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1. Introduction

We examine “tournament” second-price auctions in which N bidders compete for the right

to participate in a second stage and contend against bidder N + 1.

When the first N bidders can submit fresh bids in the second stage this is equivalent to a

second price auction. When the first N bidders are committed so that their bids cannot be

changed in the second stage, they consistently bid above their values in equilibrium.

When all bidders are ex-ante identical overbidding results in a decrease in expected revenue

for the auctioneer. If instead bidder N+1 is sufficiently stronger than the first N overbidding

increases expected revenue relative to the standard second-price auction when N is large.

All proofs are relegated to an Appendix. In the numbering of equations, definitions,

lemmas etc prefix of “A” indicates that the relevant item is to be found in the Appendix.

2. Related Literature

Even attempting a review of the literature on auctions in a short note would be foolish. Given

that one of our central results concerns expected revenue citing Vickrey (1961) cannot be

avoided. The rest we leave to a survey by Klemperer (1999), to the colossal edited collection

of papers found in Klemperer (2000), and a favorite textbook by Krishna (2009).

3. Setup

3.1. General

A single indivisible object is for sale, and there are N ≥ 2 first-stage bidders and 1 second-

stage bidder. First-stage bidders have independent private values vi
iid∼ F with support [0, v̄]

with v̄ > 0. The distribution F is absolutely continuous with density f(v) > 0 ∀v ∈ [0, v̄].

The second-stage bidder N + 1 has value w ∼ G with support [0, w̄] with w̄ ≥ v̄. The

distribution G is absolutely continuous with density g(w) > 0 ∀w ∈ [0, w̄]. For simplicity g(·)
is assumed to be differentiable with g′ locally bounded at 0. The value w is independent of

the values vi of the first stage bidders.

Bids in both first and second stage are sealed. Bidder N + 1 competes with the highest

bidder of the first stage.1

1It seems more appealing to assume, as we do, that N + 1 does not observe the actual first stage winning
bid although this is completely irrelevant. All our results holds unchanged if N + 1 observes the actual bid
of the winner of the first stage.
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Some significant details of the two-stage auction will change as we consider different cases.

In all cases, the values of all N +1 bidders are private information to each of the participants

and are independently drawn once and for all at the beginning of the game.

Throughout, by “equilibrium” we mean a Perfect Bayesian Equilibrium of the two-stage

incomplete information game at hand. We also restrict attention to equilibria with bidding

functions that are non-decreasing in values and identical across the N first-stage bidders.2 In

one instance3 it will be necessary to consider explicitly an upper bound on bids, which will

be denoted by b̄ > v̄ for the first stage bidders.4 In all other cases this is immaterial just as

it is in virtually all existing auction models.

The (identical) bidding functions of the first-stage bidders are denoted interchangeably

by bi(·) or b(·) while the bidding function for bidder N + 1 is denoted by bN+1(·).

Finally, we refer to the case in which all N +1 bidders with the values as described above

bid simultaneously in a second price auction as the standard one-shot case.

3.2. No Commitment

This is our point of departure. In the setup we just described we consider a two-stage auction

as follows. At T = 1 the N first-stage bidders submit sealed bids. The highest bidder i∗ wins

and pays a price equal to second highest bid.

Bidder i∗ wins the right compete against N + 1 in the second stage of the auction held

at T = 2. In the second stage auction i∗ and N + 1 submit sealed bids.5 The highest bidder

wins the object and pays a price equal to the second highest bid — the bid of the only other

second-stage participant.

3.3. Commitment With Symmetric Bidders

If the first stage bidders are committed to their bids in the sense that they cannot be changed

in the second stage the picture changes considerably and several details begin to matter.

The first case we consider is that of symmetric bidders in the sense that the value of N+1

has the same distribution as the first N bidders. So, G = F .

2Any ties are broken randomly, with all tied bids winning with equal probability.
3The case of Commitment with Symmetric Bidders described in Subsection 3.3 below.
4A bound b̄ = v̄ does not pose a problem. If indeed b̄ = v̄ then, for obvious reasons, (5) of Proposition 3

below only holds for v ∈ (0, v̄) instead of any v ∈ (0, v̄].
5Bidder i∗ submits a fresh bid in the second stage.
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The highest bidder of the first stage i∗ goes on to compete with bidder N+1 in the second

stage without the possibility of changing the bid. In the second stage the highest bidder wins

and pays a price equal to the bid of the other bidder.

3.4. Commitment With Asymmetric Bidders

The auction procedure is exactly the same as in subsection 3.3. The first N bidders are

ex-ante identical just as in the previous cases. In this case bidder N + 1 is “stronger” in the

sense that E(w) > v̄.

4. Results

4.1. Equilibrium Behavior of Bidder N + 1

It is clear from the description of our two-stage auction that from the point of view of bidder

N + 1 the set up always corresponds to a second price auction between N + 1 and the first

stage winner i∗.

By completely standard arguments we then know that “bidding his value” is a weakly

dominant strategy for N +1. Hence, from now on we restrict attention to equilibria in which

N + 1 bids according to to this weakly dominant strategy. From now on we assume that in

equilibrium bN+1(w) = w.

4.2. Equilibrium in the No Commitment Case

Equilibrium for the model described in Subsection 3.2 is relatively straightforward to char-

acterize.

Proposition 1. Bidding Functions In The No Commitment Case: The following constitute

an equilibrium in the case of no commitment.

bIi (vi) =

∫ vi

0

(vi − ξ)g(ξ) dξ and bIIi (vi) = vi, (1)

where bIi (·) and bIIi (·) are respectively the first and second stage (if he wins the first stage)

bids for i. And for bidder N + 1,

bN+1(w) = w. (2)
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Remark 1. Value of Second Stage Participation: By inspection of (1) it is clear that the N

first stage bidders simply bid “truthfully” their value of participating in the second stage of

the auction.

Remark 2. Revenue Equivalence with No Commitment: By inspection of (1) and (2) it is

clear that the outcome of the two-stage auction without commitment is ex-post efficient.

Therefore the Revenue Equivalence Theorem implies that the expected revenue in this case

is the same as the expected revenue in the standard one-shot second price auction case.

Proposition 2. Expected Revenue in the Standard and No Commitment Case: LetRNC(N)

be the expected revenue in the standard and in the no commitment case as a function of the

number N of first stage bidders. Then6

RNC(N) = E[(v1, ..., vN , w)(2:N+1)] (3)

When the values for all N + 1 bidders are uniformly distributed on [0, 1], equation (3)

becomes

RNC(N) =
N

N + 2
. (4)

4.3. Equilibrium Overbidding With Commitment

The commitment case is substantially different from the no-commitment one and hence the

model differs from the standard one-shot second price auction case.

Recall that in this case the first N bidders bid only once. The highest bidder among the

first N , denoted i∗ goes on to compete with N + 1 without revising his bid. A second price

contest with N + 1 then decides who win the object and the price paid.

The two-stage structure of the auction with commitment generates increased competition

in the first stage. The only possibility to achieve a positive payoff for the first-stage bidders

is to win the first stage. This gives them an incentive to bid above their values in the first

stage competition. Of course the possible downside of committing to an above-value bid is

mitigated by the fact that, contingent on winning, the price they pay in the second stage is

the second highest bid — namely the bid of N + 1. Formally, we prove the following.

6Throughout, given a vector of random variables x = (x1, . . . , xL) of length L, we denote by (x1, ..., xL)(q:L)

the q-th (descending) order statistic of x.
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Proposition 3. Above Value Bidding with Commitment: Consider distributions F and G as

in Subsection 3.1 and the model with commitment and either symmetric or asymmetric

bidders.

Suppose that the (non-decreasing) bidding function b(·) for bidders i = 1, ..., N induces

an equilibrium in conjunction with bN+1(w) = w. Then, for every v ∈ (0, v̄], we must have

b(v) > v (5)

Proposition 3 establishes that the two-stage structure of the auction in the case of com-

mitment generates bids that are above value for the first N bidders allowing for general

distributions of values satisfying the conditions spelled out in Subsection 3. Further charac-

terization of the bidding functions and of the expected revenue will differ in crucial respects

in the two cases of symmetric and asymmetric bidders described above in Subsections 3.3

and 3.4 respectively.

Restricting attention to values that are uniformly distributed yields further worthwhile

characterizations. When we say that values are uniformly distributed we mean that F is the

uniform distribution on [0, 1] and that G is the uniform distribution on [0, w̄] with w̄ ≥ 1.

Before proceeding further, we pause to notice that whenever Proposition 3 holds the

Revenue Equivalence Theorem cannot be invoked to pin down the expected revenue to the

auctioneer.

Remark 3. Failure of Revenue Equivalence with Commitment: Combining the fact that bid-

der N + 1 always bids his value truthfully with the overbidding highlighted in Proposition

3 it is clear that in all the cases we consider where there is commitment the outcome of the

auction may be ex-post inefficient with the object failing to be allocated to the bidder with

the highest value.

In all these cases the Revenue Equivalence Theorem does not pin down the expected

revenue to the auctioneer to be the same as in the standard one-shot second-price auction as

was the case for the no commitment model.

Clearly, the failure of the Revenue Equivalence Theorem leaves open the possibility that

the revenue with commitment may go up as well as down relative to the standard case.

4.4. Equilibrium with Commitment and Symmetric Bidders

We are now ready to characterize further the equilibrium of the model described in Subsection

3.3 above.
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Proposition 4. Commitment, Symmetric Bidders and Uniform Values: Consider the case

of Commitment, Symmetric Bidders and Uniform Values. In other words assume that the

values for all N + 1 bidders are uniformly distributed on [0, 1]. Bids are restricted to be in

[0, b̄] with b̄ > v̄ = w̄.

Then there exists a v̂N ∈ (1/2, (N + 1)/2N) such that the following constitute an equi-

librium.

bi(vi) =


2N

N + 1
vi if vi ∈ [0, v̂N ]

b̄ if vi ∈ (v̂N , 1]

and bN+1(w) = w (6)

As expected, equation (6) confirms that in equilibrium the first N bidders bid above their

values. Indeed from (6) we observe that they all bid b̄ — the maximum allowed — whenever

their value exceeds the cutoff value v̂N . While the cutoff value v̂N depends on N , the bid

always jumps to the same value b̄ after the cutoff is exceeded.

As we noted in Subsection 4.1, bidder N + 1 always bids his value in equilibrium. So in

the case of symmetric bidders considered here, the bid of N + 1 will never exceed 1. This in

turn means that the first N bidders have “nothing to lose” in bidding arbitrarily high once

their bid exceeds 1. Because the context against N + 1 is a second price one, bidding any

amount above 1 will not change the price paid. This coupled with the general overbidding

feature of Proposition 3 generates the need for the explicit bidding cap that we use here.

Our next concern is the effect on the auctioneer’s expected revenue of the equilibrium

overbidding in this case. The expected revenue falls below the standard case and can be

characterized as follows.

Proposition 5. Revenue with Commitment and Symmetric Bidders: LetRCS(N) be the ex-

pected revenue for the case of commitment, symmetric bidders and uniformly distributed

values on [0, 1]. Then

RCS(N) < 1/2 ≤ RNC(N) ∀ N ≥ 2 (7)

In the case of a general distribution of values F = G our conclusion is limited to large

values of N .

lim
N→∞

RCS(N) < lim
N→∞

RNC(N) (8)
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4.5. Equilibrium with Commitment and Asymmetric Bidders

We now turn to the model with Commitment and Asymmetric bidders described in Subsection

3.4. Bidder N +1 is stronger in the sense that F and G are such that E(w) > v̄. Proposition

3 still applies in this case; the first N bidders bid above their value. The fact that N + 1 is

sufficiently stronger guarantees that overbidding always has a potential cost for the first N

bidders. This in turn means that in this case there is no need to consider explicitly a bidding

cap b̄ as we did for the symmetric bidders case.

Proposition 6. Commitment, Asymmetric Bidders and Uniform Values: Assume that the

bidders are asymmetric with N + 1 being sufficiently stronger than the first N . Assume

further that all values are uniformly distributed, the first N on [0, 1].

Then the following constitute an equilibrium.

bi(vi) =
2N

N + 1
vi and bN+1(w) = w (9)

The bidding above value generated by the two-stage structure of the auction with com-

mintment has a very different and “unexpected” effect in the case of asymmetric bidders. As

we noted in Remark 3 since the outcome fails to be ex-post efficient in this case, we cannot

appeal to the Revenue Equivalence Theorem to pin down the auctioneer’s expected revenue

relative to the standard one-shot second-price auction case.

Proposition 7. Revenue with Commitment and Asymmetric Bidders: Let RCA(N) be the

expected revenue for the case of commitment and asymmetric bidders with bidder N + 1

stronger than the first N so that E(w) > v̄. Assume general distributions F and G for the

bidders’ values as in Subsection 3.1. Assume further that the bidding functions for the first

N bidders are differentiable.7 Then,

lim
N→∞

RCA(N) > lim
N→∞

RNC(N) (10)

For large N the two-stage structure of the auction yields an increase in the auctioneer’s

expected revenue relative to the standard one-shot second-price case. We believe this to be

“unexpected” in the following sense.

7From Proposition 6 we know this to be the case for uniformly distributed values on [0, 1].
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Imagine adding a single bidder N + 1 that is stronger than the first N to the standard

one-shot second-price auction. This clearly has a vanishingly small effect on revenue. Bidder

N + 1 is indeed stronger, but of course he pays a price equal to the second highest bid. As

N becomes large, the second highest value of the N + 1 bidders, is almost surely arbitrarily

close to (and just below) v̄. Hence bidder N + 1 in the limit has no effect on revenue.
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Appendix

Proof of Proposition 1: Equation (2) follows from our remarks about the bidding behavior of N + 1 in

Subsection 4.1).

Taking this as given, the expected benefit from participating in the second stage for a bidder i = 1, ..., N

with value vi ∈ [0, v̄] is given by

θ(vi) ≡
∫ vi

0

(vi − ξ)g(ξ) dξ (A.1)

Observe that the first stage auction is equivalent to a standard one-shot second price auction in which

bidders have values {θ(vi)}Ni=1. By standard arguments bidding one’s own value is a weakly dominant strategy.

Hence (1) follows immediately.

Proof of Proposition 2: Equation (3) follows from the observation that revenue equivalence with respect

to the standard one-shot second-price auction holds in this case. Equation (4) is a standard result about

order statistics with uniform distributions.

Proof of Proposition 3: Since in some cases constructing an equilibrium requires imposing a bidding cap

on the first N bidders we let b̄ > v̄ be such cap, with the understanding that we may be in the case in which

no such cap is imposed which here will correspond to setting b̄ = ∞.

Fix a bidding function for the first N players forming an equilibrium together with bN+1(w) = w as in

the statement of the proposition. Let P (bi, b(·)) be the probability that i wins the first stage given bid bi and

that all others bid according to b(·).

The expected payoff of a bidder i = 1, .., N with value vi in this equilibrium is then given by

P (b(vi), b(·))
∫ b(vi)

0

(vi − ξ)g(ξ) dξ. (A.2)

First note that we must have P (b(vi), b(·)) > 0 for all vi > 0 because b(·) is assumed to be non-decreasing

ans ties are broken randomly.8 Note also that the value of integral in (A.2) must also be positive otherwise

b(vi) could not possibly be an optimal bid. Hence, overall the expected payoff in (A.2) must be positive.

The remainder of the proof is in three steps.

Step 1: b(vi) ≥ vi for all vi ∈ [0, v̄]

By way of contradiction suppose that b(vi) < vi for some vi ∈ (0, v̄]. Recall that i’s expected payoff in

equilibrium conditional of having value vi is given by (A.2). Note that P (bi, b(·)) is non decreasing in bi and

that since b(vi) < vi

∂

∂bi

∫ bi

0

(vi − ξ)g(ξ) dξ = (vi − bi) g(bi) > 0 (A.3)

8See footnote 2.

Q.E.D.
Q.E.D.
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Hence it follows that (without violating the bid cap, if any) i can strictly increase his expected payoff by

increasing his bid to b(vi) + ϵ for a sufficiently small ϵ > 0.

Step 2: If v1 < v2 and b(v2) < b̄, then b(v1) < b(v2).
9

If v1 = 0 then it must clearly be that b(v1) = 0, and if v2 > 0 then b(v2) must be positive since the interim

payoff in (A.2) must be positive. So, there is nothing more to prove in this case.

Hence, it is sufficient to derive a contradiction from the case 0 < v1 < v2 and b(v1) = b(v2) < b̄.

Since b(v1) must be optimal given v1 we must have for ∆ > 0

P (b(v1), b(·))
∫ b(v1)

0

(v1 − ξ) g(ξ) dξ ≥ P (b(v1) + ∆, b(·))
∫ b(v1)+∆

0

(v1 − ξ) g(ξ) dξ. (A.4)

where the left-hand side must be positive since v1 > 0.

Furthermore, since by our contradiction hypothesis b(v1) = b(v2), it must be that

lim
∆↓0

P (b(v1) + ∆, b(·)) > P (b(v1), b(·)) (A.5)

However (A.5) implies that as we take the limit for ∆ ↓ 0 inequality (A.4) must be false.

Step 3: We can now conclude the proof of Proposition 3.

For any v ∈ (0, v̄] such that b(v) = b̄, the claim in the proposition obviously holds. Hence consider

v ∈ (0, v̄] such that b(v) < b̄. Note that from Step 2 we know that

P (b(v), b(·)) = [F (v)]N−1 (A.6)

By way of contradiction suppose now that b(v) = v. Then, using Step 2 for any ϵ > 0, interim optimality

implies

F (v − ϵ)N−1

∫ b(v−ϵ)

0

(v − ϵ− ξ)g(ξ) dξ ≥ F (v)N−1

∫ v

0

(v − ϵ− ξ)g(ξ) dξ

which we can rearrange as

[
F (v − ϵ)N−1 − F (v)N−1

] ∫ b(v−ϵ)

0

(v − ϵ− ξ)g(ξ) dξ ≥ F (v)N−1

∫ v

b(v−ϵ)

(v − ϵ− ξ)g(ξ) dξ (A.7)

Since by Step 1 we know that b(v − ϵ) ≥ v − ϵ (Step 1), we now must have

[
F (v − ϵ)N−1 − F (v)N−1

] ∫ b(v−ϵ)

0
(v − ϵ− ξ)g(ξ) dξ ≥ F (v)N−1

∫ v

v−ϵ
(v − ϵ− ξ)g(ξ) dξ

= F (v)N−1
[∫ v

v−ϵ
(v − ξ)g(ξ) dξ − ϵ[G(v)−G(v − ϵ)]

] (A.8)

9In the case of no bid cap b(v2) < b̄ is automatically satisfied.
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Hence we obtain that the following inequality must hold

F (v − ϵ)N−1 − F (v)N−1

ϵ

∫ b(v−ϵ)

0

(v − ϵ− ξ)g(ξ) dξ

≥ F (v)N−1
[ ∫ v

v−ϵ
(v−ξ)g(ξ) dξ

ϵ − [G(v)−G(v − ϵ)]
] (A.9)

Taking the limit as ϵ ↓ 0 on both sides of (A.9), we now obtain a contradiction since

−(N − 1)F (v)N−2f(v)

∫ v

0

(v − ξ)g(ξ) dξ < 0

Proof of Proposition 4: We begin by defining the functions

PN (v) ≡
N−1∑
i=0

(
N − 1

i

)
vN−1−i(1− v)i

1

1 + i

AN (v) ≡ vN+1 2N

(N + 1)2

BN (v) ≡ (v − 1

2
)PN (v)

(A.10)

Since (
N − 1

i

)
1

1 + i
=

(
N

i+ 1

)
1

N

we then immediately obtain

PN (v) =
1

N

1

1− v

 N∑
j=1

(
N

j

)
(1− v)jvN−j

 =
1

N

1− vN

1− v
=

1

N

N−1∑
j=0

vj . (A.11)

Our candidate v̂N as in the statement of the proposition is

v̂N = min

{
v ∈

(
1

2
,
N + 1

2N

)
such that AN (v) = BN (v)

}
(A.12)

To see that the quantity in (A.12) is actually well defined, note that AN (1/2) > BN (1/2) = 0 and

BN ((N + 1)/2N) =
1

2N
· PN ((N + 1)/2N) >

1

2N

(N + 1

2N

)N−1

= AN ((N + 1)/2N)

So that we know that v̂N as above it is in fact interior to the interval in (A.12), as required.

Given that all other players bid according to b−i(·) as in equation (6) in the statement of the proposition,

Q.E.D.
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the interim expected payoff of a bidder i = 1, ..., N with bid bi and value vi is

π(bi, vi, b−i(·)) =



(
N + 1

2N
bi

)N−1

· bi ·
(
vi −

bi
2

)
if bi ≤

2N

N + 1
v̂N

v̂N−1
N · bi

(
vi −

bi
2

)
if

2N

N + 1
v̂N < bi < 1

v̂N−1
N

(
vi −

1

2

)
if 1 ≤ bi < b̄ (void if b̄ = 1)

P (v̂N )

(
vi −

1

2

)
if bi = b̄

(A.13)

To see why (A.13) holds, notice that the first term in each line corresponds to the probability of winning

the first stage. Also, notice that the second term in each of the top two lines corresponds to the probability of

winning the second stage. Finally, the last term in each of the top two lines is the expected payoff conditional

on winning the second stage.

We can proceed to establish the interim optimality of the bidding function bi(·) explicited in (6). Before

proceeding to examine specific cases, we note that it will never be an interim best reply to choose bid bi ∈ [1, b̄)

because bidding bi = b̄ strictly improves i’s payoff.10 We consider two cases separately.

Case 1: vi ∈ [0, v̂N ].

We begin by examining the optimal bid among the range bi ∈ [0, 1). First notice that

sup
bi∈[0,1)

(
N + 1

2N
bi

)N−1

· bi ·
(
vi −

bi
2

)
≥ sup

bi∈[0,1)

π(bi, vi, b−i(·)). (A.14)

Hence, if there is some bid bi ∈ [0, 1) such that π(bi, vi, b−i(·)) equals the supremum on the LHS of (A.14),

then this bi must attain the supremum for the RHS as well. With this in mind, let us first consider the LHS

of (A.14). From its first derivative, it is clear that the supremum is obtained at bi(vi) = vi2N/(N + 1) < 1.

Then, notice that for all vi ∈ [0, v̂N ], we have bi(vi) ≤ v̂N2N/(N + 1) and hence the first line of (A.13) is the

relevant one when computing π(bi(vi), vi, b−i(·)). It then follows that this bid bi(vi) attains the supremum

for the righthand side of (A.14) as well. Hence bi(vi) as in (6) is the optimal bid among bids bi ∈ [0, 1).

Our next step is to compare this bid bi(vi) with b̄. The expected payoff given bid bi(vi) is AN (vi), whereas

the expected payoff given bid b̄ is P (v̂N )(vi − 1/2). Notice that these expected payoffs are equal for vi = v̂N .

Observe next that for all vi ∈ [0, v̂N ],

d

dvi
AN (vi) = vNi

2N

N + 1
< v̂N−1

N < PN (v̂N ). (A.15)

10The bid range [1, b̄) is obviously empty if b̄ = 1, so it this is irrelevant in this case.
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Hence it must be that AN (vi) > P (v̂N )(vi − 1/2) for all vi ∈ [0, v̂N ). Thus, it is clear that for Case 1, bi(·)
as in (6) is indeed the interim best reply.

Case 2: vi ∈ (v̂N , 1].

We begin by considering the optimal bid bi in the range [0, v̂N2N/(N + 1)]. Taking the first derivative

of the first line in (A.13), it is clear that the optimal bid is always v̂N2N/(N + 1). Therefore

max
bi∈[0,v̂N2N/(N+1)]

π(bi, vi, b−i(·)) =
2N

N + 1
v̂NN (vi −

N

N + 1
v̂N )

We can then establish that

ÂN (vi) ≡ sup
bi∈[0,1)

π(bi, vi, b−i(·)) =

sup
bi∈[ 2N

N+1 v̂N ,1)

π(bi, vi, b−i(·)) =


2N
N+1 v̂

N
N (vi − N

N+1 v̂N ) if vi ∈ (v̂N ,
2N

N + 1
v̂N ]

v̂N−1
N

v2i
2

if vi ∈ (
2N

N + 1
v̂N , 1]

We then observe that

d

dvi
ÂN (vi) =


2N

N + 1
v̂NN if vi ∈ (v̂N ,

2N

N + 1
v̂N ]

v̂N−1
N vi if vi ∈ (

2N

N + 1
v̂N , 1]

(A.16)

so that ÂN (vi) is continuously differentiable on vi ∈ (v̂N , 1]. In addition, notice that the expected payoff

given bid b̄ is P (v̂N )(vi − 1/2), and observe that this is equal to ÂN (v̂N ) when vi = v̂N . Finally observe that

P (v̂N ) >
d

dvi
ÂN (vi) (A.17)

for all vi ∈ (v̂N , 1]. Therefore the expected payoff given bid b̄ is strictly better than ÂN (vi) for all vi ∈ (v̂N , 1].

Hence it follows that bi(·) as in (6) is the interim best reply for Case 2 as well.

This is clearly enough to prove the claim.

Proof of Proposition 5: Since N+1 bids truthfully and there are only two bidders in the second stage, the

second-price nature of the contest immediately implies that the realized revenue must be weakly less than w

for any distribution of values across all N+1 bidders. In addition, for the case of uniformly distributed values

on [0, 1], inspection of the equilibrium in Proposition 4 immediately reveals that with non-zero probability,

the realized revenue must be strictly less than w. Thus, for the case of uniformly distributed values on [0, 1],

we must have RCS(N) < 1/2 since the expected value of a uniform distribution on [0, 1] equals 1/2. The

remainder of the proposition for the uniform case follows directly from Proposition 2.

Q.E.D.
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For the case of general distributions case, observe once again that regardless of values across all bidders,

the realized revenue must be weakly less than w.

It follows that RCS(N) ≤ E(w) for all N . Then, notice that given our assumptions on the distribution

F , the second-order statistic (v1, ..., vN , w)2:N
a.s.→ v̄ = w̄. Thus, limN→∞ RNC(N) = w̄ > E(w), from which

(8) follows directly.

Proof of Proposition 6: Notice that since E(w) = w̄/2, we have that w̄/2 > v̄ = 1. Next, suppose that

all bidders other than N + 1 bid as in (9). Then if i ̸= N + 1 has value vi and bids bi his expected payoff is

given by

π[bi, vi, b−i(·)] =



[
N + 1

2N
bi

]N−1
bi
w̄

[
vi −

bi
2

]
if bi ∈

[
0,

2N

N + 1

]

bi
w̄

(
vi −

bi
2

)
if bi ∈

(
2N

N + 1
, w̄

]

vi −
w̄

2
if bi ∈ (w̄,∞)

(A.18)

To see why (A.18) holds observe that the first term of the top line is the probability that i by bidding

bi wins the first stage of the tournament. Then, bi/w̄ is the probability that i by bidding bi wins the second

stage of the tournament. Finally, vi − bi/2 is i’s expected payoff if he wins the second stage.

Now consider maximizing the top row of (A.18) by choice of bi ∈ [0,∞). From the first order conditions

the maximum is attained by setting bi(vi) as in (9). By inspection of the second and third row of (A.18), it

is then clear that i’s overall expected payoff as in (A.18) is maximized by setting bi(vi) as in (9), and this is

sufficient to prove the claim.

Proof of Proposition 7: The proof is divided into three separate steps. The second step in turn is divided

into three substeps.

Step 1: We prove that sup
N≥2

b(v,N) < w.

By assumption E(w) > v̄. Therefore there exists ϵ > 0 such that

E(w|w ≤ w̄ − ϵ) =
1

G(w̄ − ϵ)

∫ w̄−ϵ

0

ξg(ξ) dξ > E(w)−
∫ w̄

w̄−ϵ

ξg(ξ) dξ > v̄. (A.19)

Then, choose any N ≥ 2 and suppose by way of contradiction that b(v̄, N) ≥ w̄−ϵ. Then, the expected payoff

of a bidder i = 1, ..., N with value v̄ in equilibrium is G(b(v̄, N))[v̄ − E(w|w ≤ b(v̄, N))] ≤ G(b(v̄, N))[v̄ −
E(w|w ≤ w̄ − ϵ)] < 0. Since any bidder can achieve nonnegative payoffs for sure by bidding bi = 0, this

contradicts interim optimality. Hence, the claim made in Step 1 has been established.

Q.E.D.
Q.E.D.
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Step 2: If M > N , then b(v,M) > b(v,N) for all v ∈ (0, v̄].

This step is proved in three distinct substeps.

Step 2-a: b(·, N) satisfies the ODE

∂

∂v
b(v,N) = HN (b(v,N), v) for all v ∈ (0, v̄] (A.20)

where

HN (b, v) ≡ (N − 1) · 1

b− v
· f(v)
F (v)

· G(b)

g(b)
· Ew[v − w|w ≤ b] (A.21)

for all (b, v) ∈ (0, w̄]× (0, v̄] such that b > v.

The claim follows directly from rearranging the FOC of the first N bidders, and using Step 1.

Step 2-b: b(0, N) = 0.

Denote

T (b, b(·, N)) ≡ F (b−1(bi, N))N−1 and S(bi, vi) ≡
∫ bi

0

(vi − ξ)g(ξ) dξ.

Then, let vi ∈ (0, v̄]. It immediately follows that T (b(vi, N), b(·, N)) = F (vi)
N−1 > 0. Next, by way of

contradiction suppose that b(0, N) > 0. Then

S(b(vi, N), vi) = G(b(vi, N)) [vi − Ew[w|b(vi, N) > w]] ≤ G(b(vi, N)) [vi − Ew[w|b(0, N) > w]] (A.22)

Now choose any vi ∈ (0, Ew[w|b(0, N) > w]). It follows that T (b(vi, N), b(·, N)) > 0 and S(b(vi, N), vi) <

0. Therefore π(b(vi, N), vi, b−i(·, N)) < 0. This contradicts interim optimality and hence establishes the

claim.

Step 2-c: Fix M > N . Then there exists a vϵ > 0 such that b(v,M) > b(v,N) for all v ∈ (0, vϵ).

We begin by observing that using (A.20) and (A.21)

HN (b, v) < HM (b, v) ∀ b ∈ (v, b(v,M)], ∀ v ∈ (0, v̄] (A.23)

moreover

∂

∂b
HN (b, v) = (N − 1)

f(v)

F (v)
· ∂

∂b

[
1

b− v

1

g(b)

∫ b

0

(v − ξ)g(ξ) dξ

]
(A.24)

From (A.24) we get

sign

{
∂

∂b
HN (b, v)

}
= sign

{
∂

∂b

[
1

b− v

1

g(b)

∫ b

0

(v − ξ)g(ξ) dξ

]}
(A.25)
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and

sign

{
∂

∂b
HN (b, v)

}
= sign

{
−1− 1

b− v

1

g(b)

[
g′(b)

g(b)
+

1

b− v

] ∫ b

0

(v − ξ)g(ξ) dξ

}
(A.26)

By assumption g′ is bounded at 0 and g(0) > 0. Therefore there exists a bδ > 0 and K < ∞ such that∣∣∣∣g′(b)g(b)

∣∣∣∣ < K ∀ b ∈ [0, bδ) (A.27)

From Step 2-b we know that that limv↓0 b(v,N) − v = 0. It then follows that there exists vϵ > 0 such that

for all v ∈ (0, vϵ),

1

b(v,N)− v
> K and b(v,N) < bδ (A.28)

A direct implication of interim optimality is that

∫ b(v,N)

0

(v − ξ)g(ξ) dξ > 0 ∀v > 0

Hence

∂

∂b
HN (b, v) < 0 ∀ b ∈ (v, b(v,N)], v ∈ (0, vϵ) (A.29)

By way of contradiction now suppose that we can find a v∗ ∈ (0, vϵ) such that

b(v∗,M) ≤ b(v∗, N)

Then, using (A.20), (A.21), (A.23) and (A.29), we get

∂

∂v
b(v∗, N) = HN (b(v∗, N), v∗) ≤ HN (b(v∗,M), v∗) < HM (b(v∗,M), v∗) =

∂

∂v
b(v∗,M).

Hence there exists ṽ ∈ (0, v∗) arbitrarily close to v∗ such that

b(ṽ,M) < b(ṽ, N) (A.30)

Since b(0,M) = b(0, N) = 0, there exists v̂ ∈ (0, ṽ) such that

∂

∂v
b(v̂,M) <

∂

∂v
b(v̂, N) (A.31)

from which we have

HN (b(v̂,M), v̂) < HM (b(v̂,M), v̂) =
∂

∂v
b(v̂,M) <

∂

∂v
b(v̂, N) = HN (b(v̂, N), v̂) (A.32)
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and hence

b(v̂,M) > b(v̂, N) (A.33)

Hence v∗∗ ≡ sup{v ∈ (0, ṽ)|b(v,M) > b(v,N)} ∈ (v̂, ṽ). Also, by continuity, b(v∗∗,M) = b(v∗∗, N).

However, this in turn implies that

∂

∂v
b(v∗∗,M) >

∂

∂v
b(v∗∗, N) (A.34)

This clearly contradicts the definition of v∗∗, and hence establishes the claim.

We can now conclude the proof of the claim in Step 2.

Firstly, from Step 2-c, there exists vϵ > 0 such that b(v,M) > b(v,N) for all v ∈ (0, vϵ]. By way of con-

tradiction suppose that {v ∈ (vϵ, v̄] | b(v,M) ≤ b(v,N)} ̸= ∅. Then, denote v∗∗∗ ≡ inf{v ∈ (vϵ, v̄] | b(v,M) ≤
b(v,N)}. Since b(vϵ,M) > b(vϵ, N), we must have v∗∗∗ ∈ (vϵ, v̄]. Then, by continuity of b(·, N) and b(·,M),

we must have b(v∗∗∗, N) = b(v∗∗∗,M). However, this in turn implies

∂

∂v
b(v∗∗∗,M) >

∂

∂v
b(v∗∗∗, N) (A.35)

This contradicts the definition of v∗∗∗ and hence establishes the claim.

Step 3: This step simply concludes the proof of Proposition 7.

From Steps 1 and 2 we have that the limit b̄∞ ≡ limN→∞ b(v̄, N) is well-defined with b̄∞ ∈ (v̄, w̄) A

sharper characterization of b̄∞ will allow us to complete the proof.

Define the value function

WN (v) ≡ πN (b(v,N), v, b−i(·, N)) = F (v)N−1

∫ b(v,N)

0

(v − ξ)g(ξ) dξ ∀v ∈ [0, v̄]. (A.36)

By the envelope theorem,

∂

∂v
WN (v) = F (v)N−1 ·G(b(v,N))

and therefore

WN (v̄) =

∫ v̄

0

F (v)N−1 ·G(b(v,N)) dv

Then, by the dominated convergence theorem,

lim
N→∞

WN (v̄) = 0.
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However, by definition (A.36) we also have that11

WN (v̄) = Ew [1(b(v̄, N) ≥ w) · (v̄ − w)]

By the dominated convergence theorem again,

lim
N→∞

WN (v̄) = Ew

[
1(b̄∞ ≥ w) · (v̄ − w)

]
Hence

Ew[w |w ≤ b̄∞] = v̄.

Denote as RCA(N) the random variable of the revenue from the tournament auction with commitment

and N bidders. Furthermore, denote as RNC(N) the random variable of the revenue from the one-shot

second-price auction with N bidders.

Then, observe that

RCA(N) = min

{
b

(
max

i=1,...,N
{vi}, N

)
, w

}
a.s.→ min

{
b̄∞, w

}

RNC(N)
a.s.→ v̄ (A.37)

Using once more the monotone convergence theorem, it then follows that

lim
N→∞

E
[
RCA(N)

]
= E

[
min{b̄∞, w}

]
=

[
1−G(b̄∞)]

]
b̄∞ +G(b̄∞)Ew

[
w |w ≤ b̄∞

]
> v̄

(A.38)

which, using (A.37), is clearly enough to complete the proof.

11As is standard 1(·) denotes the indicator function.

Q.E.D.
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