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1 Introduction

In many macroeconomic models rational expectations are not powerful enough to de-
liver a unique equilibrium prediction. Monetary overlapping generations models are
perhaps the widest-known model class illustrating the weakness of rational expecta-

tions along this dimension.

To sharpen the predictions of rational expectations it is -by now- standard to study
the stability of the equilibria under adaptive learning schemes (e.g. Marcet and Sar-
gent (1989b), Evans and Honkapohja (2001)). Consistent with experimental evidence
(Marimon and Sunder (1993), (1994)) it is widely believed that equilibria whose expec-
tations can be acquired via simple adaptive learning schemes constitute more plausible
model predictions than equilibria that would require more sophisticated coordination

devices.

This paper examines the stability of rational expectations equilibria under adaptive
learning schemes in a monetary overlapping generations (OLG) model and contributes

to the existing literature in the following way.

Firstly, the paper extends the standard OLG model with flexible prices and per-
fect competition to a setting with sticky prices and monopolistic competition (Dixit
and Stiglitz (1977)). Sticky prices are widely believed to be an important ingredient
to empirically plausible macroeconomic models (e.g. Galf and Gertler (1999)). Yet,
their implications for learning based equilibrium selection have never been analyzed.
Checking for the robustness of the equilibrium selection with respect to different price
setting assumptions is therefore of interest.

Secondly, the current model improves upon previous work on equilibrium selection
in standard monetary OLG models by analyzing learning in a model with a well-defined
temporary equilibrium map, a coherent informational setup, and properly specified mi-
crofoundations. As explained further in section 2 below, previous work was falling short
on at least one of these dimensions. It either lacked fully specified micro-foundations
(Duffy (1994)), assumed a somewhat inconsistent informational setup (Marcet and
Sargent (1989b)), or had to deal with multiplicities in the temporary equilibrium map
(Lettau and van Zandt (1999)).

One can broadly summarize the results as follows. Adaptive learning schemes ro-

bustly select the same equilibrium independent from the degree of imperfect compe-



tition. In line with Marcet and Sargent (1989b) the determinate monetary steady
state is the unique learnable equilibrium. The indeterminate steady state and the non-
stationary equilibria turn out not to be learnable. These results are obtained although
money demand in the present model depends on current endogenous variables, i.e. cur-
rent prices, which is a feature that has been shown to be conducive to the learnability
of indeterminate equilibria (e.g. Duffy (1994), Evans and Honkapohja (2001), chapter
12).

More precisely, the paper starts out by analyzing a deterministic model and studies
the learnability of the monetary and non-monetary steady states under constant and
decreasing gain learning rules. I find that both types of learning rules always select the
same equilibrium.! Moreover, the determinate low inflation steady state is the unique
learnable equilibrium.

However, stability of the determinate steady state is not warranted and is related
to observable characteristics of the economy. In particular, this equilibrium becomes
unstable when the elasticity of labor supply falls below one-half. When this is the case
I show how demand shocks destabilize the equilibrium.

This feature implies that the degree of imperfect competition may influence the
stability of the low inflation steady through its influence on equilibrium output and its
effect on the elasticity of labor supply at the new output level. For plausible assump-
tions on the elasticity of labor supply, increasing competition between entrepreneurs

can even cause a previously stable steady state to become unstable.

The paper then considers the learnability of stationary and non-stationary equilibria
under decreasing gain learning rules in a stochastic environment. I find again that the
low inflation steady state is the unique stable rational expectations equilibrium. Neither
the indeterminate high inflation steady state nor any of the non-stationary equilibria
are learnable.

Interestingly, in the stochastic model the low inflation steady state turns out to be
stable irrespective of the elasticity of labor supply. A stochastic spending component
prevents the money stock from settling down to its deterministic steady state value.
In contrast to the deterministic setup, this forces agents to condition their inflation
forecasts on the economy’s money stock to acquire rational expectations. Condition
on this additional variable renders the low inflation steady state stable with respect to

the demand shocks that destabilize it in the deterministic setup.

LThis contrasts to the results of Lettau and van Zandt (1999).



The paper is organized as follows. It starts out in section 2 by discussing the trade-
off between informational consistency and well-defined temporary equilibrium maps
that arises in monetary OLG models with flexible prices and shows how sticky prices can
be thought of as resolving this inconsistency. Section 3 then introduces the OLG model
with imperfect competition. Section 4 determines its rational expectations equilibria
and shows that these approach the ones of the competitive model as the degree of
imperfect competition vanishes. Section 5 analyzes learning of the steady states in
the deterministic model and section 6 considers the learnability of stationary and non-
stationary equilibria in a stochastic version of the model. The appendix contains most

of the technical details and proofs.

2 Consistency and Multiplicity

This section shows that in monetary models where real money demand depends on
expected future inflation there exists a trade-off between a model formulation with
learning that achieves an informationally consistent setup and a formulation that avoids

multiplicity in the temporary equilibrium map.

Suppose real money demand m¢ depends negatively on expected future inflation

I 5
mf = md<Hf+1) (1)

Money demand functions of this form can be derived from an OLG model, see section
3, but also appear in Cagan (1956) and Sargent and Wallace (1987). Agents who wish
to hold the real quantity m¢ have to put

miP,

nominal units of cash into their pockets. Thus, assuming that agents can hold the
desired levels of real balances implies that these agents must observe current prices.>
In models which consider learning the expectations IIf,; are determined through
an explicit updating mechanism (e.g. Marcet and Sargent (1989b)). Consistency be-
tween the model setup and the learning setup then requires that IIf, ; must be allowed

to depend on II;. Otherwise, agents would ignore current prices when determining

2This is just another way of saying that money is a nominal asset.



the desired level of real money balances but suddenly recall them when it comes to

implementing the real balances through appropriate amounts of nominal money bills.

A problem arising with agents using current prices II; to update II7, | is that it gen-
erates multiplicity in the temporary equilibrium of the model because market clearing
prices II; and expectations II7, ; are then determined simultaneously.

To illustrate this point suppose that agent update according to the following rule
I, = I + (1L, — II7)

where II7 | are the time ¢ expectations of ¢ + 1 inflation and where 7 is a parameter
determining how fast expectations are updated in response to past forecast errors.
Moreover, suppose that real money supply is given by

my_q

IT;

+9g

where m;_1 denotes the stock of real balances in £ — 1 and g denotes the time ¢ increase
in the real money stock.?> Clearing of the time ¢ money market implies that II; solves

my—

i g = mil (I + (- TE)

Since money supply and money demand both decrease with the inflation rate, this
equation might have multiple solutions. Figure 1 illustrates this situation for the case
of a linear money demand function.* Given the ¢t — 1 expectations II¢ there exist two

inflation rates that clear the time ¢ money market.

In the light of the trade-off between informational consistency and well-defined tem-
porary equilibrium maps the literature has typically opted for allowing agents to use
only lagged endogenous variables to update expectations, which eliminates the simul-
taneity between prices and expectations (e.g. Marcet and Sargent ((1989b)), Evans and
Honkapohja (2001) chapter 10.3).° Yet, this is a delicate operation because unchanged
stability properties are only warranted if expectations based on contemporaneous data

do not create multiplicity, see Marcet and Sargent (1989a) and Lettau and van Zandt

3For ¢ = 0 the rule specifies a fixed nominal supply of money .
4The figure assumes md(H§+1) = a — 0IIf, | with @ = 3, 6 = 1. The other parameters are g = .5,

and v = 0.2.
®Clearly, this is motivated by the desire to avoid ad-hoc assumptions about the relevance of the

respective market clearing prices, which would be an even more unpleasant feature given that the goal

is equilibrium selection.
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Figure 1: Multiple market clearing prices

(1999) . As figure 1 shows, OLG models with learning based on contemporaneous data
easily generate such multiplicities. This casts doubts on the robustness of selection

results which are based on lagged data.

The present paper overcomes the multiplicity and inconsistency problems by in-
troducing price setting entrepreneurs that commit to prices at the beginning of each
period. This causes contemporaneous inflation to be a predetermined variable. There-
fore, agents can formulate the expectations that enter the money demand function

based on contemporaneous prices without creating multiplicity.

3 OLG-Model with Imperfect Competition

I consider a simple overlapping generations model where each generation of agents
lives for two periods, works when young, consumes when old, and may transfer wealth
across time via fiat money. There is also an infinitely lived government that finances
a constant real deficit through seignorage. This is essentially the setup of Sargent and

Wallace (1987).

In each time period a new generation of agents is born. In contrast to standard
models T assume that agents of a given generation are either born as workers or as
entreprenecurs. The new generation consists of a unit mass of workers and a unit-mass

of entrepreneurs.®

6 Any numbers could be chosen as long as they are constant through time.



Workers are homogeneous and offer their labor force at a competitive labor market
in return for a wage income.

Young entrepreneurs are in monopolistic competition with each entrepreneur 7 €
[0,1] producing a good that is differentiated from the goods of other entrepreneurs
(Dixit and Stiglitz (1977)). Entrepreneurs, therefore, earn monopolistic profits.

A competitive sector assembles the differentiated goods into an aggregate consump-

tion good according to the following production function

c= / (qi)lfg with1 >0 >0

ic[0,1]

where ¢ denotes the input from entrepreneur i. The parameter o determines the
degree of substitutability between the different products. If ¢ = 0, goods are perfect
substitutes and entrepreneurs are in perfect competition. As ¢ increases goods become

less and less substitutable and competition between entrepreneurs decreases.

The timing of events is as follows. At the beginning of each period, young en-
trepreneurs commit to a price at which they are willing to sell the product. Then old
agents, 1.e. old workers and old entrepreneurs, spend all their money holdings to order
goods. At the same time, the government orders goods for government consumption.
Firms accept any amount of orders at the price they posted. When all orders are
made, firms hire the work force that is necessary to produce the ordered quantities at a
competitive labor market. The labor market clears and production takes place. Young
workers are paid their wage, young entrepreneurs retain their profits, and the produced

goods are delivered to the old agents for consumption. Then a new period starts.

Let P! denote the price posted for good i at the beginning of period ¢. Profit

maximization by the competitive sector implies that the price F; for the composite

= ([ ) w) . ®)

My
Py

denote its real value (in terms of the aggregate good). Since old agents die with

good is given by

Let M; denote the stock of nominal money at the end of period ¢ and let m; =

certainty after their second period of life, m; is held by the young agents at the end
of period ¢, with young workers holding amount m;’ and young entrepreneurs holding

amount mg;, where m; = my + mg.



The government finances a constant real expenditure g > 0 through seignorage.

Real balances therefore evolve according to

my—

IL,

my =

+g (3)

Py
P

where II; = is the inflation factor from ¢t — 1 to t.

3.1 Workers

The representative worker who is born in period ¢ maximizes
* w
max Ef [—v(n) + Bu(c)]
Ne,Ct41

subject to

where v(n;) represents the disutility of supplying n; hours of work in period ¢ and
u(cy, ) represents the utility from consuming ¢’} ; units of the composite good in period
t+1. § € (0,1) is the discount factor, w; is the time ¢ hourly real wage, and m{’ are the
worker’s end of period t real money holdings. The utility functions v() and u(-) are
twice continuously differentiable with v'(-) > 0, v/(-) > 0 and «/(-) > 0 and «"(-) < 0.

Note that agents maximize utility with respect to some (potentially) subjective

expectations operator E; that is based on the information set
Ht = O_<Pt,Pt*17 S LS LT PR )

which contains past and current values of prices and real money balances. Workers’
expectations therefore depend on current prices, as required for an informationally

consistent setup.

The first order conditions of the utility maximization problem implicitly define the

workers’ labor supply as a function of the current real wage and expected inflation:
n(we, By (Ili41)) (4)
Alternatively, the first order conditions define a real wage function

w(ng, Ef (I;11)) (5)



that determines the real wage that has to be paid to induce the representative worker
to supply 7 units of labor when her inflation expectations are given by E; (II;41). The

function w(-,-) is continuously differentiable for E;(II;11) > 0 and all feasible levels n,.

I require that the substitution effect of a relative price change between labor and

consumption dominates the income effect, i.e.
Condition 1

> —1 Ve >0

Condition 1 insures that agents’ labor supply (4) is strictly increasing in wages and
strictly decreasing in the expected inflation tax E; [[I;;1]. It also insures that the real

wage function (5) is increasing in both arguments.
Finally, I impose the following two conditions on the labor supply function (4):
Condition 2 n(l —0,1) >0 and 31" € (1,00) s.t. n(l —0,I1) =0

The first part of condition 2 requires workers to offer positive amounts of labor
when the real wage is equal to 1 — ¢ and when the expected inflation factor is equal to
1. This is simply a necessary condition for a monetary equilibrium to exist for some
positive level of government expenditures. The second part requires that there is a
finite relative price of consumption in terms of labor at which optimal behavior implies

7

zero consumption.” This is a sufficient condition for the existence of a high inflation

steady state.

3.2 Entrepreneurs

At the beginning of each time period young entrepreneurs simultaneously decide about
their prices. Profit maximization by the competitive sector implies that the demand

curve faced by entrepreneur j is given by

1
. Pt el
J __

"A sufficient condition is given by u/(O) < 00.




With a production technology that is linear in labor and product demand being given

by (6), entrepreneur j maximizes:

(7)

max F |
P}

P \° .
)

where

my =

+g (8)

Wy = w(”t; I 11) (9>

Note that entrepreneurs maximize with respect to some (potentially) subjective ex-
pectations operator E} | that is based on the information set H; i, which does not
contain the values of time ¢ variables. Therefore, outside equilibrium, entrepreneurs

choose prices without knowing the aggregate price level P,.°

With the information set given by H; ; entrepreneurs must formulate forecasts of
P, my, and w;. I require that these forecasts are consistent with the model structure,
even when expectations are subjective. Moreover, I require that subjective expectations
fulfill the law of iterated expectations. As shown below, these assumptions have the
convenient implication that the forecasts of Py, m;, and w; can be expressed as functions
of the inflation forecast E} | [II;] and E; | [II;;1] and variables which are part of H; 4

and, thus, known to the entrepreneur.
First, consider the forecast B} | [F]. Clearly,

Ly [B] = B [IL] B (10)

Second, consider the forecast E} ; [my]. Using equation (8) one obtains:’

. mye_
EY o [m = ﬁ +g (11)
t—1

Finally, consider the forecast E} | [w]. From equation (9) and the law of iterated

expectations follows

B [w] =w (Ettl (e, 7 [HHI]) (12)

8However, in a perfect foresight equilibrium where E} 1 = F¢_1 the future price level P; is known

and entrepreneurs act correspondingly.
*Following the learning literature I assume that agents have point expectations.



>From the linearity of the production technology and equation (6) it follows that labor

demand can be expressed as

= my (P)7 (/ <r%> ¥ di) (13)

To simplify matters, I impose the restriction that entrepreneur j expects all other
entrepreneurs to set the same price. By equation (2) this assumption implies P} = P,

(for all i # j) and equation (13) simplifies to
A (14>

Combining this with equations (12) and (11) delivers the final result

i sl = w (e B ) (15

Substituting (10), (11), and (15) into the objective function and taking the deriva-

tive with respect to Ptj delivers the following expression for the profit maximizing price:

. 1,
Pl = B (Paw) (16)

1 . My i
= 1—o tfl[Ht]PthU)(E* . [ll_It_] +9, B [ia]) (17)
t—1

This is the familiar result that the optimal price Ptj is a mark-up over expected costs

where the mark-up factor depends on the degree of imperfect competition o.

4 Rational Expectations Equilibria

This section characterizes the model’s rational expectations equilibria (REE) and shows
that the equilibria of the model with imperfect competition approach the ones of the
competitive model as the degree of imperfect competition o vanishes.

Equation (16) together with the fact that all firms charge the same price implies
that current inflation can be expressed as

1
1—0

I, = B, ([Taw,] (18)

10



Imposing rational expectations delivers the equilibrium real wage
w=1—0 (19)

Next, substitute (14) into (3), impose the market clearing condition n; = n(wy, ;)
and use result (19) to substitute the wage. This delivers a single equation characterizing

REE:

TL(l -0, Ht)

n(l—o0,Iq) = 1I,

+yg (20)

Rational expectations equilibria can now be generated by choosing an initial inflation
rate Iy and by iterating equation (20) forward.'?

The REE in the competitive version of the model are characterized by an equation
similar to (20) but with the equilibrium real wage given by w, = 1. Since n(-,) is con-
tinuously differentiable and since the inflation rates in a REE must lie in the bounded
interval [0,11"], the REE of the model with imperfect competition will approach the
ones of the perfectly competitive model as the degree of imperfect competition o ap-

proaches zero.!!

First, consider stationary REFE. Imposing steady state conditions and g = 0 on
equation (20) one finds two solutions, see condition 2. There is a low inflation steady
state II' where money is valued and a high inflation steady state II" where money has

no value:!?

I'=1 and II">1

. o’
Since %
9

small positive levels of seignorage g. The steady state values of real balances m! and

< 0 money starts to become valued in the high inflation steady state for

m", which are equal to the steady state values of real output and labor input, are given

by

ml = n(l = 0.10(g)) > m" = n(l - 0, I"(g))

10 The argument implicitly assumes that equation (20) has a solution for all £. As I will show below,

this is the case for many initial inflation rates Ily.
"' More precisely: for any initial value Il let II7 denote the path of inflation generated by iterating

(19) forward with w; = 1 — o, then for any ¢ > 0 there exists a ¢ > 0 such that for all Il :
sup; |Hg - H(t)| < €.

12 Applying the implicit function theorem to (20), one can show that at ¢ = O: %g(g) > 0 and
Mo <o,

11
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Figure 2: Rational Fxpectations Paths

As is easily verified, the low inflation steady state (IT', m') Pareto dominates the high

inflation steady state (IT", m").

Next, consider nonstationary REE. Applying the implicit function theorem to equa-
tion (20), one finds that cﬂ;% > 1 at the low inflation steady state and % < 1 at the
high inflation steady state. This implies that there exist initially non-stationary REE
where II; either increases or decreases over time and where inflation asymptotically

approaches 1", see figure (2) for an illustration of the situation.

5 Stability of Steady States under Adaptive Learn-
ing

This section analyzes the stability of the steady state equilibria under adaptive learning
schemes. The analysis of non-stationary REF is deferred to section 6.

It is assumed that agents forecast future inflation rates according to the following
simple adaptive rule where left-hand side subscripts denote the time at which expec-
tations are formed and right-hand side subscripts the date for which the variable is

forecasted:
Al = ¢ aIIf 4 7, (T — ¢ 1 117) (21)

12



The new inflation forecast is equal to the previous forecast plus v, times the past
forecast error, which is given by the term in the brackets. Note that the current
inflation rate II; enters into the forecast made at time ¢, as required.

The gain parameter v, € (0,1) determines how fast expectations adapt to the
forecast errors. T'wo kinds of gain sequences will be considered: constant gain learning

rules where
v, =y for all ¢
and decreasing gain learning rules where

lim v, =0 and

t—o0
IS
t
An example for a decreasing gain learning rule is given by v, = % With this rule

the forecast IIf equals the average of past inflation rates, which is the least squares

estimate of the steady state inflation rate.

Entrepreneurs must also forecast inflation rates two periods ahead, see equation
(17). The forecast ,IIf,, is obtained by writing (21) for ,,IIf,, and by taking time ¢

expectations on both sides, which results in
tHf+2 = tHerl

Learning rule (21), thus, imposes stationarity on agent’s inflation expectations, which

seems reasonable if agents believe that they have to learn a steady state.

5.1 The General (In-)Stability Result

This section derives the properties of steady state equilibria that guarantee that an
economy that is populated by agents who forecast inflation according to rule (21) will
converge to the steady state.

To derive these conditions I have to impose the following regularity conditions,
which insure that various matrices are of full rank and that their eigenvectors do not

lie right on the unit circle:

13



Condition 3 At a stationary rational expectations equilibrium (II,m)

wy m we II—1
1—cII2’ 1—0 1II

wy m II+1
7§_

1—olI2 II
m Wi 1
— — = Vi
NPT, T
where
ow ow

= _— I d = —— IT
wr = — (m,II) and we ERT (m, II)

The following proposition states the main result of this section. The proof can be

found in the appendix.

Proposition 1 Consider a stationary rational expectations equilibrium (I, m) and as-

sume conditions 1, 2, and 3 hold. If at the steady state

Ws

LRG| (22)

I-1
( )<1—0H

l—-0
then there exists a7y > 0 such that the steady state is locally asymptotically stable

1. for all constant gain learning rules with adaptation rates 0 < vy < 7.

2. for all decreasing gain learning rules.
If (22) does not hold, then there exists a7y > 0 such that the steady state is unstable

1. for all constant gain learning rules with adaptation rates 0 < vy < 7.

2. for all decreasing gain learning rules.

The inequality on the right-hand side of (22) insures the stability of the steady state
with respect to demand shocks while the left-hand side inequality insures the stability

with respect to shocks in inflation expectations.

First, consider demand shocks. The term in the middle of (22) can be interpreted
as the elasticity of the real wage with respect to the ¢ — 1 money stock m;_.*> Due
to mark-up pricing by entrepreneurs this elasticity is identical to the elasticity of the

inflation rate with respect to m;_;. From w; > 0 it then follows that inflation will

3 Remember that the equilibrium real wage is given by 1 — 0.

14



rise in response to positive demand shocks. In principal, this stabilizes the economy
because 1t devaluates the excessive value of the money stock and thereby pushes the
economy back towards the steady state. Yet, if the inflation reaction is too strong then
a demand shock might create an even larger demand shock of the opposite sign in the
subsequent period and the system might start to oscillate with increasing amplitude
around the equilibrium. The term on the very right of (22) is a bound on the maximum

inflation reaction which prevents this from happening.

Next, consider inflation expectations shocks and the following inequality

m
Wo < wlﬁ (23>

which is a sufficient condition for the inequality on the left-hand side of (22) to hold.
A positive shock to agents’ inflation expectations has two opposing effects on inflation.

Firstly, it causes firms to anticipate lower product demand because inflation deval-
uates old agents’ real money balances. This causes a fall in expected labor demand and
expected wages, which due to mark-up pricing puts downward pressure on inflation.
This move down the labor supply function is captured by the term on the right of
(23), which is the derivative of the real wage with respect to labor demand times the
derivative of real money m, (which is identical to labor demand n,) with respect to II,.

Secondly, higher expected inflation taxes move the labor supply schedule upwards
because workers have to be compensated with a higher real wage to offer any given
amount of labor. This effect puts upward pressure on inflation and is captured by the
term on the left of (23).

If the first effect dominates the second, then real wages will decrease in response to
an increase in inflation expectations. The price setting equation (18) then implies that
realized inflation will we lower than expected inflation. From the learning rule it then

follows that inflation expectations will return over time to the steady state value.!*

5.2 Learning the High Inflation Steady State

This section applies proposition 1 to study the stability of the high inflation steady

state under adaptive learning.

When equation 23) does not hold then the steady state is not necessarily unstable, see equation
(22). The reason for this is that expectations feed also back on future expectations and thereby alter
the expected money stock and future inflation rates. This is a channel which has been ignored in the

previous argument and that is captured by the additional term on left of equation (22).

15



The following lemma shows that the high inflation steady state is unstable when

agents forecast inflation according to equation (21):

Corollary 1 For g sufficiently close to zero condition (22) never holds for the high-

inflation steady state.
Proof For contradiction suppose that the left-hand side of (22) holds. This requires
woll? — woIl — wym < 0

With wy > 0, a necessary condition for this is

1 1 wn
M<=+4/=+—
2+ 4+w2m

Asg — 0,11 — II" and m — 0 . Since wy > 0 and wy > 0 at (I, m) = (11", 0),
this condition boils down to II < 1, which contradicts IT" > 1.

Importantly, instability is obtained independently from the degree of imperfect
competition in the product market. Moreover, corollary 1 delivers the stability prop-
erties for the indeterminate steady state as reported by Marcet and Sargent (1989b)
for a competitive economy with lagged information. However, the result contrast with
the ones reported by Lettau and van Zandt (1999) for a competitive economy and

contemporaneous information with multiplicities in the temporary equilibrium.!® This

15To see why the stability properties of equilibria might differ in the three setups one has to compare

the equations that determine the inflation rates: In Marcet and Sargent (1989b) inflation solves

My
n(we, (1107 ) = ﬁ—l +9g
i

where the real wage is given by technology, i.e. w; = 1.

In Lettau and van Zandt (1999) inflation solves

M
n(we, 7 ) = lf[_tl +g

where also w; = 1.
The corresponding equation in the current model can be obtained by solving equation (18) for ;_jw§

and by applying the identity n(w(z,y),y) =z :

M1 .
n(tflwfvtfl H§+1) = LI +g with
- t

11,

€
tfll_[t

(1-0)

e —
t—-1Wy =

As is apparent, there are important timing differences between the three setups, that do not disappear

as the degree of imperfect competition vanishes.

16



suggests that well-defined temporary equilibria should be an essential ingredient to

learning models.

5.3 Learning the Low Inflation Steady State

Applying proposition 1 to the low inflation steady state delivers the following result:

Corollary 2 For government expenditures g close enough to zero, the stability condi-
tion (22) holds at the low inflation steady state if and only if
1

nw>_ 24
S > 5 (24)

where 4, 18 the real wage elasticity of labor supply at (II,m) = (1,n(1 — o,1)).

Proof All the terms in (22) are continuous in g. Therefore, when (22) holds for g = 0,
it will also hold for sufficiently small but positive g. At g =0, one has Il = 1 and
m =n(l—o,1) > 0. For these values % = 2 and fﬂ—i% = (. Since wy > 0 and
m > 0, the inequality in the left of (22) holds. Since w = 1 — ¢ in equilibrium,

the term in the middle of (22) is equal to gy, = i, which establishes the claim.

The elasticity condition (24) insures the stability of the equilibrium with respect
to demand shocks. If labor supply is inelastic (£, < %) then inflation reacts too
strongly to demand shocks and causes the economy’s real money stock to oscillate with

increasing amplitude around the equilibrium value, as described in section 5.1.

Clearly, the degree of imperfect competition might now have an impact on the
stability of the steady state because a change in the degree of competition will alter
firms’ markup over costs and thereby affect the equilibrium output and the equilibrium
labor supply.

When labor supply displays a constant elasticity, then the degree of imperfect com-
petition has no impact on the stability of the low inflation steady state. However, if the
elasticity of labor supply is decreasing in the amount of supplied labor, which seems not
an unreasonable assumption, then increasing the competition between entrepreneurs
can cause the low inflation equilibrium to become unstable. On the other hand, if the
elasticity of labor supply was increasing, then making the economy more competitive
would keep the low inflation equilibrium stable or even cause it to become so. Finally,
non-monotonic labor supply elasticities may generate non-monotonic relationships be-
tween the degree of imperfect competition and the stability of the low inflation steady

state.
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6 A stochastic model

This section considers a stochastic version of the model with a government expendi-
ture shock. Such a setup facilitates the stability analysis of non-stationary rational
expectations equilibria.

Government seignorage is now composed of a fixed and a random component

go=9g+v

with v; being a mean zero random disturbance with small bounded support. Real

money now evolves according to the following stochastic law of motion
mye_
my = tl—l-g—l-vt (25)
IL
To determine the REE linearize (18) and (25) around the deterministic steady states

(IT1",m™) with n = I, h to obtain:'®
IT IT IT
My mye mMit1

+6"<E“>+<f) (26)

As is shown in the appendix, all rational expectations solutions to (26) have a minimum

+ 81

state variable representation as an AR(1) process

II I,
"J=a+B| "] with (27)
L me 1
al bll 612
a= and B = (28)
CL2 621 622

where bjs # 0. Since the real money stock is permanently shocked, rational expecta-
tions require that agents condition their inflation forecasts on these money balances.
As is also shown in the appendix, there are two REE in the neighborhood of the
deterministic low inflation steady state: a stochastic steady state with coefficients
(ab!, B"1) and a non-stationary solution with coefficients (a"?, B"?) that diverges from
the low inflation steady state. Similarly, in the neighborhood of the deterministic high
inflation steady state there exists a stochastic steady state with coefficients (a!, B"!)
and an initially non-stationary solution with coefficients (a™?, B"?) that approaches

the high inflation steady state.!”

18 The linearization coefficients are stated in the appendix.
"The high inflation steady state (a™?2, B™?%) exists only for g > 0. See the appendix for details.
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6.1 Learning Stationary and Non-Stationary REE

In this section I suppose that learning can be modeled by least squares estimation.'®

In particular, I assume that agents estimate the coefficients (a, B) of equation (27)
by ordinary least squares estimation. Since this equation denotes the minimum state
variable solution of the model, it is the simplest equation that agents could estimate
with the hope to acquire rational beliefs in the long run.

When agents have information Hy, the corresponding parameter estimates are de-
noted by a; and B;. To form their inflation expectations, agents use these estimates to

iterate (27) into the future. Thus, the t — 1 forecast of II; is given by
I = ag_y + b Teq + b2 ymy s

and the t — 1 forecast of Il by
illy = ap o + b T + b2 mg

where

e_ .2 21 22
my = a g+ b ey + 07 my

Whether the least squares estimates (as,B;) locally converge to the values of the
rational expectations solution is governed by the so-called E-stability criterion, see
Evans and Honkapohja (2001) chapter 10. As the following proposition shows the low
inflation steady state is the unique stable rational expectations equilibrium. The proof

can be found in the appendix.

Proposition 2 There exists a level of government expenditures g > 0 such that for all

levels 0 < g < g the following holds. At the low inflation equilibrium
e ihe stochastic steady state (a>', B%') is E-stable,
e ithe non-stationary REE (a"?, B"?) is E-unstable,
At the high inflation equilibrium

e ihe stochastic steady state (a™', B"') is E-unstable,

187 restrict consideration to decreasing gain learning rules since constant gain learning rules may

generate ’escape dynamics’, see Cho and Sargent (1999).
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e the non-stationary REFE (a"?* B™?) is E-unstable.

In the stochastic model the low inflation steady state is E-stable regardless of elas-
ticity of labor supply at the steady state. The intuition for this result is straightforward:
in the stochastic steady state (a*!, B!) the impact of past money on current inflation
is given by by = # Therefore, shocks to m;_1 lead to a corresponding increase in
inflation expectations that implies that future real balances are expected to be back at
their steady state value. As a result, firms do not expect an increase in labor demand
in response to past demand shocks, which makes the labor supply elasticity irrelevant
for entrepreneur’s price setting behavior.

Thus, the fact that agents condition their inflation expectations on past money

balances improves the stability of the determinate steady state.

7 Conclusions

The present paper considered a monetary overlapping generations model with imper-
fect competition and studied the stability of its rational expectations equilibria under

adaptive learning.

Adaptive learning has been found to be a powerful tool to select between the rational
expectations equilibria of the model. First, out of the multitude of equilibria at most
one equilibrium turned out to be stable. Second, the instability of the non-stationary
equilibria and of the indeterminate high inflation steady state has been found to be
independent from the degree of imperfect competition between entrepreneurs. Third,
decreasing gain learning rules and constant gain learning rules with small gain pa-
rameter always selected the same equilibrium. Forth, although money demand could
depend on contemporaneous prices the stability properties of the equilibria are virtually

unchanged compared to the case of lagged information.

These results should give further confidence to the usefulness of adaptive expecta-

tions as an equilibrium selection device.
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8 Appendix

8.1 Appendix to Section 5

Proof 4 (Proof of Proposition 1:) Substitute (18) into (21):

iy = eIy + 7 (M (eaIlf,me ) = o aI15)  with (29)
w (fiﬁ} +9, tflﬂf)
M (Il my1) = a1l T (30)

The above equation describes the new inflation expectations as a function of past ex-
pectations and past real money holdings. Real money evolves according to

my—

M (¢ 1II5,my 1)

myy =

+yg (31)

Linearizing (29) and (31) around a steady state (I, m) yields
014 O1,0-1 Vet
— A() o (32)
92’t 82,1&71 Tot

O10 = (7, —11

where

82,1& =My — M

are the deviations from the equilibrium values, the r;; are second order approzimation

errors, and A(vy,) is a 222 matriz given by

Aly,) = ( L+ 7 (My(ILm) = 1), My(IL,m) )

_%Mla_[um) % - %M2<Hum)

where M; is the partial derivative of M with respect to the i-th argument.
The eigenvalues of A(0) are given by

AM=1
N, — 1 _om w
"0 I2(1-o)
and the eigenvalues of A(vy,) by
O\
Mg =M+ =7+ 0(17) (33)
Y
O\
Aot = Ao + 8_72% +0() (34)
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where the last terms are second order approximation errors.

If condition (22) holds, then |Ao| < 1. The regularity condition 3 implies % < o0

at v = 0. Thus, | M| < 1 for small enough ~y,. Next, consider the eigenvalue Ayi;.

Use the characteristic polynomial of A(vy,) and apply the implicit function theorem to

2281

obtain 5

at v=0:

O\ _OP(AR)/
&y~ 9P(A())JoN
ﬁ <w2<H — 1) — w1%>

1— A

Condition (22) implies that % < 0 and thereby |A14| < 1 for small enough v,. Thus,
(22) implies that both eigenvalues of A(vy,) are within the unit circle for -y, sufficiently
small. Otherwise, at least one eigenvalue lies outside the unit circle. This establishes

the stability and instability claims for the constant gain learning rules.

The remaining part of the proof considers decreasing gain learning rules. The func-
tion M(-,-) as defined in (30) is continuously differentiable in both arguments in a
neighborhood of @ = (0,0). Therefore, for all constants Ky > 0 and Ky > 0 with K
and Ko arbitrarily small there exists a neighborhood to (0,0) where the absolute values

of the approximation errors in (32) are bounded by

|71¢) < Ky (|01,0-1] + 02,0-1]) (35a)
|79.4] < Ko (|01,4-1] + |02.6-1]) (35b)

Next, consider the eigenvectors ey and ey of A(0) corresponding to the eigenvectors A\

and Xg, respectively:

()0

The eigenvectors ey, and esy of A(7y,) corresponding to the eigenvalues Ayy and Aoy,
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respectively, are given by

>\1,t7%+1_%M2
€11t —— =
€1t = = nz M1
1 1
>\2,t71%+1_%M2
€21t T o=
€ot = = i
1 1

Now consider the vector base consisting of the eigenvectors (e, eay) of A(7y,). Let the

vector (601,02) have representation (py, py)y, with this new base, i.e.

01\ _ o1 e P1
(2)-ewo(2)

where the subscript 7y, indicates the base to which the coordinates refer. Then from (32)

A 0
Pat - 0 Aoy Pat-1 - S2,t -

where the approrimation errors are given by

1
T — € T
( 51, ) _ ( P (Verve — eanera) )
1
S —Y.T € T
2 ) e (WLt enra)

t

Using (35a), (350), and (36) the approximation errors can be bounded as follows:

<
E ors 621,t!<% 71| + [€21¢] [72,6])
1
< ——— (7 K+ |eane| Ka) ((101,-1] + 102,0-1]))
’611,1& - 621,1&’
1
= ’—WtKl + |en,q] K2)<‘P1,t71€11,t + p2,t71€21,t‘ + ‘pl,tfl + P2,t71‘>
€11t — 621,1&’
1
< (7K1 + Jeard Ko)(|pre | (erne + 1) + | pos 1| (€2l + 1))

~ et — eanyl

Since limy_,o0 |€11,t — €214] > 0, leare] ~ O(v,), and since Ky and Ky can be made

arbitrarily small it follows that

|514] < ’ytKiqpl,tfl‘ + ‘pQ,tflb (38)

for some K| > 0 that can also be made arbitrarily small by considering a sufficiently
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small neighborhood around the steady state. Similarly,

< -
|s2,¢] < errs — 621,t!<% 71l + [erne] [72.6])
1
< (7K1 F Jernd Ko)([pre | (Jernel + 1) + |pos 1| (le2re] + 1))
’611,1& - 621,1&’
< Ké(‘pl,tfl‘ + ‘pQ,tflb (39>

for some Kj, > 0 arbitrarily small.

An inconvenient feature of (37) is that the coordinates are expressed in terms of a
different vector base for each ~,. Therefore, I rewrite (37) with coordinates from the
vector base (eq,e3). This base is almost identical to the base (€14, esy) for small ~,.

Let (py, pa)y, have representation (o, an)o with base (e, e1), i.e.
(Oél ) - (all,t 19t ) (/)1 )
Qo a Q99,1
2/, 21t (22, P2/,
- p
= (ere2) ' (ereens) |
P2
Tt

€11t €21t p
1
- 61(1311 t 61(1321 t (40>
S e AN
e11 e11 Yy

(/)1 o biie biayg aq
P baie Doy Q9
2 Tt 0

€11—e21,t o €21,¢ o

— €11,t—€21,¢ €11,t—€21,¢ 1 (41>
€11,t—e11 €11,t
Qg
€11,t— €21t €11,t—€21,t 0

One can express the bound on the approximation error in (38) in new coordinates

or conversely

|s1¢] < 7 K1 (|br1g0a -1 + Drgsvor 1| + |borsr e 1 + bagrcva s 1|)
< 7. K7 ((|baae| + [bo1e]) |ne-1] + (|b1ae] + |ba2e]) |voe-1])
< 7 Ky (Jenga| + |agg1]) (42)

for K{ > 0 and arbitrarily small for a sufficiently small neighborhood. Similarly for
the bound in (39)

|89,0] < K5 (Jan 1] + |z 1]) (43)
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with Ky > 0, arbitrarily small. From (37), (40), and (41)

Q1 = Q1P + Q12,6P2¢
= ay1e (Mapre 1+ 510) + a100((Nopg s 1 + 520)
= a11¢ <)\1,t (bll,tal,t—l + biotQot 1) + S1,t)
+ a9+ <)\2,t <b21,t041,t71 + bog 1ot 1) + Sot)
= (a114 16011 + G126 A0,tb91.4) Q141
+ (all,t)\l,tbm,t + @19t A tbagt) o1 + G11451, + Q12,4521 (44>
and stmalarly
Qo = <a21,t)\1,tbll,t + a22,t)\2,tb21,t) 161
+ (@91 6 M1,tD19,0 + Q991 Mo tboot) ot 1 + Ao1 4514 + Go9tSos (45)

Using (42), (43), and (44) one can construct upper and lower bounds for |ay ] :

’Oél,t’ < ’(all,t)\l,tbll,t + a12,t)\2,t621,t)’ ’Oél,tfll
+ [(a116A1.D12.6 + Q12,6 A0.0b99.4) | o e1] + |a11¢| [S1.e] + |a1ae| [So.]
< (’(all,t)\l,tbll,t + a12,t)\2,t621,t)’ + ’all,t’ Ki’ + ’a12,t’ Ké/ ) ’Oél,tfll
+ ([(a11,6 M tb19.t + a19.: X0 tDao )| + ¢ larn e KT + |aro] K5 ) g 1]

Note that the terms ajay, biay, and bayy are of order O(v,). Moreover, using a Taylor

SETIES ETPANSION,

OA OA OA
arn A ibine = <1 + OG5+ 0(7?)) <1 + 5t 0(7?)) <1 — 05t 0(7?))

0N

i
+8’}/7t

+0(77)
Therefore

lare < (14 vVi1) leas 1| + 7. Via |aos 1]

where Vis > 0 and Vi1 of the same sign as %, Also Vi1 and can be made arbitrarily

close to 2L by choosing a sufficiently small neighborhood.

oy
A lower bound for |ay,| is given by

o] > [(@11,0A 1,011, + @12, X0,0021,0) | i1
— [(a11,eA1,b12,¢ + Q19,000 tb20.6)| |z e 1] — [arie| 16| — |arze] [s2,¢]
> ([(a11,6A1,0b11,e + arzedogbare)| = Vi larne] KY — laiz,e] Ky ) o1
— ([(a11,6 A1 ,eb12,¢ + @120 X2,0b20.0) | + 7y lars,e] KT + |ara,] K5 ) a1
> (1 4+ W) ] — 7 Wi |ag, |
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with Wi > 0 and Wiy of the same sign and arbitrarily close to %, by the same
arguments as above.
Next use (42), (43), and (45) to get bounds for g,

’042,1&’ < <’<a21,t)\1,tbll,t + a22,t)\2,t621,t)’ + ’a21,t’ Ki’ + ’a22,t’ Ké/ ) ’Oél,tfll

+ <’<a21)\1,t612,t + a22,t)\2,t622,t)’ + Y ’a21,t’ Ki’ + ’a22,t’ Ké/ ) ’042,1&71’
Since agy ¢, biay, and bayy are of order O(7y,)
|cgs] < Vau o s—1| + Voo |age—1|

with Vo1 > 0, Vo > 0. Moreover,by choosing a sufficiently small neighborhood and a t

large enough one can choose Vay arbitrarily close to zero. Also, since
lim 29t = lim bQQ’t =1

one can choose Vag < 1 when || < 1 and Vag > 1 when |Ny| > 1 for all t sufficiently
large and all sufficiently small neighborhoods.

A lower bound for |asy| is given by

’042,1&’ > — <’<a21,t)\1,tbll,t + a22,t)\2,t621,t)’ + Y ’a21,t’ Kf + ’a22,t’ Ké/ ) ’Oél,tfll
+ ([(ag1tA1tb19.¢ + o2t A2.tboo )| — Ve |@o1.e] KY — |ase s Ky ) |cos1]
> —Way |og 1] + Wag o ¢-1|

with Wa1 > 0, Wae > 0. By the same arguments as above, fort sufficiently large and a
sufficiently small neighborhood Was < 1 if |Xg| < 1 and Wag > 1 if |Ag] > 1.

Collecting the previous bounds we have

W, ’Oél,tfll < ’Oél,t’ <V ’Oél,tfll (46)
’042,1&71’ ’Oéu’ ’042,1&71’

1 Wi —v,W-
where W, = T Teth12
—Wa Wy
T+vVii 7Vie
W =
Vo Vag

where the inequalities should be interpreted component-wise. Now choose a time t* and
a neighborhood U such that one can choose Was <1 (Wag > 1), and Voy <1 (Voy > 1)
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I now assume (22) holds and will prove the stability part for decreasing gain learning

rules. First, construct a matriz norm |-||, and a compatible vector norm |-|, such that
|Sz],, < |51, |21, (47)
for all 2 x 2 matrices S and 2 x 1 vectors x. Define the matriz norm as follows

IS|l, = || DuSDy | with

h? 0
Dy, =
0 h
where ||| L. @8 the mazimum absolute norm defined by ||M]||

= mMaX; j ’Mz,]’ A
compatible vector norm is given by (see Horn and Johnson (1985), p.297 )

max

[z, = || (=, )]l

where (x,x) is the matriz whose columns consist of the vectors x.

With these definitions we have

14+ v Vii 7hVie
Vel = .
h=Va Vaa

max

Now choose h large enough such that
W Vay < Vas
and a time t** > t* large enough such that for all t > 1**
YihVig < Vo <147, Vi1
Then fort > t**

H%Hh =1+vVi

v, ’Oél,tfll
’042,1&71’

Since the vector norm |-, is absolute, i.e.

and by (47)

< (1 + ’thll)
R

(48)

’Oél,tfll
’042,1&71’

h

’37’h = ’ ’37’ ’h
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it follows (from Horn and Johnson (1985), p.285) that it is monotone. From (46) and

(48) we therefore have that
’Oél,tfll < ’Oél,tfll
g, 1] h g 1]

’Oél,t’
’Oéu’

Since Vi1 < 0 when (22) holds, |ay| is a strictly decreasing positive sequence. This

— 7V (49>

h

h

implies that it has a limit o > 0. I now show that o* = 0. Summing the left- and
right-hand side of equation (49) fort to t + s yields
< ’Oél,tfll
n ’042,1&71’

’Oél,tJrs’ i: o ’Oél,tflJri’
— Vi1 ;
’OéQ,tJrs ’ i—0 e ’042,t71+i’

Now assume o > 0. Then we can divide the previous expression by the norm of

h h

ey s 1|, which together with the fact that |ay|, s decreasing yields
h h
’Oél,t+s’ ’Oél,tfll
’OéQ,tJrs’ z ’042,1&71’
<

b — Vi Z Yiti =
’Oé1,t71+s’ i=0 ’Oé1,t71+s’
’a2,t71+5’ n ’a2,t71+5’

Since ), v, = 0o the left-hand side will increase without bound as s increases. But then

h

h

lar— 145, must converge to zero, a contradiction. Therefore, lim,_,  |oy|, = a* = 0.
This establishes that there exists a neighborhood U of o = (0,0) such that if o, € U
at a time t > t**, then oy — (0,0). By continuity of M;(-,-) and the fact that (32)
has a fized point at (0,0) for all v,, cy remains in U fort < t** if the initial values oy
are chosen from another sufficiently small neighborhood U' C U. This establishes the

asymptotic stability resull for decreasing gain learning rules.

I now proceed with the instability part of the proposition. When (22) does not hold
then % >0, or |[Ag| > 1, or both.

First suppose |No| > 1. Then Woy > 1 for t > t*. Consider the cone Cg =
{(a1, )| |aa| = Blaq|}. I will show that there exists a finite time t** > t* and a
neighborhood U' C U such that if ap € CsNU' al a time t > t**, it follows that
a1 € Cg. In other words, o, must leave U’ before it can leave Cg.

>From (46) we have that for oy € Cg and § large enough
Wa

lovg, 1] — oo > (—7 + Woa — 1) |agy| = 7 |vay (50)
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For 3 large enough Z > 0. Also from (46)

lonyn] = |ene] < vy (Vig o] + Vas aay)

-
< %+1(% + Vi) g,

Choosing t** large enough such that for allt > t**

Vi
ﬂ%ﬂ(% + V) < Z
we have
ﬂ(’%,tﬂ’ - ’Oél,t’) < ’042,t+1’ - ’Oéu’

>From o € Cg we have

Bloa| < g

Adding up the last two equations implies a1 € Cp.

Now note that from (50) it follows that for t > t** and any o € Cz NU" with
a9y # 0 the sequence {oyy; ), will leave U’ in finite time.

It remains to show that for any small neighborhood U" C U’ there is a point ay € U”
that is mapped in a fized number of steps t** into a non-zero point au € Cg N U’ .
The mapping M(II,m) as defined in (30) is continuously differentiable for II > 0.
Furthermore, M(IL,m) > 0 for II > 0. Since in any stationary rational expectations
equilibrium (II,m) with g > 0 we have II > 1, (32) is continuously differentiable in a
neighborhood of o = (0,0). By the regularity assumptions, the matrices A(vy,) are non-
singular. The mapping (32), therefore, fulfills the assumptions of the inverse function
theorem (see e.g. Hirsch and Smale (1974), p.337). Moreover, they have a fized point
at (0,0) for all t. Therefore, the t**-iterative map also fulfills the assumptions of the
inverse function theorem and has a fized point at (0,0). Now fiz an arbitrary U" C U’
sufficiently small. Then by the
continuous differentiability of the t**-iterative map and the fixed point property, the

and choose a ap € Cg NU" with o | and |,

pre-image (0o, py) must be in U". But I have shown that from t** onwards one obtains

a divergent trajectory.

Next, suppose % > 1 and without loss of generality |Xo| < 1. Then Wiy > 0 and
Vae <1 fort > t*. Define the cone Cjy = {(a1, @a)||ou| > Blay|}. Witha, € CsNU
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equation (46) implies for t > t*

’Oél,t+1’ - ’Oél,t’ > (%HWH ’Oél,t’ - ’Yt+1W12 ’Oéu’ )

W,
> Vet <W11 - %) [e59

Similarly, (46) implies

B (Jowei1]| — |aoe]) < 0 (Var |oae| + (Vag — 1)) |agy]
< (BVar + (Vag — 1)) |ag 4]

Now choose a 3 such that

<W11—%> >0

This implies that | 4| is increasing in C5NU.

(51)

(52)

(53)

Restricting consideration to a sufficiently small neighborhood U' C U one can choose

Vo1 arbitrarily close to zero and Vo arbitrarily close to |Ao| < 1. With a sufficiently

small U’ it holds that

(BVar + (Va2 — 1)) <0

and |agy| is decreasing in C'[; NU'. This implies that .y € Cfy whenever o, € C'[; Ny’

for t > t*. As before, oy must leave U before it can leave C[;, At the same time
(51),(53), and the fact that v, = oo imply that oy will leave U’ in finite time. Then

choosing an au € C'[; N U" sufficiently close to zero will insure that the pre-image o

of agwill be from any arbitrarily small neighborhood U" C U'. But from t** onwards

we will get a divergent trajectory.
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8.2 Appendix to Section 6
8.2.1 Linearization Coefficients

For g = 0, the coefficient matrices for the linearization around the low inflation equi-

librium (IT', m') are given by

_wh
ol = 1o 54a
( mi(1+ 1) ) e

1 _ ml’LU1 0
l 1-o
= 54b
= (et o) o
!
W 0
1 —
= g 54c
8 ( T ) (549
l
0 M
I _ —0
6—(0 1—mlw—ig> (54d)
where
ow ow
L _ = 1 Hl d I _ 1 Hl
wy I (m',II') and wy L, ] (m', I1")
Similarly, the coefficients for the high inflation equilibrium (IT", m") at g = 0 are given
by
— (11" 2wy
al = ( )"+ ) (55a)
0
10
h
= 55b
Ao ( 0 0 ) (55b)
M2 g
h l1-o
= 5bc
A ( 0 0 ) (55¢)
0 oy
st = 1o (55d)
0 L
g
where
ow ow
h— Z 2 (mh 117 dwh = — 2 (o 11
wy E (m™, II") and wy E, ] (m™, 1I")
8.2.2 Minimum State Variable Solutions
Consider a stochastic linear expectational difference equation of the form
Ty = kf —I— B()Et,1 [a?t] —I— BlEtfl [a?t+1] —I— Da?t,1 —I— Ut (56>
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with x;, us, k € R", By, By, D € R™*", and By # 0, D # 0. The minimum state variable
solutions of (56) take the form

x=a+ Br, 1+

provided there exists a real solution to the matrix quadratic equation

B1B>—(By—I)B+D =0 (57)
see chapter 10 in Evans and Honkapohja (2001). Then a is given by

(I —By—Bi(1+B))Ja—k=0 (58)
The minimum state variable rational expectations solutions can be calculated by
solving the matrix equations (57) for B and then using (58) to calculate a where
k, By, By, and D are given by the linearization coefficients calculated in appendix 8.2.1.

Some lengthy algebra shows that around the low inflation steady state (I, m') there

are two AR(1) rational expectations solutions given by

I — g +Bl,1 Iy + 0
my my—1 Vg

1+ mi 0 - I, 0
- l 2w’51l + lewl +
— (m) w—;l 0 1—|—mw—;l mMy_1q Vg

Around the high inflation steady state (IT", m") there is a single AR(1) rational expec-

tations solution given by

my my Uy
7" 0 -4\ /1, 0
— —I— 2 _I_
0 0 % M1 Ut

The fact that there is only a single solution shows that the linearization around the

high inflation steady state must be degenerate for g = 0, because equations (57) and
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(58) generically possess two solutions. For g > 0 one has the following linearization

coefficients around (TI", m"):

a = ( - () hleQ" ) (59a)

'+
1 mhw}f 0
h Hh(lfzf)2
Go=1 L (59b)
(i~ : (Hh)g(lfa)
M
A= bt (59¢)
T IR (1-0) 0
wy
. 0 f
6" = 1 Py (59d)

o (Hh‘)Q(lfU)
It is easy to check that for the above coefficients the following is the second rational

expectations solution:

my my Uy
0 0 o I, 0
_ + mh t—1 +
mh 0 0 me_q Ut
It exists only for g > 0, not for g = 0.

8.2.3 Proof of Proposition 2

Agents have a perceived law of motion

11 II,_
)= a1+ B -
my My

where a;_1 and B;_; represent the agents’ least squares estimates based on information
H, . Substituting the perceived law of motion into (26) yields the actual law of motion

given by

11
= (a+ Boar1 + Brae1 + By Be1ai 1)

L
+wwu+mwmf+®<m>+<o>
s (o

=T%a¢1,Bi 1) +T"(Bi 1) ( He ) + ( 0 )
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A rational expectations solution (a*, B*) is E-stable (E-unstable) if the following dif-

ferential equation is asymptotically stable (unstable) at (a*, B*):

9a [ T%a,B) \ a
GuecB —\ vee T*(B) vec B

where vec is the vectorization operator. Clearly, this differential equation is asymptot-

ically stable at (a*, B*) if all the eigenvalues of

5 ( 7%(a, B) )
vec T?(B)

d (a,vec B)

dvecT®(B)
da -

are smaller than one. The following table lists the eigenvalues of these two

vec T?(B)

are smaller than one. Since 0, this is the case if the eigenvalues of 9 ETE

aT(a,B)

and 5

matrices for the respective rational expectations solutions at g = 0:'°

RE-Solution | EV’s of %chgg) EV’s of %

ot B M=d=0X=A=1—"2—m2 [\ =0X=1-—mL

al2, Bi2 M= =0 =1 =1+ 4 m | A =0 N = 1+ w)

atBR A =M =0 A=\ =1 As =02 =1+ (" — 1)22
’LUh ’LUh

ah,27Bh,2 )‘1:)‘2:07)‘3:17)‘4:1+ﬁ )‘5:0;)\6:1+Hhﬁ

Since w} > 0, wh > 0 for n =1, h and II" > 1, it follows that the rational expectations
solution (ah!, B! is E-stable and the solutions (a*?, B%?), (a! B™!) and (a2, B"?)

are F-unstable.
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