
≤ Pσ

(
E
¬aγn
n | γn

)
, we have

Pσ
(
Eãγnn | γn

)
≤ Pσ

(
E¬ãγnn | γn

)
. (30)
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Moreover, note that

Pσ

(
ãγn ∈ arg max

x∈X
qx
∣∣ γn

)
= Pσ

(
aγn ∈ arg max

x∈X
qx
∣∣ γn

)
2β − 1
2β − 1

+ Pσ

(
0 ∈ arg max

x∈X
qx
∣∣ γn

)
β − β
2β − 1

+ Pσ

(
1 ∈ arg max

x∈X
qx
∣∣ γn

)
β − β
2β − 1 (31)

= β
2β − 1
2β − 1 + (β + (1− β)) β − β2β − 1

= β.

From Lemma 6, (30), and (31), it follows that

Pσ

(˜̃an ∈ arg max
x∈X

qx
∣∣ γn

)
≥ Z(β). (32)

By the characterization of the equilibrium decision s1
n in Section 2.1, we have Pσ

(
E
s̃1
n
n | I1

n

)
≤

Pσ
(
E ˜̃an
n | I1

n

)
. Let b be agent n’s chosen neighbor. By integrating over all possible search

costs, choices of the agents in the neighborhood, and neighborhoods such that γn = b, we have
Pσ
(
E
s̃1
n
n | γn = b

)
≤ Pσ

(
E ˜̃an
n | γn = b

)
. Then, conditional on γn = b, the distribution of the quality

of action s̃1
n first-order stochastically dominates or is the same as that of action ˜̃an. It follows that

Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn

)
≥ Pσ

(˜̃an ∈ arg max
x∈X

qx
∣∣ γn

)
. (33)

Finally, since agent n takes the best action between those he sampled,

Pσ

(
ãn ∈ arg max

x∈X
qx
∣∣ γn

)
≥ Pσ

(
s̃1
n ∈ arg max

x∈X
qx
∣∣ γn

)
. (34)

The desired result follows from (32), (33), and (34). �

It remains to show that an does at least as well as its coarse version ãn given γn. This is
established with the next lemma and completes the proof of Proposition 5.

Lemma 10. For all n ∈ N, we have

Pσ

(
an ∈ arg max

x∈X
qx | γn

)
≥ Pσ

(
ãn ∈ arg max

x∈X
qx | γn

)
.

Proof. Fix any agent n. If |B(n)| ≤ 1, then ãn = an by Remark 2, and the desired result follows.
Now suppose |B(n)| > 1, and let b be agent n’s chosen neighbor. By the characterization of the
equilibrium decision s1

n in Section 2.1, we have Pσ
(
E
s1
n
n | I1

n

)
≤ Pσ

(
Eãnn | I1

n

)
. By integrating

over all possible search costs, choices of the agents in the neighborhood, and neighborhoods such
that γn = b, we have Pσ

(
E
s1
n
n | γn = b

)
≤ Pσ

(
Eãnn | γn = b

)
. Then, conditional on γn = b, the

distribution of the quality of action s1
n first-order stochastically dominates or is the same as that

of action ãn. Hence, Pσ
(
s1
n ∈ arg max x∈X qx | γn = b

)
≥ Pσ

(
ãn ∈ arg max x∈X qx | γn = b

)
. Since
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agent n takes the best action between those he sampled, we have Pσ
(
an ∈ arg max x∈X qx | γn =

b
)
≥ Pσ

(
s1
n ∈ arg max x∈X qx | γn = b

)
. The desired result follows. �

D Proof of Theorem 2
Fix ω ∈ Ω(c). Let Pωσ denote the probability measure of

((
s1
n, s

2
n, an

))
n∈N when the state is ω. I

show that

lim
n→∞

Pωσ

(
an ∈ arg max

x∈X
qx

)
= 1. (35)

If q0 = q1, there is nothing to prove. Hereafter, suppose q0 6= q1. To establish (35), I first show
that (35) holds once we restrict attention to agents in S and then extend the result to all agents.

Part 1. Let x∗ := arg max x∈X qx. If B(n) = ∅, agent n takes the best action when he samples
action x∗ first, which occurs with probability 1/2, and when he samples action ¬x∗ first and
cn ≤ t∅(q¬x∗). Since ω ∈ Ω(c) and q0 6= q1, the latter event occurs with positive probability.
Therefore, an = x∗ with probability α > 1/2.

If B(n) = B∅n, by condition (iii) in Theorem 2, agent n knows he is observing only the choices
of all his isolated predecessors. Thus, n’s optimal first search decision depends on the relative
shares of choices he observes. In particular, as B(n) = B̂(n),

s1
n =

0 if |B̂(n, 0)| > |B̂(n, 1)|

1 if |B̂(n, 0)| < |B̂(n, 1)|
,

and agent n samples the first action uniformly at random if |B̂(n, 0)| = |B̂(n, 1)|. To see why, note
that |B̂(n, x)| > |B̂(n,¬x)| ⇐⇒ Pn(x) < Pn(¬x), where Pn(·) is the probability defined by (1).

By condition (ii) in Theorem 2, there are infinitely many isolated agents. Moreover, isolated
agents’ choices are independent. Thus, by the weak law of large numbers, the ratio |B̂(n, x∗)|/n
converges in probability to α and the ratio |B̂(n,¬x∗)|/n converges in probability to 1 − α as
n→∞ with respect to Pωσ conditional on B(n) = B∅n. Hence,

lim
n→∞

Pωσ
(
|B̂(n, x∗)| > |B̂(n,¬x∗)|

∣∣ B(n) = B∅n

)
= 1. (36)

Finally, we have

1 ≥ Pωσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ n ∈ S)

= Pωσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ B(n) = ∅

)
Q
(
B(n) = ∅ | n ∈ S

)

+ Pωσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ B(n) = B∅n

)
Q
(
B(n) = B∅n | n ∈ S

)
(37)

= 1
2Q
(
B(n) = ∅ | n ∈ S

)
+ Pωσ

(
|B̂(n, x∗)| > |B̂(n,¬x∗)|

∣∣ B(n) = B∅n

)
Q
(
B(n) = B∅n | n ∈ S

)
.

Here: the first equality holds by the law of total probability; the second equality holds by the
optimal first search policy for agents in S characterized above.

26



By (36), (37), and since limn→∞Q(B(n) = B∅n | n ∈ S) = 1 by condition (ii) in Theorem 2, we
have

lim
n→∞

Pωσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ n ∈ S) = 1.

Since each agent takes the best action between those he sampled, the desired result follows.

Part 2. Consider now any agent n ∈ N. By the characterization of the equilibrium decision s1
n in

Section 2.1, we have Pσ
(
E
s1
n
n | I1

n

)
≤ Pσ

(
Eabn | I1

n

)
for all b ∈ B(n). By integrating over all possible

search costs and choices of agents in the neighborhood, we obtain Pσ
(
E
s1
n
n | B(n)

)
≤ Pσ

(
Eabn | B(n)

)
for all b ∈ B(n). Thus, conditional on B(n), the distribution of the quality of action s1

n first-order
stochastically dominates or is the same as that of action ab for all b ∈ B(n). Hence,

Pωσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ B(n)

)
≥ max
b∈B(n)

Pωσ

(
ab ∈ arg max

x∈X
qx
∣∣ B(n)

)
. (38)

By condition (v) in Theorem 2, for all ε, η > 0, there is Nεη ∈ N such that, for all n > Nεη, with
probability at least 1− η,

max
b∈B(n)

Pωσ

(
ab ∈ arg max

x∈X
qx
∣∣ B(n)

)
≥ max
b∈B(n)

Pωσ

(
ab ∈ arg max

x∈X
qx

)
− ε. (39)

Thus, by (38) and (39), for all ε, η > 0, there is Nεη ∈ N such that, for all n > Nεη, with probability
at least 1− η,

Pωσ

(
s1
n ∈ arg max

x∈X
qx
∣∣ B(n)

)
≥ max
b∈B(n)

Pωσ

(
ab ∈ arg max

x∈X
qx

)
− ε (40)

By (40), for all ε̃ > 0, there is Nε̃ ∈ N such that, for all n > Nε̃,

1 ≥ Pωσ

(
s1
n ∈ arg max

x∈X
qx

)

≥ Eωσ

[
max

b∈B(n)∩S
Pωσ

(
ab ∈ arg max

x∈X
qx

)]
− ε̃ (41)

≥ Eωσ

[
max

b∈B(n)∩S
Pωσ

(
ab ∈ arg max

x∈X
qx

) ∣∣ max
b∈B(n)∩S

b ≥ K
]
Q
(

max
b∈B(n)∩S

≥ K
)
− ε̃

for all K ∈ N. Since agents n ∈ S take the best action with probability 1 as n→∞,

lim
n→∞

Eωσ

[
max

b∈B(n)∩S
Pωσ

(
ab ∈ arg max

x∈X
qx

) ∣∣ max
b∈B(n)∩S

b ≥ K
]

= 1. (42)

Moreover, by condition (iv) in Theorem 2,

lim
n→∞

Q
(

max
b∈B(n)∩S

b ≥ K
)

= 1. (43)

From (41)–(43), we have limn→∞ Pωσ
(
s1
n ∈ arg max x∈X qx

)
= 1. Since each agent takes the best

action between those he sampled, the desired result follows. �
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E Equilibrium Strategies in OIP Networks
Let P1(q) be the posterior probability that agent 1 did not sample both actions given that the
action he takes has quality q.

Lemma 11. In OIP networks, equilibrium search policies are as follows:
(i) At the first search, s1

n = an−1 for all n ≥ 2.
(ii) At the second search, for all n ≥ 2:

(a) s2
n = d if ¬an−1 is revealed inferior to agent n.

(b) s2
n = ¬an−1 if ¬an−1 is not revealed inferior to agent n, and

cn ≤ tn
(
qs1
n

)
:=

P1

(
qs1
n

)
t∅
(
qs1
n

)
if n = 2

P1

(
qs1
n

)[∏n−1
i=2

(
1− FC

(
ti
(
qs1
n

)))]
t∅
(
qs1
n

)
if n > 2.

(44)

Proof. Part (i) follows by induction. Consider agent 2 and his conditional belief over Ω given that
agent 1 has taken action a1. For action ¬a1, only two cases are possible:

1. Agent 1 sampled ¬a1. If so, q¬a1 ≤ qa1 , as agent 1 took the best action. If agent 2 knew
this to be the case, his conditional belief on Ω is PΩ|qa1≥q¬a1

.
2. Agent 1 did not sample ¬a1. If agent 2 knew this to be the case, his posterior belief on the

quality of action ¬a1 is the same as the prior PQ.
Under Assumption 1, the first case occurs with positive probability. Thus, agent 2’s belief about
the quality of action a1 strictly first-order stochastically dominates that about the quality of action
¬a1. That s1

2 = a1 follows.
Consider any agent n > 2. Suppose all agents up to n − 1 follow this strategy, and that

agent n − 1 takes action an−1. If action ¬an−1 is revealed inferior to agent n, it must be that
q¬an−1 ≤ qan−1 , and so ¬an−1 is not sampled at all. If action ¬an−1 is not revealed inferior to
agent n, by the same logic as before, n’s belief about the quality of action an−1 strictly first-order
stochastically dominates his belief about the quality of action ¬an−1. That s1

n = an−1 follows.

For part (ii)–(a), suppose ¬an−1 is revealed inferior to agent n ≥ 2. Then, aj = ¬an−1 and
aj+1 = an−1 for some j, j + 1 ∈ B(n). By part (i), s1

j+1 = ¬an−1. Since agents can only take an
action they sampled, it must be that s2

j+1 = an−1. Then, as agents take the best action whenever
they sample both of them, qan−1 ≥ q¬an−1 . That s2

n = d follows.

For part (ii)–(b), consider any agent n ≥ 2 and suppose ¬an−1 is not revealed inferior to n. In
OIP networks, B̂(n) = {1, . . . , n− 1}. Moreover, by part (i), each agent samples first the action
taken by his immediate predecessor. Thus, none of the agents in B̂

(
n, s1

n

)
sampled action ¬s1

n if
and only if s1

1 = s1
n, and s2

i = d for 1 ≤ i ≤ n−1. The thresholds in (44) provide an explicit formula
for (4) in OIP networks. To see why, proceed by induction. First, consider agent 2. By part (i),
s1

2 = a1. Let P1

(
qs1

2

)
be the probability that agent 1 did not sample action ¬s1

2 given that action

s1
2 of quality qs1

2
was taken. Agent 2’s expected gain from the second search is P1

(
qs1

2

)
t∅
(
qs1

2

)
,

which is the first line on the right-hand side of (44). Next, consider any agent n > 2. Let s1
n

be the action agent n samples first. By part (i) and the inductive hypothesis, and since search
costs are i.i.d. across agents, the probability that no agent in {1, . . . , n− 1} sampled action ¬s1

n is
P1

(
qs1
n

)[∏n−1
i=2

(
1− FC

(
ti
(
qs1
n

)))]
. Hence, the second line on the right-hand side of (44) gives

agent n’s expected gain from the second search. The optimality of the proposed search policy
follows from the equilibrium characterization in Section 2.1. �
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Remark 4. By Lemma 11, the probability of none of the first n agents sampling both actions is
the same in all OIP networks, and thus so is the probability of agent n taking the best action.

F Proof of Theorem 3

Fix any ω ∈ Ω(c) such that q0 6= q1 and FC(t∅(min{q0, q1})) < 1. Let Pωσ denote the probability
measure of

((
s1
n, s

2
n, an

))
n∈N when the state is ω. I show that lim supn→∞ Pωσ

(
s2
k = d ∀ k ∈

B̂(n) ∪ {n}
)
> 0. That is, there is a subsequence of agents who, with probability bounded away

from 0, do not compare the quality of the two actions. But then, since the only way to ascertain
the relative quality of the two actions is to sample both of them, we have lim infn→∞ Pωσ

(
an ∈

arg max x∈X qx
)
< 1. By Assumption 1, the probability that the state ω satisfies q0 6= q1 and

FC(t∅(min{q0, q1})) < 1 is positive, and so that maximal learning fails follows.

Proof of Theorem 3, part (i). Since the network topology has non-expanding subnetworks,
there are some K ∈ N, some ε > 0, and a subsequence of agents N such that

Q
(
|B̂(n)| < K

)
≥ ε for all n ∈ N . (45)

For all n ∈ N , we have

Pωσ
(
s2
k = d ∀ k ∈ B̂(n) ∪ {n}

)
= Pωσ

(
s2
k = d ∀ k ∈ B̂(n) ∪ {n}

∣∣ |B̂(n)| < K
)
Q
(
|B̂(n)| < K

)
+ Pωσ

(
s2
k = d ∀ k ∈ B̂(n) ∪ {n}

∣∣ |B̂(n)| ≥ K
)
Q
(
|B̂(n)| ≥ K

)
(46)

≥ Pωσ
(
s2
k = d ∀ k ∈ B̂(n) ∪ {n}

∣∣ |B̂(n)| < K
)
Q
(
|B̂(n)| < K

)
≥ εPωσ

(
s2
k = d ∀ k ∈ B̂(n) ∪ {n}

∣∣ |B̂(n)| < K
)
,

where: the equality holds by the law of total probability; the last inequality holds by (45).
Let C := {c ∈ C : c > t∅(min{q0, q1})} be the set of all search costs for which an isolated agent

does not sample the second action independently of which action he samples first. Any other agent k
with search cost ck ∈ C does not sample the second action either independently of his neighborhood
realization, the choices of his neighbors, and the quality of the first action sampled (see Section
2.1). Then, as |B̂(n)| < K ⇐⇒ |B̂(n) ∪ {n}| ≤ K and search costs are i.i.d. across agents,

Pωσ
(
s2
k = d ∀ k ∈ B̂(n) ∪ {n}

∣∣ |B̂(n)| < K
)
≥ Pωσ

(
c1 ∈ C

)K
> 0, (47)

where the strict inequality holds because FC(t∅(min{q0, q1})) < 1 by assumption. As ε > 0, from
(46) and (47) we conclude that Pωσ

(
s2
k = d ∀ k ∈ B̂(n)∪{n}

)
> 0 for all agents n in the subsequence

N . The desired result follows. �

Proof of Theorem 3, part (ii)–(a). Let q be the quality of the action agent 1 takes. By way of
contradiction, suppose the probability of no agent in B̂(n)∪{n} sampling both actions converges to
0 as n→∞. That is, limn→∞ P1(q)[

∏n
i=2(1−FC(ti(q)))] = 0 (see Lemma 11 and its proof). Hence,

the expected gain from the second search for agent n+ 1, given by P1(q̂)[
∏n
i=2(1− FC(ti(q̂)))]t∅(q̂)

(see Lemma 11), where q̂ is the quality of the action taken by agent n, also converges to 0 as
n→∞. Then, there is an agent Nq̂ + 1 for which the expected gain from the second search falls
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below c.
Without loss, assume q0 < q1. With positive probability, agent 1 samples action 0 first and

does not sample action 1 (by assumption, FC(t∅(q0)) < 1). Now suppose the first Nq0 agents all
have costs larger than t∅(q0), which occurs with positive probability. By Lemma 11, each of these
agents will sample action 0 first, and none of these agents will search further. Hence, all will take
action 0. Agent Nq0 + 1 also samples action 0 first and discontinues searching because his expected
gain from the second search is smaller than c. Since the expected gain from the second search is
non-increasing in n, there will be no further search by agents Nq0 + 1 onward, contradicting that
the probability of no agent in B̂(n) ∪ {n} sampling both actions converges to 0. �

Proof of Theorem 3, part (ii)–(b). Pick a sequence of agents (π1, π2, . . . , πk, πk+1, . . . ) with
B(π1) = ∅ and πk ∈ B(πk+1) for all k. Such a sequence must exist with probability 1; otherwise,
the network topology has non-expanding subnetworks, and maximal learning fails. Moreover, by
Lemma 3, each agent in this sequence samples first the action taken by his neighbor.

By way of contradiction, suppose the probability of no agent in B̂(πk) ∪ {πk} sampling both
actions converges to 0 as k →∞ for all q that the first action sampled by agent π1 can take. That
is, limk→∞ Pπk+1(q) = 0, where Pπk+1(·) is the probability defined by (3). Thus, the expected gain
from the second search for agent πk+1, given by Pπk+1(q̂)t∅(q̂), where q̂ is the quality of the action
taken by πk, also converges to 0 as k →∞. Then, there is an agent πKq̂ + 1 for which the expected
gain from the second search falls below c, and remains below this threshold for the agents in the
sequence moving after πKq̂ + 1.

By Assumption, q0 6= q1. Without loss, assume q0 < q1. With positive probability, agent π1

samples action 0 at the first search and does not sample action 1 (by assumption, FC(t∅(q0)) < 1).
Now suppose the first Nq0 agents all have costs larger than t∅(q0), which occurs with positive
probability. By Lemma 3, each of these agents will sample action 0 first, and none of these agents
will search further. Therefore, all will take action 0. Agent πKq0

+ 1 also samples action 0 first
and discontinues searching because his expected gain from the second search is smaller than c.
Since the expected gain from the second search remains smaller than c afterward, there will be
no further search by agents in the sequence moving after agent πKq0

+ 1, contradicting that the
probability of no agent in B̂(πk) ∪ {πk} sampling both actions converges to 0. �

G Proof of Theorem 4
The proof builds on a technique developed by Lobel et al. (2009), which approximates a lower
bound on the convergence rate with an ordinary differential equation.

Proof of part (a). It is enough to construct a function φ̃ : R+ → R such that, for all n,

Pσ

(
an ∈ arg max

x∈X
qx

)
≥ φ̃(n) and 1− φ̃(n) = O

(
1

n
1

K+1

)
.

By Proposition 1, the convergence rate to the best action in all OIP networks is the same as in
the OIP network where each agent observes only his immediate predecessor. Thus, consider the
OIP network where Q(B(n) = B1

n) = 1 for all n ∈ Nand the sequence of neighbor choice function

30



(γn)n∈N where, for all n, γn = n− 1. By Remark 2 and Lemma 6,

Pσ

(
an+1 ∈ arg max

x∈X
qx

)
≥ Pσ

(
an ∈ arg max

x∈X
qx

)

+
(

1− Pσ

(
an ∈ arg max

x∈X
qx

))2

FC

((
1− Pσ

(
an ∈ arg max

x∈X
qx

))
t∅(qmax)

)
.

(48)

Since search costs have a polynomial shape, from (48) we have

Pσ

(
an+1 ∈ arg max

x∈X
qx

)
≥ Pσ

(
an ∈ arg max

x∈X
qx

)
+Lt∅(qmax)

K

(
1− Pσ

(
an ∈ arg max

x∈X
qx

))K+2

.

Now I build on the proof of Proposition 2 in Lobel et al. (2009) to construct the function φ̃.
To apply their construction, the right-hand side of the previous inequality must be increasing in
Pσ
(
an ∈ arg max x∈X qx

)
. This is so under the assumption 0 < L < 2K+1/(K+2)t∅(q)K . Adapting

Lobel et al. (2009)’s procedure to my setup gives that the function φ̃ we are looking for is

φ̃(n) = 1−

 1
(K + 1)Lt∅(qmax)K

(
n+K

)


1
K+1

,

where K is some constant of integration (φ̃ is the solution to an ordinary differential equation). �

Proof of part (b). It is enough to construct a function φ̃ : R+ → R such that, for all n,

Pσ

(
an ∈ arg max

x∈X
qx

)
≥ φ̃(n) and 1− φ̃(n) = O

(
1

(logn)
1

K+1

)
.

Under the assumptions of the proposition,

Pσ

(
an+1 ∈ arg max

x∈X
qx

)
= 1
n

n∑
b=1

Pσ

(
an+1 ∈ arg max

x∈X
qx
∣∣ B(n+ 1) = {b}

)

= 1
n

[
Pσ

(
an+1 ∈ arg max

x∈X
qx
∣∣ B(n+ 1) = {n}

)
+ (n− 1)Pσ

(
an ∈ arg max

x∈X
qx

)]

because, conditional on observing the same agent b < n, agents n and n + 1 have identical
probabilities taking the best action. By Remark 2 and Lemma 6, and since search costs have a
polynomial shape, we obtain that

Pσ

(
an+1 ∈ arg max

x∈X
qx

)
≥ Pσ

(
an ∈ arg max

x∈X
qx

)
+Lt∅(qmax)K

n

(
1− Pσ

(
an ∈ arg max

x∈X
qx

))K+2

.

Now I build on the proof of Proposition 3 in Lobel et al. (2009) to construct the function φ̃.
To apply their construction, the right-hand side of the previous inequality must be increasing in
Pσ
(
s1
n ∈ arg max x∈X qx

)
. This is so under the assumption 0 < L < 2K+1/(K+2)t∅(q)K . Adapting
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Lobel et al. (2009)’s procedure to my setup gives that the function φ̃ we are looking for is

φ̃(n) = 1−

 1
(K + 1)Lt∅(qmax)K

(
logn+K

)


1
K+1

,

where K is some constant of integration (φ̃ is the solution to an ordinary differential equation). �

H Proofs for Section 4.2

Let δ ∈ (0, 1) be the discount factor. Define t1(q) := t∅(q) for all q ∈ Q. Suppose agent 1 samples
first action x with quality qx. Let q¬x be a random variable with probability measure PQ.

The equilibrium expected discounted social utility normalized by (1 − δ) (hereafter simply
referred to as social utility) in the complete network is

UCσ (qx; δ) = qx + t1(qx)− (1− δ)
∞∑
n=1

δn
(

n∏
i=1

(
1− FC

(
ti
(
qx
))))

t1(qx)

− (1− δ)PQ(q¬x > qx)
∞∑
n=1

δnEPC
[
c | c ≤ tn(qx)

]
FC(tn(qx))

n−1∏
i=1

(
1− FC(ti(qx))

)
− (1− δ)PQ(q¬x ≤ qx)

∞∑
n=1

δnEPC
[
c | c ≤ tn(qx)

]
FC(tn(qx)).

Here, the first term is the quality of the first action sampled and the second term is the expected
gain from the second unsampled action. From this, we subtract the sum of the period n discounted
gain from the unsampled action times the probability it was not sampled from period 1 to n.
Further, we subtract the expected discounted cost of search, which consists of two parts. The
first part is the expected discounted cost of search when q¬x > qx. In this case, after agent n
samples both actions, action x is revealed inferior in equilibrium to all agents moving after agent n.
Therefore, no agent m > n will sample action x again. The second part is the expected discounted
cost of search when q¬x ≤ qx. In this case, after agent n samples both actions, action ¬x is inferior
in equilibrium, but not revealed so to the agents moving after n. Therefore, all agents m > n with
cm ≤ tm(qx) will sample action ¬x again.

The social utility when each agent observes only his most immediate predecessor is

U1
σ(qx; δ) = UCσ (qx; δ)− (1− δ)PQ(q¬x > qx)

·
∞∑
n=1

δnEPQ
[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

](
1−

n−1∏
i=1

(
1− FC(ti(qx))

))
.

U1
σ(qx; δ) has the same interpretation as UCσ (qx; δ), except for the cost of search when q¬x > qx,

which now contains an additional term. This is so because agents that observe only their most
immediate predecessor fail to recognize actions that are revealed inferior by the time of their move.
Hence, even if agent n samples both actions and q¬x > qx, all agents m > n with cm ≤ tm(q¬x)
will now sample action x again. Since the quality of action ¬x is unknown, the expected cost of
this additional search is EPQ [EPC [c | c ≤ tn(q¬x)]FC(tn(q¬x)) | q¬x > qx].

Let UOIPσ (qx; δ) be the social utility in some arbitrary OIP network. The next lemma is
immediate from the discussion in Section 4.2.

32



Lemma 12. For all qx ∈ Q and δ ∈ (0, 1), we have UCσ (qx; δ) ≥ UOIPσ (qx; δ) ≥ U1
σ(qx; δ).

Finally, let UDM (qx; δ) denote the social utility that is implemented by the social planner in
any OIP network after sampling action x with quality qx at the first search in period 1. I Refer
to Section III.A. in MFP for the derivation of UDM (qx; δ). Since the social planner’s problem is
the same in all OIP networks, their derivation applies unchanged to my setting.

H.1 Proof of Proposition 2
The difference in average social utilities, UCσ (qx; δ)− U1

σ(qx; δ), is

UCσ (qx; δ)− U1
σ(qx; δ) = (1− δ)PQ(q¬x > qx)

·
∞∑
n=1

δnEPQ
[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

](
1−

n−1∏
i=1

(
1− FC(ti(qx))

))
.

(49)

As (49) is positive for all δ ∈ (0, 1), that UCσ (qx; δ) > U1
σ(qx; δ) for all δ ∈ (0, 1) follows. To show

that limδ→1[UCσ (qx; δ)− U1
σqx; δ)] = 0, we need to show that the right-hand side of (49) converges

to 0 as δ → 1. To do so, it is enough to argue that
∑∞
n=1 δ

nEPQ
[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) |

q¬x > qx
]

is finite. Notice that

0 ≤
∞∑
n=1

δnEPQ
[
EPC

[
c | c ≤ tn(q¬x)

]
FC(tn(q¬x)) | q¬x > qx

]
≤
∞∑
n=1

δnEPQ
[
tn(q¬x)FC(tn(q¬x)) | q¬x > qx

]
≤
∞∑
n=1

δn sup
q>qx

tn(q)FC(tn(q))

≤
∞∑

n=n̄+1
δn sup

q>qx
tn(q)FC(tn(q)) + n̄ sup

q>qx
t∅(q)

≈
∞∑

n=n̄+1
δn sup

q>qx

(
tn(q)

)2
fC(0) + n̄ sup

q>qx
t∅(q)

≈
∞∑

n=n̄+1
δn sup

q>qx

(
t∅(q)

)2 1
fC(0)n2 + n̄ sup

q>qx
t∅(q),

where n̄ is large enough for tn(q) to be close to 0. Since
∑∞
n=n̄+1

1
n2 and n̄ supq>qx t

∅(q) are finite,
the desired result follows. �

H.2 Proof of Proposition 3
Suppose c = 0. By Proposition 2, Lemma 12, and the sandwich theorem for limits, limδ→1 U

OIP
σ (qx; δ) =

limδ→1 U
C
σ (qx; δ). By Proposition 3 in MFP, limδ→1 U

C
σ (qx; δ) = limδ→1 U

DM (qx; δ). That
limδ→1 U

OIP
σ (qx; δ) = limδ→1 U

DM (qx; δ) follows by the uniqueness of the limit.
Suppose limδ→1 U

OIP
σ (qx; δ) = limδ→1 U

DM (qx; δ). As the complete network is an OIP network,
limδ→1 U

C
σ (qx; δ) = limδ→1 U

DM (qx; δ). That c = 0 follows from Proposition 3 in MFP.�
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I More than Two Actions

I.1 Collective Search Environment
Suppose the set of actions is X := {0, 1, . . . , N}, where N > 1. Qualities q0, q1, . . . , qN are i.i.d.
draws from a probability measure PQ over Q ⊆ R+ and the state of the world is ω := (q0, q1, . . . , qN ).
The model remains otherwise the same, with obvious adjustments.

I.1.1 Equilibrium Strategies

Choice. Agent n takes the best between sampled actions, randomizing uniformly if indifferent.

First Search. Fix n and σ−n. For all x, x′ ∈ X, let Ex,x′n be the event that occurs when none of
the agents in B̂(n, x) sampled action x′. Given I1

n, agent n computes the conditional probabilities
Pn(x, x′) := Pσ−n

(
Ex,x

′

n | I1
n

)
for all x, x′ ∈ X. If Pn(x, x′) < Pn(x′, x), agent n’s belief about the

quality of action x strictly first-order stochastically dominates his belief about the quality of action
x′. Thus, by comparing Pn(x, x′) with Pn(x′, x) for all x, x′ ∈ X, agent n can rank his beliefs
about the quality of all actions in terms of first-order stochastic dominance. In particular, define
the linear order % on X as follows: x % x′ ⇐⇒ Pn

(
x, x′

)
≤ Pn

(
x′, x

)
. By Weitzman (1979)’s and

Gergatsouli and Tzamos (2023)’s optimal search rule, at the first search, agent n: samples the
%-maximal element of X if there is only one such element; samples uniformly at random one of
the %-maximal elements of X if there are multiple such elements.

k-th Search, k ≥ 2. Let Ikn be agent n’s information set after sampling k − 1 actions, Skn the
set of the first k − 1 actions sampled by agent n, and x∗ ∈ arg max x∈Skn qx. Agent n samples an
additional action if and only if the expected gain from doing is no less than his search cost.
• If B(n) = ∅, and cn ≤ EPQ [max{q− qx∗ , 0}], agent n samples uniformly at random an action

in X \ Skn.

• If B(n) 6= ∅, agent n benefits from sampling action x′ ∈ X \ Skn if and only if ES
k
n,x
′

n :=⋂
x∈Skn E

x,x′

n has occurred. Thus, he samples an action in arg max x′∈X\Skn Pσ−n
(
E
Skn,x

′

n | Ikn
)

uniformly at random if cn ≤ maxx′∈X\Skn Pσ−n
(
E
Skn,x

′

n | Ikn
)
EPQ [max{q − qx∗ , 0}].

I.1.2 Maximal Learning

For all ω ∈ Ω, let x∗ω be a fixed element of arg max x∈X qx. A searcher takes the best action with
probability 1 if and only if ω ∈ Ω(c) :=

{
ω ∈ Ω : FC

(
t∅(qx)

)
> 0 for all x 6= x∗ω or q0 = q1 = · · · =

qN
}

. Maximal learning occurs if limn→∞ Pσ
(
an ∈ arg max x∈X qx

∣∣ ω ∈ Ω(c)
)

= 1.

I.2 Long-Run Learning

I.2.1 Maximal Learning via the Improvement Principle

The IP remains valid with more than two actions. Consider an agent, say n, and his chosen
neighbor, say b < n. Unless b takes the best action with probability 1, n’s expected gain from an
additional search is positive. Therefore, if search costs are not bounded away from 0, with positive
probability, agent n samples at least two actions and takes an action of better quality than the
one he samples first. Since agent n finds it optimal to begin searching from the action taken by
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agent b, there is a strict improvement in the probability of taking the best action that n has over
b. If arbitrarily long information paths almost surely occur, such improvements last until agents
take the best action with probability 1. If agents’ beliefs about the network conditional on their
neighborhood are not too distorted compared to the actual network topology, agents single out
the correct neighbor to rely on. The next result follows.

Result 1. Theorem 1 remains unchanged with more than two actions.

I.2.2 Maximal Learning via the Large-Sample Principle

The key intuition behind the LSP also remains the same with more than two actions. In particular,
fix any ω ∈ Ω(c) and consider the set of agents S in Theorem 2. Let αx be the probability with
which an isolated agent takes action x. It is easy to see that: (i) αx > αx

′ for all x, x′ with qx > qx′ ;
(ii) αx = αx

′ for all x, x′ with qx = qx′ . Non-isolated agents in S find it optimal to sample one of the
actions with the largest share in their neighborhood at the first search. Thus, by the properties of
the network topology, limn→∞ Pωσ

(
s1
n ∈ arg max x∈X qx | n ∈ S

)
= 1. Since the share non-isolated

agents in S converges to 1 as n→∞, maximal learning occurs within S. An analogous argument
as that for Theorem 2 extends the maximal learning result to agents in N \ S. The next result
follows.

Result 2. Theorem 2 remains unchanged with more than two actions.

I.2.3 Failure of Maximal Learning

Identifying the best between more than two actions is not easier than identifying the best between
two actions. The next result follows.

Result 3. Theorem 3 remains unchanged with more than two actions.

I.3 Convergence Rate, Welfare, and Efficiency

I.3.1 Convergence Rate

Given a network topology, when more than two actions are available, convergence to the best
action occurs more slowly than with two actions. Thus, the upper bounds on the convergence rate
in Theorem 4 need no longer apply. However, the insight that the density of indirect connections
affects convergence rates remains valid. In particular, with more than two actions, learning remains
faster in OIP networks than under uniform random sampling of one past agent. The reason is that
the cardinality of agents’ subnetworks grows faster in OIP networks, and the same happens to the
probability that agents in the subnetwork sample all actions and the inferior ones.

I.3.2 Equilibrium Welfare and Efficiency in OIP Networks

Proposition 2 remains unchanged with more than two actions. In this case, reducing network
transparency in OIP networks exacerbates the inefficient duplication of costly search because there
are more opportunities to engage in overeager search. The intuition is the following. With more
than two actions, multiple actions can be revealed inferior by time n. However, if agent n observes
only agent n− 1, such actions are not revealed inferior to agent n, whereas they would be so in the
complete network. Thus, agent n may sample, at a cost, several of such actions again to learn what
he would infer for free by observing all his predecessor’s choices. An immediate consequence is that
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letting agents observe the aggregate history of past choices play a more central role in reducing
inefficiencies when more than two actions are available.

Whether Propositions 1 and 3 hold with more than two actions is unclear. The reason is that
establishing these results requires closed-form expressions for equilibrium search policies and the
solution to the social planner’s problem. With more than two actions, such closed-form expressions
are not possible.

J Simple Policies to Increase Welfare and Efficiency
Reducing network transparency in OIP networks leads to inefficient duplication of costly search
because agents fail to recognize actions that are revealed inferior by their predecessors’ choices.
A simple policy intervention, however, improves equilibrium welfare.

Proposition 6. For all δ ∈ (0, 1), the equilibrium social utility in OIP networks is the same as
in the complete network if, in addition, agents observe the aggregate history of past choices.

Proof. First, upon observing the aggregate history of past choices, each agent still samples the
action taken by the immediate predecessor first. This follows by an inductive argument as the one
proving part (i) of Lemma 11 in Appendix E. Second, if an action is revealed inferior by time n,
that action is never sampled again by any agent m ≥ n. To see why, suppose aj = x, aj+1 = ¬x,
and consider any agent n > j+ 1. Agent n samples first action an−1. Since each agent samples first
the action taken by the immediate predecessor and takes the best one between those he samples, it
must be that an−1 = ¬x. Upon observing the aggregate history, eveb if j 6∈ B(n), agent n infers
that j agents have taken action x, while n − j − 1 agents have taken action ¬x. Together with
an−1 = ¬x, this implies that a1 = x and that some agent j + 1, with 1 ≤ j ≤ n− 2, sampled both
actions and discarded the inferior action x. Therefore, inefficient duplication of costly searches
disappears. �

The observability of the aggregate history of past choices does not remove the inefficient
duplication of costly search arising when agents fail to recognize actions that are inferior—but not
revealed so—by some time n. Moreover, it does not incentivize exploration. Thus, agents delay
searching for the second action more than the single decision maker, and the convergence rate to
the best action remains too slow.
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