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Abstract 
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Introduction

Information aggregation is understood to be one of the fundamental roles of markets, and financial

markets in particular. As a consequence, a large literature has studied the welfare properties and the

social value of information in markets, from Hayek (1945) to, e.g., Angeletos and Pavan (2007). In

doing so, it is crucial to understand how agents make inferences from the information they receive:

for example, traders in financial markets constantly update their beliefs about valuations of financial

assets, as a consequence of changes in market prices, fundamentals, and investment choices of other

traders. There is growing evidence that agents’ updating rules depart from Bayesian rationality

in the form of under/overreaction to information (Benjamin, 2019, Bordalo et al., 2020).1 In this

paper, we ask: how do departures of individual updating rules from Bayesian rationality impact

welfare and informational efficiency in financial markets? Can a simple intervention such as a tax

or a subsidy mitigate inefficiencies?

To formalize departures from Bayesian rationality in a parsimonious way, we follow the logic of

the diagnostic expectations model (Bordalo et al., 2016 and Bordalo et al., 2018) that formalizes

overreaction (and underreaction) in beliefs as a parametric deviation from Bayesian updating. Bi-

ased agents depart from Bayesian rationality in computing posterior beliefs by under/over-reacting

to recent information. We embed over-reacting agents in a market game in which agents submit

conditional bids, or schedules, that depend on the market price and a private signal. We adopt the

tractable linear-quadratic Gaussian setting from Vives (2017).

In this environment, there are two sources of information: the private signal and the (pub-

lic) market price. We adopt the diagnostic expectations equilibrium of Bordalo et al. (2020), in

which prices are formed in equilibrium given agents’ trade choices, and agents correctly understand

this mechanism, but their posterior expectation about the fundamental value is distorted due to

over/under reaction to both private information (the private signal) and public information (the

market price). In particular, in our context, the bias does not come from (possibly partially) fail-

ing to realize that other traders also understand the information contained in prices, as in the

“cursed equilibrium” of Eyster et al. (2019) or the “partial equilibrium thinking” of Bastianello and

Fontanier (2022). The main difference between Bordalo et al. (2020) and our work is that their

focus is on bubbles rather than welfare and taxes.2

1Moreover, such departure can explain several facts about macro-financial variables, such as credit cycles (Bordalo
et al., 2018), stock returns (Bouchaud et al., 2019 and Bordalo et al., 2018), interest rates (d’Arienzo, 2020) and even
the likelihood of a financial crisis (Maxted, 2023).

2Moreover, they use a model with CARA utility and inelastic supply, whereas, for tractability, we follow Vives
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In a version of this model with standard Bayesian agents, Vives (2017) highlights two competing

externalities: a learning externality, due to the fact that agents do not internalize that their actions

reveal information by changing the informativeness of the price as a signal of the underlying value;

and a pecuniary externality, due to the fact that agents do not internalize that, conditioning their

trade on the price, they also change how the price reacts to the underlying value. As a consequence,

the loading on private information can be either too high with respect to the efficient benchmark

(if the pecuniary externality prevails) or too low (if the learning externality prevails). Both cases

are possible, for different values of the parameters.

We characterize the equilibrium in a tractable linear-quadratic setting. When agents display

overreaction, agents trade more aggressively for the same private signal, because they overweight

the information contained in it. As a consequence, they increase the informativeness of the price as

a public signal of the value. However, this increase is not sufficient to offset the first-order effect, and

so the loading on the private signal in agents’ actions is larger than it would be for Bayesian agents.

So, overreaction changes the relative importance of the learning and the pecuniary externality with

respect to the benchmark model. As a consequence, the price reveals more information than in an

economy with Bayesian agents.

Having characterized the equilibrium, we study the effect of overreaction on welfare. The ex-

ternality that prevails in the Bayesian benchmark determines the sign of the welfare effect a small

level of overreaction, and so it can be positive or negative. However, for a large enough level of

overreaction, a further increase in the diagnostic bias is always decreasing welfare. Then, we ex-

plore whether introducing a small quadratic tax or subsidy can be optimal. We show that when the

overreaction parameter is large enough, the introduction of a small tax is always welfare-improving.

Such result can offer a rationalization of a Tobin-type tax (Tobin, 1978) on financial transactions, for

reasons related to the interaction of a behavioral bias (diagnostic expectations) and informational

efficiency, that are distinct both from arguments relating to curbing speculation (as in Stiglitz, 1989

and Summers and Summers, 1989), and arguments arising from disagreement in agents’ evaluations

such as in Dávila (2023), and thus can be seen as complementary to such arguments.3 When over-

reaction is close to zero, the welfare effect of a tax depends on the balance between the learning and

pecuniary externality in the Bayesian benchmark. So the model implications for the optimality of

(2017) using a model with elastic supply and quadratic utility.
3Such a tax has been the subject of a long debate and is still a important issue in economic policy: it has been

first advocated by Keynes, is currently in place in multiple countries (such as UK and Sweden), and is the object of
a European Commission official proposal since 2011.
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a tax crucially depend on the degree of agents’ overreaction to information.

Our work is related to three literatures: the literature on overreaction and related biases in

information processing, the literature studying taxes in the presence of behavioral biases, especially

on financial transactions, and the literature on the social value of information. Our contribution is

to show how overreaction can be welfare improving via mitigating the learning externality: that, is,

overreaction can have a “social value”. However, when overreaction is large enough, it can rationalize

a tax on financial transactions, even in the presence of the learning externality. The literature

on overreaction in finance and macroeconomics has mostly focused on identifying and measuring

overreaction and on its explanatory power for rationalizing various macroeconomic phenomena

(Bordalo et al., 2022). Some papers have explored macroeconomic policy under overreaction or

exuberance, such as Maxted (2023), which also finds a positive welfare effect, that does not work

through the learning externality but a balance sheet mechanism. Walther (2020) explores macro-

prudential policy implications with extrapolative beliefs. The fact that overreaction helps learning

via revealing more information is similar to the effect of overconfidence in the social learning model

of Bernardo and Welch (2001): they study a simple sequential learning model instead of a financial

market and so, in their setting, only the learning externality is present, but not the pecuniary

externality.

While the taxation literature has studied various behavioral biases, for example, related to at-

tention and salience as in Goldin (2015), Moore and Slemrod (2021), Farhi and Gabaix (2020), the

literature specifically on taxation of financial trasactions has mostly focused on rational models:

Auerbach and Bradford (2004), Rochet and Biais (2023), Adam et al. (2017), Buss et al. (2016), at

most with heterogeneous priors as in Dávila (2023). The literature on the social value of informa-

tion has also mainly focused on Bayesian agents, e.g. Angeletos and Pavan (2007) and Angeletos

and Pavan (2009). An exception is Ostrizek and Sartori (2021) that study a strategic setting in

which agents follow the cursed equilibrium model of Eyster and Rabin (2005) and Eyster et al.

(2019), showing that cursedness can improve welfare: their mechanism works through information

acquisition and not via the pecuniary externality like ours.

The next section introduces the model, Section 2 describes the equilibrium characterization,

Section 3 describes our results and Section 4 concludes. All the proofs are in the Online Appendix.
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1 The model

Our model closely follows Vives (2017), in its financial market interpretation, except for the behav-

ioral bias due to diagnostic expectations.4 We consider a financial market populated by informed

speculators and liquidity suppliers. There is only one asset traded.

Informed agents There is a continuum of informed speculators indexed by i ∈ [0, 1] and repre-

sented with the density f . Informed speculators face quadratic transaction costs. Each of them can

decide her position Di with respect to the only asset exchanged, where short sales are allowed (Di

can be negative).

The profit of an informed agent i holding Di units of the asset when the market price is p is:

ui = (V − p)Di −
1

2
γD2

i

where V is the (unobservable) fundamental value of the asset, and the quadratic term represents

transaction costs. Equivalently, it can be considered a form of (non constant) risk aversion.5 In-

formed speculators have a prior over the fundamental value V that is Gaussian: V ∼ N (0, τ−10 ).

They also have access to a private signal si that, conditional on V , follows a Gaussian distribution:

si | V ∼ N
(
V, τ−1ε

)
. Moreover, si is independent of sj for i 6= j, conditionally on V : si ⊥ sj | V .

In the following, we are going to have repeatedly to integrate a continuum of random variables

over [0, 1]. We follow the literature6 defining the integral over a continuum of independent random

variables (Xi)i∈[0,1] as
∫
Xidi :=

∫
E(Xi)di whenever the map E(Xi) is integrable (that will always

be the case in our setting). This implies that a form of the Law of Large numbers holds, so that,

conditionally on V , we have
∫
sidi = V . This is going to be the only property of such an integral

we need.7 We denote the total demand from all informed agents as D =
∫
Didi.

Diagnostic expectations Agents update over their prior using the private signal si and also the

information contained in the price p but, crucially, not in a Bayesian way. If the price depends on

4Vives (2017) studies different interpretations of the same abstract model, one being agents in a financial market,
another firms competing in schedules. For our purposes we stick to the interpretation of agents trading in a financial
market.

5The quadratic functional form makes the model very tractable. A similar approached is followed in Vives (2014).
6See Vives (2010).
7There are various formalizations of such an integral that deliver such a property, discussed e.g. in Acemoglu and

Jensen (2010). Since the only property we are going to need is the Law of Large numbers, we avoid this technical
issues and directly assume it.
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the fundamental V and the noise S according to p = A+BV −CS, then (p−A)/B is a Gaussian

random variable of mean V and precision B2/C2τS : the agents understand this dependence and use

it for their updating. So, after observing private signal si and the price p, the Bayesian posterior

distribution of the belief on the fundamental V is a Normal with parameters:

E(V | si, p) =
τε

τε + τ0 +B2/C2τS
si +

B2/C2τS
τε + τ0 +B2/C2τS

p−A
B

V ar(V | si, p) =
(
τ0 + τε +B2/C2τS

)−1
Our informed agents do not hold these beliefs because we assume that they over/under-react

to information according to the diagnostic expectations model of Bordalo et al. (2018) and Bor-

dalo et al. (2020). Namely, their posterior beliefs follow a Gaussian with the same variance, but

expectation equal to:

Eθ,i(V | si, p) := E(V | si, p) + θ(E(V | si, p)− E(V ))

where θ ∈ (−1,+∞) represents the strength of the diagnostic bias. When θ > 0 agents over-react

to the information: when the information leads them to revise their prior expectation upwards

(E(V | si, p) > E(V )), they revise it upwards more than a Bayesian would: Eθ,i(V | si, p) > E(V |

si, p); while if the information leads to a downward revision (E(V | si, p) < E(V )), they revise it

downwards more than a Bayesian would: Eθ,i(V | si, p) < E(V | si, p). The case of Bayesian agents

corresponds to θ = 0. For θ < 0 we instead obtain under -reaction: agents revise their priors less

than a Bayesian would; for θ → −1, agents to not revise their prior at all.

Liquidity suppliers Liquidity suppliers trade according to the aggregate (inverse) supply func-

tion p = −µS − S + βD, where β > 0 and S ∼ N (0, τ−1S ) is a random component, while µS is a

constant.8 In the welfare measure (1), we include the surplus of the liquidity suppliers, defined as is

standard as the area below the supply curve:
∫ D
0 p(q)dq.9 An alternative interpretation that does

not rely on the concept of noise traders (and so might have a clearer welfare interpretation) is that

there is an entrepreneur that can issue equity yielding a dividend V , with a preference for retaining

8Noise traders as in Grossman and Stiglitz (1980) are a special case of this specification in which β → ∞, τS → ∞
and τSβ

2 = τ ′S > 0. In this case, the aggregate supply is independent of prices, and simply a random variable with
precision τ ′S .

9If we were to exclude the liquidity traders from welfare calculations, there would still be a scope for intervention,
as even in the Bayesian benchmark Vives (2017) shows that the learning and pecuniary externality would still be
present, even if the precise expression would change.
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shares (control) of the firm measured by S. This is explored formally in the Appendix A.

Equilibrium We follow (Bordalo et al. (2020)) in looking for a diagnostic expectations equilibrium.

Namely, we look for a pricing function g(S, V ) that satisfies:

1. Individual optimization: the demand Di maximizes trader i (diagnostic) expected utility given

the observation of the private signal si and the price p, formally: Di(p, si) ∈ arg max{Eθ,i[ui |

si, g(S, V ) = p]};

2. the price clears the market: p = −µS − S + β
∫
Di(g(S, V ), si)di.

Similar to Vives (2017), the functional forms assumptions guarantee that the equilibrium pricing

function is linear: so determining the equilibrium reduces to finding the coefficients A, B and C

such that p = A+BV − CS satisfies the conditions above.

The welfare measure We follow Vives (2017) in considering our welfare measure the total

surplus, defined as informed trader surplus plus the surplus of the liquidity suppliers:

W = E
((

µS + S − β 1

2
D

)
D +

∫ (
V Di −

γ

2
D2
i

)
di

)
(1)

In the alternative interpretation of the asset supply as arising from an entrepreneur issuing eq-

uity, this expression represents the surplus of the informed traders plus the profit of the entrepreneur,

that is also equivalent to the utilitarian welfare in this economy. Note that the expectations that

appear in the expression are all taken from the perspective of Bayesian agents. In doing this, we

interpret the agents’ deviation from the Bayesian benchmark as a proper “mistake”, not as a taste

or preference feature, following a standard approach in the behavioral economics literature, e.g.:

O’Donoghue and Rabin (2006), Spinnewijn (2015), and the survey by Mullainathan et al. (2012).10

In this context the first best allocation, that would realize if agents could pool their information,

would be the complete information allocation, since by the law of large numbers
∫
sidi = V . It is

convenient to study welfare in terms of welfare loss from such an allocation. The first best allocation

solves:

max
Di

W =

(
µS + S − β 1

2
D

)
D +

∫ (
V Di −

γ

2
D2
i

)
di

10There is another, more conceptual reason. To compute the ex-ante welfare from the perspective of a diagnostic
decision maker would require to specify how the decision maker predicts her future behavior once she receives the
information: is she aware of her bias or not? this would require considerably more assumptions than simply compute
the welfare from the perspective of a Bayesian agent, so we follow the latter approach.
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and since the agents are ex-ante identical is a symmetric allocation, that we denote Do. Denote

W o the aggregate welfare in such an allocation. Define the welfare loss of some allocation (Di)i∈[0,1]

from the first best as WL = W o −W , where W is the welfare in the allocation (Di)i∈[0,1]. The

following lemma from Vives (2017) characterizes the welfare loss from the first best:

Lemma 1.1. At the allocation (Di)i∈[0,1] the welfare loss from the first best allocation Do is

WL = E(W ∗ −W ) = (β + γ)
1

2
E(D −Do)2 +

γ

2
E
∫

(Di −D)2di

The interpretation of the above expression is that the welfare loss results from two parts, that

Angeletos and Pavan (2007) name, respectively, “variance” and “dispersion”: the first relative to the

departure of the aggregate demand from its first best level, the second relative to the cross-sectional

dispersion of trades across agents. The effect of information (and thus overreaction to information)

results from this trade-off: precise information means a small aggregate deviation from the first

best, but a large dispersion, because precise information means traders trade more aggressively.

The welfare impact of overreaction will result from this fundamental trade-off.

2 Equilibrium characterization

In this section we illustrate the equilibrium and the welfare benchmark.

Define the loading on private information α = a(θ + 1), where a is the solution of:

γa =
τε

τε + τ(a)
(2)

where τ(a) = τ0 + β2a2τS(θ + 1)2 represents, in equilibrium, the precision of public information.

Proposition 1. The diagnostic expectation equilibrium of the model is such that the demand of

assets of each agent i is:

Di =
1

γ
(Eθ,i(V | si, p)− p)

and the equilibrium price satisfies:

p = A+BV − CS

where:

Eθ,i(V | si, p) = (θ + 1)(γasi + (1− γa)E(V | p))
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E(V | p) =
β2a2τS(θ + 1)2

τ0 + β2a2τS(θ + 1)2
(p−A)/B

and the price coefficients are:

A =
−γµS
γ + β

B = β
(θ + 1)

γ + β
C =

1

(γ + β)a

We underline some key positive properties of the equilibrium:

Corollary 2.1. In equilibrium the following properties hold:

1. The sensitivity to private information α is increasing in θ;

2. The precision of the price as a signal of the value B2/C2τS is increasing in θ;

3. The volatility of the price V ar(p) is increasing in θ.

Point 1 yields the fundamental mechanism of what follows: overreaction increases the sensitivity

to private information. This is immediate by construction when fixing the precision of the public

signal but, in equilibrium, overreaction also affects such precision, because more information is

revealed. This indirect effect on the precision of the price, though, is not strong enough to counteract

the main effect, and so the loading α increases in θ.

Point 2 shows that since with overreaction the sensitivity to private information is higher, the

price reacts more to the true value than it would in the Bayesian case, and so the precision of the

price as a signal of the value is higher. Point 3 shows that this effect is in place despite the fact that

the price displays excess volatility under overreaction, a well known fact. The apparent contradiction

is resolved noting that the higher precision of the price as a signal of the value causes indeed a higher

variability when measured ex-ante, because when the price incorporates more information it moves

more with respect to the prior.

3 The effect of overreaction

In this section we study the effect of overreaction. First, as a benchmark, we illustrate the welfare

analysis of the Bayesian model with θ = 0.
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3.1 The Bayesian benchmark

In the following Proposition we summarize the characterization of the Bayesian case from Vives

(2017)

Proposition 2. Define a∗ as the loading on the private signal at the market solution in the Bayesian

benchmark: that is the solution of equation (2) for θ = 0. Define aT as the solution of:

aT =
τε

γ(τ(aT ) + τε) + βτ(aT )−∆(aT )

where ∆(aT ) = (1−γaT )2β2τSτε
γτ(aT )

.

The market solution is second-best efficient if and only if a∗ = aT : dWL
da > 0 ⇐⇒ a∗ > aT .

The Proposition says that the loading on private information at the market equilibrium a∗

can either be too high or too low from a welfare perspective. This is because of the interplay

between a learning externality and a pecuniary externality. The learning externality derives from the

informational role of the price and is well understood: agents decisions to trade reveal information

to other agents through the price, but agents do not internalize this effect in the market equilibrium.

This force pushes the sensitivity a∗ to be too low with respect to the second best. The pecuniary

externality derives from the allocative role of the price, and derives from the fact that agents

decisions affect how the price correlates to the true value V , but do not internalize this in the

market equilibrium. This externality pushes the sensitivity a∗ to be too large. Summing up:

1. if aT < a∗, this means that the learning externality is stronger;

2. if aT > a∗, this means that the pecuniary externality is stronger.

3. if a∗ = aT the two externalities exactly balance each other and the market equilibrium maxi-

mizes welfare.

In the following, we study how overreaction to information changes this picture.

3.2 Welfare decomposition

The endogenous loading on private information α is crucial for the efficiency properties of the

equilibrium. In the following Lemma, we provide a decomposition of the welfare loss that is going

to be useful in the following.

10



Lemma 3.1. In equilibrium, we can decompose the welfare loss (1) as WL = WLB +WLD:

WLB =
1

2

(1− γα)2

(β + γ)

1

τ
+
γα2

2τε
(3)

WLD(α) =
1

2
θ2

(1− γα/(θ + 1))2

(β + γ)

(
1

τ0
− 1

τ

)
(4)

The first term WLB is the welfare loss that would realize for Bayesian agents having loading on

private information equal to α. The second term WLD represents the additional bias that diagnostic

expectations add beyond the change in α. This is useful to separate the direct effect of overreaction

from the effect on the loading α.

3.3 Welfare effect

The following proposition characterizes the effect of overreaction on welfare.

Proposition 3. In θ = 0 dWL
dθ > 0 if and only if a∗ > aT .

Moreover, for θ large enough dWL
dθ > 0, and for θ small enough dWL

dθ < 0.

The proposition shows that, when overreaction is close to zero, its welfare impact depend solely

on the balance of externalities in the Bayesian case: in particular, if a∗ < aT , so that the learning

externality prevails, overreaction is welfare improving. The key mechanism driving the result is

that overreaction increases the sensitivity to private information α = a(θ + 1). This has the effect

of making the price more sensitive to the true value, that has two implications: first, this makes the

price a better signal of the value, mitigating the information externality; second, it exhacerbates

the pecuniary externality. Lemma 3.1 shows that the term WLD is second order in θ, hence when

θ = 0 the first order effect is only the variation in WLB caused by the change in α:

dWL

dθ
=
∂WLB

∂α

dα

dθ

So, since dα
dθ > 0 by Corollary 2.1, the sign of the welfare impact depends simply on which externality

is stronger at the Bayesian benchmark, that determines the sign of ∂WLB

∂α |θ=0=
∂WLB

∂a |θ=0 as in

Proposition 2.

When the overreaction parameter is far from 0, the term WLD instead becomes important.

Such a term incorporates the expected mistake the agents make overestimating (underestimating)

V when they get positive (negative) information. The second part of the Proposition says that
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if the overreaction parameter θ, and the consequent expected error, has magnitude large enough

in positive or negative, moving further from the Bayesian benchmark can only reduce welfare. To

sum up: a limited amount of overreaction can have a positive effect, depending on the interplay of

prediction error, information externality and pecuniary externality.

3.4 Policy

We have seen that in this economy there are multiple inefficiencies due to the fact that agents

might trade too much or too little relative to what would be the optimum given their private

signals. These inefficiencies are present already in the Bayesian case: moreover, the diagnostic bias

can exhacerbate (or not) these inefficiencies. Since the inefficiencies stem from the departures of

the amounts traded from the second best, now we explore whether a tax (or subsidy) on quantities

exchanged can be used to correct the inefficiencies and provide higher welfare. Vives (2017) shows

that, in the Bayesian case, a quadratic tax/subsidy can implement the second-best level of the

loading on private information aT . In this section we ask a related question, that is: when does the

introduction of a small tax improves welfare, and when a small subsidy instead?11

A linear tax/subsidy here cannot improve welfare: it would simply shift uniformly all the de-

mands, but would leave the loading on private and public information unaffected: so it would simply

add an additional term t2 to the welfare loss, contributing to the volatility term: so the introduc-

tion of such a linear tax/subsidy would never be optimal. So, the next natural step is to explore a

quadratic tax/subsidy δ.

Formally, we assume that when agents trade a volume Di, they have to pay an additional

amount12δD
2
i , where if δ < 0 this is understood to be a subsidy. Both buyers and sellers have to

pay the tax. So, the payoff of the informed speculators becomes:

ui = (V − p)Di −
1

2
(γ + δ)D2

i

Since the tax is levied also on the liquidity suppliers, the inverse demand becomes: p = −µS − S +

(β + δ)D. In the Online Appendix we show that the results are qualitatively the same if the tax is

levied on informed speculators only.

We follow the assumption in Vives (2017) that the revenues/payments from this tax/subsidy

11Note that this is different from asking whether a tax/subsidy can implement the second best level of reaction to
private information. This is possible, but such tax/subsidy level is not necessarily optimal even in the Bayesian case,
because beyond changing the relative weight between private and public information the tax/subsidy also affects the
total volume traded.
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are rebated in a lump-sum amount T , to satisfy budget balance. The total amount paid from

the informed speculators is δ
2

∫
D2
i di and the one paid by the entrepreneur is δ

2D
2
, and the total

revenues collected must equal the rebate, so: T = δ
2

∫
D2
i di+ δ

2D
2
.

So the welfare loss with respect to the first best is:

W ∗ −
(
W − δ

2
D

2 − δ

2

∫
D2
i di+ T

)
= W ∗ −W

because the additional terms cancel out thanks to budget balance. So we conclude that the welfare

loss satisfies the same expression as in Lemma 1.1.

The next proposition studies the welfare effect of the introduction of a small tax, formally

characterized as the derivative of the welfare loss, computed in δ = 0: dWL
dδ |δ=0. When dWL

dδ |δ=0< 0

a small positive tax decreases the welfare loss, and so we say that a small tax is welfare improving.

When the opposite is true, we say that a small tax is welfare improving.

Proposition 4. The welfare loss from the introduction of a tax δ is:

WLδ =
(1− (γ + δ)α)

(β + γ + 2δ)2 τ

(
(1− (γ + δ)α) +

4δ

β + γ
(1 + (β + δ)α)

)
+

4δ2(µ2S + τ−1S + τ−10 )

(β + γ)2(β + γ + 2δ)2

+

(
1

β + γ + 2δ

)2(
θ2 +

4δθ

β + γ

(
1− 1

(β + δ)ατS

))(
1

τ0
− 1

τ

)
+
γα2

τε

Moreover:

1. If θ is large enough, the introduction of a small tax is welfare improving: dWL
dδ |δ=0< 0;

2. If θ is small enough, the introduction of a small subsidy is welfare improving: dWL
dδ |δ=0> 0;

3. If θ = 0, a tax could be either welfare improving or decreasing depending on the parameters.

For a∗ = aT a small tax is welfare decreasing. If a∗ is sufficiently smaller than aT , a small

subsidy is welfare improving.

A tax δ decreases the total amount traded, and in so doing it also changes the loading on private

information α: an increase in δ decreases α. The expression of the welfare loss above sums up these

direct and indirect effects. When δ = 0 the indirect effect ∂WL
∂α is the same as without the tax. But,

contrary to Proposition 3, the direct effect of the tax is first order here, so it is not sufficient to look

at the balance of the learning and pecuniary externality alone to understand the sign. However,

when θ becomes large enough we obtain dWL
dδ |δ=0> 0. This is because when θ goes to infinity, then

13



also α does. So, the amount traded is larger than at the efficient level, and a tax becomes welfare

improving. When θ is small enough the reasoning is analogous, obtaining a subsidy instead of a

tax.

4 Conclusion

We show that overreaction to information in the form of diagnostic expectations can improve wel-

fare in markets where there is a strong enough information externality. When the information

externality is not strong enough, overreaction can rationalize a tax on financial transactions on

efficiency grounds. These results highlight that understanding the degree of overreaction is crucial

for understanding its welfare effect and the sign of the optimal intervention. The interactions of

these effects with other rationales for trading, such as hedging or heterogeneity, and other biases

such as cursedness, are interesting avenues for further research.
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Appendix

A Alternative interpretation for the liquidity suppliers

In this section we illustrate an alternative interpretation for the origin of the elastic inverse demand,

originating from a simple reduced form model of an entrepreneur issuing equity. There is an en-

trepreneur that has a project with dividend value V , that is not ex-ante known. The entrepreneur

has preferences for remaining in control of the firm, measured by the random variable µS + S, that

represents the disutility per share sold for the entrepreneur. If she sells an amount D of equity, she

can raise pD, at the utility cost (µS + S)D, paying the transaction costs β
2D

2
. So, in total, the

profit of the entrepreneur is:

uei = (p+ µS + S)D − β

2
D

2

that gives rise exactly to the inverse demand in the main text.
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Online Appendix

B Tax only on informed speculators

In this Appendix we explore a variation in which it is possible to levy the tax only on informed

speculators, and we show that the qualitative results are very similar. The results are collected in

the following Proposition.

Proposition 5. The welfare loss from the introduction of a tax δ is:

WL =
1

2

(
(1− (γ + δ)α)

(β + γ + δ)2 τ
((1− (γ + δ)α)(β + γ) + 2δ(1 + βα)) +

δ2(µ2S + τ−1S + τ−10 )

(β + γ)(β + γ + δ)2

+

(
1

β + γ + δ

)2(
θ2(β + γ) + 2δθ

(
1− 1

βατS

))(
1

τ0
− 1

τ

)
+
γα2

τε

)

1. If θ is large enough, the introduction of a small tax is welfare improving.

2. If θ is small enough, the introduction of a small subsidy is welfare improving.

3. if θ = 0, a tax could be either welfare improving or decreasing depending on the parameters.

For a∗ = aT , welfare is at a local optimum.

Proof. All the equilibrium expressions are analogous to what derived in Proposition 1, with γ + δ

in place of γ.

The level of trade for agent i is:

Di = (θ + 1)asi +
(1− (γ + δ)a)(θ + 1)E(V | p)− p

γ + δ

where a solves:

(γ + δ)a =
τε

τε + τ(a)

From Lemma 1.1, we know that the expression for the welfare loss is:

1

2

(
(β + γ)E(Do −D)2 + γEV ar(Di)

)
The first best solution Do is of course not affected by the tax. We have to compute the two

terms using the individual demands under a tax δ. The dispersion term has the same form as a
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function of a as would without the tax.

Instead, for the volatility term:

D =
1

β + γ + δ
(S + µS + (γ + δ)a(θ + 1)V + (1− (γ + δ)a)(θ + 1)E(V | p))

D
o −D =

µS + S + V

β + γ
− 1

β + γ + δ
(S + µS + (γ + δ)a(θ + 1)V + (1− (γ + δ))(θ + 1)E(V | p))

=
(β + γ)((1− (γ + δ)a(θ + 1)V ) + (1− (γ + δ)a)(θ + 1)E(V | p)) + δ(µS + S + V )

(β + γ)(β + γ + δ)

=
1

(β + γ)(β + γ + δ)
((β + γ)(1− (γ + δ)α)(V − E(V | p))+

+(β + γ)θE(V | p) + δ(µS + V + S))

Taking the square and the expectation we get:

E(Do −D)2 =
(1− (γ + δ)α)

(β + γ + δ)2 τ

(
(1− (γ + δ)α) +

2δ

β + γ
(1 + βα)

)
+

δ2(µ2S + τ−1S + τ−10 )

(β + γ)2(β + γ + δ)2

+

(
1

β + γ + δ

)2(
θ2 +

2δθ

β + γ

(
1− 1

βατS

))(
1

τ0
− 1

τ

)

So the total welfare loss is:

WL =
1

2

(
(1− (γ + δ)α)

(β + γ + δ)2 τ
((1− (γ + δ)α)(β + γ) + 2δ(1 + βα)) +

δ2(µ2S + τ−1S + τ−10 )

(β + γ)(β + γ + δ)2

+

(
1

β + γ + δ

)2(
θ2(β + γ) + 2δθ

(
1− 1

βατS

))(
1

τ0
− 1

τ

)
+
γα2

τε

)

Using the implicit function theorem, the effect of δ on the loading on private information is:

dα

dδ
= − α

(γ + δ)
(

2α2β2(θ+1)2τS
α2β2(θ+1)2τS+τ0+τε

+ 1
) < 0

Calculating the derivatives in δ = 0 we get:

∂WL

∂α
|δ=0 =

αγ

τε
+
γτ0(αγ − 1) + αβ2τS

(
αγ + θ2 − 1

)
(β + γ) (α2β2τS + τ0) 2

(5)

∂WL

∂δ
|δ=0 = − αβθ (αβ(θ − 1)τS + 1)

τ0(β + γ)2 (α2β2τS + τ0)
(6)
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Now consider part 1 of the result. In the limit θ →∞ the total derivative dWL
dδ |δ=0=

∂WL
∂δ |δ=0

+∂WL
∂α

dα
dδ |δ=0 goes to an indeterminate form. We notice that both summands have a factor of α,

and analyze 1
α
dWL
dδ |δ=0=

1
α
∂WL
∂δ |δ=0 +∂WL

∂α
1
α
dα
dδ |δ=0. Then, note that:

lim
θ→∞

1

α

dα

dδ
= − 1

3γ

Moreover, ∂WL
∂α |δ=0 goes to +∞, because as before the only term surviving is α/τε. Finally,

the higher order term in 1
α
∂WL
∂α |δ=0 is −αθ2 and in the denominator is α2: θ2/α is asymptotically

equivalent to θ/a, that diverges negatively. Hence the total derivative is negative for θ large enough.

Consider part 2. The total derivative goes to zero as θ → −1 (and α→ 0). We can observe that

both ∂WL
∂δ |δ=0 and dα

dδ |δ=0 have a factor of α. So, we collect α, and calculating we get:

lim
θ→−1

1

α

dWL

dδ
|δ=0= lim

θ→−1

1

α

(
∂WL

∂δ
|δ=0 +

∂WL

∂α

dα

dδ
|δ=0

)
=
τ0(β + γ) + β

τ20 (β + γ)2
> 0

Now consider part 3. If θ = 0 expression 6 shows that ∂WL
∂δ |θ=δ=0= 0. If a∗ = aT , by definition,

∂WL
∂α |δ=0= 0, hence also the total derivative is null: dWL

dδ |θ=δ=0= 0.

C Proofs

C.1 Proof of Proposition 1

If p = A+BV − CS the optimal choice for agents is:

Di =
1

γ

(
(θ + 1)τε

τε + τ0 + τp|V
V +

(θ + 1)τp|V

τε + τ0 + τp|V
(p−A)/B − p

)

Now if p = A+BV −CS then τp|V = B2/C2τS . Define a = 1
γ

τε
τε+τ0+B2/C2τS

. Then, by the LLN,

D = (γa(θ + 1)V + (1− γa)(θ + 1)E(V | p)− p)/γ. So the market clearing reads:

p = −µS − S + β/γ(γa(θ + 1)V + (1− γa)(θ + 1)(p−A)/B − p)

(1− β/γ((1− γa)(θp + 1)/B − 1))p = −µS − S + β/γ(γa(θ + 1)V + (1− γa)(θ + 1)(−A)/B)

p =
−γµS − γS + β(γa(θ + 1)V − (1− γa)(θp + 1)A/B)

γ + β(1− (1− γa)(θ + 1)/B)
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So:

A =
−γµS − β((1− γa)(θ + 1)A/B)

γ + β(1− (1− γa)(θ + 1)/B)

A+
β((1− γa)(θ + 1)A/B)

γ + β(1− (1− γa)(θ + 1)/B)
=

−γµS
γ + β(1− (1− γa)(θ + 1)/B)

A =
−γµS
γ + β

B =
βγa(θ + 1)

γ + β(1− (1− γa)(θ + 1)/B)

1 =
βγa(θ + 1)

B(γ + β)− β(1− γa)(θ + 1))

B = β
(θ + 1)

γ + β

C =
γ

γ + β(1− (1− γa)(θ + 1)/B)
=

γ

γ + β (1− (1− γa)(β + γ)/β)
=

1

(γ + β)a

so that: B2/C2 = β2a2(θ + 1)2. So a must satisfy:

γa =
τε

τε + τ0 +B2/C2τS
=

τε
τε + τ0 + β2a2(θ + 1)2τS

Define τ(a) = β2a2(θ + 1)2τS the precision of public information. Since the RHS is monotone

decreasing and the LHS is monotone increasing (from 0 to ∞), there is a unique positive solution.

So, finally:

p =
−γµS + (γa(θ + 1) + (1− γa)(θ + 1))(βV − S/a)

(γ + β)

D = (γa(θ + 1)V + (1− γa)(θ + 1)E(V | p))/γ − (−S − µS + βD)/γ

(1 + β/γ)D = (γa(θ + 1)V + (1− γa)(θ + 1)E(V | p))/γ − (−S − µS)/γ

D =
γa(θ + 1)V + (1− γa)(θ + 1)E(V | p) + S + µS

β + γ

C.2 Proof of Corollary 2.1

1. The first point follows from the implicit function theorem. Indeed, we have:

da

dθ
= −

2a2β2(θ+1)τSτε
(a2β2(θ+1)2τS+τ0+τε)2

2aβ2(θ+1)2τSτε
(a2β2(θ+1)2τS+τ0+τε)2

+ γ
= −

2γa(1− γa) τ−τ0
τ(θ+1)

2γ(1− γa) τ−τ0τ + γ
= −

2a(1− γa) τ−τ0
τ(θ+1)

2(1− γa) τ−τ0τ + 1
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so da
dθ < 0. But:

dα

dθ
=

da

dθ
(θ + 1) + a = −a

2γ(1− γa) τ−τ0τ

2γ(1− γa) τ−τ0τ + γ
+ a > 0

2. from the proof of Proposition 1 we get that B2/C2 = a2(θ + 1)2β2τS = α2β2τS , hence it is

increasing in θ.

3. the volatility of the price is given by:

V ar(p) = B2 + C2 =
1

(γ + β)2

(
β2(θ + 1)2

1

τ0
+

1

a2τS

)

that is increasing in θ.

C.3 Proof of Lemma 3.1

The expression for the welfare loss is:

WL = W ∗ −W = (β + γ)
1

2
E(D −D∗)2 +

γ

2
EV ar(Di)

E(V arDi) = E
∫

(−a(θ + 1)si + a(θ + 1)V )2 =
a2(θ + 1)2

τε

Instead:

Do −D =
V + µS + S

β + γ
− 1

β + γ
(µS + S + γa(θ + 1)V + (1− γa)(θ + 1)E(V | p))

=
(1− γa)

β + γ
(V − E(V | p))− γaθV + (1− γa)θE(V | p))

β + γ

Now we want to compute the expectation of the square. This is equivalent to the variance since all

the variables involved have zero expectation. We are going to use some facts:

E(E(V | p)2) =
(τ − τ0)2

τ2
E
(
V − C

B
S

)2

=
(τ − τ0)2

τ2

(
1

τ0
+
C2

B2

1

τS

)
=
τ − τ0
ττ0

Moreover, by the LIE also: E(E(V | p)V ) = E(E(E(V | p)V | p)) = E(E(V | p)2) = τ−τ0
ττ0

. So we
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have:

E(V − E(V | p))2 = E(E((V − E(V | p))2 | p)) = E(V ar(V | p)) = E
(

1

τ

)
=

1

τ

Cov((V − E(V | p))V ) = V ar(V )− E(E(V | p)V ) =
1

τ0
− τ − τ0

ττ0
=

1

τ

Cov((V − E(V | p))E(V | p)) = E(E(V | p)V )− E(E(V | p)2) = 0

So:

E(Do −D)2 =
(1− γa(θ + 1))2

(β + γ)2
1

τ
+ θ2

(1− γa)2

(β + γ)2

(
1

τ
− 1

τ0

)

=
(1− γα)2

(β + γ)2
1

τ
+ θ2

(1− γα/(θ + 1))2

(β + γ)2

(
1

τ0
− 1

τ

)
So, the total welfare loss is:

WL =
1

2

(1− γα)2

(β + γ)

1

τ
+ θ2

(1− γα/(θ + 1))2

(β + γ)

(
1

τ0
− 1

τ

)
+
γα2

2τε

and can be decomposed as:

WLB(α) =
1

2

(1− γα)2

(β + γ)

1

τ
+
γα2

2τε

WLD =
1

2
θ2

(1− γα/(θ + 1))2

(β + γ)

(
1

τ0
− 1

τ

)

C.4 Proof of Proposition 3

From Lemma 3.1, we have that the welfare loss has two components:

WL = WLB(α) +WLD

where WLB depends on θ only via α, and WLD is second order in θ. Hence, in θ = 0:

dWL

dθ
|θ=0=

∂WLB

∂α

dα

dθ
|θ=0

Moreover, from Corollary 2.1 we know that α is increasing in θ, so we conclude that, in θ = 0, dWL
dθ

this has the same sign as ∂WLB

∂α . Since this is the Bayesian welfare loss, this is positive if and only

if a∗ > aT .
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In general:

∂WLD

∂θ
=
θ(1− γα/(θ + 1))2 + θ2(1− γα/(θ + 1))γα/(θ + 1)2

β + γ

(
1

τ0
− 1

τ

)

= θ(1− γα/(θ + 1))
(1− γα/(θ + 1)) + θγα/(θ + 1)2

β + γ

(
1

τ0
− 1

τ

)

= θ(1− γa)
1− γa/(θ + 1)

β + γ

(
1

τ0
− 1

τ

)

∂WLD

∂α
= −θ2γ(1− γα/(θ + 1))/(θ + 1)

(β + γ)2

(
1

τ
− 1

τ0

)
− θ2 (1− γα/(θ + 1))2

(β + γ)2
αβ2τS
τ2

< 0

Now we compute limits. For θ → −1 we have that a goes to its maximum, a = τε
τε+τ0

, and

α→ 0, as τ . For θ →∞ instead we have a→ 0 but α→∞. Indeed, both a and α are monotonic

so they have a limit. Indeed, if limθ→∞ a = a′ > 0 (possibly infinite) we would have:

lim
θ→∞

a = lim
θ→∞

τε
γ(τε + τ0(a′)2β2(θ + 1)2)

= 0

and if limθ→∞ α = α′ <∞ (possibly zero), we would have:

lim
θ→∞

α = lim
θ→∞

τε(θ + 1)

γ(τε + τ0(α′)2β2)
=∞

that would be contradictions.

From these, it follows that for θ → −1 dα
dθ goes to the finite value a > 0, while for θ → ∞ it

goes to zero.

Now we can compute the limit of the partial derivatives. ∂WLD

∂θ goes to infinity for θ → ∞,

while for θ → −1 is an indeterminate form, equivalent to:

lim
θ→−1

∂WLD

∂θ
= lim

θ→−1
−(1− γa/(θ + 1))

β2a2(θ + 1)2

ττ0
= lim

θ→−1
γa
β2a2(θ + 1)

ττ0
= 0

Instead, ∂WLD

∂α goes to a finite negative value for θ → −1. Hence dWLD

dθ < 0. For θ → −1 we

also know that dWLB

dα < 0, hence we conclude that the welfare loss is decreasing: dWL
dθ < 0. So

θ = −1 cannot be the optimal value of θ.

Now for θ → ∞ the welfare loss diverges: hence the optimal value of θ has to be finite. (take
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any finite value t = WL(θ′), there is a θ′′ such that WL > t for all θ > θ′′ and so the optimum is

smaller than θ′′). Hence, for θ large enough, dWL
dθ > 0.

C.5 Proof of Proposition 4

All the equilibrium expressions are analogous to what derived in Proposition 1, with γ + δ in place

of γ and β + δ in place of β.

The level of trade for agent i is:

Di = (θ + 1)asi +
(1− (γ + δ)a)(θ + 1)E(V | p)− p

γ + δ

where a solves:

(γ + δ)a =
τε

τε + τ(a)

and τ(a) = a2(θ + 1)2(β + δ)2τS , and:

D =
1

β + γ + 2δ
(S + µS + (γ + δ)a(θ + 1)V + (1− (γ + δ)a)(θ + 1)E(V | p))

From Lemma 1.1, we know that the expression for the welfare loss is:

1

2

(
(β + γ)E(Do −D)2 + γEV ar(Di)

)
this is not affected, because the lump-sum rebate means that the tax terms cancel out.

The first best solution Do is of course not affected by the tax. We have to compute the two

terms using the individual demands under a tax δ. The dispersion term has the same form as a

function of a as would without the tax:

EV ar(Di) = E
∫
α2(si − V )2di = α2

∫
E(si − V )2di

= α2

∫
E(E((si − V )2 | V ))di =

α2

τε
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Instead, for the volatility term:

D
o −D =

µS + S + V

β + γ
− 1

β + γ + 2δ
(S + µS + (γ + δ)a(θ + 1)V + (1− (γ + δ))(θ + 1)E(V | p))

=
(β + γ)((1− (γ + δ)a(θ + 1)V ) + (1− (γ + δ)a)(θ + 1)E(V | p)) + 2δ(µS + S + V )

(β + γ)(β + γ + 2δ)

=
1

(β + γ)(β + γ + 2δ)
((β + γ)(1− (γ + δ)α)(V − E(V | p))+

+(β + γ)θE(V | p) + 2δ(µS + V + S))

Taking the square and the expectation we get:

E(Do −D)2 =
(1− (γ + δ)α)

(β + γ + 2δ)2 τ

(
(1− (γ + δ)α) +

4δ

β + γ
(1 + (β + δ)α)

)
+

4δ2(µ2S + τ−1S + τ−10 )

(β + γ)2(β + γ + 2δ)2

+

(
1

β + γ + 2δ

)2(
θ2 +

4δθ

β + γ

(
1− 1

(β + δ)ατS

))(
1

τ0
− 1

τ

)

So the total welfare loss is:

WL =
(1− (γ + δ)α)

(β + γ + 2δ)2 τ

(
(1− (γ + δ)α) +

4δ

β + γ
(1 + (β + δ)α)

)
+

4δ2(µ2S + τ−1S + τ−10 )

(β + γ)2(β + γ + 2δ)2

+

(
1

β + γ + 2δ

)2(
θ2 +

4δθ

β + γ

(
1− 1

(β + δ)ατS

))(
1

τ0
− 1

τ

)
+
γα2

τε

Using the implicit function theorem, the effect of δ on the loading on private information is:

dα

dδ
= −

α
(
α2(β + δ)(β + δ + 2)τS + τ0 + τε

)
(γ + δ) (3α2(β + δ)2τS + τ0 + τε)

< 0

Calculating the derivatives in δ = 0 we get:

∂WL

∂α
=
αγ

τε
+

(
γτ0(αγ − 1) + αβ2τS

(
αγ + θ2 − 1

))
(β + γ) (α2β2τS + τ0) 2

,

∂WL

∂δ
= −α (τ0(αγ − 1)(β + γ) + 2βθ (αβ(θ − 1)τS + 1))

τ0(β + γ)2 (α2β2τS + τ0)
(7)

Now consider part 1 of the result. In the limit θ →∞ the total derivative goes to an indetermi-

nate form. Then, note that:

lim
θ→∞

1

α

dα

dδ
= −2 + β

3γβ

Moreover, ∂WL
∂α goes to +∞, because as before the only term surviving is α/τε, and so the first
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part diverges negatively since dα
dδ < 0. Finally, the higher order term in ∂WL

∂α is −αθ2 and in

the denominator is α2: θ2/α is asymptotically equivalent to θ/a, that diverges. Hence the total

derivative is negative for θ large enough.

Consider part 2. The total derivative goes to zero as θ → −1 (and α→ 0). We can observe that

both ∂WL
∂δ and dα

dδ have a factor of α. So, we collect α, and calculating we get:

lim
θ→−1

1

α

dWL

dδ
= lim

θ→−1

1

α

(
∂WL

∂δ
+
∂WL

∂α

dα

dδ

)
=

2 (τ0(β + γ) + β)

τ20 (β + γ)2
> 0

Now consider part 3. If θ = 0 expression 6 shows that ∂WL
∂δ = − α(τ0(1−a∗γ))

τ0(β+γ)((a∗)2β2τS+τ0)
> 0. If

a∗ = aT , by definition, ∂WL
∂α = 0, and dα

dδ remains finite. Hence also the total derivative is positive:

dWL
dδ > 0.
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