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Abstract 
I show three properties in which a dynamic input-output economy with time to build differs from 
a static economy: first, a standard result in a Cobb-Douglas production networks is that 
productivity shocks diffuse downstream while demand shocks diffuse upstream. This fact 
interacts with the discount rate to generate a potentially quite different aggregate impact in 
different sectors. With time to build the direction of the diffusion is the opposite, and demand 
shocks also diffuse downstream. Second, I show that time to build leads to less comovement 
across sectors. Third, I provide bounds on the recovery time of the economy hit by a shock. 
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Introduction
How do shocks to some economic sectors impact the rest of the economy?
For many years a widespread view, exemplified by Lucas (1995)’ argument,
has been that when considering whole economies composed by a large num-
ber of agents idiosyncratic shocks should average out and not have a sizable
aggregate impact. Recently, this view has been challenged, noting that the
averaging out might not happen if the connections between sectors are suffi-
ciently asymmetric, so that the very well connected sectors will have a sizable
impact on aggregate output, as argued in the seminal paper Acemoglu et al.
(2012). The understanding of such mechanisms is of crucial importance to
understand business cycles and to evaluate and design policies directed to
smooth or insure against shocks, such as bailouts or monetary policy.

A growing literature has indeed provided empirical grounding for the
importance of idiosyncratic shocks in shaping aggregate outcomes.1 Yet,
most of the analyses have focused on static general equilibrium models or
on steady states of the dynamics.2 While this has certainly allowed many
useful insights, production is essentially a dynamic phenomenon, as testified
by the sizable literature that studies time to build in its own right.3 It is
therefore to be expected that the temporal dimension of the propagation of
shocks contains many important features that a static analysis would miss.
Some are classical questions pertaining to dynamic environments, such as
what is the persistence of a shock, other are more specific to an input-output
level analysis: which sectors are more affected by the shock in the short run
rather than the long run? which sectors generate more short than long run
impacts on the welfare of the consumers? All these questions simply can’t
be answered in a static model.4

In this work, I want to address these issues, analyzing a model that
generates a dynamic diffusion, namely a propagation of shocks over time as
well as over sectors. To generate a dynamic diffusion while keeping analytical
tractability, I will follow the original input-output model by Long Jr and
Plosser (1983) and in particular assume that the production of any good
necessitates 1 period of time. This implies that the reaction of each sector
to shocks will be lagged and diffusion will not be instantaneous: a shock to

1See section .
2There are exceptions, in particular Pasten et al. (2018), as explained in the literature

section.
3A classic contribution is Kydland and Prescott (1982), while more recently Meier

(2017).
4Note that, perhaps not surprisingly, also persistence will depend crucially on network

characteristics in this setting.

2



a sector will trigger a reaction from the immediate neighbors, but in general
not from the others. This will generate a dynamic diffusion of the impact,
that will take time to spread to the whole economy, allowing us to analyze
it in details.

There are two perspectives from which we can analyze such an environ-
ment: focusing on the properties of the stationary stochastic process gen-
erated by the uninterrupted random disruptions that hit the economy, or
analyzing the impact of a single shock and the properties of the transition to
the (possibly new) steady state - the impulse response function.5

My results show that the properties of a dynamic diffusion can depart
substantially from a static benchmark, even in simple Cobb Douglas en-
vironments: productivity shocks proagate exclusively downstream, and an
unexpected productivity shock has a cumulative welfare impact which is pro-
portional to a dynamic version of Bonacich centrality, that takes into account
the different value of consumption over time. Moreover, the cumulative im-
pact is equal to the share of sales of the respective sector, its Domar weight.
This is an analogous of Hulten (1978) theorem, stating that in an efficient
economy the first order contribution of a small shock to a sector to aggregate
GDP is exactly its sales share. The result, though, is not obvious: here I am
considering an unexpected shock, which a priori needs not behave as Hulten
theorem predicts.

Preference shocks, instead, have a radically different propagation behav-
ior, that can be summarized as such: their physical impact propagates down-
stream, while the information impact propagates upstream. By physical im-
pact I mean the impact working through the physical decrease in real output,
that through a change in prices causes the customers to vary their purchases
and so their production. The information impact is the update in expecta-
tions of future demand changes due to autocorrelations in preference shocks
over time. The comparative difference in preference shocks with respect to
productivity is a by-product of the Cobb-Douglas technology, that implies
that productivity shocks do not have nominal effects, and I do not expect it
to generalize.

Moreover, thanks to the linear nature of the problem, the dynamics is very
close to the iteration of a Markov chain. So we can apply the ergodic theory
of Markov chains to provide upper bounds on the time that the economy
takes to recover from a negative shock (or to scale down from a positive
one), in a spirit similar to Golub and Jackson (2012). These bounds depend

5Note that the transition I am referring to is always along an equilibrium path, although
the analysis of out of equilibrium responses to disruptions is of great interest, and I am
addressing it in ongoing work.
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crucially on the network characteristics, such as (eigenvector) centrality, the
labor share of technology, and community structure.

Finally, I show that the dynamic model with time to build generates
systematically less comovement, measured as lag 0 autocorrelation. This
happens because shocks take time to affect other sectors, so the effect can
hit different sectors at lagged times, not generating contemporaneous co-
movement.

Outline In the next section I present the related literature, then the model
and the implied diffusion dynamics. In section 4 I explore the welfare impacts,
in section 5 the long run stationary properties of the model. In section 6 I
present upper bounds on recovery time of the economy after a shock.

Related literature
This papers contributes to two literatures: the literature on the network
origins of aggregate fluctuations, and the literature on the macroeconomic
consequences of time to build and adjustment costs.

Despite the original contribution of Long Jr and Plosser (1983), the lit-
erature on the network origins of aggregate fluctuations has focused mainly
on models without time to build. A recent exception is Liu and Tsyvinski
(2024), that study a continuous time model with adjustment costs that can
be thought as a continuous time version of Long Jr and Plosser (1983). They
only focus on productivity shocks, and do not focus on comovement. Many
models do not study an explicit dynamics, and the fluctuations are analyzed
using comparative statics (as in Baqaee (2018), Acemoglu et al. (2016)), or
in a statistical sense (as in Acemoglu et al. (2012)). Some papers explicitly
study the dynamics, as Pasten et al. (2018), that analyzes analytically how
the network affects the response of variables to monetary policy shocks.

The literature on time to build and adjustment costs has studied the
implications for aggregate fluctuations and business cycles, from Kydland
and Prescott (1982) to Meier et al. (2020), Bachmann et al. (2013): these
papers do not consider the input-output dimension. Pellet and Tahbaz-Salehi
(2023) study rigidity in adjustment of inputs in a production network but,
apart from studying a static setting, in their paper they focus on the efficiency
loss from the rigidity, whereas in our setting time to build is a feature of the
technology, and is not inefficient per se.
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1 Model
I adopt the setup in Long Jr and Plosser (1983), but I will depart from it in
the case of stochastic preferences. I summarize it here:

1. Time is infinite and discrete. There are two vector Markov processes
At and γt, which are the sources of stochasticity in the model. For
simplicity I assume they have a finite state space S ⊂ RN

+ . I will denote
the history of realizations up to time t as ht = ((γ1, A1), . . . , (γt, At)).
All the endogenous variables should be indexed by histories. When the
context does not strictly require it, I abuse the notation by indexing
just with t, as in γt.6

2. There is one infinitely lived representative consumer maximizing its
expected discounted utility. Instantaneous utility is the logarithm of
a Cobb-Douglas aggregator Ct =

∏
c
γi,t
i,t . The intertemporal utility

is a standard discounted sum U =
∑

t β
t lnCt =

∑
t β

t
∑

i γi,t ln ci,t,
where β < 1 is the discount factor. The consumer will maximize the
expectation of this intertemporal utility. She has an endowment of 1
unit of labor each period, and she supplies it inelastically.

3. There are N sectors, each producing a distinct good, acting as neo-
classical firms, that maximize their intertemporal profits.7 subject to a
constant returns Cobb Douglas technology, with the important feature
described in the next point.

∑
t

(
pi,tyi,t −

N∑
j=1

pj,tzij,t − wtli,t

)

4. Inputs need to be purchased one period in advance. The specific form
of the production function is: Ai,t+1

∏N
j=1(z

t
ij)

αωij l1−α
i,t ; the parameters

ωij define a matrix Ω, that defines a directed weighted network which
we call the input-output network of the economy and represents the
strenghts of intersectoral linkages. In particular, due to the Cobb Dou-
glas assumption, ωij is the share of revenues of sector i spent on input
j.

6Note that the process for γt has to be such that the normalization
∑

i γi,t = 1 is true
for all t.

7Note that the prices that appear in the profit expression are not in real terms, but are
intertemporal prices, so they include the interest rate.
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5. The consumer owns the firms, and each period receives or pays the
necessary cash flow:

ft =
∑
i

fi,t =
∑
i

(
pi,tyi,t −

N∑
j=1

pj,tzij,t − wtli,t

)

Despite the Cobb-Douglas assumption, this is not zero, because it is
not the expected profit, for two reasons: it is a realized, not expected
quantity, and second it is the sum of earnings today from inputs bought
yesterday, and expenditure for inputs whose output will be sold tomor-
row. Hence there is no reason to expect this quantity to be 0;

6. The intertemporal budget constraint of the consumer is:∑
ht

∑
i

pi,htci,ht ≤
∑
i

pi,0ωi +
∑
ht

whtlht +
∑
ht

fht

where wtli,t is labor income, ft is the cash flow she receives from the
firms, and ωi is the endowment of the consumer at period 0. This
endowment has to be introduced in order for the model to ”kick off”,
otherwise in the first period there can be no production, but is other-
wise unimportant and will not appear in any result.

7. There are forward markets for any contingent commodity.

The equilibrium concept is the standard Arrow-Debreu equilibrium. I
report here the definition for further clarity.

Definition 1.1 (Equilibrium). An equilibrium of this economy is a vector
of prices, consumptions, input demands for each history ht such that

1. The consumer chooses streams of consumption optimizing its expected
utility over its budget constraint, solving:

maxE0

∑
t

βt lnCt =
∑
t

βt
∑
i

γi,t ln ci,t

subject to:∑
ht

∑
i

p∗i,htci,ht ≤
∑
i

p∗i,0ωi +
∑
ht

whtlht +
∑
ht

fht

where fht is defined above.
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2. Firms maximize their expected profits subject to the technology con-
straint:

max
(li,t)∞t=0,(zij,t)

n,∞
j=1,t=0

E0

∑
t

(
pi,tAi,t+1

N∏
j=1

(ztij)
αωij l1−α

i,t −
N∑
j=1

pj,tzij,t − wtli,t

)

3. Prices clear the goods market and the labor market at each history:

yi,ht = ci,ht +
∑
j

zij,ht

∑
i

li,ht = 1 ∀ht

ωi = ci,0 +
∑
j

zij,0
∑
i

li,0 = 1

2 Dynamics
In this section, I report the solutions of the model, respectively for productiv-
ity and preference shocks. As in other production network models, Bonacich
centrality is crucial: we denote it as di(αβ, γ), where d(αβ, γ) is the vector
such that:

d = (I − αβΩ′)−1γ

This also corresponds to what Baqaee and Farhi (2019) call the Domar
weight.8 When the coefficient is clear from the context I will omit the depen-
dence. The next proposition follows Long Jr and Plosser (1983)

Proposition 2.1. If productivity parameters follow a Markov process, while
preferences are deterministic, in equilibrium the outputs follow:

ln yi,t+1 = consti + lnAi,t+1 +
∑
j

αωij ln yj,t

The sale shares are constant: pi,tyi,t
GDPt

= di(αβ, γ), where GDPt =
∑

i pi,tci,t.

Proof. See Appendix.

So we can see from the above proposition that productivity shocks dif-
fuse through a very simple linear dynamics. In particular, the process of
logarithms of productivity is a filter of the process of the errors, increasing
its persistence. For example, if productivity shocks are i.i.d. across time,

8They distinguish between revenue and cost based Domar weights. Since the economy
studied here is efficient, the two coincide and there is no ambiguity.
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ln y = (I − αΩL)(const + lnA), where L is the lag operator. That is, log-
output follows a VAR(1).

Moreover, sales share are constant in time and are equal to centralities, as
in the static model. Yet, there are significant differences in that the relevant
centrality here has as a discount coefficient αβ, as I will argue in section 3.1.

Proposition 2.2. If preference parameters follow a Markov process, in equi-
librium, the dynamics of output follows:

log yi,t+1 = consti + α
∑
j

ωij log yj,t − α
∑
j

ωij log(di,t)+

log(Etdi,t+1)

where di,t = γj,t +
∑

k α
kβk

∑
h ω

(k)
hj Et

[
γt+k
h

]
The sale shares are: pi,tyi,t

GDPt
= di,t

If γt are i.i.d., then:

di,t = ∆γi + di(αβ, γ)

where Eγt = γ. Hence the dynamics follows:

log yi,t+1 = consti+ln di(αβ, γ)+α
∑
j

ωij log yj,t−α
∑
j

ωij log(∆γj,t+dj(αβ, γ))

Proof. See Appendix.

One of the features of static models such as Huremovic and Vega-Redondo
(2016) or Acemoglu et al. (2016) is that in a Cobb Douglas environment
preference (more in general: demand) shocks diffuse downstream. From the
dynamics above we can see that, contrary to the static model, here, despite
the Cobb-Douglas assumption, preference shocks diffuse also downstream.
This happens because when a positive taste shock hits any good j then
prices adjust. In particular the price of j increases and so firm i is able to
buy less of it, so it will have a (relative) negative impact on its production.
There is also a direct effect hitting all firms if shocks are correlated over
time: the anticipation of a future higher demand drives the sectors whose
demand depend more on the relatively more preferred good to increase their
production. Instead, when shocks are i.i.d, the realization of the shock does
not give any information on the future, hence the only impact is downstream.
Summing up: the impact of realized preference shocks acts downstream, while
the impact of anticipated shocks acts both upstream and downstream.
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To understand better this behaviour, consider the case in which ∆γı̂ =
−∆γ̂ = ε, and all the other components are constant. Then:

log yt̂+1
i = −αωîı log

(
1 +

ε

dı̂

)
− αωî log

(
1− ε

d̂

)

∼ αε

(
ωî

d̂
− ωîı

dı̂

)
In this case we can see that the output of sector i increases if the good

less preferred because of the shock (and hence costs less) is more important
as an input than the good which is more preferred (and so costs more).

3 Welfare impact of shocks
In this section, I investigate the welfare impact of a productivity and a pref-
erence shock. As anticipated, productivity shocks behave in a way much
analogous to the static case, while preference shocks do not. Temporary and
permanent shocks behave alike.

3.1 Productivity shocks
In this section I investigate productivity shocks.

Definition 3.1 (Productivity shocks). In the following, by a permanent
shock at node ı̂ at time t̂ I define an unanticipated change in parameters
such that lnAı̂,t → lnA′

ı̂,t, for all t ≥ t̂, and lnA′
i,t = lnAi,t for all i 6= ı̂

and for all t. By a temporary shock I define an unanticipated change in
parameters such that lnAı̂,t̂ → lnA′

ı̂,t̂
, and lnA′

i,t = lnAi,t for all i 6= ı̂ and
for all t 6= t̂.

Proposition 3.1. Consider a permanent shock hitting node ı̂. The con-
sequent impact for the consumer is:

lim
∆lnAı̂→0

∆ lnU

∆ lnAı̂

= β t̂vı̂(αβ) (1)

Consider a temporary shock hitting node ı̂. The consequent impact for
the consumer is:

lim
∆lnAı̂→0

∆ lnU

∆ lnAı̂

= β t̂(1− β)vı̂(αβ) (2)
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This result is an analogous of the well known Hulten Theorem: the im-
pact of the shock in (log) utility is (proportional to) the sales share of the
sector hit. Moreover, the dynamics of shocks is linear, so the impact of the
realization of the stochastic productivity is identical to a variation in the
parameter in a version without uncertainty. This feature depends heavily
from the Cobb-Douglas technology assumption, and we do not expect it to
be generalizable.

Nevertheless, there are significant differences with Acemoglu et al. (2012):
longer paths are more heavily discounted, at a rate αβ rather than β. This
happens because in this model the impact of the shock accrues over time,
hence the consumer will discount impacts that are further in the future with
its intertemporal discount factor. This can result in changes in the impor-
tance of nodes, as in the following example.

Consider the following network, on n (even) nodes:

1

2 3

︸ ︷︷ ︸
(n−3)/2

︸ ︷︷ ︸
(n−3)/2

Centralities:

d1 =
1

n
+ βα

2

n
+ β2α2n− 3

n
(3)

d2 = 1/n+ βα
n− 3

2n
(4)

If βα > 1/2 then in the static model a consumer prefers a shock to 2
rather than 1. In the dynamic model instead, the loss in utility are:

∆U1 =ε+ βε
2α
n + β2εα

2 n−3
n (5)

∆U2 =ε+ βεα
n−3
2n (6)

and, e.g. if n = 6, α = 0.6, β = 0.7, nodes 2 and 3 are more important than
node 1 in the dynamic version.

Another feature to be noted is that permanent and temporary shocks
behave very much alike. This is due to the fact that permanent shocks
converge to a different steady state, but the convergence process to the new
steady state is very similar to the convergence back to the old steady state
of a temporary shock.
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3.1.1 Short run and long run

A possible interpretation of the Hulten-like result above is that, once we know
the relative share of revenues, the specific network structure is irrelevant
to the impact of the diffusion. In a dynamic setting, though, the same
total impact can be achieved in very different ways: there can be shocks
whose impact is very strong in the time periods immediately following the
realization, but dies out quicly, and there can be shocks whose impact is
mild, but diffuses a lot through the network, thereby achieving a high total
impact over time nonetheless. The following example is meant to illustrate
such behavior.

Example Consider the following two production networks: a circle with n
nodes and a star with m leaves. In both cases, consider a temporary shock
to node 1.

1

︸ ︷︷ ︸
m

1 2

3

• a shock on node 1 in the star network exhausts after 1 period: impacts
more in the short run;

• a shock on node 1 in the circle remains active forever: most important
in the long run.

In particular, the welfare impacts are: 1+αβm
m+1

and 1
n(1−αβ)

in the second.
Parameters can be choosed such that the cumulative impacts are the same,
despite the two very different structures.

3.2 Preference shocks
Definition 3.2 (Preference shocks). In the following, by a permanent
shock at node ı̂, ̂ at time t̂ I define an unanticipated change in parame-
ters such that γ′

ı̂,t− γı̂,t = −(γ′
̂,t− γ̂,t) > 0, for all t ≥ t̂, and γ′

i,t = γi,t for all
i 6= ı̂ and for all t. By a temporary shock I define an unanticipated change
in parameters such that γ′

ı̂,t̂
− γı̂,t̂ = −(γ′

̂,t̂
− γ̂,t̂) > 0, and γ′

i,t = γi,t for all
i 6= ı̂ and for all t 6= t̂.
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The next proposition describes the welfare impact of preference shocks.

Proposition 3.2. Following a permanent shock to γ at time t̂, the welfare
impact is:

lim
∆γı̂,t̂→0

∆U

∆γı̂,t̂
= β t̂(ln cı̂,t̂ − ln ĉ,t̂)

Following a transitory shock to γ at time t̂, the welfare impact is:

lim
γı̂,t̂→0

∆U

∆γı̂,t̂
= (1− β)β t̂(ln cı̂,t̂ − ln ĉ,t̂)

Proof. See Appendix.

Again, we see that transitory and permanent shocks behave in a similar
way. And again, shocks with a very similar cumulative impact can differ
greatly in the pattern of diffusion. Indeed, in the proof of the proposition we
get the following expression:

∆U temp = −
∑
j

(vj − γj) ln

(
∆γj
vj

+ 1

)
︸ ︷︷ ︸

diffusion term
as in productivity shocks

periods t ≥ 1

∆
∑

γi ln γi +
∑

γ′
i ln

(
∆γi
vi

+ 1

)
︸ ︷︷ ︸

Direct impact trough revenues
specific to preferences shocks

period t = t̂

so we can see that the cumulative impact is the sum of two terms: one,
labeled diffusion term above, is the analogous of productivity shocks: the
variation in prices creates a chain reaction that affects all reached sectors
with the appropriate lag. More interesting is the impact at period t̂: this
term is due to the adjustment of prices due to produced quantities being
pre-determined. This is specific to the preference shock case: the price ad-
justment in the case of productivity shocks do not impact welfare.

Moreover, again as with productivity shocks, we see that once we know
consumption the global impact does not depend on the network anymore.
However, if we decompose the impact into a short and a long run impact, we
see that centrality is an important modulation factor. Interestingly, the effect
of centrality here is the reverse than with productivity shocks: very central
nodes will have a small variation in prices, hence have a small utility impact,
while nodes with a very low centrality will have a high impact because their
prices will be more volatile.

12



4 Time to recovery
One issue of great practical importance about the impact of shocks is how
much time does the economy take to absorb it and reach a new steady state
(possibly identical to the one it started from). This is what in the following
I call recovery or convergence time. It is a quantity of great interest to
policy makers or stakeholders interested in predicting economic variables.
One technical issue is that in a smooth equilibrium model as the one I am
analyzing, shocks never totally die out. Hence we define recovery time as the
time the economy takes to arrive ε-close to the steady state, as made precise
in the following definition.

Definition 4.1 (Recovery time). Given a shock to node k of magnitude
∆ lnAk = 1 and a bound ε, define the time to recovery of node i as the
smallest time after which the output of node i differs less than ε from the
new steady state. In formulas:

CTki(ε) = min{t : | ln yt′i − ln ySSi |< ε, ∀t′ ≥ t}

Consider a shock, possibly to multiple sectors, satisfying the normaliza-
tion ‖lnA‖2 = 1. A global convergence time, independent of source and end
node is:

CT2(ε) = min{t : ‖ ln yt′ − ln ySS‖2< ε, ∀t′ ≥ t}

The particularly simple dynamics of the model allows to analyze the
recovery time in detail. Indeed, since Ω is row stochastic, it can be seen as
the transition matrix of a Markov chain, and we can apply the rich theory
of mixing times of Markov chains to the task of bounding the recovery time.
In order to do this, I maintain throughout the section two assumptions:

Strongly connected network Assume that the production network is strongly
connected, meaning that for every pair of nodes i and j there exist a
directed path i1, . . . , ik such that i1 = i and ik = j.

Aperiodic network The minimum common denominator of the length of
all cycles is 1.

The first assumption assures that the network cannot be split into sep-
arate classes that do not influence each other. If there is a group of sectors
that sell output only to themselves a shock hitting one of them (directly or
following diffusion) can be analyzed inside the group as a shock on a reduced
production network formed just by those sectors, so this is without loss of
generality. In particular, rules out sectors that sell only to consumers (i.e.

13



they are not connected to other sectors in the production network). If such
a sector exist, a shock to it would just impact consumers and its effect would
disappear at the next time period (remember that labor supply is inelastic),
so it represents a rather non interesting case.

The second assumption assures that the diffusion of shocks does not fea-
ture cycles in such a way that the performance of nodes follows a

In the following, I present two simple results that provide bounds on the
convergence time: the first is a global bound that has the advantage of using
rather few assumptions, while the second is a sector specific bound, but has a
limitation with respect to the first: it requires the Ω matrix to be reversible.

Eigenvector centrality The stochastic process for the difference of output
from the steady state is defined by the iteration of a Markov chain: ∆yt =
αtΩt∆ lnA0 . Since we assume the matrix to be irreducible and aperiodic
the convergence theorem guarantees that the chain converges to the Perron
projection of the matrix Ω, that is the matrix with on the rows the leading
eigenvalue, which is also the stationary distribution. In formulas:

Ωt
ki → πi

where π is the vector such that π′Ω = π′. Since here Ω defines a network,
π is also the (left) eigenvector centrality. The previous discussion shows
that in the context of this model eigenvector centrality has the additional
interpretation of representing the flow of revenues from nodes that are very
far in the production network. Another interpretation can be the vector of
revenues that results in the limit as α goes to 1, and so the importance of
firms is given by purely network effects.

We note an interesting fact: the time of convergence is connected to
eigenvector centrality, while the cumulative impact is connected to Bonacich
centrality. These two measures are usually very correlated, but in this context
there is an important difference: eigenvector centrality depends only on the
technology parameters, while Bonacich centrality crucially depends also on
the preference parameters of the consumer.

Reversibility An assumption that will be needed for some result in the
following is reversibility. Consider Ω and π as above. Define Ω∗

ij = Ωji
πj

πi
,

the reversibilization of Ω. A chain is called reversible if Ω∗ = Ω. These
concepts are well known in the literature on Markov chains.9 In this context,

9In the context of Markov chains, this matrix represents the chain that would result
if time would go from the future to the past: i.e., the probability of observing first i and
then j is the same as the probability of observing first j and then i.
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following the interpretation of eigenvector centrality as the vector of revenues
in an economy where the share of labor goes to zero, reversibility asks that in
the same limit the flow of funds from sector i to j be the same as the flow from
j to i. This is a rather strong assumption in our context, as it assumes that
each link is reciprocal (Ωij and Ωji have to be both positive at the same time).
Unfortunately the sector-specific result relies on this assumption. That is the
reason why I present results for global bounds, which are weaker but do not
require reversibility.

4.1 Global bound
Adapting corollary 2.14 of Montenegro et al. (2006), we get:

Proposition 4.1. Assume Ω is strongly connected and aperiodic. Then:

CT2(ε) ≤ max

{⌈
1

1− ‖Ω∗‖
ln

1

εmini
√
πi

⌉
,

⌈
ln ε+1

ε

ln 1/α

⌉}
where Ω∗

ij = Ωji
πj

πi
is the reversibilization of Ω.

The threshold is:

1. decreasing in ε;

2. increasing (weakly) in α;

3. increasing (weakly) in ‖Ω∗
ij‖.

Property 1 is trivial. The second tells us that the more intermediate
inputs are important, the longer the recovery time. This is because firms
will rely more on produced goods, which are affected by the shock and its
propagation, rather than labor (which is not affected by the shock). The
third is harder to interpret in general. If Ω is reversible, though, it can be
shown that ‖Ω∗

ij‖ = λ2, the second largest eigenvalue of Ω. Under some
specific network formation models, in which nodes are partitioned in groups
identified by some exogenous characteristics, this has been shown to represent
a measure of homophily, the tendence of nodes of different groups to be
connected together (Golub and Jackson (2012)) or, equivalently, a measure
of how strong is the community structure of the network. This is out of
this model, but a very interesting empirical as well as theoretical question:
is there a community structure in the sectors of an economy? this could
happen if for example more productive sectors tended to be comparatively
have more exchanges among themselves than with others.
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4.2 Sector-specific bound
Next, we look for bounds on the convergence time that are sector dependent,
to answer the question: which sectors recover first in case of a disruption?
which recover later? Unfortunately, since our transition matrix is only sub-
stochastic, we can only obtain an upper bound on the convergence time, as
the following proposition shows.

Proposition 4.2 (Sector specific convergence time). Assume Ω is reversible,
aperiodic and irreducible. Then:

CTki(ε) ≤ max



ln
(√

πi

επk

)
ln 1/λ2

 ,

⌈
ln ε+πk

ε

ln 1/α

⌉
where λ2 is the second largest eigenvalue in absolute value of Ω and πi is the
eigenvector centrality of node i.

The threshold is:

1. increasing (weakly) in λ2;

2. (in general) u shaped in πk;

3. decreasing (weakly) in πi

The first property is just the adaptation of the result of the previous
section to the reversible case, as explained before. The following are more
interesting: they suggest that a shock to a more eigenvector central node will
take more time to be absorbed, but more central nodes will go back to steady
state quicklier than others. To quantify the heterogeneity across nodes, note
that variation in eigenvector centrality yields a difference in (the upper bound
on) convergence time that is proportional to the second eigenvalue/spectral
gap: fix the centrality of the source, if the centrality of the objective is
doubled, π′

k = 2πk, then the convergence time is increased by CT ′
ki −CTki =

1/2 ln 2/ ln(1/λ2), which can be arbitrarily high if λ2 is close to 1, or very
small if λ2 is far from 1.

5 Long run properties
In this section, I assume the (log) productivity shocks are i.i.d. and have
mean 0. Then, because of the dynamics described above, (log) sectoral out-
put follows a VAR(1), and analyze the stationary, or long run, properties of
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Figure 1: The sector-specific upper bound on convergence time as a function
of centrality of source node πk, for fixed centrality of end node πi.

the output process, comparing with the static benchmark. To perform this
analysis, we need the technical assumption that time starts at −∞. This
is not possible in the model analyzed, so we interpret this as a synonym of
saying that we analyze the long run behavior of the model.

The aim is to show that the dynamic model generates sistematically less
comovement. Foerster et al. (2011) show quantitatively that the Long Jr
and Plosser (1983) generates less aggregate volatility than Acemoglu et al.
(2012): here I show a stronger result, namely that Long Jr and Plosser (1983)
generates less covariance among all the nodes. Let us first see an extreme
example.

5.1 Example
If

Ω =

 0 1 0
0 0 1
1 0 0


we have a cycle network. For any cycle network (indeed, any network whose
adjacency matrix is orthogonal), the covariance in the dynamic model is a
multiple of identity, while in the static model: in a connected network all
nodes are correlated.
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Figure 2: The sector-specific upper bound on convergence time as a function
of centrality of end node πi, for fixed centrality of source node πk.

Static 1 α(1+α+α2)
1+α2+α4

α(1+α+α2)
1+α2+α4

α(1+α+α2)
1+α2+α4 1 α(1+α+α2)

1+α2+α4

α(1+α+α2)
1+α2+α4

α(1+α+α2)
1+α2+α4 1


Dynamic 1 0 0

0 1 0
0 0 1


The reason is best understood by looking at the elementwise expressions:

Covstat(i, j) =
∑
k

mikmjk

so this covariance between sectors i, j is high when there are sectors k that
are very (out)-connected to both i and j, and other sectors that are less
connected (there needs to be asymmetry).

The dynamic covariance instead:

Covdyn(i, j) =
∑
n

α2n
∑
k

ω
(n)
ik ω

(n)
jk

is high if there are sectors that are connected to both i and j, at the same
distance. Otherwise shocks to k diffuse in the network but hit i and j at
different times, causing less covariation.

The following proposition states the general result, proven in the Ap-
pendix.
Proposition 5.1. Assume the lnAt are a white noise process with covariance
matrix I. Then for each i and j Covdyn(i, j) ≤ Covstat(i, j).
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Conclusion
In conclusion, if we model shocks as truly stochastic events and look at a
model where they gradually spread across the network, different mechanisms
for diffusion are at play for preference shocks, while the diffusion of produc-
tivity shocks follows the same principles. Moreover, it is possible to derive
upper bounds on the recovery time of the economy after a shock, and these
apply to both productivity and preference shocks, in both the temporary and
permanent case.
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Appendix

A Proof of Proposition 5.1
Assume the autocovariance function of lnA is Γk

lnA, and its autocovariance
generating function is G(z) =

∑
Γk
lnAz

k. Assume that Γk
lnA is absolutely

summable (it is in our case, as the autocovariance generating function of a
white noise is G(z) = I).
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ln yt is a filter of lnAt by the filter (I−αL)−1, where L is the lag operator.
Hence its autocovariance generating function is (Hamilton 10.3):

F (z) = (I − αzΩ)−1G(z)(I − αz−1Ω′)−1

From here, we can recover the autocovariance by integrating the spec-
trum: Γk

ln y =
∫ π

−π
F (eiω)dω (recall that F (eiω) is the spectrum of ln y).

By expanding the three series and taking the Cauchy product (all are
absolutely summable) we get:

Fij(z) =
∞∑
n

∑
k

∑
m

n∑
h

(
h∑
l

αlω
(l)
ik z

lαh−lω
(h−l)
jm zl−h

)
Gn−h

km zn−h

Fij(e
iω) =

∞∑
n

∑
k

∑
m

n∑
h

αh

(
h∑
l

ω
(l)
ik ω

(h−l)
jm

)
Gn−h

km eiω(2(l−h)+n)

Now since we assume that the autocovariance is absolutely summable
then the series is finite and each partial sum is dominated by the total sum,
so by the dominated convergence theorem we can exchange series and integral
and then we are left with a combination of integrals of eiω(2(l−h)+n). These
integrals are all zero (integrals of trigonometric functions over multiples of
the domain) except the ones for 2(l − h) + n = 0, or l = h − n/2, n even,
h ≥ n/2. Hence we can write:

Covdyn(i, j) = Γ0
ln y =

∫ π

−π

F (eiω)dω =

∞∑
n

∑
k

∑
m

n∑
h

αh

(
h∑
l

ω
(l)
ik ω

(h−l)
jm

)
Gn−h

km

∫ π

−π

eiω(2(l−h)+n)dω

∞∑
n even

∑
k

∑
m

n∑
h=n/2

αh
(
ω
(h−n/2)
ik ω

(n/2)
jm

)
Gn−h

km

now we can redefine n as n/2, and h as h− n/2 to get:

Covdyn(i, j) =
∞∑
n

∑
k

∑
m

n∑
h

αh+n
(
ω
(h)
ik ω

(n)
jm

)
Gn−h

km

Now we use the assumption that lnA is a WN(I). In this case the
autocovariance function satisfies Gk = 0 for any k 6= 0, G0 = I. Then the
only term surviving in the expression above is the one with h = n, hence:

Covdyn(i, j) =
∞∑

n even

∑
k

αn
(
ω
(n/2)
ik ω

(n/2)
jk

)
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Now compare this to:

Covstatic(i, j) =
∞∑
n

αn
∑
k

n∑
l

ω
(l)
ik ω

(n−l)
jk

In the expression for the dynamic covariance all the terms are zero, moreover
the even terms are ω

(n/2)
ik ω

(n/2)
jk which is just one addend of the corresponding

term in the static expression
∑n

l ω
(l)
ik ω

(n−l)
jk . Hence, the dynamic is smaller

for any i and j.

B Proof of Proposition 4.1
From standard techniques, see e.g. Montenegro et al. (2006) for any irre-
ducible, aperiodic Markov chain with stationary distribution π and transition
matrix Ω:

CTMarkov
2 (ε) ≤

⌈
1

1− ‖Ω∗‖
ln

1

εmini
√
πi

⌉
These result applied to our setting yield:

CTMarkov
2 (ε) ≤

⌈
1

1− ‖Ω∗‖
ln

1

εmini
√
πi

⌉
here π is the eigenvector centrality.
So, if t > CTMarkov(ε), then:

αtωt
ki ≤ αt(πk + ε)

In turn, αt(πk + ε) is smaller than ε if and only if t > ln ε
ε+πk

/ lnα, so that:

CT (ε) = max{


ln
(
ε
√

πk

πi

)
lnλ2

 ,

⌈
ln

ε

ε+ πk

/ lnα

⌉
}

C Proof of Proposition 4.2
From Levin and Peres (2017) for any irreducible, aperiodic, reversible Markov
chain :

CTMarkov
ki (ε) ≤


ln
(
ε
√

πk

πi

)
lnλ2
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These results applied to our setting yield:

CTMarkov
ki (ε) ≤


ln
(
ε
√

πk

πi

)
lnλ2


So, if t > CTMarkov

ki (ε), then, repeating the reasoning above we get:

CTki(ε) = max{


ln
(
ε
√

πk

πi

)
lnλ2

 ,

⌈
ln

ε

ε+ πk

/ lnα

⌉
}

Online Appendix

D Heterogeneous primary factor share
The bounds in the previous sections are likely to be strongly driven by α.
For this reason in this section we analyze the time of recovery in the case in
which the primary factor shares are heterogeneous. The precise meaning of
which is the following.

Model with heterogeneous primary factor shares By the model with
heterogeneous primary factor share, I mean the same model used until now,
with one modification, that is the technology is defined as:

yi,t+1 = Ai,t+1

N∏
j=1

(zij,t)
ωij l1−αi

i,t

where
∑

j ωij = αi. That is, the primary factors (labor) in the model are het-
erogeneous. All expressions and dynamics derived in the special case extend
to this case, with the only modification that the matrix αΩ is replaced by Ω.
All the same proofs and propositions go through with obvious modifications.
I just report the dynamics of the shock, since is our current object of interest:

ln yi,t+1 = lnAi,t+1 + const+
∑
j

ωij ln yj,t

which implies a deviation from the steady state of:

∆ ln yi,t+1 =
∑
j

ωij∆ ln yj,t
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for periods following a productivity shock. Hence, the dynamics has a struc-
ture very similar to the one studied until now. In this section we exploit the
fact that, if Ω is substochastic, nonnegative and irreducible then its eigenvalue
maximum in absolute value is real, simple and has a positive left eigenvector
(called Perron vector), λ1π

L = πLΩ. Then:
P = λ−1

1 D−1Ω′D

is row stochastic, where D = diag(πL
i ) (see proof of the proposition). In this

section we differentiate the left and right Perron vectors πL and πR because
they are different and we will need them both.

Assumption: generalized reversibility The role of reversibility in the
substochastic case is played by the condition πR

i Ωjiπ
L
j = πR

j π
L
i Ωij. I will call

a matrix Ω reversible if it satisfies it. I could derive a global bound without
assuming it (see appendix), but since I think the sector-specific bound is
more interesting I show the sector specific bound here.
Proposition D.1. Assume Ω is aperiodic, strongly connected and reversible.

Then:

CTki(ε) ≤ max



ln

(
1
ε

√
πR
i πL

i

πR
k πL

k

)
lnλ1/|λ2|

 ,


ln
(

πL
i

πL
k

ε+πR
k πL

k

ε

)
ln 1/λ1




where λ1 and λ2 are respectively the first and second largest eigenvalues in
absolute value of Ω, πL and πR are the left and right eigenvector centralities.

The intuitions are very similar to the homogeneous case. λ1 plays the
role of α, and is a measure of typical out-degree: it is a classical result that∑

αk/N ≤ λ1 ≤ maxk αk. |λ2|/λ1 is still a measure of community structure,
normalized by the typical degree.

Centralities role is more complex here. In most terms, we could consider
as the ”relevant” centrality measure πiLπ

R
i , which ranks nodes according to

the fact that they have both out and in-centralities high. This reasoning fails
due to the term

E Proof of Proposition D.1
For P defined as in the text:∑

j

Pij = λ−1
1

∑
j

Ωji

πL
j

πL
i

= λ−1
1

λ1π
L
i

πL
i

= 1
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Note that the eigenvalues of P are those of Ω divided by λ1. Our goal is to
find t such that Ωt

ki < ε. But Ωt = λt
1DP tD−1, and the invariant distribution

of P is πR
i π

L
i :

∑
i

πR
i π

L
i Pij = λ−1

1

∑
i

πR
i π

L
i Ωji

πL
j

πL
i

= λ−1
1

∑
i

πR
i Ωjiπ

L
j = λ−1

1 λ1π
R
j π

L
j = πR

j π
L
j

Moreover, P is irreducible and aperiodic if and only if Ω is irreducible and
aperiodic, since the powers of Ω are positive whenever the ones of P are.
Hence P t → πR(πL)

ᵀ.
To proceed further we need P to be reversible, that is:

πR
i π

L
i Ωji

πL
j

πL
i

= πR
j π

L
j Ωij

πL
i

πL
j

⇐⇒ πR
i Ωjiπ

L
j = πR

j π
L
i Ωij

which is our assumption. So, reasoning as in Proposition 4.2 we get that for
t high enough P t

ik < πR
k π

L
k + ε. So if λt

1
πL
k

πL
i
(πR

k π
L
k + ε) < ε then

Ωt
ki = λt

1

πL
k

πL
i

P t
ik < λt

1

πL
k

πL
i

(πR
k π

L
k + ε) < ε

so get:

CTki(ε) ≤ max



ln

(
1
ε

√
πR
i πL

i

πR
k πL

k

)
lnλ1/|λ2|

 ,


ln
(

πL
i

πL
k

ε+πR
k πL

k

ε

)
ln 1/λ1




Proof of Proposition ??
To avoid clutter, I omit the explicit dependence on the history ht. All vari-
ables are to be intended history - dependent.

The firms problems’ are essentially static. FOCs:

ztji : αωij

∑
ht+1|ht

pt+1
i yt+1

i = ptjz
t
ji

lti : (1− α)
∑

ht+1|ht

pt+1
i yt+1

i = wtlti

The transversality is not needed for firms, because it’s a sequence of static
problems. (Or, equivalently said, the transversality is trivially satisfied.)
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Consumer FOCs are:
βtπ(ht)γi = λptic

t
i

summing over goods and histories and using the budget constraint we get:

1

1− β
= λ

[∑
t

wt +
∑
i

p0iωi +
∑
ht

fht

]
Let us write, for brevity, W for

∑
tw

t, E for
∑

i p
0
iωi and f for

∑
ht fht . From

the expression above since in the homogeneous case U = λ(W + E + f), we
get that in equilibrium U = 1

1−β
. Then, substitute the multiplier above into

the demand:
cti = βt(1− β)

γi
pti
(W + E + f)π(ht)

Goods market clearing yields (for t > 0):

α
∑

ht+1|ht

∑
j∈N in

i

ωjis
t+1
j + βt(1− β)γi(W + E)π(ht) = sti (7)

Now, consider goods market clearing. We denote for simplicity the rev-
enues pi,tyi,t as si,t.

sti = π(ht)βt(1− β)(W + E + f)γt
i + α

∑
ht+1|ht

∑
j∈N in

i

ωjis
t+1
j

Normalize by the fraction of wealth allocated to time t and call dti =
sti

βtπ(ht)(1−β)(W+E+f)

the ”per-period” (revenue based) Domar weight:

dti =
sti

βtπ(ht)(1− β)(W + E + f)
= γi+α

∑
ht+1|ht

∑
j∈N in

i

ωji
βt+1π(ht+1)(1− β)(W + E + f)

βtπ(ht)(1− β)(W + E + Pro)

×
st+1
j

βt+1π(ht+1)(1− β)(W + E + f)

= γi + αβ
∑

ht+1|ht

∑
j∈N in

i

ωjiπ(h
t+1|ht)dt+1

j

So d follows this difference equation:

dti = γi + αβE

 ∑
j∈N in

i

ωjid
t+1
j |ht


iterating forward, since the expectation is bounded (because the state space
is finite) and all eigenvalues of Ω are smaller than 1 we obtain that:

dt = (I − αβΩ′)−1γ = d∗

are constant over time.
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E.0.1 Wage

The amount spent by consumer each period is π(ht)βt(1 − β), normalizing
total wealth (W + E + f) = 1. This, by market clearing, has to come from
the wage and the profit of the firms.

π(ht)βt(1−β) =
∑
i

πi,t+w(ht) =
∑
i

(
pi,tyi,t −

∑
j

pj,tzji,t − w(ht)li,t

)
+w(ht)

note that profits are not zero because of two reasons: these are the realized,
not expected, profits, and moreover the profit is computed using contempo-
raneous values of sales and purchases. These are not related by optimization,
since purchases at time t will generate revenues next period, hence there is
no reason to think that profits will be zero.

Note also that:

π(ht)βt(1− β) =
∑
i

(
pi,tyi,t −

∑
j

pj,tzji,t

)

so first we see that wage payments and earnings (of course) cancel out. Hence
the consumer expenditure comes from the value added on intermediate in-
puts.

Moreover, using the FOCs:

π(ht)βt(1−β) = π(ht)βt(1−β)
∑
i

(
di − α

∑
j

ωijβdi − (1− α)βdi

)
+w(ht)

π(ht)βt(1− β) = π(ht)βt(1− β)
∑
i

di (1− β) + w(ht)

hence:
w(ht) = π(ht)βt(1− β)

β(1− α)

1− αβ

and so:
fi,t = π(ht)βt(1− β)(1− β)di

where we can see that the profit is positive because of the intertemporal
dimension: the value of purchases equals the discounted value of revenues
tomorrow, which, being discounted, is smaller than the revenues accrued
today, even if Cobb-Douglas technology forces everything else to be constant.
Moreover, as expected, the profit of each firm is proportional to its dimension,
measured by revenues.
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Moreover, call e = 1−αβ
β(1−α)

, we get that consumer expenses are: GDPi,t =∑
pici = w(ht)e = π(ht)βt(1 − β), total profit Prot = w(ht)(e − 1), and∑
pici =

e
e−1

Prot, so that wage, profit, and GDP are all proportional.
In particular by the calculations above di =

pi,tyi,t
π(ht)βt(1−β)

=
pi,tyi,t
GDPt

E.0.2 Dynamics

Now, by FOCs input choices are:

zt−1
ji = αωij

∑
ht+1|ht d∗iβ

t+1π(ht+1)

pt−1
j

= αωij
d∗iβ

t+1π(ht)

pt−1
j

e

and in the same way:

lt−1
i = (1− α)

∑
ht+1|ht d∗iβ

t+1π(ht+1)

βtπ(ht)
= (1− α)d∗i

βπ(ht)

π(ht)
= (1− α)βd∗i e

So, output follows:

ln yt+1
i = lnAt+1 +

∑
j

αωij ln z
t
ji + (1− α) ln lti =

lnAt+1+
∑
j

αωij lnαωij−
∑
j

αωij ln p
t
j+α ln βtπ(ht)+ln β+ln d∗i+(1−α) ln(1−α)+ln e =

lnAt+1+
∑
j

αωij lnαωij+(1−α) ln(1−α)−
∑
j

αωij ln d
∗
j+
∑
j

αωij ln y
t
j+ln β+ln d∗i+ln e =

and finally:
ln yt+1

i = lnAt+1
i + Ci +

∑
j

αωij ln y
t
j

where Ci = Ci(γ, α,Ω, β) = ci −
∑

j αωij ln(d
∗
j) + ln d∗i + ln e, and ci = ln β +

(1− α) ln(1− α) +
∑

j αωij ln(αωij). Iterating, we can get the relationships
between any two outputs at different time periods.

F Proof of Proposition 3.1
We first need a lemma.

Lemma F.1. Be (ak)k∈N a sequence of nonnegative real numbers, and be ρ
and σ real numbers in the interval (0,1). If

∑∞
k=0 ak converges, then:

∞∑
k

ρk
k∑
n

σnak−n =
1

1− ρσ

∞∑
k

ρkak
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∞∑
k

ρk
k∑
n

σnan =
1

1− ρ

∞∑
k

ρkσkak

The flow utility of the consumer is, because of homotheticity of the utility:

U(ct) =
∑
i

γi ln c
t
i = − lnP t + lnwt

hence:

U(ct) = −
∑
i

γi ln p
t
i+lnwt = −

∑
i

γi ln
pti

βtπ(ht)e
+ln

(
wt

βtπ(ht)e

)
= −

∑
i

γi lnP t
i

Then it is:

U t = αt
∑
j

gtji logP0
j +

t−1∑
k=0

αk
∑
j

ωk
ij

(
− logAt−k

j − cj

)
hence:

U =
∑
t

βtU t =
∑
t

βt

(
αt
∑
j

gtji logP0
j +

t−1∑
k=0

αk
∑
j

ωk
ij

(
− logAt−k

j − cj

))

Consider a shock at 0. The impact on utility is:

∆U =
∑
t≥t̂

βt∆Ut =
∑
t

βt
∑
j

γj(c
shock to î
j,t − cj,t) =

∑
t≥t̂

βt
∑
j

γj(ln y
shock to î
j,t − ln yj,t) =

∑
t≥t̂

(βα)t
∑
j

ω
(k)

jî
γj∆ lnAî

= β t̂~e′
î
(I − αβΩ′)−1γ∆ lnAî

because ln cshock to î
j,t − ln cj,t = −(ln pshock to î

j,t − ln pj,t) = ln yshock to î
j,t − ln yj,t.

So
∆U/U

∆ lnAı̂

= (1− β)β t̂vı̂(αβ) =
pt̂,̂ıyt̂,̂ı
U

lim
∆lnAı̂→0

∆ lnU

∆ lnAı̂

= lim
∆lnAı̂→0

∆U/U

∆ lnAı̂

= (1− β)vı̂(αβ)

Consider now the case of a permanent shock
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∆U =
∑
t≥t̂

βt
∑
j

γj(ln y
shock to î
j,t − ln yj,t) =

∑
k=0

(β)k
∑
j

k∑
h=0

αhg
(h)

îj
γj∆ lnAî =

1

1− β

∑
h=0

(αβ)hω
(h)
jı̂ γj∆ lnAî

using the lemma F.1.
Remember that utility U is exactly 1

1−β
. Hence we get another analogous

to Hulten:
∆U/U

∆ lnAı̂

= vı̂(αβ) = pt̂,̂ıyt̂,̂ı

hence, taking the limit:

lim
∆lnAı̂→0

∆U/U

∆ lnAı̂

= lim
∆lnAı̂→0

∆ lnU

∆ lnAı̂

= vı̂(αβ)

Proof of Proposition 2.2
Consumer demand is:

cti = βt(1− β)
γi,t
pti

(W + E)π(ht)

FOCs:
ztji : αωij

∑
ht+1|ht

pt+1
i yt+1

i = ptjz
t
ji

lti : (1− α)
∑

ht+1|ht

pt+1
i yt+1

i = wtlti

Hence market clearing:

ptiyi,t = βt(1− β)γi,t(W + E)π(ht) + α
∑

ht+1|ht

∑
j

ωjis
t+1
j

Normalize and get:

dti =
sti

βt(1− β)π(ht)(W + E)
= γi,t+α

∑
ht+1|ht

∑
j∈N in

i

ωji
βt+1π(ht+1)

βtπ(ht)

st+1
j

βt+1π(ht+1)(1− β)(W + E))

= γi,t + αβ
∑

ht+1|ht

∑
j

ωjiπ(h
t+1|ht)dt+1

j
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So d follows this difference equation:

dti = γi,t + αβE

[∑
j

ωjid
t+1
j |ht

]

and iterating forward and passing to the limit we get:

dti = γi,t +
∑
k

αkβk
∑
j

ω
(k)
ji E

[
γt+k
j |ht

]

zji,t = αβωij
Etdi,t+1

dj,t
yj,t

The wage is

wt = (1− α)βEt

∑
dt+1
i =

(1− α)β

1− αβ
,

hence:
lti = (1− α)β

Etdi,t+1

wt

= (1− αβ)Etdi,t+1

so profits are:
Proi,t = di,t − βEtdi,t+1

General dynamics:

log yi,t+1 = const+α
∑
j

ωij log yj,t−α
∑
j

ωij log(γj,t+
∑
k

αkβk
∑

h∈N in
j

g
(k)
jh E

[
γt+k
h |ht

]
)+

log(
∑
k

αkβk
∑
j∈N in

i

g
(k)
ij E

[
γt+1+k
j |ht

]
)

or

ln yi,t+1 = const+ α
∑
j

ωij log yj,t − α
∑
j

ωij ln di,t + lnEtdi,t+1

that for prices (in GDP units) yields:

ln pi,t+1 = const+ α
∑
j

ωij log pj,t + lnEtdi,t+1 − ln di,t+1
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F.0.1 i.i.d. case

If γs are i.i.d.:

dti = γi,t +
∑
k=1

αkβk
∑
j∈N in

i

g
(k)
ij E [γ] = ∆γi,t + vi(αβ, γ)

Then plug this into the FOCS:

zji,t = αωij

∑
ht+1|ht p

t+1
i yt+1

i

pj,t
= αβωij

vi(αβ, γ)

∆γj,t + vj(αβ, γ)
yj,t

The wage is the same.

lti = (1− α)

∑
ht+1|ht p

t+1
i yt+1

i

wt

= (1− α)βvi(αβ, γ)

So the quantity dynamics becomes:

log yi,t+1 = ci + ln e+ ln vi + α
∑
j

ωij log yj,t − α
∑
j

ωij log(∆γj,t + vj)

where ci is defined as above. This captures the idea that when a positive
taste shock hits good j then its price increases and so firm i is able to buy
less of it, so it will have a (relative) negative impact on its production.

Dynamics of prices:

lnPi,t+1 = ln(∆γi,t+1 + vi) + α
∑
j

ωij lnPj,t − ci − ln e− ln vi

This captures the idea that current prices are directly affected by the real-
ization of γ of the corresponding sector.

profits:

Proi,t = di,t − βEtdi,t+1 = ∆γi,t + (1− β)vi(αβ, γ)

G Proof of Proposition 3.2
The expected utility is:

U =
∑
ht

βtπ(ht)

(∑
i

γt
i ln γ

t
i −
∑
i

γt
i lnPi,t + ci

)
Now assume to fix ideas that the only stochastic state is 1. All the others
are fixed to the average γ. The utility once at 1 has been realized state γ′ is:

U =
∑
t>1

βtπ(ht)

(∑
i

γi ln γi −
∑
i

γi lnPi,t + ci

)
+
∑
i

γ′
i ln γ

′
i−
∑
i

γ′
i lnPi,1+ci
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Transitory preference shock The impact of a realization γ′ at time t is:

∆U = −
∑
t>1

βtπ(ht)γi
(
lnP ′

i,t − lnPi,t

)
+
∑
i

γ′
i ln γ

′
i−
∑
i

γi ln γi−
∑
i

(
γ′
i lnP ′

i,1 − γi lnPi,1

)
Now:

∆ lnPi,t = αt−1
∑
j

ωij∆ lnPj,1

lnP ′
i,1 = ln(∆γi,1+vi)+α

∑
j

ωijPj,0−ci−ln e−ln vi = ln

(
∆γi,1
vi

+ 1

)
−ci−ln e =

ln

(
∆γi,1
vi

+ 1

)
+ lnPi,1

so:
∆ lnPi,1 = ln

(
∆γi,1
vi

+ 1

)
hence:

∆Ut>1 = −
∑
t

βt∆ lnPi,t = −
∑
t

γiα
t−1βt−1

∑
j

g
(t)
ji ∆ lnPj,1 = −

∑
j

(vj−γj) ln

(
∆γj
vj

+ 1

)

∼ −
∑
j

(vj − γj)
∆γj
vj

= −
∑
j

∆γj −
∑
j

γj∆γj =
∑
j

γj∆γj
vj

Instead the terms of the first period can be rewritten as:

∆
∑

γi(ln γi − ln pi,1) =

∆
∑

γi ln γi−
∑
i

(
γ′
i lnP ′

i,1 − γi lnPi,1

)
= +∆

∑
γi ln γi−

∑
γ′
i∆Pi−

∑
∆γi lnPi

so:
∆U = −

∑
j

(vj − γj) ln

(
∆γj
vj

+ 1

)
−
∑
j

γj ln

(
∆γj
vj

+ 1

)
+

∆
∑

γi ln γi −
∑

∆γi lnPi

∑
∆γi ln

(
∆γi
vi

+ 1

)
= −

∑
j

vj ln

(
∆γj
vj

+ 1

)
+∆

∑
γi ln γi−

∑
∆γi lnPi+

∑
∆γi ln

(
∆γi
vi

+ 1

)
Now note that: ∑

∆γi ln

(
∆γi
vi

+ 1

)
∼
∑

∆γ2
i /vi
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is second order in the size of the shock, and always at the first order

−
∑
j

vj ln

(
∆γj
vj

+ 1

)
∼ −

∑
j

∆γj = 0

So at the first order:

∆U = −
∑

∆γi lnPi +∆
∑

γi ln γi

= −
∑

∆γi lnPi +
∑

∆γi ln γi∑
∆γi ln ci

Permanent preference shock Note that the revenues have a direct im-
pact on the price dynamics only at the moment of the impact. Beyond that,
things are equivalent to a productivity shock, of size modified according to
centrality. So now:

∆U =
∑
t

βt

(
∆
∑

γi ln γi −
∑
i

(
γ′
i lnP ′

i,t − γi lnPi,t

))

The second part can be rewritten as before
∑

γ′
i∆Pi,t +

∑
∆γi lnPi,t, that

is: ∑
γ′
iα

t
∑
j

ωt
ij∆Pj,0 +

∑
∆γiα

t
∑
j

ωt
ij lnPj,0 + const

Apply lemma F.1 to this and get:

1

1− β

(∑
j

vj(αβ, γ
′)∆ lnPj,0 +

∑
j

vj(αβ,∆γ) lnPj,0

)
+ const

so in total we get:

∆U =
1

1− β
∆
∑

γi ln γi−
1

1− β

(∑
j

vj(αβ, γ
′)∆ lnPj,0 +

∑
j

vj(αβ,∆γ) lnPj,0

)

=
1

1− β
∆
∑

γi ln γi−
1

1− β

(∑
j

vj(αβ, γ
′) ln

(
vj(αβ,∆γ)

vj(αβ, γ)
+ 1

)
+
∑
j

vj(αβ,∆γ) lnPj,0

)
Also in this case, at the first order

∑
j vj(αβ, γ

′)∆ lnPj,0 =
∑

j vj(αβ, γ
′)(ln vi(αβ, γ

′)−
ln vi(αβ, γ)) ∼

∑
j vj(αβ, γ

′)
vj(αβ,∆γ)

vj(αβ,γ′)
= 0 (remember that the centrality is a

linear combination of the preference parameters).
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