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We study the interim seller’s revenue — the expected revenue conditional on the valuation of 
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1 Introduction

Consider a seller who runs an auction to allocate a single object among risk-neutral bidders with indepen-
dent private values. In this canonical setting, the Revenue Equivalence Theorem (RET, Vickrey (1961);
Myerson (1981); Riley and Samuelson (1981)) establishes that any efficient equilibrium of any auction
where the lowest bidder type obtains zero surplus yields the same expected revenue for the seller and
results in the same expected payment by any type of bidder. As a result, both the seller and the bidders
are indifferent among auction formats.

But suppose that, after bids have been submitted, the valuation of one of the bidders is revealed. This
particular bidder remains indifferent across auction formats at this interim stage. The reason is that the
bidder is already informed about his valuation when he submits his bid and still wins the object if and
only if he has the highest valuation; hence his expected payment is the same in all auction formats by the
RET. What about the other participants in the auction? In particular, is the seller still indifferent when
the valuation of one of the bidders is revealed?

We characterize the interim revenue — the expected seller’s revenue conditional on the valuation
of one of the bidders — in the efficient equilibrium of a variety of sealed-bid auctions that are ex-ante
equivalent by the RET. Our work is relevant to situations where a seller has private information about the
valuation of one of the bidders, referred to as the special bidder. This information can arise in different
settings, either exogenously — e.g., when a potential buyer has a score derived from past purchases (see,
e.g. Bonatti and Cisternas (2020)) — or in repeated auctions where bidders reveal their valuations through
past bids — e.g., in procurement auctions where the government has information about the costs of the
current provider. Our analysis identifies the format preferred by the seller conditional on the valuation of
the special bidder.

First, we compare the two most commonly-used sealed-bid formats, the first-price auction (FPA) and
the second-price auction (SPA), and show that the FPA yields higher interim revenues if and only if the
special bidder’s valuation is below a threshold. A setting with two bidders provides a clear intuition for
this result. By the RET, when the special bidder wins the auction, the expected revenue is the same in
both auction formats. Hence, revenue differences only arise in the event that the other bidder wins. In
this case, in the SPA the seller’s revenue is the special bidder’s bid, which is equal to his valuation, while
in the FPA it is the other bidder’s bid, which is shaded below his valuation. And the interim ranking
between the FPA and SPA amounts to a race between the other bidder having a higher value than the
special bidder when he wins (favoring the FPA) and him shading bid below valuation in the FPA (favoring
the SPA).

A special bidder with valuation close to the the maximum is good news in both auction formats, but
particularly so in the SPA: conditional on winning, the other bidder also has a valuation close to the
maximum so the bid-shading effect of the FPA dominates. Conversely, a special bidder with valuation
close to the minimum is bad news in both auction formats, but especially so in the SPA because the
special bidder’s valuation — which is the price paid by the other bidder the SPA — is lower than the
expectation of the other bidder’s bid in the FPA. Moreover, by iterated expectations, the expectation of
the interim revenue with respect to the special bidder’s value is the ex-ante revenue, which is the same
in both formats. Hence, the reversed ranking at the extrema implies that the interim revenue functions
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of the two formats must cross. Under mild regularity assumptions, the crossing is unique and the result
extends to multiple bidders.

We then extend our analysis to a broad class of sealed-bid auctions, referred to as “standard auctions.”
An auction in this class corresponds to a who-pays-what specification: for each order statistic of the bids,
the auction specifies whether it pays or not and, if so, which bid it pays. This broad class includes common
formats like the First-Price Auction (in who-pays-what terminology: first bid pays first bid), the Second-
Price Auction (first bid pays second bid), the All-Pay Auction (all bids pay their bid), as well as rather
uncommon formats that will play an important role in our analysis, like the Last-Pay Auction (last bid
pays last bid).

As for the FPA and SPA, an iterated expectations argument implies that the interim revenue of each
standard auction integrates to the same value. What factors determine which auction yields the highest
interim revenue, depending on the valuation of the special bidder? What drives the differences in interim
revenues across formats that ultimately average out? A key insight emerges when we express the interim
seller’s revenue as the sum of the transfers received from each bidder: The difference in interim revenues
between auctions does not depend on the expected transfer of the special bidder, which is independent
of the auction format by the RET, but only on the expected transfers of the other (interim symmetric)
bidders, which depend jointly on the special bidder’s valuation and the auction format. Hence, comparing
two alternative auction formats when the special bidder has valuation v, the auction that yields the higher
interim revenue is the one in whose efficient equilibrium a generic bidder expects to pay more, prior to
drawing his type but conditioning on the information that a competitor has valuation v.

Some implications follow directly from this observation. When the special bidder’s valuation is at the
upper bound of the support, the FPA and the SPA — as well as all other auctions where only the winner
pays (WPA) — are interim equivalent. This is because, in any such auction, the special bidder always wins
and the expected payment of the other bidders is equal to zero. Not all standard auctions, however, are
equivalent at the upper bound. For example, the All-Pay Auction yields a strictly higher interim revenue
than a WPA because the other bidders make positive expected payments.

Leveraging on this observation, we prove (Proposition 10) that the FPA yields the highest (resp.,
lowest) interim revenue among all standard auctions when the special bidder’s valuation is the lowest
(resp. highest) possible one. When the special bidder has a valuation close to the highest possible one, the
transfer of other bidders is equal to 0 in any WPA, since the special bidder wins almost surely (and losers
pay nothing). Hence, WPAs yield a lower revenue than other formats where also losers pay. Moreover,
extending the comparison with the SPA, we show that around the upper bound of valuations WPAs are
ranked according to the order of the bid paid by the winner, indicating that the FPA yields the lowest
interim revenue.

Conversely, when the special bidder has the lowest possible valuation, other bidders transfer more in
the FPA than in any other standard auction. To get an intuition for why this holds, first consider a
comparison between the FPA and other WPAs, hence maintaining that only the winner pays but changing
which bid he pays. In other WPAs other bidders still pay only if they have the highest value, but their
expected payment is lower because, conditional on the highest bid, the distribution of all other order
statistics of bids are depressed when one of the bids is zero. This reflects a crucial property of the FPA,
namely that it is a pay-as-bid auction (PBA) and hence that, conditional on paying, a bidder’s transfer is
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unaffected by others’ bids. Therefore, in contrast to a non-PBA, in a PBA a special bidder with value 0
has no negative effect on bidders’ expected payments conditional on paying.

Second, consider a comparison between the FPA and other PBAs, hence changing the set of payers
but maintaining that they pay their own bids. In a PBA, the other bidders’ transfer is determined by a
likelihood ratio that measures how the probability of the bidder belonging to the set of payers changes
with the information that another bidder’s valuation is v. Hence, the PBA that maximizes the interim
revenue is the one with a set of payer that maximizes this likelihood ratio (given v). For v close to
zero, this likelihood ratio is maximized when only the highest bidder pays. This is because, given that
a competitor has value zero, the probability that a generic bidder is any order statistic other than the
minimum increases, but the largest increase occurs for the first-order statistic.

This result is reversed around the upper bound, where all order statistics except the maximum become
more likely, with the largest change occurring for the minimum. This explains why the APA dominates
the FPA: the likelihood ratio becomes zero for the FPA but it remains constant (since all bidders always
pay regardless of the information about competitors) in the APA. Consequently, revenues are higher in
the format that relies on transfers from non-winning bidders. The interim-dominant PBA is one where
only the lowest bidder pays. In general, whenever the seller relies solely on the transfers from non-winning
bidders, she achieves unbounded interim revenues.

This insight offers a new perspective on why the FPA might be considered the less risky auction format
for the seller: The FPA produces the narrowest range of possible interim revenues among standard auctions
and maximizes the minimum interim revenue (Corollary 4.4).

However, for this interpretation to be valid, bidders must play the symmetric equilibrium of the selected
format. This in turns requires that bidders take the auction format as given and don’t make inference
about the valuation of one competitor from the seller’s choice.Such assumption is implicitly maintained in
the analysis of any specific format, but becomes problematic when the format itself is endogenous. This
poses a threat to the applicability of our analysis to settings in which the seller chooses an auction format
based on the information about a bidder.1 In this work, we do not explicitly address the plausibility of this
assumption, which clearly depends on the specifics of the application at hands.2 For this reason, although
we believe that our analysis gives important insights to this problem, we refrain from addressing them
explicitly and phrase our analysis as as an exploration of the properties of equilibria in a set of ex-ante
equivalent formats.

The rest of the paper is organized as follows. After describing the environment in Section 2, we
compare the FPA and the SPA in Section 3: Section 3.1 describes an example with uniform distributions,
Section 3.2 presents the general analysis and Section 3.3 considers the presence of a reserve price. We then
introduce the broad class of standard auctions in Section 4. Sections 4.2 and 4.3 consider the winner-pay

1A preliminary analysis of a setting where bidders infer the value of a competitor from the choice of the auction format
and adjust their bid accordingly indicates that the ability to leverage such information is limited: When the seller can choose
between FPA and SPA, there exists an equilibrium in which the SPA (the format where the margin for bid adjustment is
negligible) is selected for nearly all values of the special bidder. See Appendix 6.1 for a formal description of the environment
with savvy-bidders and this preliminary results.

2It is evident that such requirement is not needed for the special bidder: as long as other bidders play the symmetric
equilibrium, his best response is, tautologically, the equilibrium bid. This observation possibly makes our unawareness
assumption more natural in repeated settings where the other bidders are first-time participants (like in procurement settings
where new firms face an incumbent provider of the service) and take the symmetric environment as a reasonable initial point
of their learning process, while the special bidder is not “systematically fooled”.
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and the pay-as-bid auctions, and Section 4.4 analyzes the auctions that maximizes the interim revenue
when the special bidder’s value is close to the extrema. The last section concludes. Some extensions and
applications of our analysis, omitted proofs and derivations are in the Appendix.

2 Environment

There are n risk-neutral bidders with independent private valuations for an object. Valuations are drawn
from the CDF F (·) with support [0, 1] and continuous density f .

Throughout the paper, we denote v ∈ [0, 1]n a realization of bidders’ values, vi (v) the valuation
of bidder i and v(i) (v) the ith-order statistic, suppressing the argument v for convenience. Moreover,
expectation operators E,Ev,Ev|v integrate, respectively, over F , the product distribution ×n

1F , and the
product distribution conditional on the event v1 = v.3 P,Pv,Pv|v denote the associated probability
measures.

We consider sealed-bid auction formats that satisfy the assumptions of the Revenue Equivalence Theo-
rem. For a generic format a, let Πa : [0, 1]n → R be the seller’s revenue as a function of bidders’ valuations
in its efficient equilibrium. The RET states that in any such equilibrium, each bidder with valuation v

will make the same expected transfer

t (v) ≡
∫ v

0
xdFn−1 (x) ,

and the seller obtains the same ex-ante expected revenue

Π̄ = Ev [Π
a] .

We study the interim revenue function (IRF)

Πa (v) ≡ Ev|v [Π
a] ,

which represents the expected seller’s revenue in the efficient equilibrium of auction a conditional on one
bidder (WLOG, the first) having valuation v.

3 FPA vs. SPA

In this section, we focus on the two most common sealed-bid auctions: the FPA and the SPA. First,
we build intuition in an example where the interim revenue can be computed in closed form. Then, we

3For generic functions g : [0, 1] → R, G : [0, 1]n → R, we denote E [g (v)] =
∫ 1

0
g (v) dF (v) ,

Ev [G (v)] =

∫ 1

0

· · ·
∫ 1

0︸ ︷︷ ︸
n times

G (v1, . . . , vn)dF (v1)× · · · × dF (vn) ,

and

Ev|v [G (v)] =

∫ 1

0

· · ·
∫ 1

0︸ ︷︷ ︸
n−1 times

G (v, v2, . . . , vn) dF (v2)× · · · × dF (vn) .
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generalize the analysis and show that the FPA yields higher interim revenues than the SPA if and only if
the valuation of the special bidder is below a threshold.

The analysis in this section leverages the characteristics of the auction formats under consideration
to obtain a tight characterization of the IRF, but is not applicable to all standard auctions discussed in
Section 4. In particular, the analysis of this section relies on the observation that in the SPA bidders
employ the dominant strategy equilibrium bS (x) = x, whereas in the FPA they bid

bF (x) =
t (x)

Fn−1 (x)
= x−

∫ x

0
y
Fn−1 (y)

Fn−1 (x)
dy.

3.1 Example: 2 uniform bidders

Suppose there are two bidders with valuation drawn from the uniform distribution, so bF (x) = x
2 . Let v be

the valuation of the special bidder (known ex-interim), and x the valuation of the other bidder (unknown
to the seller). Anticipating the construction of Lemma 1, we compute the interim revenue functions (IRFs)
separating the cases in which v wins (i.e. x < v) and v loses (i.e. x > v) in either format.

If v wins, the seller receives bF (v) in the FPA, while in the SPA she receives the expected bid (equal
to the value) of the other bidder, x, conditional on x < v. If v loses, the SPA yields deterministic revenues
bS (v) = v, while in the FPA the seller receives the expected bid (half the value) of the other bidder, x,
conditional on x > v. In summary,

Auction Format v wins v loses

FPA bF (v) = v
2 E

[
bF (x) |x > v

]
= 1+v

4

SPA E
[
bS (x) |x < v

]
= v

2 bS (v) = v

Table 1: Interim revenue in the FPA and SPA when the special bidder wins or loses

The IRFs are obtained by weighting the events that the special bidder wins and loses by their likelihood
(respectively, v and 1− v):

ΠS (v) = P (x < v) · E
[
bS (x) |x < v

]
+ P (x > v) · bS (v)

= v · v
2
+ (1− v) · v = v

(
1− v

2

)
(3.1)

and

ΠF (v) = P (x < v) · bF (v) + P (x > v) · E
[
bF (x) |x > v

]
= v · v

2
+ (1− v) · 1 + v

4
=

1 + v2

4
. (3.2)

Inspecting equations (3.2) and (3.1), graphically represented in Figure 3.1, we make the following
observations.
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Π
S(v)

Π
F(v)

0
1

3
1

v

1

4

1

2

Figure 3.1: Interim revenue functions in the FPA and SPA with n = 2 and v ∼ U [0, 1].

Ranking at the extrema If the special bidder has valuation v = 0, the interim revenue is equal to 0

in the SPA and strictly positive in the FPA. This is natural: in both formats the special bidder loses for
sure, however, in the SPA he sets the auction price (to zero), while in the FPA the auction price is set by
the bid of the other bidder, which is, in expectation, E

[
x
2

]
= 1

4 .
If the special bidder has valuation v = 1, the interim revenue is the same in FPA and SPA, and equal

to 1
2 . In both formats the special bidder wins for sure, and he pays his bid bF (1) = 1

2 in the FPA and the
bid of the other bidder in the SPA. The latter is equal to 1

2 in expectation.
From Table 1, observe that whenever the special bidder wins the seller’s revenue is the same in the

two auction formats. This is an implication of the RET: to ensure that the expected payment of a bidder
with value v is ex-ante the same in the two formats, the expected transfer conditional on winning must
be the same in the two formats. In the FPA, this transfer is deterministic and equal to v

2 , which equals
the expected bid in the SPA of a losing competitor (distributed uniformly with support truncated at v).
When v = 1, the special bidder wins with probability 1, implying interim revenue equivalence between the
two auction formats.

Crossing The FPA interim dominates the SPA at v = 0, and the two are equivalent at v = 1. However,
the FPA cannot dominate the SPA over the whole support, because the expected value of the two IRFs
must be the same. The latter is another consequence of the RET: by iterated expectations the expected
interim revenue is the ex-ante expected revenue, and therefore it is the same in any auction format.4

Hence, the two IRFs must cross at least once for interior valuations. In particular, Table 1 shows that
that the FPA interim dominates whenever v+1

4 > v, that is whenever v < 1
3 .Thus, the interior crossing is

unique.

In summary, the difference in interim revenues ΠF (v)−ΠS (v) = (1− v)
(
1−3v
4

)
is zero either if v = 1,

because the special bidder always wins, or if v = 1
3 , because the two formats yield the same expected

revenue also in the event the special bidder loses. Moreover, the difference between interim revenues in

4For the case under discussion, E
[
ΠF (v)

]
=

∫ 1

0
1+v2

4
dv = 1

3
=

∫ 1

0
v
(
1− v

2

)
dv = E

[
ΠS (v)

]
.
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the FPA and SPA is maximized at v = 0, minimized at v = 2
3 , and strictly positive if and only if v < 1

3 .

3.2 General Analysis

We now show that the properties of the IRFs of the FPA and SPA discussed before extend to the case
with general distribution F and number of bidders n. We begin by providing a decomposition of the IRF
that will be useful in establishing single crossing. The decomposition highlights that the FPA and SPA
yield different revenues only in the event the special bidder loses the auction.

Lemma 1. If a is a FPA or SPA,

Πa (v) = t (v) + Pv|v
(
v(1) ̸= v

)
Ev|v

[
Πa|v(1) ̸= v

]
(3.3)

where t (v) is the transfer of the special bidder and Ev|v
[
Πa|v(1) ̸= v

]
is the revenue in auction a when

the special bidder is not the winner of the auction (he does not have the highest has valuation).
Lemma 1 decomposes the IRFs in the event the special bidder wins and loses the auction, and highlights

that FPA and SPA are interim equivalent when the special bidder is the winner. When the special bidder
wins, the seller’s revenue is the expected payment of the special bidder and hence independent of the
auction format. A fortiori, the two auction formats are interim equivalent when v = 1, as the special
bidder wins for sure.

By Lemma 1,

∆(v) ≡ ΠF (v)−ΠS (v)

= Pv|v
(
v(1) ̸= v

) (
Ev|v

[
ΠF |v(1) ̸= v

]
− Ev|v

[
ΠS |v(1) ̸= v

])
. (3.4)

The following theorem shows that ∆(v) is positive — i.e., the FPA yields a higher interim revenue than
the SPA — if and only if the value of the special bidder is lower than a threshold (see Figure 3.2 for an
example).

Theorem 2. Let ψ (v) := v − 1−F (v)
f(v) be the virtual value function and suppose there is a unique v̂ such

that bF (v̂) = ψ (v̂). Then, there is a unique ṽ such that
∆(v) > 0 if v ∈ [0, ṽ)

∆ (v) < 0 if v ∈ (ṽ, 1)

∆ (v) = 0 if v ∈ {ṽ; 1}

Moreover, ∆(v) has a global maximum at v = 0 and global minimum at v̂.

Proof. By (3.4), the Interim revenue difference between the FPA and SPA is

∆(v) = Pv|v
(
v(1) ̸= v

)
·
(
Ev|v

[
bF
(
v(1)
)
|v(1) ̸= v

]
− Ev|v

[
v(2)|v(1) ̸= v

])
=

∫ 1

v
bF (x) dFn−1 (x)−

∫ 1

v

∫ x

0
max {v, y} dFn−2 (y)

Fn−2 (x)
dFn−1 (x) . (3.5)
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Figure 3.2: Interim revenue functions in the FPA and SPA (left) and interim revenue difference ∆(v)
(right) with n = 4 and vi ∼ U [0, 1].

The first term is the expected highest bid in the FPA when v loses, while the second term is the expected
second-highest bid in the SPA — which is the expected second-highest value — when v loses.

In the Appendix, we show the second term is equal to
∫ 1
v ψ (x) dFn−1 (x). Therefore,

∆(v) =

∫ 1

v

(
bF (x)− ψ (x)

)
dFn−1 (x) , (3.6)

and
∆′ (v) = −

(
bF (v)− ψ (v)

)
dF (v)n−1 .

Critical points of ∆(v) are either 0 or such that bF (v) = ψ (v). In the Appendix, we show that ∆(v)

has a maximum at v = 0 and ∆(0) > 0 (see Lemma 14). Moreover, it is straightforward that ∆(1) = 0,
∆′ (1) ∝ 1− bF (1) > 0 and, by the RET, E [∆ (v)] = 0.

It follows that ∆(v) must cross the horizontal axis (from above) before 1 and must have minimum
at v̂ such that bF (v̂) = ψ (v̂) . Under our assumption that there is a unique v such that bF (v) = ψ (v),
there are exactly two critical points of ∆(v): (i) the maximum at 0 is unique and (ii) the minimum at v̂
is unique. Hence, ∆(v) cannot cross the horizontal axis more than once and so there is a unique ṽ ̸= 1

such that: (i) ∆(ṽ) = 0, (ii) ΠF (v) > ΠS (v) if v < ṽ, and (iii) ΠF (v) < ΠS (v) if ṽ < v < 1.

To shed light on equation (3.6), we notice that, perhaps surprisingly, the second term in equation (3.5)
is the ex-ante expected revenue in any auction with reserve price v and n− 1 bidders. The reason is the
following. First, the probability that in an auction with n bidders a bidder with value v loses is exactly
equal to the probability that, in an auction with n − 1 bidders and reserve price v, there is at least one
bidder with value higher than the reserve price. Hence, Pv|v

(
v(1) ̸= v

)
represents the probability that the

seller’s revenue is different from 0 in any such auction. Second, Ev|v
[
v(2)|v(1) ̸= v

]
— i.e., the expected

second-highest value when one bidder among n has value v and this is not the highest value — is exactly
equivalent to the expected seller’s revenue in a SPA with n − 1 bidders and reserve price v, when the
highest bidder has a value higher than the reserve price. In fact, the seller’s revenue in this auction is the
reserve price v when only one bidder has a value higher than v and is the second-highest value otherwise.
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Intuitively, when a bidder with value v loses in a SPA with n bidder she acts exactly as a reserve price in
a SPA with n− 1 bidders, since his bid represents a lower bound to the price that the remaining bidders
have pay.

Finally, the SPA with n − 1 bidders and reserve v is revenue equivalent to any auction with n − 1

bidders and reserve v, and yields an expected revenue equal to the expected virtual value of the highest
bidder in the auction, conditional on this bidder having a value higher than the reserve price.

Theorem 2 states that the IRFs of the FPA and SPA cross only once for interior valuations, so that
the seller obtains a higher interim revenue in the FPA if v < ṽ, while she obtain a higher interim revenue
in the SPA if v > ṽ. Single crossing is relevant because it allows the seller to determine her preferred
auction format not only when she knows the exact valuation of the special bidders, but also with different
and arguably more realistic information structures. For example, in many application the seller may only
know that the special bidder’s value is either above or below an arbitrary threshold, possibly different
from ṽ. Because of single crossing, the seller prefers the FPA (resp. SPA) when she knows that the special
bidder is below (resp. above) any threshold, since this is the auction format that yields the higher expected
interim revenue conditional on this information. See Appendix 6.1 for a formalization of this argument.

3.3 Reserve Price

Our main result on the comparison between the FPA and SPA extends to a setting with a common reserve
price R. Let Πa (v,R) be the IRF in auction a with reserve price R, and let the interim revenue difference
between the FPA and SPA be

∆(v,R) ≡ ΠF (v,R)−ΠS (v,R) .

Proposition 3. There is a unique ṽ > R such that
∆(v,R) > 0 if v ∈ [0, ṽ)

∆ (v,R) < 0 if v ∈ (ṽ, 1)

∆ (v,R) = 0 if v ∈ {ṽ; 1}

Moreover, ∆(v,R) is maximized at all v ≤ R and has a global minimum at v̂ such that bF (v̂, R) = ψ (v̂).

Figure 3.3 compares the IRFs of the FPA and SPA. Notice that, when the special bidder’s value is
lower R, the interim revenue is constant in both auction formats, but it is higher in the FPA than in the
SPA. This is obvious when there are only two bidders: if the seller knows that one bidder has a value lower
than R, then her revenue is positive if and only if the other bidder’s value is higher than R. In this case,
however, the seller’s revenue is equal to the reserve price in the SPA, while it is equal to the expectation
of the other bidder’s bid in the FPA (which is higher than R because the bidder has a value higher than
the reserve price). Similarly, with multiple bidders, when the highest bidder’s value is higher than R (and
the special bidder’s value is lower than R): in the SPA the seller’s revenue is the maximum between R and
the second-highest among n− 1 bidders, while in the FPA it is equal to the highest bidder’s bid, which is
the expectation of the maximum between R and the second-highest among n bidders.

Moreover, in both auction formats the interim revenue is discontinuous when the special bidder’s value
is exactly equal to the reserve price. The reason is that, if the seller knows that at least one bidder meets
the reserve price, then her revenue is always strictly positive. In both auction formats, the discontinuous
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Figure 3.3: Interim revenue functions in the FPA and SPA with n = 2, R = 0.35 and vi ∼ U [0, 1].

increase in the interim revenue when v = R is equal to the probability that all other bidders have a value
lower than the reserve price, times the reserve price.5 Finally, the intuition for the single crossing of the
IRFs and for the equivalence of the two auction formats at v = 1 is analogous to the case without a reserve
price.

Since Proposition 3 holds for any reserve price, our comparison between the FPA and SPA also holds
when the seller sets the optimal (ex-ante) reserve prices, which are the same in both auctions. Therefore,
while the (ex-ante) expected revenues in the optimal FPA and SPA are equal, the optimal FPA yields a
higher (lower) interim revenue than the optimal SPA if v is low (high), exactly as with FPA and SPA
without reserve prices.

4 Interim Revenue in Standard Auctions

We now turn to the analysis of a broad class of sealed-bid auction formats, referred to as standard auctions.
Section 4.1 defines this class of auctions and shows that differences in their IRFs only depend on the interim
transfer of a generic (non-special) bidder. We then consider special cases of standard auctions: the winner-
pay auctions in Section 4.2 and the pay-as-bid auctions in Section 4.3. Finally, Section 4.4 characterizes
the auction formats that maximize the interim seller’s revenue when the special bidder’s value is close to
the extrema.

4.1 Standard Auctions

In all standard auctions, each bidder submits a bid which is a non-negative real number; bids are ranked
and the object is assigned to the highest bid.6 Standard auctions differ in how transfers are determined.

Let [n] := {1, . . . n}. An element i ∈ [n] is interpreted as the ith-order statistic of submitted bids.
5In both auction formats, when all other bidders have a value lower than R, the seller’s revenue is 0 when the special

bidder’s value is also lower than R, and is R when the special bidder’s value is equal to R.
6Throughout the exposition, the bid identifies the bidder who submits it. Hence “the highest bid” is shorthand for “the

bidder who submits the highest bid”.
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Definition 4. A standard auction a is characterized by a non-empty set Pa ⊆ [n] and by a function
Ta : Pa → [n] such that Ta (j) ≥ j for all j ∈ Pa.

The set Pa specifies the order statistics that pay. The function Ta associates to each payer the the
order statistic of the bid that he pays, with the constraint that a bidder cannot pay a bid higher than his
own. Pa and Ta identify the bid-transfer map t̃a : Rn → Rn, where t̃ai (b) denotes the payment that bidder
i makes if the profile of bids is b.

We can represent a standard auction concisely as a partial function from [n] to itself. A partial function
specifies the domain over which the function is defined, i.e. Pa ⊆ [n], and a function (Ta : Pa → [n]) over
this domain.7 Figure 4.1 gives the standard auction representation of common formats (FPA, SPA, APA),
as well as uncommon ones (APL, LPA).

Pa Ta
1

2

...

n

1

2

...

n

FPA

Pa Ta
1

2

...

n

1

2

...

n

SPA

Pa Ta
1

2

...

n

1

2

...

n

APA

Pa Ta
1

2

...

n

1

2

...

n

APL

Pa Ta
1

2

...

n

1

2

...

n

LPA

Figure 4.1: Examples of Standard Auctions. Filled circles represent the set of payers Pa, arrows represent
the transfer function Ta

Standard auctions encompass the following familiar formats.

Definition 5. A Winner-Pay Auction (WPA) is a standard auction with Pa = {1}. A Pay-as-Bid-Auction
(PBA) is a standard auction with Ta (i) = i, ∀i ∈ Pa.

WPAs are auctions where only the bidder who obtains the object pays. The FPA and SPA are WPAs
with Ta (1) = 1 and Ta (1) = 2, respectively. In general, WPAs are characterized by the order of the bid
that determines the transfer: we refer to the WPA with Ta (1) = k as the kth-price auction (kPA).

PBAs are auctions where all payers pay their own bids. Notice that the FPA is a PBA while any other
WPA is not; indeed to each set of payers is associated a unique PBA. The All-Pay Auction (APA) is the
PBA with P = [n]. The Last-Pay Auction (LPA, fifth panel in Figure 4.1) is the PBA with P = {n} —
i.e., the auction where only the lowest bidder pays (and pays his bid). The All-Pay-Last Auction (APL,
fourth panel) is the is the auction with P = [n] and T (i) = n, ∀i — i.e., the auction where everyone pays
the last bid.

Equilibrium and Revenue Equivalence Each standard auction defines a Bayesian game. We assume
that this Bayesian game admits an efficient equilibrium, namely that there exists an increasing function
ba : [0, 1] → R with ba (0) = 0 such that for each v, ba (v) maximizes the expected utility, computed under

7We keep the notation separate since it will be convenient to focus on the random set of payers, i.e. the domain specification
of the partial function.
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the rules of a, of a bidder of type v when his n− 1 competitors use ba,8

ba (v) ∈ argmax
b
vPv (b > max ba (v−i))− Ev

(
t̃ai (b, b

a (v−i))
)
.

From now on, we identify each auction with its efficient equilibrium and simplify our notation by not
explicitly including the bidding function,9 denoting t̃a (ba (v)) as t̃a (v) the equilibrium transfer vector.

Let Πa : [0, 1]n → R denote the seller’s revenue as a function of the bidders’ valuations in the efficient
equilibrium of auction format a, given by Πa (v) =

∑
i∈[n] t̃

a
i (v). The RET implies that the transfer of

the special bidder is independent of the auction format a, i.e.10

t (v) = Ev|v
[
t̃a1 (v)

]
=

∫ v

0
xdFn−1 (x) (4.1)

and, therefore, Ev [Π
a] = Π̄ = nE [t (v)] . The expected transfer of a bidder given that one competitor has

valuation of v, referred to as others’ transfer, is

ta (v) ≡ Ev|v
[
t̃ai (v)

]
for i ̸= 1. (4.2)

Notice the distinction between t (v) and ta (v): the former represents the expected transfer of a bidder
conditional on his own valuation being equal to v, while the latter is conditional on a competitor’s valuation
being equal to v. This transfer is not pinned down by the RET and depends on the auction format.

Finally, we define
ta (x, v) = Ev|v

[
t̃ai (v) |vi = x

]
for i ̸= 1. (4.3)

the expected transfer in auction a of a bidder given that i) his valuation is x and ii) the valuation of a
competitor is v. By construction, t (x) = Ev [t

a (x, v)] and ta (v) = Ex [t
a (x, v)].11

Lemma 6. For a standard auction a, the IRF satisfies

Πa (v) = t (v) + (n− 1) ta (v) . (4.4)

Moreover,

• E [Πa (v)] = Π̄ and E [ta (v)] = E [t (v)]

• Πa (v) is continuous, increasing and bounded below by t (v)

Both equations (4.4) and (3.3) provide an additive decomposition of the IRF in t (v) and a term that
is auction-specific. However, the approach leading to the two decompositions is conceptually different.
Equation (4.4) is obtained by writing the revenue as the sum of the transfer made by each bidder, without

8Since all standard auction assign the object to the highest bidder, efficiency coincides with monotonicity of the bidding
function. With slight abuse of notation, for a vector v we denote ba (v) = [ba (v1) , . . . , b

a (vn)].
9Equation (6.19) in the Appendix characterizes this bidding function as the solution to a functional equation. We derive

it analytically for uncommon standard auctions with uniform bidders.
10Recall that we have assumed that the special bidder “sits” in slot 1, so Ev|v

[
t̃a1 (v)

]
11Notice that ta has two arguments — as in (4.3) — when we are conditioning both on the individual (first argument) and

the competitor’s (second argument) valuations, while it has a unique argument — as in (4.2) — when we are conditioning
only on the competitor’s valuation.
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conditioning on his order: t (v) is the expected transfer of a bidder with valuation v which is auction-
independent by the RET; the “residual” part is what others pay, which is conveniently summarized by the
ta (v) function. For Lemma 1, instead, we computed the revenues in the events the special bidder is the
first-order statistic or any other order statistic. In the former case, the special bidder wins and, according
to the rules of the auctions under consideration (the FPA and the SPA) is the only one to make a positive
transfer: t (v) in (3.3) results as the product of the probability that v wins and the revenues in the auction
conditional on v winning which, in those formats, coincide with his transfer; the “residual” part is the
expected revenue conditional on the event that a loser has valuation v. This construction remains valid
for the other WPAs (which are still interim-equivalent conditional on the valuation of the winner, see
Proposition 8), but not for other standard auctions where bidders other than the winner make positive
transfers, i.e. where Pa ̸= {1}.

Equation (4.4) highlights that the auction format does not affect the interim revenue through the
special bidder’s transfer, pinned down to t (v) by the RET, but only through the transfers of the other
(interim symmetric) bidders. Indeed, as an immediate corollary we obtain that Πa (v) > Πa′ (v) if and
only if ta (v) > ta

′
(v), namely the interim revenues are higher in format a than in format a′ if and only

if a bidder makes a higher transfer in the efficient equilibrium of a than in the efficient equilibrium of a′

when a competitor has valuation v.
For the applied interpretation of our analysis, a seller who chooses the auction format based on interim

dominance exploits her information about the valuation of the special bidder by maximizing the surplus
extracted from the other bidders: the seller has an information advantage over these bidders because the
valuation of a competitor affects their equilibrium transfer, but their bids are submitted without accounting
for that (unsophistication). The way the valuation of a competitor affects each bidder’s equilibrium
transfer differs across auction formats so, through this channel, the seller can exploit her information by
manipulating the format.

The Lemma also gives some properties of the ta and therefore Πa functions. Taking expectations
under v, we obtain

E [Πa (v)] = E
[
Ev|v [Π

a]
]
= Ev [Π

a] = Π̄.

Indeed, by iterated expectations (second equality), the expected interim revenue is the ex-ante expected
revenue, and therefore it is the same in any standard auction. Using (4.4) and the RET yields

Π̄ = nE [t (v)] = E [t (v)] + (n− 1)E [ta (v)] ,

which implies that E [t (v)] = E [ta (v)]. This is intuitive: the two sides are equal to the ex-ante expected
transfer because they denote the expected transfer of a bidder prior to drawing, respectively, his valuation
and the valuation of one competitor.

Hence, ta (v) is i) a positive function, implying that t (v) is a lower bound for all IRFs, and ii) it
integrates to E [t (v)]. Two natural candidates for ta are the constant function E [t (v)] and the (increasing)
function t (v) itself. The standard auction such that t (v) = E [t (v)] is the All-Pay Auction, as in that
format the realized transfer of each bidder is independent of a competitor’s valuation. If t (v) = ta (v), then
for each v a bidder makes the same expected transfer if v represent his own or a competitor’s valuation.
A sufficient condition is that for every realization of v all bidders make the same transfer. In a standard
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Figure 4.2: Interim revenue functions in kPA with k = 1, ..., 5, n = 5 and vi ∼ U [0, 1].

auction happens only if everyone pays the last bid, i.e. in the APL.

Remark 7. The interim transfers of the formats in Figure 4.1 are: tAPA (v) = E [t (v)] constant in v;

tAPL (v) = t (v) monotonically increasing and bounded; tLPA (v) =
∫ v
0

t (x)

1− F (x)
dF (x) monotonically

increasing and unbounded; tFPA (v) =
∫ 1
v t (x) d logF (x) monotonically decreasing. If n = 2, then

tSPA (v) = v (1− F (v)) hump-shaped.

These derivations highlight that ta is not necessarily monotonic; indeed to prove that Πa is increasing
in any format we have to rely on a constructive argument. Using the monotonicity properties alone we
can infer single crossing of the IRFs in many formats, e.g. the APA and the FPA, or the FPA and the
APL.

4.2 Winner-Pay Auctions

Each WPA is a kPA, an auction where the highest bidder wins and pays the kth-highest bid. We denote
by Πk, bk and tk the IRF, equilibrium bidding function and transfer of the kPA.12

Proposition 8. Πk (0) is decreasing in k. Πk (1) = t (1) for every k, and there is a threshold v̂ such that
Πk (v) is increasing in k for v ∈ (v̂, 1).

Proposition 8 generalizes Theorem 2 for extreme values of v, establishing that if the special bidder
has very low (resp. high) valuation, the seller prefers the kPA with lower (resp. higher) k (see Fig.4.2).
Therefore, among all WPAs: (i) the FPA — i.e., the kPA with k = 1 — yields the highest interim revenue
when v = 0; (ii) the nPA — i.e., the auction where the winner pays the lowest bid — yields the highest
interim revenue for v ≈ 1.

We prove the result at v = 0 by showing that, for all x, tk (x, 0) defined in (4.3) is decreasing in k,
which implies that tk (0) = Ex

[
tk (x, 0)

]
is also decreasing in k. In the FPA a type x makes a positive

payment if and only if he is the highest bidder, an event that given a competitor is 0 has probability Fn−2,
12To maintain consistency within this section we use the superscripts 1,2 (rather than F, S) to denote the FPA and SPA.
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and conditional on that event he transfers his bid,

t1 (x, 0) = Fn−1 (x) b1 (x) = Fn−1 (x)Ev

[
bk
(
v(k) (v)

)
|v(1) = x

]
where the last equality holds for all k > 1 (by the RET). The interim transfer in WPAs of higher order is
instead

tk (x, 0) = Fn−1 (x)Ev

[
bk
(
v(k) (v)

)
|v(1) = x, v(n) = 0

]
.

Since the condition v(n) = 0 amounts to removing one draw and thus reduces the expectation of any
increasing function, we conclude that t1 (x, 0) > tk (x, 0) for all k > 1.

More in general, in the proof we show that the RET implies that for any k,13

bk (x) = Ev

[
bk+1

(
v(k+1) (v)

)
|v(k) = x

]
> Ev

[
bk+1

(
v(k+1) (v)

)
|v(k) = x, v(n) = 0

]
which we can leverage to conclude that tk (x, 0) > tk+1 (x, 0) and hence that Πk (0) is decreasing in k.

When v = 1, all WPAs yield the same interim revenue; this is because, for all k, tk (1) = 0: when a
competitor has the highest possible valuation, a bidder never wins and therefore never pays in a WPA.
Moreover, the IRFs achieve the lower bound t (1). To show the existence of the threshold v̂ in Proposition
8, we first leverage the RET to establish that14

Πk+1 (v)−Πk (v) =

n∑
i=k+1

Pv|v
(
v(i) = v

) (
Ev|v

[
Πk+1|v(i) = v

]
− Ev|v

[
Πk|v(i) = v

])
>

n∑
i=k+1

Pv|v
(
v(i) = v

) (
bk+1 (v)− bk (1)

)

where the inequality uses that, if i ≥ k, bk (v) constitutes a lower bound for Πk conditional on v(i) = v,
and so

bk (v) < Ev|v

[
Πk|v(i) = v

]
< bk (1) .

Therefore, if v is above v̂k is such that bk+1 (v̂) = bk (1) — which always exists by continuity and the fact
that bk+1 (1) > bk (1)— then Πk+1 (v) ≥ Πk (v), strictly whenever

∑n
i=k+1 Pv|v

(
v(i) = v

)
> 0, i.e. for

v < 1. Then v̂ in the Proposition is maxk v̂k.15

13The first equality implies that, for all j ≥ k,
Ev

[
Πj |Πk

]
= Πk, (4.5)

i.e. if j > k then Πj is a mean preserving spread of Πk. Therefore, a risk-averse seller (ex-ante) prefers WPAs where lower
orders pay. This is a generalization of Waehrer et al. (1998), who show that the FPA is the preferred auction format for a
risk-averse seller.

14Using (4.5), for j > k

Πk (v)−Πj (v) =
n∑

i=k+1

Pv|v
(
v(i) = v

) (
Ev|v

[
Πk|v(i) = v

]
− Ev|v

[
Πj |v(i) = v

])
. (4.6)

Hence, the interim revenue difference between any two WPAs is driven by the events in which the special bidder is an order
statistic above k, where k is the lowest order in the comparison. If k = 1 — i.e., comparing the FPA with all other WPAs
— then “only losers matter” (Lemma 1).

15Figure 4.2 shows that, with uniformly distributed values, the higher is k, the flatter is the interim revenue of the kPA
around 1. Formally, in the Appendix we show that, at v = 1, all derivatives of Πk up to order k − 1 are equal to 0.
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In sum, we can interpret the interim ranking between the kPA with the (k + 1)PA as a race between
opposing effects: the fact that the (k + 1)PA collects the bid of a higher type than the (k + 1)PA and the
fact that in the (k + 1)PA bids are higher than in the kPA. If v = 0, the latter effect is second-order, as
bids are 0 irrespective of k, while for v ≈ 1 the former effect is second-order, as the space to get “better
bidders” is squeezed between v and 1.

As displayed in Figure 4.2, with uniformly distributed valuations the IRFs of two kPAs cross only once,
and there is a threshold v such that the FPA is interim dominant (among all WPAs) if v < v, while the
nPA is interim dominant if v > v. There are no easy conditions on primitives, however, that ensure that
these results hold for other distributions.

4.3 Pay-as-Bid Auctions

Denote by PB-P the PBA with set of payers P. In the PB-P, the transfer of a bidder with value x is
equal to his bid times the ex-ante probability of belonging to P, denoted by Pv|x (x ∈ P).16 Therefore,
using the RET, the bid function is

bPB-P (x) =
t (x)

Pv|x (x ∈ P)
. (4.7)

Moreover, the interim transfer of a generic bidder x is17

tPB-P (x, v) = bPB-P (x) · Pv|x,v (x ∈ P) = t (x)
Pv|x,v (x ∈ P)

Pv|x (x ∈ P)
, (4.8)

where the ratio Pv|x,v(x∈P)

Pv|x(x∈P) measures how the probability that bidder x belongs to the set P changes with
the information that a competitor has value v.

The key property of PBAs is that the transfer conditional on paying is not affected by the valuation
of a competitor, who only affects the interim transfer by changing the likelihood of being a payer.

The IRF is obtained by substituting the interim transfer in (4.4),

ΠPB-P (v) = t (v) + (n− 1)E
[
t (x)

Pv|x,v (x ∈ P)

Pv|x (x ∈ P)

]
. (4.9)

Notice that the FPA is a PB-P with P = {1}. Looking at the FPA as a PBA, we obtain the interim transfer
tPB-{1} (v) =

∫ 1
v t (x) d logF (x) by integrating the interim transfer of a generic bidder x, tPB-{1} (x, v) =

1 {x > v} t(x)
F (x) . Since a higher competitor always reduces the probability of being the maximum, the

interim transfer is decreasing in v in the FPA. In what follows, we discuss some other special PBAs, then
establish the interim ranking.

All-Pay Auction The APA is the PB-[n]. Each bidder pays his own bid irrespectively of the other
bidders’ values: by construction, for each bidder, the realized transfer depends on his valuation alone, and

16Pv|x (x ∈ P) =
∑

j∈P Pv|x
(
v(j) = x

)
, where Pv|x

(
v(j) = x

)
=

(
n− 1
j − 1

)
Fn−j (x) (1− F (x))j−1 is the probability that

x is the jth-order statistic in a sample of n i.i.d. draws from F .
17We denote Pv|v,x as the probability conditional on the event that v1 = v and v2 = x.
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not on the valuation of a competitor. Formally, notice that Pv|x (x ∈ [n]) = Pv|x,v (x ∈ [n]) = 1, so for
every x, v it holds

t (x) = bAPA (x) = tAPA (x, v) ,

which implies tAPA (v) = E [t (x)]. Therefore, the IRF in the APA is

ΠAPA (v) = t (v) + (n− 1)E [t (x)] . (4.10)

Some remarks are due. First, when v = 1 the APA dominates all WPA. This observation is mathemat-
ically straightforward as tk (1) = 0 < E [t (x)] = tAPA (1), however, the mechanics behind it is somehow
counterintuitive. The APA yields higher revenue because, in addition to the transfer of the special bidder
— who wins for sure and pays t (1) both in the APA and in all WPAs — the seller collects bids from all
other bidders. Hence, in the APA the seller exploits her information advantage to extract surplus from
the other bidders, and to receive positive payments from bidders who (she knows) will lose the auction.

Second, the IRFs of the APA and of the nPA cross at least twice. Since bn (0) = tn (0) = tn (1) = 0,
tn is below its expectation, which is the interim transfer for the APA, at both extrema; by continuity it
must hit its expectation at least once from below and once from above. Since the APA dominates at v = 1

for all k, a sufficient condition for multiple crossing is tk (0) < E [t (x)]. This condition is not met by the
FPA,18 which indeed crosses the APA only once, as tPB-{1} (v) is monotonically decreasing. A sufficient
(and necessary) condition for tk (0) < E [t (x)] for all k ≥ 2 is that the ex-ante transfer E [t (x)] is higher
in an auction with n than n− 1 bidders.19

Finally notice that, since tAPL (v) = t (v), the All-Pay-Last Auction (a non-PBA with the same set of
payers of the APA) crosses the APA only once and from below. This constitutes an analog to Theorem 2
(and its generalization at the extrema in Proposition 8): even with P = [n], the PBA interim dominates
associated non-PBAs for v = 0 and is dominated around v = 1, the only difference being that now the
strict ranking is preserved at v = 1.

Last-Pay Auction The LPA is the PB-{n}. By (4.7), the equilibrium bidding function in the LPA is

bL (x) =
t (x)

[1− F (x)]n−1 ,

which is unbounded. To have an intuition of why the bid function is unbounded, suppose otherwise and
let M be an upper bound to the equilibrium bids. Then bidding above M is a profitable deviation, as it
allows to win at price 0. In general, unbounded bids are a necessary condition whenever the first order
statistic (i.e. the winner) is not a payer.

Clearly, unbounded bids do not imply an unbounded ex-ante revenue (because of RET): although in
the LPA high-value bidders bid arbitrarily high, as they want to win and do not expect to pay their bids,
low-value bidders bid arbitrarily low because they expect to lose and pay their bids.

18Dominance of the FPA over the APA at v = 0 is as a special case of Proposition 9, but also follows from a direct
comparison. If the special bidder has value 0, in the FPA the interim transfer of a generic bidder is Fn−2 (x) · bF (x) = t(x)

F (x)
,

which is higher than t (x), his interim expected transfer in the APA.
19This condition ensures that the APA yields a higher interim revenue than the SPA which, by Proposition 8, implies

that the APA also dominates all other kPA with k > 2. The condition is satisfied if n is large; for example, with uniformly
distributed bidders, it requires n > 3.
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Moreover, unbounded bids do not imply unbounded interim revenue as v → 1, because the winner does
not pay his bid. However, we can get the result by looking at the interim transfer. Since Pv|x,v(x∈P)

Pv|x(x∈P) =

1 {x < v} 1

1− F (x)
, we obtain that tL (v) =

∫ v
0

t (x)

1− F (x)
dF (x), which is clearly increasing and, we show

in the Appendix, unbounded.20 Notice that there is no non-PBA with P = {n} and no comparison along
the lines of Theorem 2 can be made in this case.

Nevertheless, the next section shows that the interim revenue is indeed unbounded in the LPA (for
examples of this, see Figure 4.3 and the Appendix).

Interim Ranking of PBAs By (4.9), finding the interim optimal PBA for a given v amounts to solving

max
P⊆[n]

E
[
t (x)

Pv|x,v (x ∈ P)

Pv|x (x ∈ P)

]
i.e. finding the subset of payers that maximizes the expected product of t and the likelihood ratio associated
to v. The next Proposition builds on the observation that, for extreme values of v, there exists a P that
maximizes the likelihood ratio Pv|x,v(x∈P)

Pv|x(x∈P) for every x.

Proposition 9. For any P ⊆ [n], ΠFPA (0) > ΠPB-P (0) > ΠLPA (0) and ΠLPA (v) > ΠPB-P (v) >

ΠFPA (v) for v ≈ 1. Moreover, limv→1Π
LPA (v)−ΠPB-P (v) = ∞.

Therefore, when v = 0, the FPA yields the highest interim revenue among all PBAs. This is because,
at v = 0, the special bidder is the minimum (nth-order statistic) with probability 1. As a consequence, the
likelihood that a generic bidder is any other order statistics increases, but the most significant increase
occurs for the likelihood that the bidder is the maximum. In general, knowing that a bidder has value 0

changes the distribution of all order statistics, but more so for the higher order ones. Hence, the seller
prefers to receive payments only from the first-order statistic.

When v ≈ 1, the FPA yields the lowest interim revenue, while the LPA yields the highest. The
intuition here is similar: in this case, the special bidder is the first-order statistic, and the highest increase
in probability occurs for a generic bidder being the minimum. Thus, the seller prefers to receive payments
only the nth-order statistic.

Proposition 9 also provides a quantitative ranking of auction formats at v ≈ 1, showing that the
difference between the interim revenue of the LPA and any other PBA diverges. This, in turn, implies
that the LPA has unbounded interim revenue. A straightforward extension the proof of this result shows
that a stronger version holds, namely that for v ≈ 1 the limit behavior of the interim revenue in PBAs
is determined by the lowest payer: limv→1Π

PB-P (v) − ΠPB-P ′
(v) = ∞ if and only if minP > minP ′.

Therefore, increasing the minimum of P (e.g., removing the winner or the highest payer from the set of
payers) induces an infinite increase in the interim revenue for v ≈ 1.

4.4 Interim Dominant Auctions

In this section we complete our analysis of interim-dominant auctions by establishing that the FPA yields
higher (resp., lower) interim revenue than any other standard auction when v = 0 (resp, v ≈ 1). This

20More generally, unbounded bids and interim revenue arise in all standard auctions where the winner does not pay:
limv→1 Π

a (v) = ∞ if and only if 1 /∈ Pa.
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generalizes the comparisons between the FPA and the SPA (Theorem 2), WPAs (Proposition 8), and
PBAs (Proposition 9).

Proposition 10. The FPA interim dominates all other standard auctions at v = 0 and is interim domi-
nated by all other standard auctions for v ≈ 1.

The proof of this result uses (4.4) and establishes that, when the special bidder has value 0, the interim
transfer of a generic bidder, tFPA (x, 0) > ta (x, 0), for any other standard auction a and valuation x > 0.
In particular, in the Appendix we show that the difference tFPA (x, 0)− ta (x, 0) is proportional to

∑
j∈Pa

Ev

[
ba
(
v(Ta(j)) (v)

)
|v(j) = x

]
− n− j

n− 1
Ev

[
ba
(
v(Ta(j)) (v)

)
|v(j) = x, v(n) = 0

]
, (4.11)

where ba is the equilibrium bidding function in auction format a. The conditional expectations in (4.11)
represent the expected payment of a bidder with value x, when he is the jth-order statistic, this order
static is a payer, and his payment is the Ta(j)th bid.

If auction a is not a PBA, then the difference (4.11) is positive because the first expectation is higher
than the second one: both expectations represent the expected bid of the same order statistic, but the
second one uses n − 1 draws (reflecting the fact that one bidder has value 0) rather than n. This effect
drives the interim dominance of the FPA on the SPA (which is not a PBA) when v = 0, as in the SPA the
transfer of the winner is lower because of the information that a competitor has value 0 (see Section 3).21

If auction a is a PBA, instead, then Ta(j) = j and the two conditional expectations in (4.11) are
both equal to ba (x). In this case, the difference (4.11) is positive because n−j

n−1 < 1 for all j > 1. This
effect reflects the change in the probability ratio of a generic bidder being a payer that occurs with the
information that v = 0, which drives the interim dominance of the FPA among PBAs (see Section 4.3).

Proposition 10, however, does not yield a revenue ranking for all auction formats. For v ≈ 1, for
example, it only implies that both the SPA and the LPA interim dominate the FPA. While the revenue
difference between the SPA and the FPA vanishes for v → 1, however, the revenue difference between the
LPA and the FPA diverges, implying that the LPA dominates the SPA. This suggests that changing the
set of payers has a stronger effect than only changing the bidders who determine the transfer. Indeed,
raising the minimum order statistic in the set of payers yields an unbounded revenue increase in PBAs for
v → 1.22

Figure 4.3 gives a graphical representation of our results for standard auctions with 3 bidders and
uniformly distributed valuations (in the Appendix we derive the IRFs analytically for all displayed formats).
The bottom-left panel displays the behavior of standard auctions at v ≈ 0, where the FPA (red line) is best
and the LPA (yellow line) is worst. Notice that each PBA (continuous line) lies above the corresponding
non-PBA with the same set of payers (dashed line of the same color). The bottom-right panel displays the
behavior of standard auctions at v ≈ 1, where the LPA is best and the FPA is worst. In this case, each
non-PBA (dashed line) lies above the corresponding PBA (continuous line of the same color). Finally,

21We conjecture that, when v = 0, among all auctions with the same set of payers, the PBA yields the highest interim
revenue. For example, the difference in the transfers conditional on the realization of the order statistic of a payer drives the
interim dominance of the PBA vs. non-PBAs when v = 0 for single-payer auctions (i.e., when |Pa| = 1).

22Quantifying the gain from changing the bidders who determine the transfer, given an arbitrary set of payers, is challenging
because there is no closed form for the equilibrium bid. In the Appendix we show that, when P = {n− 1}, the limit revenue
difference between the (unique) non-PBA and the PBA is strictly positive but finite (see Figure 4.3).
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Figure 4.3: Interim revenue functions in standard auctions with n = 3 and vi ∼ U [0, 1]. Column T (·)
reports the image of the corresponding element of P. The bottom panels zoom around v ≈ 0 and v ≈ 1.

for v → 1 all standard auctions with 1 /∈ P diverge, but the LPA does it faster. Moreover, the difference
between the LPA and the PB- {2} (purple solid line) is infinite (Proposition 9) while the difference between
the PB- {2} and the non-PBA with P = {2} (purple dashed line) remains finite.

Finally, Proposition 10 and monotonicity of the IRF imply that

Corollary. For any standard auction a, Im
(
ΠFPA

)
⊂ Im (Πa) ⊆ Im

(
ΠLPA

)
.

This results suggests that, although a generic standard auction is not a mean-preserving spread of the
FPA (in contrast to what happens with WPAs — see (4.5)), the FPA can still be considered the less risky
standard auction format for the seller. First, the FPA has the smallest range of possible interim revenues,
and hence the lowest variability among standard auctions. Second, the FPA maximizes the lowest possible
interim seller’s revenue, so it provides the best insurance for the event that v = 0.

5 Conclusions

We have studied how the revenue in the efficient equilibrium of a broad class of sealed-bid auction formats
is influenced by the information that one bidder has valuation v. Our analysis identifies how the marginal
contribution of a single bidder varies across formats. Indeed, the difference between the interim revenue
evaluated at v and the ex-ante revenue reflects the amount a seller would be willing to pay to substitute
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a generic bidder with one of valuation v. This amount is not merely equal to the expected transfer from
v, but must also consider how the presence of v impacts the expected transfer from other bidders. Since
the transfer from v is independent of the auction format, only the indirect effect determines the interim
differences.

This has a natural interpretation in terms of how a seller can tailor the auction format to leverage
information about a bidder. The RET implies that she cannot influence the transfer received from that
specific bidder, but she can still utilize her informational advantage over other bidders. For example,
when aware of a high bidder, she prefers the all-pay auction over formats where only the winner pays, as
it enables her to secure transfers from bidders with no chance of winning the object.

This interpretation highlights a potential limitation in applying our results to scenarios where the seller
selects the auction format based on information about a bidder’s valuation.23 We assume that bidders
play the efficient equilibrium of the auction with symmetric competitors. This assumption presupposes
that (i) the seller’s information is private — i.e., other bidders do not know the value of the special bidder
— and (ii) bidders do not infer anything about their competitors from the seller’s choice of auction format.

A preliminary analysis in Appendix 6.1 suggests that bidders’ sophistication limits the ability of the
seller to exploit her information, and derives an equilibrium where the seller primarily (i.e. for almost all
values of the special bidder) uses the SPA. With this caveat in mind, our results further identify the type
of information that is most beneficial to the seller.

Due to the single crossing property, the seller can determine whether her expected revenue is higher
in the FPA or SPA by simply knowing whether the bidder’s valuation is below than any threshold.
In practical terms, the seller would only need to know whether a bidder has made a purchase from a
competitor, even if she is unaware of the competitor’s pricing strategy.

Finally, while our analysis focused on the interim expectation, it would be interesting to explore
how different moments of the conditional distributions vary across formats depending on v. For instance,
although the FPA and the SPA are interim equivalent at v = 1, their revenues are not the same conditional
random variable. Specifically, the FPA is degenerate at t (1), while the SPA is not.

23Absent this concern, we can see our analysis as a contribution to the literature exploring why certain auction formats
are prevalent. Other studies focus on risk preferences of the seller (Waehrer et al. (1998)) or bidders (Maskin and Riley
(1984)), and the seller’s ability to manipulate bids (Akbarpour and Li (2020)). Our explanation is instead based on the
seller’s information advantage.
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6 Appendix

6.1 Extensions

Savvy Bidders

Consider a setting where bidders are aware that the seller observes the valuation v of the special bidder
before choosing the auction format. The identity (but not the valuation) of this special bidder, as well as
the fact that the seller selects the auction format based on his valuation, is common knowledge.

Define the function E : [0, 1] → A, where A represents the set of standard auctions from which the seller
can choose. E partitions the set of possible special bidder’s valuation, depending on the associated auction
format. By choosing the function E (v), the seller chooses an auction format for each special bidder’s
valuation. Let E−1 (a) denote the subset of special bidder’s values to which the function E associates
the auction format a, i.e. E−1 (a) = {w ∈ [0, 1] : E (w) = a}. Then, E−1 (E (v)) denotes the atom of the
partition to which v belongs (i.e., all bidders’ valuations that induce the same auction format as v).

For a standard auction a ∈ A and a set V ⊂ [0, 1], construct the function Πa
V : [0, 1]n → R as follows.

1. Equilibrium Bids. Compute an equilibrium of auction a with asymmetric bidders in V × [0, 1]n−1.
The equilibrium specifies the bidding functions ba,SV : V → R and ba,NV : [0, 1] → R, which are mutual
best responses for the special and normal bidders, respectively.

2. Equilibrium Bids Extension. Extend the equilibrium to the full space [0, 1]n, by computing, for each
v /∈ V , the best response to n− 1 bidders playing ba,NV . This means that types of the special bidders
for which the seller should not choose format a, play a best response to the equilibrium in auction
a. Define this function b̃a,SV : [0, 1] → R, noting that b̃a,SV extends ba,SV on [0, 1] \ V .

3. Interim Revenue Function. Let Πa
V : [0, 1]n → R denote the revenue in such an auction as a function

of the entire profile of bidders’ valuations. Define the interim counterpart Πa
V (v) := E [Πa

V |v1 = v],
which is also defined for v /∈ V .

In words, Πa
V represents the seller’s revenue in auction format a assuming that: i) Auction format a is

chosen only if the special bidder’s valuation is in V ; ii) Non-special bidders always play according to the
equilibrium strategy for an asymmetric auction where one competitor is in the set V ; iii) The special
bidder responds optimally to the equilibrium strategy, even when his valuation is not in V .24

Definition 11. The function E (v) is a savvy-bidder equilibrium if the following conditions are satisfied.
1. Πa

Ωa
is well-definite ∀a ∈ A, i.e. there exist bid functions as defined in Step 1 and Step 2

2. For all v ∈ [0, 1] and a ∈ A, ΠE(v)
E−1(E(v)) (v) ≥ Πa

E−1(a) (v).

In the SPA, knowing that a competitor belongs to the set V ⊂ [0, 1] does not affect bids. Therefore,
for all sets V , ΠSPA

V (v) exists and is equal to ΠSPA (v), the interim revenue studied in this paper. For
any other auction format a, computing Πa

E−1(a) requires the full characterization of the bid functions

24The rationale behind this selection criterion, as formalized in Step 2, is that only the special bidder can detect any
deviation by the seller, as he is the only one aware of his own valuation.
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with asymmetric bidders (Step 1), a problem that presents notorious difficulties.25 However, savvy-bidder
equilibria that partition [0, 1] into {0} and (0, 1] are immune to this problem, as the equilibrium played
when there is common knowledge that a bidder has value 0 coincides with the equilibrium of the auction
with n− 1 bidders. In the FPA, with uniform bidders, we can compute the best response under deviation
(Step 2) and analytically characterize the interim revenue function (Step 3).

Proposition 12. Suppose F is the uniform CDF and A = {FPA, SPA}. Then, for each n

E (v) =

FPA v = 0

SPA v > 0

constitutes a savvy-bidder equilibrium in which

bFPA,N
0 (x) =

n− 2

n− 1
x, b̃FPA,S

0 (x) = max

{
n− 1

n
x,
n− 2

n− 1

}
, bSPA,N

(0,1] (x) = b̃SPA,S
(0,1] (x) = x

Proof. See Online Appendix.

Proposition 12 characterizes an equilibrium in which the seller chooses the FPA if and only if the
special bidder’s valuation is zero, and chooses the SPA otherwise. In this scenario, the equilibrium bids of
non-special bidders in the FPA coincide with the equilibrium bids in a standard FPA with n− 1 bidders.
This is because, by participating in an FPA, bidders learn that the special bidder’s valuation is 0, which
is equivalent to competing with one fewer bidder (Step 1). The deviation strategy of the special bidder in
the event the FPA is chosen when he has value v > 0 is the best response to these bids (Step 2). With
uniform distribution, this best response, b̃FPA,S

0 (x), can be derived in closed form.26 Given the strategies
on and off equilibrium, we show that ΠF

0 (v) equals ΠS (v) at v = 0, while it is lower than it for all v > 0.
At v = 0, the interim revenue in the FPA coincides with the interim revenue in the SPA, as non-special
bidders bid as in an auction with one fewer competitor in both auction formats. Local to v = 0, gains are
of order n in the FPA, lower than gains of order n− 1 in the SPA, and the FPA never catches up.

Intuitively, when bidders are unaware that the seller’s choice of auction format reflects her information
about the value of the special bidder (as in our main analysis), the FPA maximizes the seller’s revenue for
low values of v. However, when bidders are aware that the seller is using information about a competitor,
observing that they play in a FPA indicates that they are competing against a bidder with a low value.
Consequently, they adjust their bids accordingly, and the equilibrium tends to favor the auction format
where interim information does not influence bidding behavior.

Comparing Proposition 12 with Theorem 2 we see that in the presence of savvy bidders, the seller
cannot exploit the information about a bidder, as the others will respond and adjust their bids leading

25For the FPA, Maskin and Riley (2000) compute the equilibrium in asymmetric auction with two asymmetric bidders,
supposing that one of the valuation is drawn from a set of the form [0, vu]. Kaplan and Zamir (2012) extend the result
considering an asymmetric auction with two bidders having uniform distributions defined on sets of the form [vi, vi]. Olszewski
et al. (2023) provide conditions for the existence of equilibria in first-price auctions with asymmetric bidders; in particular
they provide sufficient conditions for the existence of equilibria when one bidder is drawn from a set V which can be of
arbitrary form, but do not provide characterization of the equilibrium.

26Notice that the responsive part of the special bidder’s best response is the equilibrium bidding function in the FPA with
n symmetric bidders. This is also a bidders’ best response when n − 1 competitors adopt any linear bidding strategy (a
property that relies on the uniform assumption). Of course, the special bidder never bids more than bF (1, n− 1) = n−2

n−1
, the

highest bid by non-special bidders.
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to an unraveling process that ultimately favors the choice of an auction format where bidding behavior is
unaffected by information about competitors.

Notice that within the class of standard auctions only the SPA is immune to manipulations given
information about a competitor. A natural question is, then, whether only this format can be played in a
savvy-bidder equilibrium, i.e. whether the equilibrium of Proposition 12 is unique. Guided by Theorem 2,
we look in the class of cutoff strategies, that is where the seller selects a cutoff v̄ ∈ [0, 1] and chooses the
FPA if and only if v ≤ v̄ and the SPA otherwise. Notice that the equilibrium in Proposition 12 belongs
to this family, but is degenerate as it sets v̄ = 0. However, proving uniqueness (even in this family) has
proven elusive as a direct unraveling argument is not possible and equilibria in the FPA with asymmetric
bidders (Step 1 in the derivation of ΠF

[0,v̄] for v̄ > 0) do not have a closed-form representation, except in
special cases (uniform with two bidders, see Kaplan and Zamir (2012)).

General Information and Implications of Single Crossing

We have analyzed the auction format preferred by the seller when she knows that one bidder has valuation
v. A natural extension of our analysis is to assume instead that the seller has some, though not perfect,
information about v. Let F̃ be a distribution over [0, 1] that represents such information. The ex-ante
case corresponds to F̃ = F , while the analysis of this paper corresponds to F̃ = δv for some v ∈ [0, 1].27

Computing the interim revenue in this setting is a straightforward extension of our analysis since

Πa
(
F̃
)
:= E

[
Πa|v1 ∼ F̃

]
= EF̃ [Πa (v)]

Some qualitative implications of Theorem 2 do not extend to this stochastic setting. In particular,
although Theorem 2 implies that

ΠS (v)−ΠF (v) > 0 ⇒ ΠS
(
v′
)
−ΠF

(
v′
)
> 0

whenever v′ > v, improving (in FOSD sense) the distribution of the special bidder does not necessarily
make the SPA more desirable. In fact, it is possible that F̃2 first-order stochastically dominates F̃1 but28

EF̃1

[
ΠS (v)−ΠF (v)

]
> 0 and EF̃2

[
ΠS (v)−ΠF (v)

]
< 0.

So the implication that “a better special bidder preserves SPA dominance” is not valid in general. There
are, however, signal structures where single crossing is sufficient to determine unambiguously the seller’s
preference. For example, suppose that the seller observes whether v is above or below a random threshold,
but is ignorant of the precise threshold and even of the distribution from which it is drawn.This type
of information emerges naturally in settings where a seller is only able to observe whether one of his

27We still work at an interim stage and not model explicitly where F̃ comes from, though it is natural to interpret F̃ as
the posterior resulting from observing some signal about the special bidder’s valuation.

28This observation follows immediately from the fact that the interim revenue difference is non-monotonic (see, e.g. Figure
3.2). Thus, shifting mass above v̂ shrinks the advantage of the SPA. As an example of F̃1, F̃2 that yield the desired

contradition, take F̃1 =

{
0 p

v̂ 1− p
where p is chosen such that EF̃1

[
ΠS (v)−ΠF (v)

]
= ϵ for ϵ positive but small. Then,

F̃2 =

{
0 p

1 1− p
dominates F̃1 but is such that EF̃2

[
ΠS (v)−ΠF (v)

]
< 0.
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bidders has previously completed a purchase or not from a competitor, without observing the price or
the competitor’s pricing strategy. If the interim revenue functions of two formats intersect only once, this
information is sufficient to determine which format the seller prefers.29

Proposition 13. Suppose the seller observes s = I {v < P} for some random variable P with support in
[0, 1], independent of v but of unknown distribution. If s = 1, the interim revenue is higher in the FPA. If
s = 0 the interim revenue is higher in the SPA.

Proof. See Online Appendix.

Information that one bidder is relatively weak —i.e. below a random threshold— makes the seller
prefer the FPA.

6.2 Proofs

Proof of Lemma 1

The statement is a special case of (4.6) with k = 1 and j = 2.

Proof of Theorem 2

We complete the proof in the main text by proving (3.6) and Lemma 14. Notice that∫ 1

v

∫ x

0
max {v, y} dFn−2 (y)

Fn−2 (x)
dFn−1 (x) =

∫ 1

v

[
v
Fn−2 (v)

Fn−2 (x)
+

∫ x

v
y
dFn−2 (y)

Fn−2 (x)

]
dFn−1 (x)

=

∫ 1

v

[
x−

∫ x

v

Fn−2 (y)

Fn−2 (x)
dy
]

dFn−1 (x) ,

where the second equality uses integration by parts. Now let

g (v) :=

∫ 1

v

[
x−

∫ x

v

Fn−2 (y)

Fn−2 (x)
dy
]

dFn−1 (x) .

Notice that g (1) = 0 and

g′ (v) = −vdFn−1 (v) +

∫ 1

v

Fn−2 (v)

Fn−2 (x)
dFn−1 (x)

= −dFn−1 (v)

[
v − 1− F (v)

f (v)

]
= −dFn−1 (v)ψ (v) .

Finally, by the fundamental theorem of calculus:

g (v) = g (1)−
∫ 1

v
g′ (w) dw

=

∫ 1

v
ψ (w) dFn−1 (w) .

29We state the result for FPA vs. SPA, though it is immediate to extend it to any pair of auction formats (e.g., the FPA
and APA) whose interim revenue functions cross only once.
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Lemma 14. ∆(v) has a maximum at v = 0 and ∆(0) > 0.

Proof. We denote by bF (x,R, n) be the equilibrium bidding function in the FPA with n bidders and
reserve price R. Integration by parts yields∫ 1

v
bF (x, v, n) dFn (x) =

∫ 1

v
ψ (x) dFn (x) ,

for every n. Therefore, using (3.6),

∆(v) =

∫ 1

v

[
bF (x, 0, n)− bF (x, v, n− 1)

]
dFn−1 (x) .

Since bF (x, 0, n)− bF (x, 0, n− 1) > 0, this implies that ∆(0) > 0.
To show that v = 0 is a local maximum, write ∆′(v) = −∆1 (v) ·∆2 (v) where ∆1 (v) = bF (v)− ψ (v)

and ∆2 (v) = dF (v)n−1. By the Leibniz rule, for k ≥ 1,

∆(k−1) (v) =

k−1∑
j=0

(
j

k

)
∆

(k−j)
1 (v)∆

(j)
2 (v) .

Notice that, for all j < n− 1 , ∆(j)
2 (0) ∝ F (0) = 0. Then, ∆(k) (0) = 0 for all k < n− 1 while

∆(n−1) (0) =

(
n− 2

n− 1

)
∆1 (0)∆

(n−2)
2 (0) ∝ −∆1 (0) = ψ (0) < 0,

proving that 0 is a local maximum. Since the other critical point bF (v) = ψ (v) must be a minimum, 0 is
also the global maximum.

Proof of Proposition 3

Suppose that v < R. Then,

ΠF (v) = Pv|v
(
v(1) > v

)
· Ev|v

[
bF
(
v(1), R

)
|v(1) > R

]
and

ΠS (v) = Pv|v
(
v(1) > R

)
· Ev|v

[
max

{
v(2);R

}
|v(1) > R

]
.

Therefore, when v < R, the IRFs of the FPA and SPA do not depend on v and the IRF of the FPA
is strictly higher than the SPA. At v = R the IRFs of both formats have an upward jump equal to
R · Pv|v

(
v(1) < R

)
.

For v > R, Lemma 1 yields

∆(v,R) =

∫ 1

v
bF (x,R)− ψ (x) dFn−1 (x) ,

and the arguments in the proof of Theorem (2) without reserve directly extend, giving a unique minimum
at bF (x,R) = ψ (x) and hence a unique ṽ ̸= 1 such that ∆(ṽ, R) = 0.
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Standard Auctions (Section (4))

We first fill some gaps that are left in the development of standard auction and lead to Lemma 6, which
is an immediate consequence of our construction.

We characterize the transfer map on the space of bids t̃a : Rn → Rn from the defining objects of the
standard auction a, Pa, Ta, as follows. Let s : Rn → Nn denote the ordering map, that associates each
vector with the vector of order statistics.30 For example, s ([12, 31, 18]) = [3, 1, 2]. Then,

t̃ai (b) =

bj:sj(b)=Ta(si(b)) if si (b) ∈ Pa

0 if si (b) /∈ Pa

(6.1)

notice that bj:sj(b)=Ta(si(b)) represents Ta (si (b))th-order statistic of b. For example,

t̃FPA
i (b) =


bj : sj (b) = 1︸ ︷︷ ︸

=i

if si (b) ∈ {1}

0 if si (b) /∈ {1}

and, since in general {j : sj (b) = si (b)} = i, we obtain for PBAs

t̃PB-P
i (b) =

bi if si (b) ∈ P

0 if si (b) /∈ P
.

which becomes t̃APA
i (b) = bi. For the non-PBAs discussed in the text, we have

t̃ki (b) =

bj:sj(b)=k if si (b) ∈ {1}

0 if si (b) /∈ {1}

and
t̃APL
i (b) = bj:sj(b)=n.

We can now characterize the equilibrium bidding function. We now characterize the equilibrium
bidding function in standard auction a. Using the structure of the auction, the expected transfer of a
bidder with value v is

Ev|v
[
t̃a1
]
=
∑
j∈Pa

Pv|v
[
v(j) = v

]
Ev

[
ba
(
v(Ta(j)) (v)

)
|v(j) = v

]
, (6.2)

because v pays only if he is in the set of payers Pa, and conditional on being the jth-order statistic he pays
the Ta(j)th-highest bid. By the RET the left-hand-side is known and auction independent for every v;
therefore (6.2) gives a functional equation for ba. We can obtain a tighter characterization of (6.2) using
the following following result in probability theory (see, e.g. Casella and Berger, Ex. 5.27.a).

30The operator s is well definite only for vectors that have no equal entries. We can assume an arbitrary tie-breaking rule
(say, the slot of the bidder) as equal entries arise in equilibrium with zero probability.
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Fact 15. The pdf of the (k + j) th-order statistic, conditioned on the realization of the kth-order statistic,
x, is the pdf of the jth-order statistic from a sample of (n− k) draws from the distribution truncated at x.

Denote F v
(j,m) : [0, 1] → [0, 1] the CDF of the jth order statistic from m draws from distribution F

truncated at v (implying F v
(j,m) (x) = 1 for all x ≥ v), with the following conventions:31

• For all v, n, F v
(0,n) (w) = I (w ≥ v)

• For all v, j, F v
(j,0) (w) = I (w ≥ 0)

Using Fact and the RET, (6.2) can be written as

t (v) =
∑
j∈Pa

Pv|v
[
v(j) = v

] ∫ v

0
ba (x) dF v

(Ta(j)−j,n−j) (x) (6.3)

which has to hold for all v ∈ (0, 1). Notice that the only unknown in (6.3) is the bidding function ba.
If (6.3) admits a monotone solution, with initial condition ba (0) = 0, then such solution constitutes an
equilibrium of the standard auction a.

We follow the main text and, abusing notation, denote t̃a (v) : [0, 1]n → Rn as the composition of the
t̃a (b) function defined by (6.1) on the space of bids (that characterizes the rule of the standard auction)
with the equilibrium bidding function ba. We can now write the revenue in auction a as a function of the
vector of bidders’ valuations v in the following two equivalent ways

Πa (v) =

n∑
i=1

t̃ai (v) =
∑
j∈Pa

ba
s−1
Ta(j)

(v)
(v) . (6.4)

where s−1
Ta(j)

(v) = {i : si (v) = Ta (j)} is the index of the bidder that submitted the Ta (j)th-highest bid.
The first expression obtains revenues summing the transfers from each bidder; the second is instead more
“constructive” as it reflects the rules of the standard auction: for each order statistic in the set of payers
it finds the bid that determines his transfer and adds it to the seller’s revenue.32

31The conventions are just used so to make (6.3) hold in general. In case Ta (j) − j = 0, i.e. for PBAs, then∫ v

0
ba (x) dF v

(Ta(j)−j,n−j) (x) = ba (v).
32If Ta were surjective then, letting Ta be the image of Pa through Ta, we could write revenues as Πa (v) =∑
j∈Ta

bas−1(j)(v) (v) — i.e., as the sum of bids that determine the transfer (e.g., in the SPA only the second bid, in the
APA all bids). In that case, the transfer vector t̃a (v) contains entries that are either zero or equal to one of the bids that
is . As T−1

a (j) might be not singleton (for example, in the APL) the general expression requires to associate payer-wise the
bid that determines transfer and account for repetitions.
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Proof of Lemma 6

To obtain decomposition (4.4) we use the first expression in (6.4). Using only definitions (4.1)-(4.2) in the
main text and linearity of expectations we get

Πa (v) = Ev|v (Π
a (v)) = Ev|v

(
n∑

i=1

t̃ai (v)

)

= Ev|v
(
t̃a1 (v)

)
+ Ev|v

(
n∑

i=2

t̃ai (v)

)
= t (v) + (n− 1) ta (v)

That, for all a, E [Πa (v)] = Π̄ and E [ta (v)] = E [t (v)] is proved in the main text.
To prove that the IRF of each standard auction a is continuous and increasing in the special bidder’s

valuation we instead rely on the second expression in (6.4). Fix an arbitrary vector v−1 ∈ [0, 1]n−1 repre-
senting the valuations of all bidders excluding the special one, and notice that

∑
j∈Pa

ba
s−1
Ta(j)

(v,v−1)
(v, v−1) is

continuous and increasing in the special bidders value v because each order statistic of the bids is continu-
ously increasing in v.33 The result follows because the IRF is the expectation of

∑
j∈Pa

ba
s−1
Ta(j)

(v,v−1)
(v, v−1)

with respect to v−1 (under the n−1 product measure ×n−1
1 F ) and inherits its continuity and monotonicity.

Proof of Proposition 8

Let
∆k (v) ≡ Πk+1 (v)−Πk (v) .

To prove the statement, we show that, for all k, ∆k (v) > 0 at v = 0, ∆k (v) < 0 for v ≈ 1 and ∆k (1) = 0.
We start by establishing the following result.

Lemma 16. For all k, j with k ≥ j, E
[
Πk|Πj

]
= Πj. Moreover,

∆k (v) =

n∑
i=k+1

Pv|v
(
v(i) = v

) [
E
(
Πk+1|v(i) = v

)
− E

(
Πk|v(i) = v

)]
. (6.5)

Proof. Since Πk = bk
(
x(k)

)
and bk (·) is a strictly monotonic function, conditioning on Πk is equivalent to

conditioning on the realization of the kth-order statistic — i.e.

E
[
Πk+1|Πk

]
= E

[
Πk+1|x(k) =

(
bk
)−1 (

Πk
)]
.

We first prove that E
[
Πk|Πk−1

]
= Πk−1 by showing that

E[bk+1
(
x(k+1)

)︸ ︷︷ ︸
Πk+1

|x(k)] = x = bk (x)︸ ︷︷ ︸
Πk

,

using the following result in probability theory (see, e.g. Casella and Berger, Ex. 5.27.a).
33Notice that we need the second expression of the revenue, as for almost all v−1, t̃ai (v, v−1) is not continuous in v.
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Fact 17. The pdf of the (k + j) th-order statistic, conditioned on the realization of the kth-order statistic,
x, is the pdf of the jth-order statistic from a sample of (n− k) draws from the distribution truncated at x.

Let Gy
(j,n) (x) denote the CDF of the jth-order statistic among n draws below the threshold y. By the

PET, ∫ v

0
bk (x) dGv

(k−1,n−1) (x) =

∫ v

0
bk+1 (y) dGv

(k,n−1) (y) , (6.6)

where the RHS (LHS) is the expected payment conditional on winning of a generic bidder with valuation
v in the (k + 1)th(kth) -price auction. Applying the LIE,∫ v

0
bk+1 (y) dGv

(k,n−1) (y) =

∫ v

0
E
[
bk+1 (y) |x

]
dGv

(k−1,n−1) (x) . (6.7)

Combining equations (6.6) and (6.7) and differentiating with respect to v yields

bk (v) = E
[
bk+1 (y) |v

]
,

and the result follows from Fact 17. The first statement of Lemma 16 follows from repeatedly applying
the LIE:

E[Πk|Πj ] = E[. . .

Πk−2︷ ︸︸ ︷
E[E[Πk|Πk−1]︸ ︷︷ ︸

Πk−1

|Πk−2] . . . |Πj ] = Πj .

We now prove (6.5). Using the Law of Total Probability,

∆k (v) =

n∑
i=1

Pv|v
(
v(i) = v

) [
E
(
Πk+1|v(i) = v

)
− E

(
Πk|v(i) = v

)]
.

However, all terms in the summation up to i = k are equal to 0. The reason is that, by strict monotonicity
of the bidding function, E

[
Πk|v(i) = v

]
= E

[
Πk|Πi = bi (v)

]
and, as we have shown,

E
[
Πk+1|v(i) = v

]
= Πi = E

[
Πk|v(i) = v

]
∀i ≤ k.

Consider first v = 0.

∆k (0) = Ev|0

[
Πk −Πk+1

]
= Ev|0

[
Ev|0

[
Πk −Πk+1|Πk

]]
> Ev|0

[
Πk − Ev

[
Πk+1|Πk

]]
= Ev|0

[
Πk −Πk

]
= 0.

The first equality is a definition, the second equality is the LIE, the inequality uses v > v|0, and the last
line uses Lemma 16.
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Consider now v ≈ 1. We establish that, for all k, there is a neighborhood of 1 where ∆k (v) < 0. By
a Taylor expansion of order N around 1,

∆k (v) =

N∑
j=0

∆k (1)(j)
(v − 1)j

j!
+ o

(
(v − 1)N

)
,

where ∆k (v)(j) denotes the jth-order derivative of ∆k (v). Since ∆k (1) = 0, the sign of the the function
∆k in a neighborhood of 1 is determined by the sign of its first non-zero derivative at 1. By Leibniz’s rule,

∆k (v)(j) =

n∑
i=k+1

j∑
s=0

(
j

s

)
P
(
v(i) = v

)(s)
∆k

i (v)
(j−s) , (6.8)

where ∆k
i (v) ≡ E

(
Πk|v(i) = v

)
−E

(
Πk+1|v(i) = v

)
. Since ∆k

i (v) has finite derivatives, the corresponding
term in (6.8) is equal to 0 if P

(
v(i) = v

)(s)
= 0.

Lemma 18. For all i,
Pv|v

(
v(i) = v

)(s)∣∣
v=1

= 0 ∀s < i− 1,

and
(−1)i−1 Pv|v

(
v(i) = v

)(i−1)∣∣
v=1

> 0.

Proof. For all k and i, E
[
Πk|v(i) = v

]
is n times continuously differentiable with finite derivatives. Using

Pv|v
(
v(i) = v

)
= (1− F (v))i−1 F (v)n−i

(
n− 1

i− 1

)
and Leibniz’s rule, we have

Pv|v
(
v(i) = v

)(j)
=

(
n− 1

i− 1

) j∑
s=0

(
j

s

)[
(1− F (v))i−1

](s) [
F (v)n−i

](j−s)
.

Therefore, for all s < i−1,
[
(1− F (v))i−1

](s)∣∣
v=1

= 0 because 1−F (1) = 0, and Pv|v
(
v(i) = v

)(s)∣∣
v=1

=

0 because it is the sum of addenda that are all zero. By contrast,[
(1− F (v))i−1

](i−1)∣∣
v=1

= (i− 1)! (−1)i−1 f (1)i−1 ,

and hence Pv|v
(
v(i) = v

)(i−1)∣∣
v=1

∝ (−1)i−1.

Lemma 18 implies that, for all j < k, ∆k (1)(j) = 0 since all addenda in (6.8) are equal to 0. Moreover,
for j = k the only non-zero addendum in (6.8) at v = 1 is

P
(
v(k+1) = v

)(k)
∆k

k+1 (v)

∣∣∣∣
v=1

.

Notice that ∆k
k+1 (v) = E

[
bk (v′) |v′ > v

]
− bk+1 (v) and converges to bk (1) − bk+1 (1) < 0 as v → 1.
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Therefore, by Fact 18,
∆k (1)(k) = P

(
v(k+1) = 1

)(k)
∆k

k+1 (1) ∝ (−1)k−1 .

Summing up, we have shown that

∆k (1)(j) (−1)j =

0 if j < k

< 0 if j = k
(6.9)

which, using (6.8), proves the statement that ∆k (v) < 0 for v ≈ 1.

Proofs of the Statements in Section 4.3

The IRFs of the FPA and APA cross only once. To see this notice that, by (4.8), the IRF of the PB-P is

ΠPB-P (v) = t (v) + (n− 1)E
[
bPB-P (x)Pv|x,v (x ∈ P)

]
= t (v) + (n− 1)E

[
t (x)

Pv|x,v (x ∈ P)

Pv|x (x ∈ P)

]
. (6.10)

Ex-interim, the seller obtains from the special bidder his transfer. From each other bidder, she obtains the
transfer weighted by the ratio of the likelihood of belonging to the set of payers, conditional on v, relative
to its ex-ante counterpart.

In the APA, P = [n] and Pv|v(x∈P)

Pv(x∈P) = 1 for all v and x. In the FPA, P = {1} and

Pv|v (x ∈ P)

Pv (x ∈ P)
=


Fn−2(x)
Fn−1(x)

= 1
F (x) x > v

0 x < v

Therefore,

ΠFPA (v)−ΠAPA (v) = (n− 1)

[
E
[
t (x)

F (x)
I [x > v]

]
− E [t (x)]

]
.

Notice that ΠFPA (0)−ΠAPA (0) ∝ E
[

t(x)
F (x)

]
− E [t (x)] > 0 and ΠFPA (1)−ΠAPA (1) ∝ −E [t (x)] < 0.

Moreover, the difference is monotonically decreasing in v, proving single crossing.
Compare now the APA with other WPAs. By (6.10), ΠAPA (0) = (n− 1)E [t (x, n)]. By contrast, since

at v = 0 the SPA is equivalent to any efficient auction with n−1 bidders,ΠSPA (0) = (n− 1)E [t (x, n− 1)].
Therefore,

ΠAPA (0)−ΠSPA (0) ∝ E [t (x, n)− t (x, n− 1)] .

Proof of Proposition 9

By (6.10),

ΠPB-P (v) > ΠPB-P ′
(v) ⇔ E

[
t (x)

Pv|x,v (x ∈ P)

Pv|x (x ∈ P)

]
> E

[
t (x)

Pv|x,v (x ∈ P ′)

Pv|x (x ∈ P ′)

]
. (6.11)
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The following Lemma proves the statements by showing that, for every x, the ratio Pv|x,v(x∈P)

Pv|x(x∈P) is highest
(lowest) in the FPA (LPA) than in any other PBA when v = 0, while it is highest (lowest) in the LPA
(FPA) when v = 1. Since t (x) is positive, this implies the result.

Lemma 19. For all x and P,

Pv|x,0
(
x = v(1)

)
Pv|x

(
x = v(1)

) >
Pv|x,0 (x ∈ P)

Pv|x (x ∈ P)
>

Pv|x,0
(
x = v(n)

)
Pv|x

(
x = v(n)

) (6.12)

and
Pv|x,1

(
x = v(n)

)
Pv|x

(
x = v(n)

) >
Pv|x,1 (x ∈ P)

Pv|x (x ∈ P)
>

Pv|x,1
(
x = v(1)

)
Pv|x

(
x = v(1)

) . (6.13)

Proof. Let pnj (x) be the probability that x is the jth-highest among n bidders — i.e., pnj (x) = Pv|x
(
x = v(j)

)
— so that Pv|x,0

(
x = v(j)

)
= pn−1

j (x) and Pv|x,1
(
x = v(j)

)
= pn−1

j−1 (x). Then,

Pv|x,0
(
x = v(1)

)
Pv|x

(
x = v(1)

) =
pn−1
1 (x)

pn1 (x)
,

Pv|x,0 (x ∈ P)

Pv|x (x ∈ P)
=

∑
j∈P p

n−1
j (x)∑

j∈P p
n
j (x)

.

Notice that
pn−1
j (x)

pnj (x)
=

(1− F (x))j−1 F (x)n−j−1 (n−2
j−1

)
(1− F (x))j−1 F (x)n−j (n−1

j−1

) =
n− j

F (x) (n− 1)
. (6.14)

This ratio is decreasing in j, which proves (6.12).34

Similarly,

Pv|x,1
(
x = v(n)

)
Pv|x

(
x = v(n)

) =
pn−1
n−1 (x)

pnn (x)
,

Pv|x,1 (x ∈ P)

Pv|x (x ∈ P)
=

∑
j∈P p

n−1
j−1 (x)∑

j∈P p
n
j (x)

and
pn−1
j−1 (x)

pnj (x)
=

(1− F (x))j−2 F (x)n−j (n−2
j−2

)
(1− F (x))j−1 F (x)n−j (n−1

j−1

) =
j − 1

(1− F (x)) (n− 1)
. (6.15)

This ratio is increasing in j, which proves (6.13) (see footnote 34).

Finally, we show that limv→1Π
LPA (v) − ΠPB-P (v) = ∞. First, from the proof of Lemma (19),

ΠPB-maxP (1) > ΠPB-P (1). Consider single-payer auctions, and compare the PB- {j} and PB- {k}. Using
34We use the following algebraic fact (whose proof follows from a simple induction argument on the cardinality of M). Let

{ai}Ni=1 and {bi}Ni=1 be sequences of positive numbers such that ai
bi

is (strictly) decreasing in i. Then for, any M ⊆ {1, . . . , N},
a1
b1

≥
∑

i∈M ai∑
i∈M bi

≥ aN
bN

, with strict inequality if M ̸= {1}. Moreover, if min {i : i ∈ M} ≥ j, then aj

bj
≥

∑
i∈M ai∑
i∈M bi

, with strict
inequality if M ̸= {j}.
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(6.11) and (6.15),

ΠPB-{j} (1)−ΠPB-{k} (1) = E

[
t (x)

(
Pv|x,1

(
v(j) = x

)
Pv|x

(
v(j) = x

) −
Pv|x,1

(
v(k) = x

)
Pv|x

(
v(k) = x

) )]

= E
[
t (x)

(
j − 1

(1− F (x)) (n− 1)
− k − 1

(1− F (x)) (n− 1)

)]
=
j − k

n− 1
E
[

t (x)

1− F (x)

]
. (6.16)

Notice that, for generic l ∈ (0, v),

E
[

t (x)

1− F (x)

]
= lim

v→1

∫ v

0

t (x)

1− F (x)
f (x) dx

> t (l) lim
v→1

∫ v

l

f (x)

1− F (x)
dx

= −t (l) lim
v→1

∫ v

l
d log (1− F (x))

∝ −t (l) lim
v→1

log (1− F (v)) = ∞, (6.17)

where the inequality holds because the function t(x)
1−F (x)f (x) is bounded in the closed interval [0, v] and

0 < t (l) ≤ t (x) ≤ t (1) < ∞. Therefore, if n /∈ P then ΠPB-{n} (1) − ΠPB-maxP (1) diverges and
ΠPB-maxP (1) > ΠPB-P (1).

For the case n ∈ P, let j = maxP \ {n}. Then, from the proof of Lemma (19), ΠPB-{n,j} (1) >

ΠPB-P (1). Moreover,
ΠPB-{n} (1)−ΠPB-{n,j} (1)

= E

[
t (x)

(
Pv|x,1

(
v(n) = x

)
Pv|x

(
v(n) = x

) −
Pv|x,1

(
v(j) = x

)
+ Pv|x,1

(
v(n) = x

)
Pv|x

(
v(j) = x

)
+ Pv|x

(
v(n) = x

) )]

= E

[
t (x)

(
pn−1
n−1 (x)

pnn (x)
−
pn−1
j−1 (x) + pn−1

n−1 (x)

pnj (x) + pnn (x)

)]

= E

t (x)
 F (x)n−j

[(
n−1
j−1

)
−
(
n−2
j−2

)]
(1− F (x))

(
F (x)n−j (n−1

j−1

)
+ (1− F (x))n−j

)
 ∝ E

[
t (x)

1− F (x)

]
, (6.18)

where the asymptotic comparison holds because F (x)n−j (n−1
j−1

)
+ (1− F (x))n−j is bounded away from 0.

As the last term is infinite by (6.17), ΠPB-{n} (1)−ΠPB-{n,j} (1) diverges and ΠPB-{n,j} (1) > ΠPB-P (1).

Proof of Proposition 10

Let the increasing function ba : [0, 1] → R denote the equilibrium bidding function in auction a. By PET
and using Fact 17 (and the corresponding notation), for all v,

t (v) =
∑
j∈Pa

Pv|v
[
v(j) = v

]
Ev

[
ba
(
v(Ta(j)) (v)

)
|v(j) = v

]
(6.19)
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because, by definition, in auction a a bidder with value v pays if and only if he is an order statistic j ∈ Pa

and, in this case, pays the bid submitted by the (lower) bidder Ta (j).35

Moreover, notice that we can write the interim transfer ta (x, v) as

ta (x, v) =
∑
j∈Pa

Pv|x,v
[
v(j) = x

]
Ev|v

[
ba
(
v(Ta(j)) (v)

)
|v(j) = x

]
Therefore, when v = 0 and a bidder with value x is the jth-order statistic and pays, his expected payment
is the bid submitted by the lower bidder Ta (j), taking into account that there are n− j − 1 bidders with
unknown values lower than x (and one bidder with value 0).

The result at v = 0 follows because, for every standard auction a and x ∈ (0, 1],36

tFPA (x, 0) > ta (x, 0) ⇔ t (x)

F (x)
>
∑
j∈Pa

Pv|x,0
[
v(j) = x

]
Ev

[
ba
(
v(Ta(j)) (v)

)
|v(j) = x, v(n) = 0

]
⇔ t (x) >

∑
j∈Pa

Pv|x,0
[
v(j) = x

]
F (x)Ev

[
ba
(
v(Ta(j)) (v)

)
|v(j) = x, v(n) = 0

]
⇔

∑
j∈Pa

Pv|x
[
v(j) = x

]
Ev

[
ba
(
v(Ta(j)) (v)

)
|v(j) = x

]
>

>
∑
j∈Pa

n− j

n− 1
Pv|x

[
v(j) = x

]
Ev

[
ba
(
v(Ta(j)) (v)

)
|v(j) = x, v(n) = 0

]
,

where we have used tFPA (x, 0) = t(x)
F (x) , (6.19) and the fact that Pv|x,0

[
v(j) = x

]
F (x) = n−j

n−1Pv|x
[
v(j) = x

]
(see (6.14)). The inequality holds because n−j

n−1 < 1 for all j > 1 and, for all x, j and k > j,

Ev

[
ba
(
v(k) (v)

)
|v(j) = x

]
≥ Ev

[
ba
(
v(k) (v)

)
|v(j) = x, v(n) = 0

]
because ba is increasing and the kth-order statistic of n independent draws FOSD the kth-order statistic
of n′ < n independent draws from the same distribution.

Computations of the Interim Revenue Functions in Figure 4.3

Let n = 3 and v ∼ U [0, 1], so that t (v) = 2
3v

3. The bid and interim revenue functions in the FPA, SPA
and APA are standard and omitted.

Consider first the PB- {2} and PB- {3}. By (4.7), the bidding functions are

bPB-{2} =
t (v)

Pv|v
(
v(2) = v

) =
v2

3 (1− v)
,

and

bPB-{3} =
t (v)

Pv|v
(
v(3) = v

) =
2

3

v3

(1− v)2
.

35

Denoting dF v
(j,n) (w) the density of the jth order statistic from n draws from distribution F truncated at v, we obtain a

more explicit characterization of the bidding function ba : [0, 1] → R as t (v) =
∑

j∈Pa
pjn (v)

∫ v

0
ba (w)dGv

(Ta(j)−j,n−j) (w)
36A type x = 0 transfers nothing in all standard auctions, so we can disregard this case and assume F (x) > 0.
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We compute the interim revenue using (4.9). The likelihood rations are

Pv|x,v
(
v(2) = x

)
Pv|x

(
v(2) = x

) =

 1
2x if x > v

1
2(1−x) if x < v

Pv|x,v
(
v(3) = x

)
Pv|x

(
v(3) = x

) =

0 if x > v

1
1−x if x < v

and the interim revenues are

ΠPB-{2} (v) = t (v) +
4

3

[∫ v

0

x3

2 (1− x)
dx+

∫ 1

v

x2

2
dx
]

ΠPB-{3} (v) = t (v) +
4

3

[∫ v

0

x3

1− x
dx
]
.

It is immediate to check that

ΠPB-{1} (0) > ΠPB-{2} (0) > ΠPB-{3} (0) = 0

and
lim
v→1

ΠPB-{2} (v) = lim
v→1

ΠPB-{3} (v) = lim
v→1

ΠPB-{3} (v)−ΠPB-{2} (v) = ∞.

Consider now the standard auction with P = {2} and T (2) = 3, which we denote compactly as the
2, 3 auction. By the PET,

bPB-{2} (v) v =

∫ v

0
b2,3 (w) dw,

and hence the bidding function is

b2,3 (v) =
v2 (3− 2v)

3 (1− v)2
.

The interim transfer of a generic bidder against competitor v is

t2,3 (v) =
1

2
(1− v)2 b2,3 (v) +

1

2

∫ v

0
2 (v − w) b2,3 (w) dw,

as she pays b2,3 (v) when v is third and she is second, and the bid of the other competitor when v is first
and she is second (and nothing when v is second).37 Using (4.4),

Π2,3 (v) = t (v) + (1− v)2 b2,3 (v) +

∫ v

0
2 (v − w) b2,3 (w) dw

37Notice that conditional on the information that v is the jth order statistic, then the two remaining bidders are any other
order statistic with equal probability before drawing their type.
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The interim revenue difference with the associated PBA is38

Π2,3 (v)−ΠPB-{2} (v) = Pv|v
(
v(3) = v

)(
b2,3 (v)−

∫ 1

v
bPB-{2} (w) 2 (1− w) dw

)
=
v2 (3− 2v)

3
−
∫ 1

v

2

3
w2dw,

from which it follows that Π2,3 (0) − ΠPB-{2} (0) < 0 and Π2,3 (1) − ΠPB-{2} (1) > 0; again the PBA
dominates at v = 0, is dominated at v = 1, and single crossing holds as d

dv

(
Π2,3 (v)−ΠPB-{2} (v)

)
=

2
3v (3− 2v) > 0.

Finally, consider the All-Pay-Last auction (APL), that has P = {1, 2, 3} and T (1) = T (2) = T (3) = 3.

bAPA (v) =
2

3
v3 = Ev|v

[
bAPL

(
v(3) (v)

)]
= bAPL (v) (1− v)2 +

∫ v

0
bAPL (w) 2 (1− w) dw.

Differentiating and simplifying, we obtain the differential equation d
dv b

APL (v) = 2v2

(1−v)2
, which implies

bAPL (v) =
2v (2− v)

1− v
+ 4 log (1− v) ,

a divergent bid. This is natural: although the winning bidder pays, he does not pay his own bid, and
bounded bids unravel in any equilibrium. However, in this case the interim revenue remains finite because

tAPL (v) = Ev|v
[
bAPL

(
v(3) (v)

)]
= t (v)

so the IRF is ΠAPL (v) = 3t (v). Recall that the IRF of the APA, the associated PBA, is ΠAPA (v) =

t (v)+2E [t (x)]. Hence, ΠAPL (v)−ΠAPA (v) = 2 (t (v)− E [t (x)]) from which we immediately get interim
dominance of the PBA at 0 (at 1, strict) and single crossing of the IRFs.

Online Appendix

Proof of Proposition 12

To show that E is a savvy-bidder equilibrium we need

ΠF
0 (0) ≥ ΠS

(0,1] (0) (6.20)

and
ΠF

0 (v) ≤ ΠS
(0,1] (v) , ∀v > 0. (6.21)

38As an extension of the, the 2, 3 and PB − 2 auctions are interim equivalent conditional on v being the first, and the
second. We can check this. The in
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The argument made in the text establishes bSPA,N
(0,1] (x) = b̃SPA,S

(0,1] (x) = x and that

ΠS
(0,1] (v) = ΠS (v) =

n− 2

n
+ vn−1 − n− 1

n
vn. (6.22)

We construct ΠF
0 following the three steps in its definition.

Step 1. The FPA is chosen only when v = 0, so non-special bidders play bFPA,N
0 (x), the equilibrium

in the n− 1 bidders auction, while bFPA,S
0 is defined only on {0}.

Step 2. If the seller chose the FPA even when v > 0 the special bidder chooses

b̃FPA,S
0 (v) = argmax

b
(v − b)P

(
b > max bFPA,N

0 (x)
)

= argmax
b

(v − b)max

{(
n− 1

n− 2
b

)n−1

, 1

}

if
(
n−1
n−2b

)n−1
< 1 then the problem is equivalent to maximizing (v − b) bn−1, yielding the equilibrium bid

with n bidders; bidding above the value n−2
n−1 that ensures to win is dominated so the equilibrium bid is

capped at this level and we obtain b̃FPA,S
0 (v) = max

{
n−1
n v, n−2

n−1

}
.

Step 3. By deviating to the FPA when v > 0, the seller obtains max
{
b̃FPA,S
0 (v) , n−2

n−1y
}

, where y
denotes the maximum of the valuation of the non-special bidders.39 That is

ΠF
0 =

b̃
FPA,S
0 (v) if n−2

n−1y < b̃FPA,S
0 (v)

n−2
n−1y else

which yields interim revenue

ΠF
0 (v) =


n−1
n v

(
(n−1)2

n(n−2)v
)n−1

+
∫ 1

(n−1)2

n(n−2)
v

n−2
n−1ydy

n−1 v < n(n−2)

(n−1)2

n−2
n−1 else

= min

{
n− 2

n
+

(n− 1)2n−1

(n− 2)n−1 nn+1
vn,

n− 2

n− 1

}
.

Comparing with (6.22) we obtain that ΠS
(0,1] (0) = ΠF

0 (0) = 0, which establishes (6.20). Moreover, if

v ≤ n(n−2)

(n−1)2
then

ΠS
(0,1] (v)−ΠF

0 (v) ∝ 1−

(
n− 1

n
+

(n− 1)2n−1

(n− 2)n−1 nn+1

)
v

which is positive for all v ∈
[
0, n(n−2)

(n−1)2

]
since it is decreasing in v and positive at v = n(n−2)

(n−1)2
for all n ≥ 2.

If v > n(n−2)

(n−1)2
, then ΠS

(0,1] (v) > ΠS
(0,1]

(
n(n−2)

(n−1)2

)
> ΠF

0

(
n(n−2)

(n−1)2

)
= ΠF

0 (v) as ΠF
0 is flat in that region.

Therefore, ΠS
(0,1] (v) > ΠF

0 (v) for all v > 0, which establishes (6.21) and completes the proof.

39Notice that the equilibrium is inefficient whenever v < y < (n−1)2

n(n−2)
v; by bidding more aggressively than his competitors,

the special bidder wins too often.
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Proof of Proposition 13

Using the LIE,

Es=1

[
ΠF (v)−ΠS (v)

]
= EP

[
E
[
ΠF (v)−ΠS (v) |v < P

]]
we show that this expectation is positive no matter the distribution of P by showing that for each realization
p of P ,

E
[
ΠF (v)−ΠS (v) |v < p

]
> 0.

from independence of p and v we get

E
[
ΠF (v)−ΠS (v) |v < p

]
=

1

F (p)

∫ p

0
ΠF (v)−ΠS (v) dF (v)

= − 1

F (p)

∫ 1

p
ΠF (v)−ΠS (v) dF (v)

where the last line uses
∫ 1
0 Π

F (v)−ΠS (v) dF (v) = 0. Let ṽ be the threshold from Theorem 2 such that
sign

(
ΠF (v)−ΠS (v)

)
= sign (ṽ − v). If p < ṽ, then ΠF (v) − ΠS (v) > 0 for all v < p, implying that

the integral in the first line is positive. If p > ṽ then ΠF (v) −ΠS (v) ≤ 0 for all v > p (and strictly for
v < 1),40 implying that the integral in the second line is positive. The argument for s = 0 is the specular
and omitted.

40If P ∼ δ1, then v < P is uninformative and auctions are equivalent by the RET.
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