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1 Introduction
Firms increasingly delegate strategic decisions to artificial intelligence (AI) or AI-aided

agents (see, e.g., Chen, Mislove, and Wilson, 2016). This shift is particularly evident in
digital marketplaces, where sellers use algorithms to set prices on platforms like Amazon
Marketplace and Walmart Marketplace. Similarly, in online advertising, automated bidding
systems compete for ad placements on platforms like Bing Ads and Google DoubleClick. The
rise of algorithmic decision-making generates crucial questions about competition policy and
market design (Milgrom and Tadelis, 2018; Banchio and Skrzypacz, 2022), many of which
require estimating economic primitives to evaluate policy counterfactuals.

Modeling data generated by strategic interactions among algorithms calls for new empiri-
cal tools. AI agents adopt sophisticated algorithms to deal with the exploration-exploitation
trade-off typical of online learning problems. In online learning, agents with limited knowl-
edge of the environment choose actions in each period and receive payoffs that can depend
arbitrarily on their opponents’ choices and a state of nature. By taking new actions, agents
learn their associated payoffs (exploration) but at the cost of potentially suboptimal choices
given current information (exploitation). Regret minimization has emerged in computer
science and algorithmic game theory as the leading paradigm to design online learning algo-
rithms and evaluate their performance (e.g., Cesa-Bianchi and Lugosi, 2006; Nisan, Rough-
garden, Tardos, and Vazirani, 2007; Roughgarden, 2016). Regret is the difference between
the time-average payoff an agent could have obtained by repeatedly choosing the best fixed
action in hindsight in all past periods and the time-average payoff the agent actually ob-
tained. State-of-the-art learning algorithms are designed around the regret-minimization
objective (Slivkins, 2019; Lattimore and Szepesvári, 2020; Hazan, 2022): in the long run,
agents should do at least as well as with the best fixed action in hindsight.1

In this paper, we develop a method to estimate economic primitives in environments
where AI supports or replaces human decisions, building on the theoretical properties of
regret-minimizing algorithms. We model agents’ interaction in an incomplete information
environment as an online learning problem; consistent with the theory and practice of online
learning, we impose asymptotic no regret (ANR) as a minimal optimality condition on the
behavior observed in the data. Hence, our model of AI decision-making departs from stan-
dard structural econometric methods, which rely on equilibrium models where agents must
have prior knowledge or beliefs about their opponents’ identities, incentives, and information.

ANR is an optimality property of observed behavior but does not specify a decision rule
1That is, agents should do at least as well as with the best fixed action had they known the empirical

distribution of payoffs associated with each action in advance.
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nor requires agents to compute regrets each period. Leading AI algorithms guarantee ANR
under minimal informational requirements—i.e., knowing only their action set and estimates
of realized payoffs (e.g., Shalev-Shwartz, 2012; Bubeck and Cesa-Bianchi, 2012). Although
we do not exclude that agents may know or observe more or that they might coordinate on
specific algorithms, such additional assumptions are unnecessary. Hence, our econometric
approach is in the spirit of incomplete models (Tamer, 2003; Haile and Tamer, 2003).

Under the ANR assumption, we develop an empirical strategy to estimate the structural
parameters of the underlying stage game. To characterize the empirical content of ANR, we
establish an auxiliary result on the convergence of regret-minimizing dynamics: ANR holds if
and only if the time average of play (i.e., the empirical distribution of actions over time) con-
verges to the set of Bayes coarse correlated equilibrium (BCCE) predictions of the stage game.

A BCCE is a joint probability distribution over actions, types, and states satisfying two
restrictions: consistency and coarse obedience. Consistency requires that integrating out
actions (i.e., the endogenous variables) from the BCCE distribution recovers the true dis-
tribution of types and states (i.e., the exogenous variables). Coarse obedience requires that
when an action profile, type profile, and state are drawn from the BCCE distribution, each
agent, who is informed only of their realized type from the draw, prefers to commit to their
part of the realized action profile rather than to any other action. Our BCCE notion is the
coarse analog of the Bayes correlated equilibrium (BCE) notion of Bergemann and Morris
(2016). The novel result on convergence under ANR provides dynamic foundations for the
BCCE notion, thus generalizing to incomplete information environments earlier findings for
games with complete information (e.g., Foster and Vohra, 1997; Hart and Mas-Colell, 2000).

The intuition for the convergence result under ANR is that if the regret of each type of
each agent vanishes in the long run, the time average of play must eventually satisfy the
incentive constraints corresponding to coarse obedience, and vice versa. Coarse obedience,
requiring only that agents’ actions be optimal conditional on their types, reflects that regret-
minimizing agents only consider “coarse” deviations to fixed alternative actions. Hence, the
convergence of the empirical distribution of actions to the set of BCCE predictions provides
us with static equilibrium restrictions (namely, consistency and coarse obedience) that we
can use to identify and estimate games played by regret-minimizing AIs.

Identification in our setting differs from standard approaches where data are i.i.d. draws
from a single limiting distribution. Under ANR, neither period-by-period actions nor their
empirical distribution over time necessarily converge to a specific limiting distribution. In-
stead, the observed sequence of empirical distributions eventually enters any neighborhood
of the set of BCCE predictions; thereafter, the sequence may wander forever within the
neighborhood in arbitrary ways. For this reason, we define the identified set as those pa-
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rameters that rationalize the observed empirical distribution of actions as generated by
regret-minimizing behavior. The set is characterized by moment inequalities derived from
the BCCE constraints. Because of the if-and-only-if nature of our convergence result, these
inequalities provide sharp restrictions for identification under ANR and allow us to develop
a tractable estimation procedure.

We further leverage the algorithmic nature of our data-generating process for inference.
We construct uniformly valid confidence regions using theoretical bounds on the convergence
rates of regret-minimizing algorithms to their objective. These bounds can be obtained under
conservative assumptions about the environment, i.e., only requiring algorithms to operate
in an adversarial setting with minimal feedback about their performance. Alternatively,
researchers can obtain tighter confidence regions by imposing additional assumptions, e.g.,
maintaining that agents receive richer feedback about their payoffs or that they adopt regret-
minimizing algorithms in some specific sub-class. This flexibility allows researchers to tailor
inference to their empirical context, trading off the robustness of conservative assumptions
against the increased precision available under stronger ones. We illustrate our estimation
approach and these trade-offs through Monte Carlo simulations of a repeated pricing game.

In an empirical application, we use our method to study competition between sellers on
Swappa, a decentralized marketplace for used smartphones. Unlike standard empirical pric-
ing models, we do not posit that sellers know or correctly conjecture their competitors’ strate-
gies; instead, we assume that sellers adopt ANR pricing algorithms. In this setting, ANR re-
quires that sellers could not have obtained systematically higher profits by committing to any
fixed price for any of their marginal costs. Under ANR, our method allows us to use BCCE
restrictions to recover the distribution of marginal costs for the platform’s largest sellers,
who make frequent pricing decisions and are most likely to employ algorithmic pricing tools.

We find that these sellers’ marginal costs are $56-$90 below prices on centralized plat-
forms. Using these estimates, we quantify markups and compare them to those charged by
Gazelle, a centralized buyback and resale platform. Our analysis reveals that margins for
Swappa sellers are modest, with average markups of $21-$51 per device—substantially lower
than those of centralized resellers, especially for newer devices. These findings provide new
evidence on the profitability of different business models in e-commerce and speak to the
broader debate on the relative competitiveness of first-party versus third-party sellers.

While our application recovers costs and markups from pricing data, our method extends
naturally to other settings where strategic agents employ learning algorithms. The approach
can recover any primitive that affects payoffs—whether marginal costs, utility parameters, or
other structural features. As AI tools become increasingly prevalent in market interactions,
this flexibility makes our framework portable and useful across empirical environments.
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Related Literature. We contribute to a recent literature that estimates empirical models
of learning agents (see Aguirregabiria and Jeon, 2020, for a survey). Existing work adopts
model-based and belief-based learning approaches (e.g., Doraszelski, Lewis, and Pakes, 2018;
Aguirregabiria and Magesan, 2020). In contrast, conforming to the practice of algorithmic
decision-making in strategic environments, our AI agents need not model or form beliefs
about other agents’ behavior and information. By relying only on a principle (ANR) that
guides the design of online learning algorithms, our approach leads naturally to an incomplete
model and results in partial identification (see Molinari, 2020, for a survey).

Although we use related equilibrium restrictions, we depart from the literature that
uses BCE for inference (Syrgkanis, Tamer, and Ziani, 2021; Magnolfi and Roncoroni, 2023;
Gualdani and Sinha, 2024) by using BCCE restrictions to capture long-run outcomes of
regret-minimizing AIs, without explicit focus on the robustness to informational assump-
tions. This yields a distinct econometric approach: we establish inferential properties using
convergence rates of regret-minimizing algorithms rather than assuming that data are i.i.d.
samples from an equilibrium distribution.

Our paper relates to an emerging literature that studies the implications of algorithmic
decision-making on competition. Existing work used simulation (e.g., Calvano, Calzolari,
Denicolò, and Pastorello, 2020; Asker, Fershtman, and Pakes, 2024), theoretical (e.g., Sal-
cedo, 2015; Hansen, Misra, and Pai, 2021; Aouad and den Boer, 2021; Brown and MacKay,
2023; Lamba and Zhuk, 2024; Banchio and Mantegazza, 2024), and empirical approaches
(e.g., Musolff, 2024; Assad, Clark, Ershov, and Xu, 2024) to shed light on the potential
for algorithms to sustain supra-competitive prices. We complement these theoretical and
simulation studies by proposing a structural econometrics approach.

The existing literature mainly focuses on AIs based on reinforcement learning (RL), which
may sustain supra-competitive prices. Instead, regret-minimizing AIs pursue approximate
maximization of short-run profits, adapting to market conditions. As a result, no-regret prop-
erties have been proposed to define non-collusive outcomes of algorithmic competition (Chas-
sang and Ortner, 2023), and deviations from no regret may form a basis for detecting collusion
in AI pricing data (Hartline, Long, and Zhang, 2024). The theoretical distinction between re-
gret minimization and collusion suggests an empirical distinction between two environments
where agents may deploy AIs. In concentrated environments where few agents compete,
algorithmic collusion is a first-order concern. Our method, instead, mainly applies in decen-
tralized environments, where no regret is a sensible benchmark for AIs, and even RL fails to
reach collusive outcomes (see, e.g., the local learning case in Abada and Lambin, 2023).

Our work is related to the path-breaking study of Nekipelov, Syrgkanis, and Tardos
(2015) and other recent work on econometric approaches to sponsored search auctions based
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on regret-minimizing bidding algorithms (Noti and Syrgkanis, 2021; Chen, Nabi, and Sinis-
calchi, 2023). We share with these authors the motivation for using regret minimization as
a basis for empirical work, but our approach differs in two important ways. First, while
Nekipelov et al. (2015) rely on the structure of second-price auctions, we use theoretical
convergence results to characterize the empirical content of ANR through the static BCCE
notion. Thus, our method applies to any underlying stage game and accommodates a broader
class of information and stochastic environments. Second, while they focus on recovering the
smallest regret error compatible with the data, we focus on estimating structural parameters.
Since agents may still be learning in the data we observe, we leverage discrepancies from
perfect regret minimization and the convergence rates of regret-minimizing AIs to conduct
inference in finite samples.

Finally, we build on a large and growing literature at the intersection of economics and
computer science on learning and regret minimization. Regret minimization is a leading ap-
proach in online learning and multi-armed bandit problems (see, e.g., Foster and Vohra, 1999;
Slivkins, 2019; Lattimore and Szepesvári, 2020, and references therein) and a central idea in
multiagent learning (see, e.g., Nisan et al., 2007; Roughgarden, 2016; Hart and Mas-Colell,
2013, and references therein). We contribute to this work by providing novel results on the
convergence properties of regret-minimizing dynamics in games with incomplete information.

Road Map. In Section 2, we present the empirical model and the econometric problem we
consider. In Section 3, we formalize the notion of asymptotic no regret and study convergence
to the set of BCCEs. In Section 4, we develop our econometric approach. In Section 5, we
present our empirical application. In Section 6, we conclude. All proofs are in Appendix A.

2 Empirical Model
In this section, we present the strategic interactions we consider and define asymptotic

no regret. Then, we introduce the econometric problem and the data-generating process.

2.1 Strategic Interaction

Dynamic Environment. We model the strategic interaction of artificial intelligence (AI)
or AI-aided agents (Immorlica, Lucier, and Slivkins, 2024) as an online learning problem.
Online learning is the standard framework in computer science and algorithmic game theory
to model sequential decision-making in changing environments under poor prior knowledge
(see, e.g., Cesa-Bianchi and Lugosi, 2006; Nisan et al., 2007; Roughgarden, 2016). In on-
line learning, each period, an agent probabilistically chooses an action, Nature makes its
move, and the agent receives a payoff as a function of his action and Nature’s move. The
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sequence of payoffs the agent receives over time can be arbitrary, need not be stationary,
and might be adaptive to the agent’s past actions. Agents receive information about past
payoffs and must make decisions without strong knowledge or assumptions about the future
payoffs’ distribution. In a strategic interaction, each period’s payoffs are a function of the
agent’s actions, the actions of his opponents, and stochastic payoff-relevant features of the
environment; together, the latter two elements act as Nature’s move.

Formally, we consider finitely many agents, i ∈ I := {1, . . . , I}, interacting over discrete-
time periods, n ∈ N := {1, 2, . . . }. In each period n:

(i) A payoff state θn is drawn from some state distribution ψn ∈ ∆(Θ), where Θ is the
finite set of payoff states.

(ii) A profile of signals tn := (t1,n, . . . , tI,n) ∈ T := T1 × · · · × TI is drawn from some signal
distribution π(· | θn) ∈ ∆++(T ), where Ti is the finite set of signals (types) of agent i.
Each agent i privately observes his signal ti,n.

(iii) Each agent i selects an action ai,n ∈ Ai, where Ai is the finite set of actions of agent i.

(iv) Each agent i observes his realized payoff ui(an, θn), where an := (a1,n, . . . , aI,n) ∈ A :=

A1 × · · · × AI is the action profile played in period n.
We refer to the resulting dynamic strategic interaction as the dynamic environment and

denote it by G∞. We specify agents’ behavior in G∞ in Section 2.2.
A history of G∞ at the end of period N is a sequence (an, tn, θn)

N
n=1. Let HN :=

(A× T ×Θ)N be the set of histories at the end of period N , H := ∪N≥1H
N the set

of finite histories, and H∞ := (A× T ×Θ)∞ the set of infinite histories. We refer to
(an, tn, θn)

∞
n=1 ∈ H∞ as a sequence of actions, signals, and states from G∞.

We denote by θ, ai, a, ti, and t typical elements of (sub)sets Θ, Ai, A, Ti, and T . We
write π(t | θ) for the probability of signal profile t when the payoff state is θ. We denote by
a−i (resp., t−i) a typical profile of actions (resp., signals) for agents other than i.

Our general specification of a dynamic environment makes no assumptions about the
evolution of payoff states. In the main body of the paper, to help intuition, we focus on an
environment directly relevant to many empirical applications, including ours: payoff states
θn are i.i.d. across periods, drawn from some state distribution ψ ∈ ∆++(Θ). Although all
main features of the method are well-illustrated in this setting, our approach applies more
broadly. We discuss more general dynamic environments in Appendix B.

We assume that each agent knows his set of possible actions and, in each period, observes
his signal and realized payoff. However, we make no further knowledge or monitoring as-
sumptions. Agents may not know their opponents’ identities and payoffs, how payoff states
evolve, and how states map into signals. Thus, agents may not have a (common) prior,
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may not process the information that signals convey, and may not observe the state and the
action profile at the end of each period. Importantly, we do not exclude that agents know
or observe more; such additional requirements, however, are unnecessary for our results.

Stage Game. To the dynamic environment G∞, there corresponds an (incomplete infor-
mation) static game G := (I, G, S), where G is the basic game and S is the information
structure. The basic game G consists of: (i) the set of payoff states Θ; (ii) for each agent i,
the set of actions, Ai, and the payoff function, ui : A × Θ → R; (iii) the state distribution
ψ ∈ ∆++(Θ). Thus, G :=

(
Θ, (Ai, ui)

I
i=1, ψ

)
. The information structure S consists of: (i)

for each agent i, the set of signals (types) Ti; (ii) the signal distribution π : Θ → ∆++(T ).
Thus, S :=

(
(Ti)

I
i=1, π

)
. If |Θ| = 1, then G is a game with complete information. Hereafter,

we refer to G as the stage game.

Structural Parameters. The stage game associated with the dynamic environment G∞

belongs to a parametric class {G(λ)}λ∈Λ, indexed by the structural parameters λ ∈ Λ ̸= ∅.

Discussion. Our setting departs from typical models of empirical games to capture AI
decision-making in decentralized online environments such as digital marketplaces and spon-
sored search auctions. In these complex environments, agents typically make high-frequency
decisions in an evolving landscape. Hence, agents find it hard to know all the relevant fea-
tures of their interaction, such as having prior knowledge or forming (correct) beliefs about
their opponents’ identities, incentives, information, and behavior. Therefore, although we
use standard game-theoretic language to present our model, game-theoretic formalisms, like
the basic game and the information structure, do not have the usual interpretation in our
setting: they do not represent agents’ actual knowledge and beliefs about the environment.
Nonetheless, game-theoretic notions and restrictions on the observables will be key ingredi-
ents of our econometric procedure.

2.1.1 Illustration: A Two-Seller Pricing Game

Consider pricing by firms in an e-commerce platform, the environment we study in our
empirical application. In this and our following illustrations, we use a stylized version of the
environment to introduce the main elements of our method in a simple setting.

There are two sellers, i ∈ I = {1, 2}, each with one unit of a differentiated good. Sellers
rely on AI pricing algorithms and interact over discrete-time periods n ∈ N. In each period n:

(i) A profile of marginal costs θn = (t1,n, t2,n), i.i.d. over time, is drawn from some prob-
ability distribution ψ(·;λ) ∈ ∆++(Θ), where Θ = T = T1 × T2 and 1 ≤ |Θ| <∞.

(ii) Each seller i privately observes his marginal cost ti,n ∈ Ti. Hence, the information
structure S has π(t | θ;λ) = 1 if and only if t = θ.
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(iii) Each seller i sets price pi,n ∈ Ai = {pℓ, ph}, where 0 < pℓ < ph.

(iv) Each seller i observes his profit ui((pi, p−i), θ;λ) = si(pi,n, p−i,n;λ)(pi,n − ti,n), where
si(pi,n, p−i,n;λ) is the probability of sale for i’s good when prices are (pi,n, p−i,n).

Each seller knows the prices he can set and observes his marginal cost and realized profit in
each period. We do not make further knowledge or monitoring assumptions.

2.2 Asymptotic No Regret

In online learning, agents face the exploration-exploitation trade-off typical of bandit
problems: taking new actions allows agents to learn the payoffs associated with them (ex-
ploration) but at the cost of sub-optimal behavior based on the information accumulated so
far (exploitation). Regret minimization, i.e., outperforming a benchmark policy in hindsight,
is the standard objective to evaluate performance in online learning problems. In particular,
minimizing regret with respect to the best fixed action in hindsight captures the best agents
can consistently achieve in environments about which prior knowledge may be hard to ob-
tain. As such, this worst-case objective is the principle guiding the design of online learning
algorithms (see, e.g., Shalev-Shwartz, 2012; Bubeck and Cesa-Bianchi, 2012).

To reflect these properties of online learning (or bandit) algorithms, we assume that
agents’ behavior in G∞ satisfies the minimal optimality condition of asymptotic no regret,
which we now formally define. For all i ∈ I and ti ∈ Ti, let UN(i, ti) be the average factual
payoff that agent i with signal ti has obtained up to period N :

UN(i, ti) :=
1

N

N∑
n=1

ui
(
(ai,n, a−i,n), θn;λ

)
1{ti}(ti,n),

where 1{·}(·) is the indicator function. Moreover, let VN(i, ti) be the average counterfactual
payoff that agent i with signal ti would have obtained had he played the best fixed action
in hindsight up to period N :

VN(i, ti) := max
ai∈Ai

{
1

N

N∑
n=1

ui
(
(ai, a−i,n), θn;λ

)
1{ti}(ti,n)

}
Regrets are defined as differences between these counterfactual and factual payoffs.

Definition 1 (Regret). For all i ∈ I and ti ∈ Ti, the regret of agent i with signal ti before
play in period N + 1, denoted by RN(i, ti), is defined as

RN(i, ti) := max{VN(i, ti)− UN(i, ti), 0}.

RN(i, ti) is the difference between (i) what agent i with signal ti could have gotten had
he known in advance the empirical distribution of payoffs associated with each action up to
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period N and chosen the best fixed action accordingly, and (ii) what he actually got.2

Asymptotic no regret requires the time-average regret experienced by each type of each
agent for not having played the best fixed action in hindsight to vanish in the long run.

Definition 2 (Asymptotic No Regret). A sequence (an, tn, θn)
∞
n=1 from G∞ has asymptotic

no regret (ANR) if, for all i ∈ I and ti ∈ Ti, we have

lim sup
N→∞

RN(i, ti) ≤ 0 almost surely.

Intuitively, ANR requires the no ex-post regret property of Nash equilibrium to hold over
sequences (an, tn, θn)

∞
n=1 with respect to the best fixed action in hindsight. In contrast to

Nash equilibrium, however, ANR does not require agents’ actions to be stable and indepen-
dent. Moreover, ANR is weaker than equilibrium play: should agents reach or play any Bayes
Nash or Bayes (Coarse) Correlated equilibrium of G, the resulting sequence (an, tn, θn)

∞
n=1

from G∞ has ANR (Section 3 formalizes this idea).

Probability Space. Regret-minimizing algorithms—hereafter, ANR algorithms—typically
involve randomization. Thus, there are three sources of randomness in the model: (i) the
process of payoff states (θn)

∞
n=1; (ii) the sequence of signal distributions (π(· | θn;λ))∞n=1; (iii)

the randomization induced by ANR algorithms. These sources induce a probability measure
P on the set of finite histories H. By the Kolmogorov extension theorem, P uniquely extends
to H∞. Hereafter, all probabilistic statements refer to the probability measure P.

2.2.1 ANR Algorithms

ANR algorithms are data-driven procedures that learn from past experiences and adapt
behavior to the environment while making decisions. Since the seminal work of Blackwell
(1956a,b) and Hannan (1957), many ANR algorithms have been developed. Some popular
ANR algorithms are: the Regret Matching algorithm (Hart and Mas-Colell, 2000); the Multi-
plicative Weights Update algorithm (Arora, Hazan, and Kale, 2012) and its precursors, such
as the Weighted Majority algorithm (Littlestone and Warmuth, 1994) or the Hedge algorithm
(Freund and Schapire, 1997); the Exponential-Weight algorithm for Exploration and Ex-
ploitation (Auer, Cesa-Bianchi, Freund, and Schapire, 2002); the Follow the Leader algorithm
(Kalai and Vempala, 2005), and the Mirror Descent algorithm (Nemirovsky and Yudin, 1983).

Many ANR algorithms are computationally efficient. They do not need offline training
and are designed to keep learning in constantly changing or adversarial environments. ANR
algorithms require almost no prior knowledge, consistent with the minimal requirements we

2We discuss alternative regret notions in Appendix C.
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impose in Section 2.1 on what agents know or observe about their interaction. ANR algo-
rithms can work even if counterfactual payoffs and regrets are not observable, as these can be
estimated via experimentation. Moreover, ANR algorithms are model- and belief-free: they
do not require agents to form a model or beliefs about the environment, their opponents’
objectives and play, and to reply optimally to such conjectures.

Different ANR algorithms are optimized to perform under different environments, con-
straints, or objectives. Following the literature on online learning and multi-armed bandit
algorithms, we can broadly classify ANR algorithms depending on the following features (for
further details, we refer to Slivkins, 2019; Lattimore and Szepesvári, 2020; Hazan, 2022).

1. Environment. What generates payoffs? The literature considers two extremes. In
the stochastic stationary bandit environment, the payoff from each action is drawn inde-
pendently from a fixed distribution that depends on the action but not on the period, the
previous actions, and the previous payoffs. In the adversarial bandit environment, payoffs
can be arbitrary, as if an adversary chooses the ANR algorithm’s payoffs trying to fool the
algorithm (without knowing the algorithm’s action for the period). There are all shades of
gray between these two extremes. The “less adversarial” the environment is, the easier it is
to satisfy the desired performance benchmark for the ANR algorithm.

2. Informational Feedback. What feedback is available to the ANR algorithm after
each period? The literature distinguishes three types of feedback. Under full feedback, the
algorithm perfectly observes the payoffs for the selected action and all actions it could have
selected instead. Under bandit feedback, the algorithm perfectly observes the payoff for the
selected action but no other feedback. Under partial feedback, the algorithm observes a sig-
nal that may not be perfectly informative of the payoff of the selected action; such signal,
however, may also provide some information about unselected actions, but not necessarily
their exact payoffs.3 In between, there are many other possible feedback structures. If richer
feedback is available, it helps improve the performance of the ANR algorithm.

3. Objective. How does the ANR algorithm pursue its goal? For a given environment and
informational feedback, many ANR algorithms minimize regret while maximizing the conver-
gence rate of the expected regret to 0. The literature has characterized lower bounds for such
a rate and various algorithms that achieve those bounds. In specific applications, other objec-
tives may be desirable. For instance, some ANR algorithms minimize regret while optimizing
properties of the distribution of realized regrets, e.g., mean-variance trade-off considerations.

For our theoretical and identification results, we only impose that agents’ behavior sat-
3To ease exposition, we presented our model assuming that each agent observes at least his realized payoff

at the end of each period. All our results, however, hold with no modification under partial feedback.
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isfies ANR. Thus, our approach is algorithm-independent: we assume neither that agents
adopt a specific ANR algorithm nor that they coordinate on the same one. However, we will
exploit the properties of broad classes of ANR algorithms to establish inferential properties
of our confidence regions.

The flexibility and appealing theoretical properties of ANR algorithms have led to their
widespread adoption. Algorithms with regret minimization at their core are applied to bid-
ding in online advertising auctions, recommender systems, pricing, and revenue management
(see Slivkins, 2019, for more examples and references).

2.2.2 Illustration: A Two-Seller Pricing Game

Consider a parametric and numerical specification of the two-seller pricing game in Sec-
tion 2.1.1. Sellers set prices pi,n ∈ {pℓ, ph} = {4, 8}. Marginal costs are i.i.d. across sellers.
Each seller’s marginal costs are drawn from a discretized Normal distribution with param-
eters µ = 3 and σ = 1, and support over 20 equally spaced points between t = 0 and
t = 6. Let si(pi,n, p−i,n;λ) := exp(ηpi,n)/[1 + exp(ηpi,n) + exp(ηp−i,n)] be the probability of
sale for seller i’s good when prices are (pi,n, p−i,n). Hence, s1 = s2 = s. The parameter
η = −1/3 captures consumers’ price sensitivity so that i’s selling probability decreases in
pi,n and increases in p−i,n. With this specification, the pricing game is symmetric.

We simulate sellers setting prices using regret matching (Hart and Mas-Colell, 2000).
According to regret matching, the larger the regret for not having always set a given price in
the past, the larger the probability of setting that price in the current period. Formally, let

RN(i, ti, p) :=
1

N

N∑
n=1

[
s(p, p−i,n;λ)(pi − ti,n)− s(pi,n, p−i,n;λ)(pi,n − ti,n)

]
1{ti}(ti,n)

be the regret of seller i with marginal cost ti for not having always set price p up to period
N . According to regret matching, the probability of setting price p in period N +1 by seller
i with signal ti, denoted by γN+1(i, ti, p), is proportional to the vector of his regrets, i.e.,
γN+1(i, ti, p) = RN(i, ti, p)/[RN(i, ti, 4)+RN(i, ti, 8)]. Play is arbitrary when all regrets are 0.

Since a learning opponent’s behavior is not guaranteed to follow some fixed stationary
distribution, sellers face an adversarial bandit environment. Moreover, for simplicity, we
implement regret matching by assuming counterfactual profits and regrets are observable,
which requires sellers to know the demand function and observe their opponent’s price each
period. The full-feedback assumption, however, is easy to relax. Hart and Mas-Colell (2001)
provide a modification of regret matching, dubbed proxy-regret matching, that works under
bandit feedback, i.e., even if each seller is informed only of his realized profit in each period.

If both sellers set prices according to regret matching, the resulting sequence of prices
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Figure 1: Regrets under Regret Matching.

We simulate price setting under regret matching for 10, 000 periods. For two different marginal costs of each
seller, we plot the regrets RN (i, ti) as a function of the number of periods of play. We plot regrets starting
in period 200 so that each seller has already played at least a few times for all marginal costs.

and marginal costs has ANR, as illustrated by Figure 1. For 10, 000 iterations of regret
matching, we represent in the figure how regrets RN(i, ti) evolve for two different marginal
costs of each seller as a function of the number of periods. For a given marginal cost, say ti,
how fast regrets converge to 0 depends on how often seller i sets prices for that specific cost
(i.e., how frequently marginal cost ti realizes) and the magnitude of the difference between
payoffs corresponding to different profiles of actions.

2.3 Data-Generating Process

The true structural parameters λ0 are unknown to a researcher who wants to learn about
them. The assumption below summarizes the data-generating process and the observables.

Assumption 1. Consider a dynamic environment G∞ with stage game G(λ0):
1. For some positive integer N , the researcher observes an empirical distribution of actions

qN ∈ ∆(A) from G∞, where

qN(a) :=
1

N

N∑
n=1

1{a}(an). (1)

2. The sequence of actions, signals, and states (an, tn, θn)
∞
n=1 from G∞ has ANR.

The researcher may have access to more information than in Assumption 1. For instance,
she may observe data on covariates or the full sequence (qn)

N
n=1. We discuss in Appendix

D how these additional observables help increase the informativeness of our econometric
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procedure. Furthermore, we note that the first period used to compute qN need not coincide
with the first period in G∞ because the usual initial conditions problem in dynamic empirical
models does not arise in our setting. Indeed, if a sequence (an, tn, θn)

∞
n=1 from G∞ has ANR,

so does any other sequence (an, tn, θn)
∞
n=k from G∞, for all positive integers k.

The empirical model described by Assumption 1 is incomplete in the sense of Tamer
(2003) and Haile and Tamer (2003). Although we assume agents learn and adapt to the en-
vironment sufficiently well for ANR to hold, we do not specify other model elements. First,
we do not make specific assumptions about the stochastic process generating agents’ payoffs
and what agents know or observe—they may know or observe more than the bare minimum
for ANR to hold. Second, we neither assume that agents adopt a specific ANR algorithm
nor that they coordinate on the same one.

In the following sections, we develop an econometric procedure to set-identify λ0 under
Assumption 1. To characterize the empirical content of ANR, we start by establishing a
novel game-theoretic result on the convergence of the empirical distribution of actions qN to
the set of Bayes coarse correlated equilibrium (BCCE) predictions of the stage game G(λ0).
This auxiliary result will allow us to obtain sharp restrictions for identification under ANR
and develop a tractable estimation procedure.

2.3.1 Illustration: A Two-Seller Pricing Game

For the pricing game in Sections 2.1.1 and 2.2.2, suppose the researcher can estimate “of-
fline” the probability of sale s(·, ·) and, for some positive integer N , observes an empirical dis-
tribution of prices qN ∈ ∆

(
{4, 8}2

)
. Assume the sequence of prices and marginal costs satis-

fies ANR. If the researcher wants to recover the distribution of marginal costs, we have λ = ψ.

3 Convergence under Asymptotic No Regret
In this section, we establish a game-theoretical result connecting ANR to Bayes coarse

correlated equilibrium. The result is instrumental in developing our econometric procedure.

3.1 Bayes Coarse Correlated Equilibrium

A Bayes coarse correlated equilibrium of the stage game G(λ) is a probability distribution
over actions, signals, and states ν ∈ ∆(A× T ×Θ) satisfying certain restrictions.

Definition 3 (Bayes Coarse Correlated Equilibrium). The probability distribution ν ∈ ∆(A×
T ×Θ) is a Bayes coarse correlated equilibrium (BCCE) of G(λ) if:
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1. ν is consistent for G(λ); that is, for all t ∈ T and θ ∈ Θ, we have∑
a

ν(a, t, θ) = π(t | θ;λ)ψ(θ;λ).

2. ν is coarsely obedient for G(λ); that is, for all i ∈ I and ti ∈ Ti, we have∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ

)
− ui(a, θ;λ)

]
ν(a, (ti, t−i), θ) ≤ 0 for all a′i ∈ Ai.

We denote by E(λ) the set of BCCEs of G(λ).

Consistency is a feasibility constraint requiring the marginal of distribution ν on T×Θ to
be consistent with the description of game G(λ). Coarse obedience is an incentive constraint
best understood with the mediator metaphor. Suppose a mediator draws an action profile,
a signal profile, and a state from distribution ν. Agents know ν. The mediator informs each
agent i about his realized signal ti, but not about his realized action ai, from ν. Next, the
mediator gives each agent i a choice between (a) committing to whatever joint action profile
(ai, a−i) has realized from ν, and (b) committing to any fixed action a′i. The distribution ν

is coarsely obedient if each agent weakly prefers (a) to (b), given that the other agents are
committed to playing their part in the realized action profile.

The set E(λ) is convex. Our BCCE notion is the coarse analog of the Bayes correlated
equilibrium (BCE) notion of Bergemann and Morris (2016) and an incomplete information
version of coarse correlated equilibrium (Hannan, 1957; Moulin and Vial, 1978).4 We formally
contrast BCCEs with BCEs in Appendix C. If G(λ) is a game with complete information,
BCCEs reduce to coarse correlated equilibria.

3.2 Asymptotic No Regret and Static Equilibria

We define the notion of an empirical distribution of actions, signals, and states from G∞.

Definition 4 (Empirical Distribution). The empirical distribution of actions, signals, and
states from G∞ at the end of period N is denoted by ZN ∈ ∆(A× T ×Θ), where

ZN(a, t, θ) :=
1

N

N∑
n=1

1{a}(an)1{t}(tn)1{θ}(θn).

ZN(a, t, θ) is the empirical frequency of the action-signal-state profile (a, t, θ) in the first
N periods. Note that qN defined in (1) is the marginal on A of the empirical distribution
ZN for all positive integers N . That is, qN(a) =

∑
t,θ ZN(a, t, θ) for all a ∈ A.

4In recent work, Brooks, Du, and Zhang (2024) and Zhang (2024) use the BCCE notion to construct
robust bounds on economic outcomes.
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The following theorem shows that a sequence of actions, signals, and states from G∞

has ANR if and only if the sequence of empirical distributions of actions, signals, and states
converges almost surely to the set of BCCEs of G(λ0).

Theorem 1 (Convergence under ANR). The sequence (an, tn, θn)
∞
n=1 from G∞ has ANR if

and only if the sequence of empirical distributions (ZN)∞N=1 converges almost surely to E(λ0).

We next define restrictions on the set of actions implied by BCCE.

Definition 5 (BCCE Prediction). The probability distribution q ∈ ∆(A) is a BCCE predic-
tion of G(λ) if there exists ν ∈ E(λ) such that

q(a) =
∑
t,θ

ν(a, t, θ) for all a ∈ A.

We denote by Q(λ) the set of BCCE predictions of G(λ).

The following result is an immediate corollary of Theorem 1.

Corollary 1 (Convergence of Empirical Distribution of Actions). If the sequence (an, tn, θn)∞n=1

from G∞ has ANR, then the sequence of empirical distributions of actions (qN)
∞
N=1 converges

almost surely to Q(λ0).

Convergence Notion. We clarify the convergence notion of (qN)∞N=1 to Q(λ0) in Corollary
1. Similar remarks apply to the convergence of (ZN)∞N=1 to E(λ0) in Theorem 1. For this
purpose, we introduce the notion of an ε-BCCE prediction.

Definition 6 (ε-BCCE Prediction). Let ε ≥ 0. The set of Bayes coarse correlated ε-
equilibrium predictions of G(λ) is

Q(ε;λ) := {q ∈ ∆(A) : d(q,Q(λ)) ≤ ε},

where, for the Euclidean norm ∥ · ∥, d(qN , Q(λ)) := infq∈Q(λ) ∥qN − q∥.

The almost sure convergence of (qN)∞N=1 to Q(λ0) in Corollary 1 means that

P
(

lim
N→∞

d(qN , Q(λ0)) = 0
)
= 1. (2)

That is, the following statement holds almost surely: for all ε > 0, there exists Nε ∈ N
such that qN ∈ Q(λ0; ε) for all N ≥ Nε. The a.s. convergence of (qN)∞N=1 is to Q(λ0), not
necessarily to a point in that set. Moreover, whereas the empirical distribution of actions
eventually becomes a BCCE prediction, there is no guarantee that play does so.
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Discussion. Although only instrumental in this paper, Theorem 1 is of independent interest:
it provides dynamic foundations for the static notions of BCE and BCCE (we discuss conver-
gence to the set of BCEs in Appendix C). The theorem generalizes to games with incomplete
information earlier work on the dynamic foundations for (coarse) correlated equilibrium in
games with complete information (e.g., Foster and Vohra, 1997; Hart and Mas-Colell, 2000).

Existing work in computer science (Hartline, Syrgkanis, and Tardos, 2015; Caragiannis,
Kaklamanis, Kanellopoulos, Kyropoulou, Lucier, Paes Leme, and Tardos, 2015) studies price-
of-anarchy and efficiency properties of regret minimization in incomplete information games.
Instead, our focus is on connecting regret minimization to an inference problem. Moreover,
Hartline et al. (2015) study an independent private values setting in which private informa-
tion is independent across agents and time, and Caragiannis et al. (2015) allow for correlated
valuations in generalized second-price auctions. In contrast, we work with general games,
allowing for private information correlated across agents and time and for common values.5

We highlight a central difference between our setup and that in Hartline et al. (2015),
which gives rise to different convergence results. In Hartline et al. (2015), each agent’s ac-
tions are conditionally independent of other agents’ signals, given the agent’s signal itself.
In contrast, in our environment, agents may receive further signals informative about the
payoff state; such signals may induce additional correlation across actions, which breaks
conditional independence. Because of this contrast, our dynamics converge to the set of
BCCEs—a superset of the limit set characterized by Hartline et al. (2015).

3.3 Illustration: A Two-Seller Pricing Game

Consider again our running illustration: the two-seller pricing game. According to The-
orem 1, a sequence of prices and marginal costs (pn, tn)

∞
n=1 from G∞ has ANR if and only

if, as N → ∞, the sequence of empirical distributions of prices and marginal costs (ZN)∞N=1,
where ZN(p, t) := 1

N

∑N
n=1 1{p}(pn)1{t}(tn), satisfies:

1. Consistency for G(λ0): for all t, we have limN→∞
∑

p ZN(p, t) = ψ(t;λ0) a.s.

2. Coarse obedience for G(λ0): for all i and ti, we have

lim sup
N→∞

∑
p,t−i

[
s(p′i, p−i;λ0)(p

′
i − ti)− s(p;λ0)(pi − ti)

]
ZN(p, (ti, t−i)) ≤ 0 for all p′i a.s.

To illustrate the restrictions on actions implied by BCCE, we construct Q(λ0; ε) as an
interpretable neighborhood of Q(λ0). In particular, we relax the coarse obedience constraints
of each seller for each of his marginal costs by ε = ε̃κ, where ε̃ rescales the constant κ.6 We

5For the analysis of settings with private information correlated over time, see Appendix B.
6This procedure is described in detail in Appendix E.1.
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choose κ to capture the scale of payoffs (via the maximum payoff difference across actions
over sellers and their marginal costs) and the cardinality of each seller’s set of actions. We
plot Q(λ0; ε) in Figure 2 for three values of ε; as expected, the set grows with ε.

Figure 2: Sets of ε-BCCE Predictions.

(a) ε = 0.025κ. (b) ε = 0.05κ. (c) ε = 0.1κ.

The light-red convex sets correspond to Q(λ0; ε) for ε = 0.025κ, ε = 0.05κ, and ε = 0.1κ.

Figure 3 represents the empirical distribution of prices corresponding to N = 10, 000

iterations of regret matching. Each blue dot is a snapshot of such empirical distribution at
a point along the path. The light-red convex set represents Q(λ0; ε) for ε = 0.05κ. The
convergence of the empirical distribution of prices to Q(λ0; ε) illustrates Corollary 1.

Figure 3: Convergence under Asymptotic No Regret.

We represent a path of the empirical distribution of prices (qK)
N
K=1 generated by N = 10, 000 iterations of

regret matching. Blue dots correspond to the empirical distribution of prices at different points, each 100
periods apart, along the path. The light-red convex set corresponds to Q(λ0; ε) for ε = 0.05κ.
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4 Econometrics
In this section, we build on the theoretical results we established in Section 3 to develop

an empirical strategy for (partially) identifying and estimating λ0 under Assumption 1.

4.1 Identification

Corollary 1 only ensures that (qN)∞N=1, the sequence of empirical distributions of actions
observed by the researcher, converges almost surely to Q(λ0), the set of BCCE predictions
of the stage game G(λ0), not necessarily to a specific element of that set. Hence, the con-
vergence of (qN)∞N=1 to a single limiting “population” distribution of the observable actions,
q0 ∈ ∆(A)—which is straightforward when the repetition of independent and identical ex-
periments generates the data—is not guaranteed under ANR.

This feature of the data-generating process has implications for how we define the iden-
tified set—condition (2) may also hold for some other λ ∈ Λ, potentially leading to a loss
of point identification for λ0 and the need to characterize an identified set. Following Man-
ski (2003), an identified set is usually defined as the set of parameters compatible with the
single probability measure asymptotically revealed by the sampling process. Our empirical
environment, however, departs from standard identification analysis: the researcher does
not (asymptotically) observe a single distribution of the observable q0 ∈ ∆(A) upon which
to characterize the identified set of parameters.

We address this issue by formulating a definition of the identified set in the space of
action sequences. By Theorem 1 and Corollary 1, although agents’ interaction is dynamic
and we do not maintain that data are generated by equilibrium play, the static model of
BCCE provides sharp and tractable restrictions to recover valid bounds on the structural
parameters in our setting. Formally, we have the following definition of the identified set.

Definition 7 (Identified Set). Under Assumption 1, the identified set of parameters is

Λ∗ :=
{
λ ∈ Λ : P

(
lim
N→∞

d(qN , Q(λ)) = 0
)
= 1
}
.

The identified set Λ∗ consists of all parameters λ ∈ Λ that are compatible with the
observed empirical distribution of actions as a BCCE prediction of the stage game G(λ) as
the sample size grows large. Clearly, λ0 ∈ Λ∗.

4.2 Estimation

We now introduce the notion of an ε-BCCE estimator of the identified set Λ∗. The
estimator uses the observed empirical distribution of actions qN to recover the structural
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parameters. In particular, for all ε > 0, the ε-BCCE estimator, denoted by Λ̂N(ε), consists of
all parameters λ ∈ Λ that are compatible with qN as an ε-BCCE prediction of the stage game.

Definition 8 (ε-BCCE Estimator). Let ε > 0 and qN be the observed empirical distribution
of N action profiles. The ε-BCCE estimator of the identified set Λ∗ is

Λ̂N(ε) := {λ ∈ Λ : qN ∈ Q(ε;λ)} .

Since we have an ε-BCCE estimator for all ε > 0, Definition 8 practically defines a class
of estimators, one for each ε > 0. The following theorem shows that, for all ε > 0 and λ ∈ Λ∗,
the parameters λ are contained in the ε-BCCE estimator Λ̂N(ε) for all sufficiently large N .

Theorem 2 (Almost Sure Coverage of ε-BCCE Estimators). Under Assumption 1, for all
ε > 0 and λ ∈ Λ∗,

P
(
λ ∈ lim inf

N→∞
Λ̂N(ε)

)
= 1.

Theorem 2 establishes that, for all ε > 0, the static equilibrium notion of ε-BCCE pro-
vides valid restrictions for the estimation of dynamic interactions that satisfy ANR. In par-
ticular, the restrictions implied by the ε-BCCE notion lead to estimating a set that contains
almost surely the true parameters λ0 as the sample size grows large.

The strong (a.s.) nature of the coverage result in Theorem 2 derives from the theoretical
convergence property of the data under ANR. Despite data not being generated by repeated
identical experiments, we bound parameters without statistical assumptions on the sampling
process on top of the ANR assumption on behavior.

As reflected in the definitions of the identified set and estimator, we focus on recovering
structural parameters from data, as opposed to Nekipelov et al. (2015), who also recover
the level of ε consistent with the data. The reason is that jointly identifying (λ, ε) can
be computationally demanding outside their second-price auction environment and, more
generally, may result in uninformative sets. Instead, as we formalize in the next section,
we leverage discrepancies from perfect regret minimization and the convergence rates of
regret-minimizing AIs to conduct inference in finite samples.

4.3 Confidence Regions and Coverage

Our definitions of identified set Λ∗ and ε-BCCE estimator Λ̂N(ε) rely only on the ANR as-
sumption, and so does the almost sure coverage property of ε-BCCE estimators in Theorem 2.
A natural next question is how the researcher should choose ε to ensure that desired coverage
properties are satisfied in finite samples. The lack of convergence of (qN)∞N=1 to a single lim-
iting distribution of actions highlighted for identification analysis in Section 4.1 also implies
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that our empirical environment departs from standard estimation and inferential analysis.7

We address these issues by constructing the set of ε-BCCE predictions Q(·; ε) so that the
corresponding ε-BCCE estimator Λ̂N(ε) becomes a confidence region for all λ ∈ Λ∗, ensuring
uniform validity. We do so by further exploiting the theoretical convergence properties of
ANR algorithms.

To this purpose, we need to take a stance about the three features we discuss in Section
2.2.1: the environment in which agents use ANR algorithms, the informational feedback to
the algorithms, and the algorithms’ objective (beyond satisfying ANR). Which assumptions
are more appropriate depends on the specific application. The most robust approach is main-
taining the adversarial bandit environment with partial feedback for all agents. Alternatively,
the researcher can strengthen these assumptions, e.g., by maintaining that each agent adopts
a specific ANR algorithm (possibly different across agents) or that agents coordinate on a par-
ticular algorithm or class. Under these assumptions, the researcher can use theoretical results
on the convergence of ANR algorithms to construct a confidence region for the identified set.8

To construct uniformly valid confidence regions, we first introduce some auxiliary con-
cepts. Let ε := (ε(i, ti))i∈I,ti∈Ti , where ε(i, ti) ≥ 0 for all i ∈ I and ti ∈ Ti. That is, ε specifies
a non-negative real number for all i and ti. We next define the notion of ε-BCCE prediction.

Definition 9 (ε-BCCE and ε-BCCE Prediction). Let ε := (ε(i, ti))i∈I,ti∈Ti, where ε(i, ti) ≥ 0

for all i ∈ I and ti ∈ Ti. The probability distribution ν ∈ ∆(A × T × Θ) is a Bayes coarse
correlated ε-equilibrium (ε-BCCE) of G(λ) if:

1. ν is consistent for G(λ) (see Definition 3).

2. ν is coarsely ε-obedient for G(λ); that is, for all i ∈ I and ti ∈ Ti, we have∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ

)
− ui(a, θ;λ)

]
ν(a, (ti, t−i), θ) ≤ ε(i, ti) for all a′i ∈ Ai.

We denote by Q(ε;λ) ⊆ ∆(A) the set of ε-BCCE predictions of G(λ).

An ε-BCCE of G(λ) is obtained by relaxing each coarse obedience constraint in the def-
inition of a BCCE (see Definition 3) by ε(i, ti). The set of ε-BCCE predictions of G(λ) is
the set of marginals on the set of action profiles A of ε-BCCE distributions.

Definition 10 (ε-BCCE Confidence Region). Let ε := (ε(i, ti))i∈I,ti∈Ti, where ε(i, ti) ≥ 0

for all i ∈ I and ti ∈ Ti, and qN be the observed empirical distribution of N action profiles.
7These features are reminiscent of Epstein, Kaido, and Seo (2016), who study inference in complete

information static games without observing i.i.d. draws from a single q0 ∈ ∆(A).
8The structure of the empirical model should be invariant to any assumption beyond ANR the researcher

may want to impose. For an example of how to tailor such additional assumptions to an empirical model
without affecting the identified set, we refer to our application in Section 5.
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The ε-BCCE confidence region is

Λ̂N(ε) := {λ ∈ Λ : qN ∈ Q(ε;λ)} .

The following theorem shows that, by postulating assumptions on 1–3 in Section 2.2.1
and appropriately specifying ε(i, ti) for all i ∈ I and ti ∈ Ti, the set Λ̂N(ε) becomes a uni-
formly valid conservative confidence region for all λ ∈ Λ∗ at any desired confidence level. To
state the theorem, we need one last bit of notation: for all i ∈ I, ti ∈ Ti, and λ ∈ Λ, let

K(i, ti;λ) := max
a,a′

|ui(a, ti;λ)− ui(a
′, ti;λ)|,

be the maximum payoff difference across action profiles for agent i with signal ti, and let

ϕ(ti;λ) := P(ti,n = ti) =
∑
θ

∑
t−i

π(ti, t−i | θ;λ)ψ(θ;λ).

be the probability of signal ti.

Theorem 3 (Uniformly Valid ε-BCCE Confidence Region). Suppose Assumption 1 holds.
For all agents i ∈ I, assume: 1. adversarial bandit environment; 2. bandit feedback; 3. the
algorithm optimizes the convergence rate of the expected regret to 0 given 1. and 2. Fix
α ∈ (0, 1) and N ∈ N. For all i ∈ I, ti ∈ Ti, and λ ∈ Λ, let

εα,N(i, ti;λ) :=

[
K(i, ti;λ)

√
ln |Ai|

√
ϕ(ti;λ)

][∑
i∈I |Ti|

]
α
√
N

.

Then, Λ̂N(εα,N) :=
{
λ ∈ Λ : qN ∈ Q(εα,N(λ);λ)

}
is a uniformly valid conservative confidence

region for all λ ∈ Λ∗; that is,

inf
λ∈Λ∗

P
(
λ ∈ Λ̂N(εα,N)

)
≥ 1− α.

By postulating different assumptions on 1–3 above than those in Theorem 3 and spec-
ifying εα,N accordingly, one can construct a uniformly valid conservative confidence region
for the identified set analogously, under these alternative assumptions.

The bounds in Theorem 3 (or those obtained under different assumptions on 1–3 above)
are conservative for several reasons. First, the confidence region is obtained under worst-case
bounds on the convergence properties of ANR algorithms. Worst-case bounds are mathe-
matical guarantees that must hold under the most unfavorable sequence of events, thus
leading to the highest possible regret. Second, to obtain the confidence region in Theorem
3, we use results on the convergence rate of the expected regret to 0 together with Markov’s
inequality. Since Markov’s inequality uses no information about the distribution and also
provides worst-case bounds, this operation adds another layer of conservativeness.
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Many simulation studies document that the practical performance of ANR algorithms
is significantly better than worst-case theoretical bounds and that the empirical distribu-
tion of realized regrets often concentrates around its expectation. We further explore this
observation in our simulations.

4.4 Computation

To compute the ε-BCCE estimator Λ̂N(ε) and the ε-BCCE confidence region Λ̂N(ε), we
follow Magnolfi and Roncoroni (2023) and first transform these sets as zero-level sets of a
function of parameters. Denote by b⊺ the transpose of b ∈ R|A|. The following theorem holds.

Theorem 4 (Computation of Estimator and Confidence Region). For all ε > 0, consider
the function g(·; qN , ε) : Λ → R defined as

g(λ; qN , ε) := max
b∈R|A|

min
q∈R|A|

+

ν∈R|A||T ||Θ|
+

b⊺(qN − q) (P1)

subject to

b⊺b− 1 ≤ 0,

q(a)−
∑
t,θ

ν(a, t, θ) = 0 for all a ∈ A,∑
a

ν(a, t, θ)− π(t | θ;λ)ψ(θ;λ) = 0 for all t ∈ T,∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ

)
− ui(a, θ;λ)

]
ν(a, (ti, t−i), θ)− ε ≤ 0 for all i ∈ I, a′i ∈ Ai, ti ∈ Ti.

Then, the ε-BCCE estimator Λ̂N(ε) has the following characterization:

Λ̂N(ε) = {λ ∈ Λ : g(λ; qN , ε) = 0} .

An analogous characterization holds for the ε-BCCE confidence region Λ̂N(ε).

According to Theorem 4, computing the set estimator Λ̂N(ε) amounts to evaluating
the function g(·; qN , ε) on a finite grid over Λ. In turn, finding g(·; qN , ε) entails solving
the program (P1), a max-min program with one convex and multiple linear constraints.
Together, the second, third, and fourth constraints are equivalent to q ∈ Q(λ; ε). In
particular, the third and fourth constraints correspond to the ε-BCCE restrictions on ν

(consistency and coarse ε-obedience), and the second constraint requires q to be the ε-
BCCE prediction corresponding to ν. The first constraint is equivalent to b ∈ B|A|, where
B|A| := {b ∈ R|A| : b⊺b ≤ 1} is the closed unit ball centered at 0|A| ∈ R|A|. This latter
constraint corresponds to the support-function characterization of the non-empty, closed,
and convex set Q(ε;λ) (for further details, see Appendix A.4).
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Our definition of g is general: different formulations of the basic game will only affect
the dimensions of the problem and how λ enters ui(·;λ), π(· | ·;λ), and ψ(·;λ). The compu-
tation of g(·; qN , ε) can be further simplified by replacing the inner constrained minimization
problem in program (P1) by its dual, which consists of a linear constrained maximization
problem. Therefore, we can check whether a given value of λ belongs to the estimator Λ̂N(ε)
by solving a single linear constrained maximization problem. An analogous characterization,
with the obvious changes, holds for the confidence region Λ̂N(εα,N). Appendix E includes
details on the application of duality and the full formulation of the program.

Computing our estimator or confidence region involves a grid search over Λ. If parameters
are multidimensional, this search is exponential in discretization width. This observation
applies to many models in this class (see, e.g., Molinari, 2020, for a discussion). In our
simulations and empirical application, such a grid search is computationally manageable. If
the researcher adopts a non-parametric specification of the unobserved payoff heterogeneity,
i.e., λ = ψ, she can avoid the grid search by adopting the method in Syrgkanis et al. (2021)
to compute counterfactual bounds in polynomial time.9

4.5 Illustration: A Two-Seller Pricing Game

We illustrate the estimation strategy in the context of our running illustration: the two-
seller pricing game. We generate data under a parametric and numerical specification similar
to that in Section 3.3 but with a richer set of actions. Sellers set prices by choosing among
five equally-spaced values in [4, 8], and the demand parameter (known to the researcher) is
η = −1/3. Marginal costs are i.i.d. across sellers and over time according to a discretized
truncated Normal distribution with µ0 = 3, σ0 = 1, taking values over five equally spaced
values between t = 0 and t = 6. Sellers set prices using regret matching, which we iterate
for N periods to obtain the empirical distributions of prices qN observed by the researcher.
We use these data to estimate the structural parameters λ0 = (µ0, σ0).

To construct a confidence region for the identified set, we choose εα,N(λ) to guarantee
a regret lower than εα,N(i, ti;λ) with probability 0.95 for all i ∈ I, ti ∈ Ti, and λ ∈ Λ∗

under the assumptions in Theorem 3. This approach is robust because it relies on worst-case
bounds in an adversarial environment with bandit feedback. On the flip side, these con-
servative assumptions require large sample sizes for informative inference. Large samples,
however, are routine in most algorithmic environments where, e.g., pricing or bidding AIs
make high-frequency decisions at scale.

We illustrate our simulation results in Figure 4, which shows confidence regions for four
9Following Theorem 5 in Syrgkanis et al. (2021), for a counterfactual F (a, t, θ), the researcher formulates

the program as min /max
ν∈R|A||T ||Θ|

+

∑
a,t F (a, t, θ)ν(a, t, θ) subject to the linear constraints in program (P1).
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different sample sizes N . The parameter µ is estimated with reasonable precision even with
500, 000 observations (panel (a)). As the number of observations increases, the confidence
region projection for µ shrinks, reaching [2.83, 3.15] with 4 million observations (panel (d)).

Estimating σ is more challenging. The confidence region with 500, 000 observations is not
very informative, with a large upper bound of 9.30 (recall that σ0 = 1). Larger sample sizes,
however, yield more informative confidence regions even under our conservative assumptions.
With 4 million observations, the confidence region projection for σ narrows to [0.83, 1.61].

Figure 4: Confidence Regions for Different Sample Sizes.

Confidence region True parameter

(a) N = 500, 000 (b) N = 1, 000, 000

(c) N = 2, 000, 000 (d) N = 4, 000, 000

We represent in blue confidence regions in the (µ, σ)-parameter space for different sample sizes N . Projections
for µ and σ are reported in red and green. We compute each confidence region by specifying εα,N (λ) to
guarantee for each seller i and marginal cost ti a regret lower than εα,N (i, ti;λ) with probability 0.95 for
each λ in the identified set. Computational details are in Appendix E.2.
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Figure 4 suggests that inference under ANR with worst-case assumptions requires large
(though common in many algorithmic environments) sample sizes. Following our discussion
in Section 4.3, however, two additional remarks are in order. First, the empirical environ-
ment may suggest assumptions that enable the researcher to conduct inference with smaller
samples. This is the case for our empirical application in Section 5.

Second, the environment is often less unfavorable or adversarial than under our assump-
tions, making our inference very conservative. This is evident in our simulations, where both
agents use a regret-matching algorithm and observe each other’s actions, leading to a much
faster convergence of expected regrets to 0 than prescribed by worst-case bounds.

To illustrate the latter point, we run 500 independent instances of the pricing game de-
scribed above and construct the distribution of empirical regrets in period N = 100, 000

across sellers and marginal costs. We plot this distribution in Figure 5, panel (a), comparing
it with the average worst-case expected regret and the corresponding ε(i, ti;λ0). Examining
the distribution of empirical regrets, we observe that these are, on average, about an order of
magnitude smaller than the worst-case expected regrets and two orders of magnitude smaller
than ε(i, ti;λ0). This result is consistent with well-documented evidence in computer science
(see, e.g., Farina, Grand-Clément, Kroer, Lee, and Luo, 2024).

Figure 5: Empirical Regrets and Corresponding Confidence Region for N = 100, 000.

(a) Distribution of Empirical Regrets (b) Confidence Region

Panel (a) represents the distribution of empirical regrets for a simulation exercise where data were simulated
500 times with regret matching for N = 100, 000 periods. The solid lines represent average (across sellers and
types) empirical and worst-case regrets (respectively in red and green). The dashed lines represent the 95th

percentile of empirical regrets and the average ε(i, ti;λ) corresponding to worst-case bounds (respectively in
red and green). Panel (b) represents the confidence region for (µ, σ) obtained using average empirical regrets
to construct bounds. Computational details are in Appendix E.2.
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To assess the impact on inference, we construct the confidence region containing the
true parameter with a probability of at least 0.95 according to the empirical distribution of
regrets in our simulations. The resulting confidence region is plotted in Figure 5, panel (b).
Despite using a much smaller sample size (N = 100, 000) than in the previous simulation
exercise, the confidence region constructed with empirical regrets is significantly smaller,
pinpointing the true parameters with high precision. This exercise suggests that adopting
bounds on regret that are significantly smaller than those implied by worst-case bounds may
be justified in applications, especially if motivated by simulation studies and knowledge of
the environment. We further exploit these ideas in the context of our empirical application.

5 Application: Pricing in an Online Platform
We apply our method to analyze sellers’ pricing behavior on Swappa, a decentralized mar-

ketplace for used smartphones with around $100 million in annual transactions.10 Swappa
provides a good empirical setting for our study due to its complex pricing environment: sell-
ers navigate a rapidly changing competitive landscape, adjusting their pricing strategies for a
diverse set of devices. This scenario mirrors the challenges faced by individual sellers on other
decentralized platforms and marketplaces. The nature of pricing decisions on the platform
makes Swappa a prime candidate for implementing AI or AI-assisted pricing decisions.

In this context, we employ our method to estimate the distribution of sellers’ marginal
costs, a fundamental parameter for addressing counterfactual questions, e.g., on platform
design. We use the primitive to quantify markups for sellers on Swappa and find that these
are lower than for competing centralized platforms that resell used electronics.

The following subsections lay out our approach: first, we describe the empirical setting
and data; next, we present our empirical model; finally, we analyze the estimation results.

5.1 Empirical Setting and Data

Swappa is a decentralized digital marketplace for used smartphones. The platform has
a thorough approval process to ensure all listed devices are activation-ready. Sellers incur a
nominal listing fee. Buyers pay a fee included in the purchase price upon transaction com-
pletion. While some sellers allow for international shipping, the platform and most users are
US-based. The shopping experience on Swappa is straightforward: buyers first select the de-
sired device generation (e.g., iPhone 14 series) and then browse listings within that category.
For visual reference, Figure 6 provides a website screenshot that shows the user interface.

We collected data from Swappa by scraping its website for six consecutive months, from
10See https://swappa.com/about.
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July to December 2023. While Swappa offers a variety of electronic devices, we focused our
data collection on the most popular iPhone models, as these represent the most active mar-
kets on the platform. For each listing, each corresponding to a device on sale, we gathered
daily information, including price, seller characteristics, product specifications, and a unique
identifier. We use identifiers to track the final sale prices and dates of completed transactions.
Over the sample period, we collected 259,102 device-day observations from 4,980 sellers.

Figure 6: A Screenshot from the Swappa Website.

Swappa webpage that users see when selecting a device model (in this case, iPhone 14 Pro Max).

On Swappa, sellers range from one-time users listing a single device to professional mer-
chants who regularly post multiple devices. While we collect data for all sellers in the
marketplace and use the entire dataset to learn about demand (i.e., the probability of sell-
ing a device given the price), our analysis focuses on experienced sellers who make multiple
decisions over time. Therefore, we narrowed our focus to the most prolific sellers, applying
several criteria. We considered high listing volume, with the top sellers having more than
1,500 listings in our sample period. We also looked at consistent activity, considering sellers
with active listings throughout the sample period. This filtering process yields two sets of
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sellers: a core group of 15 sellers, which sell the majority of devices on the platform, and a
group of two top sellers, which are significantly larger than the other sellers on the platform
and make many pricing decisions. The former core group has the largest impact on com-
petitive conditions on the platform. The latter group includes the most experienced sellers,
with more than 10,000 device-day observations: these sellers are the most likely to use AI
tools. All the top-15 sellers are firms specialized in acquiring, refurbishing, and reselling
used smartphones. For these firms, a device’s marginal cost primarily comprises acquiring
used devices and refurbishing expenses.

Swappa represents a small fraction of the broader market for used electronics. To pro-
vide context for pricing decisions on Swappa within its broader market, we collected data on
“reference prices” from Decluttr, a US-based centralized platform for used smartphones.11

Decluttr is representative of similar platforms that directly purchase devices from consumers,
refurbish them, and resell them. Comparing Decluttr’s prices with Swappa’s transaction data
provides insight into Swappa sellers’ decision-making within a competitive landscape. Un-
like Swappa’s decentralized model, Decluttr operates as a centralized platform. Buyers on
Decluttr select their desired device model (e.g., iPhone 12 Pro, 128GB, in mint state) and
then choose from available listings. This structure offers a standardized comparison point
for our analysis. Our data collection from Decluttr covers the same sample period of the
Swappa dataset. We gathered information about price, date, and device model (including
storage capacity, color, and condition). For each device and day pair in our Swappa dataset,
we match the corresponding reference price for the device model from Decluttr data. De-
scriptive statistics for Swappa and Decluttr data are in Appendix F.1, and more details on
Swappa sellers are in Appendix F.2.

5.2 Empirical Model

Actions, Periods, and Payoffs. For each device j each seller i has on sale on Swappa, we
assume the seller makes a pricing decision every day d that the listing is active.12 Hereafter,
we refer to each device-day pair (j, d) as a different period n; that is, n = (j, d).

We define the set of competitors −i of each device-day (j, d) of seller i as all devices of the
same generation as device j (e.g., iPhone 12) available on Swappa on day d. Seller i’s payoff
in period n is ũi(pi,n, p−i,n, ti) := s̃i(pi,n, p−i,n)(pi,n− ti,n), where: pi,n and p−i,n are the prices
of seller i and its competitors in period n; the function s̃i(pi,n, p−i,n) maps price profiles into
the probability of seller i making a sale in period n at those prices; ti,n is seller i’s marginal
cost in period n. This formulation creates distinct markets for each iPhone generation, thus

11See https://www.decluttr.com/.
12In Appendix F.3, we present evidence that the daily pricing assumption fits our environment well.
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restricting the pool of competing devices on the platform.

Reference Pricing. To aggregate information across different device models, we address
observed heterogeneity by modeling costs and pricing decisions as deviations from a model-
specific reference price.13 By doing so, we “homogenize” devices with varying characteristics
such as storage capacity and condition. For each device-day pair n = (j, d), we denote by
χn the reference price for device j of model m(j) on day d. We derive such reference prices
from Decluttr data and make two assumptions.

First, we decompose marginal costs as ti,n = χn + ζi,n, where ζi,n ∈ Ti is a seller-device-
specific cost shock in period n. Hence, Ti is the finite set of seller i’s marginal cost residuals.
For each seller i, we assume marginal cost residuals ζi,n are drawn i.i.d. from the distribution
ψi(·;λi) ∈ ∆++(Ti), parametrized by λi. Let λi,0 denote the true structural parameters in
the data-generating process. The idiosyncratic cost component ζi,n captures acquisition cost
or valuation specific to seller i. As sellers typically acquire devices below the retail price on
other platforms, we expect ζi,n to be negative.

Second, we decompose prices as pi,n = χn+ρi,n, where ρi,n ∈ Ai is the seller-chosen devi-
ation from the reference price, or pricing residual. Hence, Ai is the finite set of seller i’s ac-
tions. We rewrite seller i’s payoff in period n as ui(ρi,n, ρ−i,n, ζi,n) := si(ρi,n, ρ−i,n)(ρi,n−ζi,n),
where si(·) models sale probabilities for seller i. If (ρi,n, ρ−i,n) = (ρi′,n, ρ−i′,n), we assume that
si(ρi,n, ρ−i,n) = si′(ρi′,n, ρ−i′,n), so that sale probabilities depend only on pricing residuals.
Sale probabilities vary according to the discount or premium of a device on Swappa versus its
reference price, as consumers may buy on other platforms if prices are too high. Appendix
F.4 shows the variation in pricing residuals.

Our assumptions on reference pricing simplify the pricing problem by eliminating depen-
dence on device characteristics and allow us to capture the fundamental incentive structure
across different pricing problems.14

Aggregation of Competitors. The pricing game on Swappa is potentially large, with a
fast-evolving set of many competing devices and sellers. To reduce the dimensionality of the
game, we assume that seller i’s payoff, through the function si(·), only depends on the aggre-
gate state ρ−i,n ∈ Θi in period n, where Θi is some finite set. State ρ−i,n captures prices of sell-
ers other than i in period n for devices of the same generation. This modeling choice is in the
spirit of the oblivious equilibrium approach (Weintraub, Benkard, and Van Roy, 2008) and
of aggregative- and large-games approaches (e.g., Jensen, 2018; Gradwohl and Kalai, 2021).

13This choice reflects the economics of our application and allows us to learn from pricing decisions across
different devices. Our general method, however, can account for observable heterogeneity (see Appendix D.1).

14Considering pricing residuals as multiplicative (instead of additive) deviations from reference prices would
not achieve the same goal, as payoffs would still depend on device characteristics through the reference price.
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Parametrization. We discretize pricing residuals by assigning the observations of ρi,n to
five bins, corresponding to equally-distant quantiles of the empirical distribution of ρi,n across
sellers and periods.15 Hence, Ai = A for all sellers i, with |A| = 5. We discretize ρ−i,n simi-
larly; hence, Θi = Θ = A for all sellers i. We also assume that ρ−i,n are i.i.d. with distribution
ψ ∈ ∆++(Θ) that we estimate from the data, and that ζi and ρ−i are independent.

With this discretization, we estimate the 25 possible values that function si(·) can take
from the data. For all pairs (ρi, ρ−i), we compute si(ρi, ρ−i) as the average probability of
selling a device across all observations with pricing residual ρi = ρ and state ρ−i. Appendix
F.4 shows our estimates of si(·), which follow an intuitive pattern.

We assume that each seller i’s marginal cost shocks ζi,n are i.i.d. according to a truncated,
discretized Normal distribution with seller-specific parameters µi and σi. The support of
such distribution is common across sellers: Ti = T for all sellers i, with |T | = 5. Let
λi := (µi, σi) ∈ Λ := R× R+, where µi determines the average level of cost residuals and σi

captures the variability of seller i’s marginal costs across periods. This specification allows for
heterogeneous variability in marginal costs across periods (or device-day pairs) for each seller.

Empirical Game. We refer to ρi,n (resp., ζi,n) as seller i’s price (resp., marginal cost) in
period n. Consistently with our assumptions and parametrization, we treat each seller i’s
pricing problem as a single-agent problem. We denote by G∞

i seller i’s empirical dynamic
environment and by Gi(λi) seller i’s empirical stage game.

ANR Pricing. On the marketplace, sellers face a trade-off: lower prices increase the prob-
ability of selling a device but lead to lower margins. To learn what prices are best for given
marginal costs, each seller i faces a multi-armed bandit problem. Setting new prices allows
the seller to discover the payoff of a different course of action (exploration) but at the cost
of setting sub-optimal prices based on the available information (exploitation). ANR algo-
rithms are specifically developed to address this exploration-exploitation trade-off. Hence,
we assume that each seller i adopts some ANR algorithm to set prices.

5.3 Convergence to Set of BCCEs and Confidence Regions

Bayes Coarse Correlated Equilibrium. A BCCE of the empirical stage game Gi(λi) is a
probability distribution over prices, marginal costs, and states satisfying certain restrictions.

Definition 11. The probability distribution νi ∈ ∆(A× T ×Θ) is a Bayes coarse correlated
equilibrium of G(λi) if there exists some probability distribution ν̃i ∈ ∆(A×T ) such that, for
all ρi ∈ A, ζi ∈ T , and ρ−i ∈ Θ, we have νi(ρi, ζi, ρ−i) = ν̃i(ρi, ζi)ψ(ρ−i), and:

15A discrete set of actions is routine in algorithmic environments.
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1. ν̃i is consistent for G(λi); that is, for all ζi ∈ T , we have
∑

ρi
ν̃i(ρi, ζi) = ψi(ζi;λi,0).

2. ν̃i is coarsely obedient for G(λi); that is, for all ζi ∈ T , we have∑
ρi

[∑
ρ−i

[
si(ρ

′
i, ρ−i)(ρ

′
i − ζi)− si(ρi, ρ−i)(ρi − ζi)

]
ψ(ρ−i)

]
ν̃i(ρi, ζi) ≤ 0 for all ρ′i ∈ A.

We denote by Ei(λi) the set of BCCEs of Gi(λi).

We can write νi as a product distribution νi = ν̃i × ψ for some ν̃i ∈ ∆(A × T ) because
of our assumption that ζi and ρ−i are independent, and so are ρi and ρ−i. Otherwise, the
definition of a BCCE of G(λi) is standard and mimics Definition 3 in our general model.

Convergence under ANR Pricing. Since we assume that seller i adopts some ANR
algorithm to set prices, the sequence of prices, marginal costs, and states (ρi,n, ζi,n, ρ−i,n)

∞
n=1

from G∞
i has ANR. Hence, the equivalent of Theorem 1 in the context of our empirical model

holds. We summarize the relevant implications for estimation with the following proposition.

Proposition 1. Suppose the sequence of prices, marginal costs, and states (ρi,n, ζi,n, ρ−i,n)
∞
n=1

from G∞
i has ANR. Then, the sequence of empirical distributions of prices, marginal costs,

and states (Zi,N)
∞
N=1, where Zi,N(ρi, ζi, ρ−i) := 1

N

∑N
n=1 1{ρi}(ρi,n)1{ζi}(ζi,n)1{ρ−i}(ρ−i,n) for

all N ∈ N and (ρi, ζi, ρ−i) ∈ A× T ×Θ, converges almost surely to Ei(λi,0).

Estimation, Confidence Region, and Coverage. Under our assumptions, for each seller
i and period n, the payoff associated with each price is drawn independently from a fixed
distribution that depends only on the price chosen. Such distribution is the same across
periods so that the draws are i.i.d. Moreover, we assume that each seller i can observe the
payoffs for the selected price and construct counterfactual payoffs for all other prices. Hence,
each seller i faces a stochastic i.i.d. bandit environment with full feedback.16 We further as-
sume that sellers adopt an algorithm that optimizes the convergence rate of the expected
regret to 0 and use these assumptions (see, e.g., Section 1.2 in Faure, Gaillard, Gaujal, and
Perchet, 2015) to construct a uniformly valid confidence region.

For our purpose, we must introduce some notation. The identified set, denoted by Λ∗
i ,

is defined following Definition 7, accounting for the specifics of our empirical model. Let
ε := (ε(i, ζi))ζi∈T , where ε(i, ζi) ≥ 0 for all ζi ∈ T . We denote by Qi(ε;λi) the set of ε-BCCE
predictions of Gi(λi). Given the observed empirical distribution of N actions of seller i,
denoted by qi,N , the ε-BCCE confidence region is Λ̂i,N(ε) := {λi ∈ Λ : qi,N ∈ Qi(ε;λi)}.

16In Appendix F.7, we relax the assumptions that ρ−i,n are i.i.d., that ζi,n and ρ−i,n are independent,
and of full feedback. We show that our estimation results are very similar under alternative assumptions.
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The following proposition, which is the equivalent of Theorem 3 for our empirical model,
establishes that, by appropriately specifying ε(i, ζi) for all ζi ∈ T , the set Λ̂i,N(ε) becomes a
uniformly valid confidence region for all λi ∈ Λ∗

i at any desired confidence level. To establish
the result, we need a few final pieces of notation. Consider seller i with marginal cost ζi.
The expected payoff from setting price ρi is µ(i, ρi, ζi) :=

∑
ρ−i

si(ρi, ρ−i)(ρi − ζi)ψ(ρ−i); the
expected payoff from setting the best price is µ∗(i, ρi) := maxρi∈T µ(i, ρi, ζi); the gap of price
ρi is Φ(i, ρi, ζi) := µ∗(i, ρi)− µ(i, ρi, ζi). Finally, define

K(i, ζi) := max
ρi,ρ−i,ρ

′
i,ρ

′
−i

∣∣si(ρi, ρ−i)(ρi − ζi)− si(ρ
′
i, ρ

′
−i)(ρ

′
i − ζi)

∣∣ ,
and

Φ(i, ζi) :=
∑
ρi∈A:

Φ(i,ρi,ζi)>0

K(i, ζi)

Φ(i, ρi, ζi)
.

The following result holds.

Proposition 2. Suppose the assumptions above on the empirical model hold. Fix α ∈ (0, 1)

and N ∈ N. For all ζi ∈ T , let

εα,N(i, ζi) :=
Φ(i, ζi)[

1− (1− α)
1

|T |

]
N
.

Then, Λ̂i,N(εα,N) :=
{
λi ∈ Λ : qi,N ∈ Qi(εα,N ;λi)

}
is a uniformly valid confidence region for

all λi ∈ Λ∗
i ; that is,

inf
λi∈Λ∗

i

P
(
λi ∈ Λ̂i,N(εα,N)

)
≥ 1− α.

We use Proposition 2 to obtain the estimates we present in the next sections.

5.4 Estimation Results

Relying on Proposition 2, we compute for each seller i the confidence region Λ̂i,N(εα,N)

corresponding to α = 0.05. The computation of the confidence regions specializes the results
in Section 4.4 to the context of our empirical model. Details are in Appendix E.3.

In panels (a) and (b) of Figure 7, we represent the confidence regions for the top-2
Swappa sellers in our data. For each seller i, the figure plots (in blue) the confidence region
Λ̂i,N(εα,N) in the (µi, σi)-space, the parameters characterizing the seller-specific distribution
of marginal costs. We also represent (in red and green) the projections of the confidence
regions for each of the two parameters.

The confidence regions vary in shape and size across sellers, reflecting different business
strategies across sellers. Parameter µi ranges between −89 and −41; parameter σi ranges
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Figure 7: Confidence Regions.

(a) Seller 1 (b) Seller 2

We plot in blue confidence regions in the (µi, σi)-space; we report in red and green projections for µi and
σi. Each panel corresponds to one of the top 2 Swappa sellers. Computational details are in Appendix E.3.

between 62 and 122. The parameters’ signs conform with intuition; in particular, the neg-
ative µi reflects that the distribution of cost residuals takes on mostly negative values, as
marginal costs for sellers are typically below the reference prices of devices.

To better understand the implications of the confidence regions, we simulate costs from
the estimated distribution ψi(·;λi) across values of λi in the confidence region. We report
marginal cost statistics in Table 1. Columns 1 and 2 report statistics of marginal cost resid-
uals, translating the parameters in the confidence regions in realizations of ζi,n. In line with
the nature of the truncated, discretized Normal distribution we use, mean marginal cost
residuals are close to the estimated µi and in the range of −$90 to −$56. These dollar
amounts represent the deviations of sellers’ marginal costs from reference prices. For com-
parison, average reference prices, depending on the seller, range from $527 to $596 (column
6). Therefore, mean marginal costs range between $436 and $540 for Sellers 1 and 2. The
variability in marginal cost residuals adds little variation to marginal cost (column 4), when
compared to the variability in reference prices (column 6). Sellers bring to Swappa a wide
variety of device models, ranging from more expensive recent models to older, cheaper de-
vices. The range of marginal costs implied by our estimates seems sensible and in line with
the economics of reselling used electronics: procuring and refurbishing most used devices
costs around $50− $100 less than reference sale prices in centralized marketplaces.

Recovering marginal costs enables a range of measurement exercises. First, we can re-
cover average markups, i.e., the average difference between prices and marginal costs. This
object is crucial to evaluating the competitiveness of markets. How tough is the competition
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Table 1: Estimated Distributions of Marginal Cost Residuals and Marginal Costs.

Marginal Cost Residuals ($) Marginal Cost ($) Reference Price ($)
Mean SD Mean SD Mean SD

(1) (2) (3) (4) (5) (6)

Seller 1 [−83.5,−56.2] [69.0, 98.0] [512.4, 539.7] [196.9, 218.6] 595.9 191.7

Seller 2 [−90.8,−62.3] [60.2, 86.5] [436.2, 464.7] [254.3, 271.1] 527.0 253.0

We report statistics of marginal cost residuals (columns 1-2), marginal costs (columns 3-4), and reference
prices (columns 5-6). Each of the top-2 Swappa sellers corresponds to a row. Marginal cost residual
statistics are obtained by simulating 2,000 draws of ζi,n from ψi(·;λi) for all λi ∈ Λ̂i,N (εα,N ). We then take
the minimum and maximum of the statistics across λi ∈ Λ̂i,N (εα,N ) to generate the interval in the table.
Mean marginal costs (column 3) are obtained by summing average reference prices in the data (column
4) with average marginal cost residuals (column 1). To compute the standard deviation of marginal cost
(column 4), we draw reference prices from their empirical distribution.

among sellers on Swappa? Are sellers on a decentralized platform charging lower markups
than centralized sellers? We turn to these questions in the next section.

While we do not pursue those here, using the recovered marginal cost primitive would also
permit us to simulate pricing on Swappa under a range of counterfactual platform designs
and models of seller behavior. For instance, we could obtain outcomes given the adoption
by sellers of a specific class of AIs (not necessarily within the ANR class). This policy ex-
periment would mimic the implementation of “suggested pricing” by the platform, whereby
the marketplace makes algorithmic pricing tools available to sellers.

5.5 Quantification of Markups

Measuring markups is the most direct way of assessing firms’ market power. For data
generated in environments such as digital platforms, where sellers often use AIs to help them
set prices, our method provides a way of recovering markups under an assumption (ANR)
that is more suitable than standard oligopoly conduct assumptions typically adopted under
the “demand approach” to the estimation of markups.

We use the marginal cost estimates obtained with our method to evaluate markups for
sellers on Swappa. We define the average markup for seller i as ∆i(λi) := E[pi,n]−Eψi(·;λi)[ti,n],
and construct the intervals[

min
λi∈Λ̂i,N (εα,N )

∆i(λi), max
λi∈Λ̂i,N (εα,N )

∆i(λi)

]
.

We compare markups for Swappa sellers to those on Gazelle, a centralized buyback and
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resale platform for used smartphones.17 To assess markups on Gazelle, we use that we can
observe device-model specific sale (“ask”) prices and the trade-in (“bid”) prices offered by
the platform. The bid prices do not coincide with Gazelle’s marginal cost, as the firm needs
to pay for shipping, inspecting, and refurbishing the devices it receives. Since we do not
have direct access to cost or financial information from Gazelle, we use industry sources to
estimate these costs between 10% and 30% of the bid price. We compute a range for Gazelle
markups by taking the difference between ask and bid prices adjusted by the cost multipliers
1.1 and 1.3. Details on Gazelle data are in Appendix F.5.

Table 2: Markups on Swappa and Gazelle

Device
All Devices iPhone 13 iPhone 12 iPhone 11

128GB Mint 64GB Good 64GB Good
(1) (2) (3) (4)

Mean Swappa Price ($) 505.5 553.1 343.1 276.4

Mean Swappa Markups ($)
Seller 1 Markup [20.5, 44.5] [28.7, 52.7] [51.5, 75.5] [52.4, 76.4]

Seller 2 Markup [24.7, 50.9] [42.4, 68.6] [37.2, 63.4] [32.2, 58.4]

Gazelle Markup ($) · [81.8, 135.7] [84.4, 114.3] [58.3, 82.6]

We report statistics of prices and markups across all devices (column (1)) and for the three best-selling
devices for three popular iPhone models (columns (2)–(4)) in our data. Swappa prices are averages for
sold devices. Seller-specific mean Swappa markups are obtained by subtracting the average marginal
costs from prices. Gazelle markups are obtained by subtracting the bid prices times a cost multiplier
from Gazelle ask prices. We consider multipliers of 1.1 and 1.3 to give a conservative interval.

Table 2 summarizes our markup quantification exercise. Average markups for Swappa
sellers are in the range of $21–$51. These markups vary across sellers and device models:
for instance, Seller 1 can charge average markups up to $75 for popular models of iPhone
11 and 12 but can only charge average markups of $29–$53 on a newer iPhone 13. Seller 2,
instead, sets average markups of $42–$68 on the same device while earning lower markups on
older devices. Overall, markups on Gazelle are higher than those charged by Swappa sellers,
particularly for newer devices. For the model of iPhone 13 we examine, Gazelle markups
range between $82–$136, above the interval for Swappa sellers 1 and 2. Similarly, Gazelle
markups for the older iPhones 11 and 12 are above the average markups charged by the two
largest Swappa sellers.

In sum, margins for Swappa sellers are modest. This finding is not surprising, given the
17See https://buy.gazelle.com/. Gazelle is similar to Decluttr, from which we obtained reference prices.

Decluttr stopped accepting trade-ins during our sample period, thus preventing the evaluation of its markups.
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low barriers to entry for retailers on the platform. Our measurement exercise supports the
view that Gazelle, a centralized platform that operates on a larger scale than independent
Swappa sellers, can sustain higher markups, especially for newer devices. Our results, how-
ever, do not speak to the source of these differences: perhaps consumers are less elastic when
buying from Gazelle, or possibly the ability to purchase trade-ins directly from its website
gives a marginal cost advantage to Gazelle. Overall, however, this application showcases
our methods’ potential to deliver credible estimates of economic primitives in environments
where AIs may be setting prices.

6 Conclusion
We develop a novel approach to estimate a game’s primitives in online environments

where AI supports or replaces human decisions. Given the theoretical and practical relevance
of regret-minimizing algorithms in online learning, we assume that algorithms in this broad
class generate the data. Thus, our model departs from standard equilibrium assumptions.

We show that under asymptotic no regret, the empirical distribution of actions converges
to the set of Bayes coarse correlated equilibrium predictions of the underlying stage game.
This connection lets us derive econometric properties directly from the theoretical conver-
gence results. First, we define a meaningful notion of an identified set in this context and
propose an estimator based on Bayes coarse correlated equilibrium restrictions. Second,
we develop an inferential procedure that builds on convergence rates of regret-minimizing
algorithms, allowing us to construct confidence regions with desired coverage properties.

Our empirical application to the Swappa marketplace demonstrates the practical value of
this approach. We recover the distribution of sellers’ marginal costs, quantify markups, and
compare them to those on competing centralized platforms. This analysis provides insights
into the competitiveness of decentralized digital marketplaces and showcases how our method
enables various measurement and counterfactual exercises. This paper is a first step in
studying interactions among AIs with a structural econometric approach, and we anticipate
a wide range of applications to policy and market design questions in AI-driven environments.
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Appendix

A Proofs for Sections 3 and 4

A.1 Proof of Theorem 1

[=⇒] Suppose the sequence (an, tn, θn)
∞
n=1 from G∞ has ANR. Consider any subsequence

(ZNl
)∞l=1 of (ZN)∞N=1 that converges to some ν ∈ ∆(A× T ×Θ). We need to show that ν is

almost surely consistent and coarsely obedient for G(λ0).

Consistency. Pick any (t, θ) ∈ T ×Θ. Note that∑
a

ν(a, t, θ) =
∑
a

lim
l→∞

ZNl
(a, t, θ)

= lim
l→∞

∑
a

ZNl
(a, t, θ)

= lim
l→∞

[ ∑
a ZNl

(a, t, θ)∑
a,t ZNl

(a, t, θ)

∑
a,t

ZNl
(a, t, θ)

]
(3)

= lim
l→∞

∑
a ZNl

(a, t, θ)∑
a,t ZNl

(a, t, θ)
lim
l→∞

∑
a,t

ZNl
(a, t, θ)

= lim
l→∞

∑Nl

n=1 1{t}(tn)1{θ}(θn)∑Nl

n=1 1{θ}(θn)
lim
l→∞

∑Nl

n=1 1{θ}(θn)

Nl

.

The ratio ∑Nl

n=1 1{t}(tn)1{θ}(θn)∑Nl

n=1 1{θ}(θn)
(4)

is the empirical frequency of signal profile t at periods when the state is θ. Since signal profiles
tn are drawn from π(· | θn;λ0), the ratio in (4) is the empirical frequency of

∑Nl

n=1 1{θ}(θn)

conditionally independent draws from π(· | θ;λ0). Moreover, since ψ(·;λ0) ∈ ∆++(Θ), we
have liml→∞

∑Nl

n=1 1{θ}(θn) = ∞ almost surely. Thus, by the strong law of large numbers,

lim
l→∞

∑Nl

n=1 1{t}(tn)1{θ}(θn)∑Nl

n=1 1{θ}(θn)
= π(t | θ;λ0) a.s. (5)

Moreover, since states are i.i.d. draws from ψ(·;λ0), again by the strong law of large numbers,

lim
l→∞

∑Nl

n=1 1{θ}(θn)

Nl

= ψ(θ;λ0) a.s. (6)

From equations (3), (5), and (6), we have∑
a

ν(a, t, θ) = π(t | θ;λ0)ψ(θ;λ0) a.s. (7)

42



We conclude from equation (7) that ν is almost surely consistent for G(λ0).

Coarse obedience. Pick any i ∈ I and ti ∈ Ti. For all a′i ∈ Ai, let

VN(i, ti, a
′
i) :=

1

N

N∑
n=1

ui
(
(a′i, a−i,n), θn;λ0

)
1{ti}(ti,n)

be the payoff of agent i with signal ti for not having always played action a′i up to period
N . Note that

VN(i, ti, a
′
i)− UN(i, ti)

=
1

N

N∑
n=1

[
ui
(
(a′i, a−i,n), θn;λ0

)
− ui

(
(ai,n, a−i,n), θn;λ0

)]
1{ti}(ti,n) (8)

=
1

N

N∑
n=1

∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui(a, θ;λ0

)]
1{a}(an)1{ti}(ti,n)1{t−i}(t−i,n)1{θ}(θn)

=
∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui(a, θ;λ0

)]
ZN
(
a, (ti, t−i), θ).

Since (an, tn, θn)
∞
n=1 has ANR, for all a′i ∈ Ai, we have

lim sup
N→∞

[
VN(i, ti, a

′
i)− UN(i, ti)

]
≤ 0 a.s. (9)

Then, by equation (8) and inequality (9), for all a′i ∈ Ai, we have

lim sup
N→∞

∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui(a, θ;λ0)

]
ZN
(
a, (ti, t−i), θ

)
≤ 0 a.s. (10)

Moreover, on the subsequence (ZNl
)∞l=1, for all a′i ∈ Ai, we have

lim
l→∞

∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui(a, θ;λ0)

]
ZNl

(
a, (ti, t−i), θ

)
=
∑
a,t−i,θ

lim
l→∞

[
ui
(
(a′i, a−i), θ;λ0

)
− ui(a, θ;λ0)

]
ZNl

(
a, (ti, t−i), θ

)
(11)

=
∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0)− ui(a, θ;λ0)

]
ν
(
a, (ti, t−i), θ

)
.

By inequality (10) and equation (11), for all a′i ∈ Ai, we have∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui(a, θ;λ0)

]
ν
(
a, (ti, t−i), θ

)
≤ 0 a.s. (12)

We conclude from equation (12) that ν is almost surely coarsely obedient for G(λ0).

[⇐=] Now suppose (ZN)
∞
N=1 converges almost surely to E(λ0). Pick any i ∈ I and ti ∈ Ti.
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By coarse obedience, for all a′i ∈ Ai, we have

lim sup
N→∞

∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui(a, θ)

]
ZN
(
a, (ti, t−i), θ

)
≤ 0 a.s. (13)

By equation (8) and inequality (13), we have lim supN→∞
[
VN(i, ti, a

′
i) − UN(i, ti)

]
≤ 0 a.s.

for all a′i ∈ Ai, which implies lim supN→∞RN(i, ti) ≤ 0 a.s. The desired result follows. ■

A.2 Proof of Theorem 2

Pick any ε > 0 and λ ∈ Λ∗. Note that

λ ∈ Λ∗ =⇒ P
(

lim
N→∞

d(qN , Q(λ)) = 0
)
= 1

=⇒ P
(
for all ε̃ > 0, there exists Nε̃ ∈ N s.th. d(qN , Q(λ)) < ε̃ for all N > Nε̃

)
= 1

=⇒ P
(
for all ε̃ > 0, there exists Nε̃ ∈ N s.th. qN ∈ Q(λ; ε̃) for all N > Nε̃

)
= 1

=⇒ P
(
there exists Nε ∈ N s.th. qN ∈ Q(ε;λ) for all N ≥ Nε

)
= 1

=⇒ P
(
there exists Nε ∈ N s.th. λ ∈ Λ̂N(ε) for all N ≥ Nε

)
= 1

=⇒ P

(
λ ∈

∞⋃
N=1

∞⋂
N=K

Λ̂N(ε)

)
=⇒ P

(
λ ∈ lim inf

N→∞
λ ∈ Λ̂N(ε)

)
= 1,

where: the first implication holds by the definition of identified set Λ∗; the second implication
holds by the definition of the limit of a sequence of real numbers; the third implication holds
by the definition of set of ε̃-BCCE predictions Q(λ; ε̃); the fourth implication follows from
the monotonicity of probability measures; the fifth implication holds by the definition of
ε-BCCE estimator Λ̂N(ε); the last two implications hold by the definitions of set union, set
intersection, and lim inf of a sequence of sets. The desired result follows. ■

A.3 Proof of Theorem 3

For all λ ∈ Λ and ε := (ε(i, ti))i∈I,ti∈Ti , where ε(i, ti) ≥ 0 for all i ∈ I and ti ∈ Ti, we have

λ ∈ Λ̂N(ε) ⇐⇒ qN ∈ Q(ε;λ) ⇐⇒ RN(i, ti) ≤ ε(i, ti) for all i ∈ I and ti ∈ Ti, (14)

where: the first equivalence holds by the definition of confidence region Λ̂N(ε); the second
equivalence holds by the definitions of the set of ε-BCCE predictions Q(ε;λ) and regret
RN(i, ti), Theorem 1, and Corollary 1. For all i ∈ I, ti ∈ Ti, and N ∈ N, let

Nti :=
N∑
n=1

1{ti}(ti,n) (15)
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be the number of times agent i observed signal ti up to period N , and define

RN(i, ti) := NRN(i, ti). (16)

Pick any λ ∈ Λ∗. Under assumptions (a)–(c) of the theorem, we have (see, e.g., Chapter
17 in Roughgarden (2016))

E
[
RN(i, ti) |Nti

]
≤ K(i, ti;λ)

√
ln |Ai|

√
N ti . (17)

Next, note that

E
[
RN(i, ti)

]
= E

[
E
[
RNti

(i, ti) |Nti

]]
≤ K(i, ti;λ)

√
ln |Ai|E

[√
N ti

]
≤ K(i, ti;λ)

√
ln |Ai|

√
E[Nti ]

= K(i, ti;λ)
√
ln |Ai|

√
Nϕ(ti;λ),

(18)

where: the first equality follows from the law of total expectation; the first inequality follows
from inequality (17) and the linearity of expectation; the last inequality follows from Jensen’s
inequality; the last equality holds by the definition of Nti in (15) and the linearity of expec-
tation, by observing that (1{ti}(ti,n))

∞
n=1

is a sequence of i.i.d. random variables (because so
is (θn)

∞
n=1) with E[1{ti}(ti,n)] = ϕ(ti;λ).

By the definition of RN(i, ti) in (16), the chain of equalities and inequalities (18), and
the linearity of expectation, we have

E[RN(i, ti)] ≤
K(i, ti;λ)

√
ln |Ai|

√
ϕ(ti;λ)√

N
. (19)

By inequality (19) and Markov’s inequality, for all ε > 0, we have

P(RN(i, ti) ≤ ε) ≥ 1−
K(i, ti;λ)

√
ln |Ai|

√
ϕ(ti;λ)

ε
√
N

. (20)

By inequality (20), for all α ∈ (0, 1),

P(RN(i, ti) ≤ ε(i, ti)) ≥ 1− α ⇐⇒ ε(i, ti) =
K(i, ti;λ)

√
ln |Ai|

√
ϕ(ti;λ)

α
√
N

. (21)

For the choice of ε(i, ti) on the right-hand side of equivalence (21), we have

P
(
RN(i, ti) ≤ ε(i, ti) for all i ∈ I and ti ∈ Ti

)
= 1− P

(
RN(i, ti) > ε(i, ti) for some i ∈ I and ti ∈ Ti

)
≥ 1−

∑
i∈I

∑
ti∈Ti

P
(
RN(i, ti) > ε(i, ti)

)
(22)
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≥ 1−
∑
i∈I

∑
ti∈Ti

α

= 1− α
∑
i∈I

|Ti|,

where: the first equality follows from the probability of a complement; the first inequality
follows from Boole’s inequality; the second inequality follows from equivalence (21).

Therefore, for all α ∈ (0, 1) and N ∈ N, we have

P
(
λ ∈ Λ̂N(εα,N)

)
≥ 1− α ⇐⇒ P(RN(i, ti) ≤ εα,N(i, ti;λ) for all i ∈ I and ti ∈ Ti) ≥ 1− α

⇐= α =
α∑

i∈I |Ti|

⇐⇒ εα,N(i, ti;λ) =

[
K(i, ti;λ)

√
ln |Ai|

√
ϕ(ti;λ)

][∑
i∈I |Ti|

]
α
√
N

,

where: the first equivalence follows from the equivalences in (14); the implication follows
from the chain of equalities and inequalities (22); the second equivalence follows from the
right-hand side of equivalence (21). The desired result follows. ■

A.4 Proof of Theorem 4

Fix any ε > 0, and let B|A| := {b ∈ R|A| : b⊺b ≤ 1} be the closed unit ball centered at
0|A| ∈ R|A|. First, note that

λ ∈ Λ̂N(ε) ⇐⇒ qN ∈ Q(ε;λ).

Second, since Q(ε;λ) is a non-empty, closed, and convex set, it has the following (support-
function) characterization:

qN ∈ Q(ε;λ) ⇐⇒

〈
b⊺qN − sup

q∈Q(ε;λ)

b⊺q ≤ 0 for all b ∈ B|A|

〉
. (23)

Third, since Q(ε;λ) is also bounded and b⊺q is continuous, the equivalence (23) reads as

qN ∈ Q(ε;λ) ⇐⇒
〈
b⊺qN − max

q∈Q(ε;λ)
b⊺q ≤ 0 for all b ∈ B|A|

〉
. (24)

Fourth, since b⊺qN −maxq∈Q(ε;λ) b
⊺q = minq∈Q(ε;λ) b

⊺(qN − q) and minq∈Q(ε;λ) b
⊺(qN − q) eval-

uated at b = 0|A| ∈ B|A| is equal to 0, the equivalence (24) is equivalent to

qN ∈ Q(ε;λ) ⇐⇒
〈
max
b∈B|A|

min
q∈Q(ε;λ)

b⊺(qN − q) = 0

〉
. (25)
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Finally, note that: (i) the constraint that b ∈ B|A| can be written in terms of the first inequal-
ity constraints in program (P1); the constraint that q ∈ Q(ε;λ) can be written in terms of the
equality constraints and the last inequality constraint in program (P1); hence, the right-hand
side of equivalence (25) is equivalent to g(λ; qN , ε) = 0. The desired result follows. ■

B More General Environments
In this Appendix, we generalize the model in the main text by relaxing the assumption

that payoff states are i.i.d. across periods. First, we present general dynamic environments.
Next, we introduce ANR and study convergence to an appropriate BCCE notion. Finally,
we discuss how our econometric approach extends to these more general environments.

B.1 General Dynamic Environments

When relaxing the assumption that payoff states θn are i.i.d. across periods, we must pre-
serve meaningful notions of regret and convergence under ANR to some well-defined BCCE
notion. Moreover, the limiting model must return helpful restrictions for estimating struc-
tural primitives. To achieve generality within these constraints, we split the vector of payoff
states into two components. The first component, θs, relates to the “structural” features
of the environment, which are invariant to counterfactuals. To fix ideas, these could be
marginal costs in a pricing game or valuations in an auction. The other component, θu,
relates to “non-structural” features that affect payoffs in the current environment but are
not necessarily the same in a counterfactual. For instance, this component could include
demand states that would change, e.g., if a digital platform would change format or market
structure. We relax distributional assumptions as follows: we assume that “structural” pay-
off states have a limiting distribution without necessarily being i.i.d. across periods; we do
not restrict the evolution of “non-structural” payoff states over time.

Formally, in a general dynamic environment, finitely many agents, i ∈ I, interact over
discrete-time periods, n ∈ N.

• In each period n:

(i) Payoff states θs,n and θu,n are drawn from some state distributions ψs,n ∈ ∆
(
Θs
)

and ψu,n ∈ ∆(Θu), where Θs and Θu are the finite sets of payoff states.
(ii) Signals tn := (t1,n, . . . , tI,n) ∈ T := T1 × · · · × TI is drawn from some signal

distribution π(· | θs,n) ∈ ∆++(T ). Each agent i privately observes his signal ti,n.
(iii) Each agent i selects an action ai,n ∈ Ai.
(iv) Each agent i observes his realized payoff ui(an, θs,n, θu,n).
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• Almost all paths of the process for payoff states (θs,n)
∞
n=1 have a limiting empirical

distribution ψs ∈ ∆++(Θs) for some Θs ⊆ Θs.
In this setting, Θs is the set of payoff states that occur infinitely often. Let π be the

restriction of π to Θs. For all i ∈ I, let ui be the restriction of ui to A × Θs × Θu. Under
these assumptions, to the general dynamic environment G∞, there corresponds a static game
G∗ := (I, G, S), where G :=

(
Θs,Θu, (Ai, ui)

I
i=1, ψs

)
is the basic game and S :=

(
(Ti)

I
i=1, πs

)
is the information structure. In this section, we refer to G∗ as the limiting stage game.

Discussion. To fix ideas, we note the following.
• General dynamic environments allow for many different stochastic processes governing

the evolution of payoff states (θs,n)
∞
n=1. Examples are i.i.d. payoff states, a perfectly

persistent payoff state, and payoff states that follow various kinds of Markov chains.

• In the model we analyze throughout the main text (before our empirical application),
we have θs,n = θn, and there is no θu,n. Hence, Θs = Θs = Θ, and ψs = ψ, where
ψ ∈ ∆++(Θ) is the distribution from which payoff states are i.i.d. draws.

• In the empirical model in Section 5, we have θs,n = ζi,n and θu,n = ρ−i,n. Hence,
Θs = Θs = T , and Θu = Θ. Moreover, ψs = ψi, where ψi ∈ ∆++(T ) is the distribution
from which seller i’s marginal costs are i.i.d. draws, and π

(
ζi | ζ̃i

)
= 1 if and only if

ζi = ζ̃i. Finally, payoff states θu,n = ρ−i,n are i.i.d. across periods, drawn from some
distribution ψ ∈ ∆++(Θ).

As these observations show, general dynamic environments nest both our model in Sections
2–4 as well as our empirical model in Section 5.

Structural Parameters. The limiting stage game associated with the dynamic environ-
ment G∞ belongs to a parametric class {G∗(λ)}λ∈Λ, indexed by the structural parameters λ.

B.2 Asymptotic No Regret

We extend the ANR notion to general dynamic environments as follows. For all i ∈ I and
ti ∈ Ti, the average factual payoff that agent i with signal ti has obtained up to period N is

UN(i, ti) :=
1

N

N∑
n=1

ui
(
(ai,n, a−i,n), θs,n, θu,n;λ

)
1{ti}(ti,n).

The average counterfactual payoff that agent i with signal ti would have obtained had he
played the best fixed action in hindsight up to period N is

VN(i, ti) := max
ai∈Ai

{
1

N

N∑
n=1

ui
(
(ai, a−i,n), θs,n, θu,n;λ

)
1{ti}(ti,n)

}
.
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Regrets are defined as differences between these counterfactual and factual payoffs. That
is, for all i ∈ I and ti ∈ Ti, the regret of agent i with signal ti before play in period N + 1,
denoted by RN(i, ti), is defined as RN(i, ti) := max{VN(i, ti)− UN(i, ti), 0}.

Definition 12. A sequence (an, tn, θs,n, θu,n)
∞
n=1 from G∞ has asymptotic no regret (ANR)

if, for all i ∈ I and ti ∈ Ti, we have lim supN→∞RN(i, ti) ≤ 0 almost surely.

B.3 Convergence under ANR

Bayes Coarse Correlated Equilibrium. A BCCE of the limiting stage game G∗(λ) is
defined as follows.

Definition 13. The probability distribution ν ∈ ∆(A × T × Θs × Θu) is a Bayes coarse
correlated equilibrium of G∗(λ) if:

1. ν is consistent for G∗(λ); that is, for all t ∈ T and θs ∈ Θs, we have∑
a,θu

ν(a, t, θs, θu) = π(t | θs;λ)ψs(θs;λ).

2. ν is coarsely obedient for G∗(λ); that is, for all i ∈ I and ti ∈ Ti, we have∑
a,t−i,θs,θu

[
ui
(
(a′i, a−i), θs, θu;λ

)
−ui(a, θs, θu;λ)

]
ν(a, (ti, t−i), θs, θu) ≤ 0 for all a′i ∈ Ai.

We denote by E∗(λ) the set of BCCEs of G∗(λ).

ANR and Static Equilibria. The following proposition is the equivalent of (one of the
two implications in) Theorem 1 in general dynamic environments.

Theorem 5 (Convergence under ANR). If the sequence (an, tn, θs,n, θu,n)
∞
n=1 from G∞ has

ANR, then the sequence of empirical distributions (ZN)∞N=1 converges almost surely to E∗(λ0).

Proof. Suppose the sequence (an, tn, θs,n, θu,n)
∞
n=1 from G∞ has ANR. Consider any subse-

quence (ZNl
)∞l=1 of (ZN)∞N=1 that converges to some ν ∈ ∆(A × T × Θs × Θu). We need to

show that ν is almost surely consistent and coarsely obedient for G∗(λ0).

Consistency. Pick any (t, θs) ∈ T ×Θs. Note that∑
a,θu

ν(a, t, θs, θu) =
∑
a,θu

lim
l→∞

ZNl
(a, t, θs, θu)

= lim
l→∞

∑
a,θu

ZNl
(a, t, θs, θu)∑

a,t,θu
ZNl

(a, t, θs, θu)
lim
l→∞

∑
a,t,θu

ZNl
(a, t, θs, θu) (26)
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= lim
l→∞

∑Nl

n=1 1{t}(tn)1{θs}(θs,n)∑Nl

n=1 1{θs}(θs,n)
lim
l→∞

∑Nl

n=1 1{θs}(θs,n)

Nl

.

The ratio ∑Nl

n=1 1{t}(tn)1{θs}(θs,n)∑Nl

n=1 1{θs}(θs,n)
(27)

is the empirical frequency of signal profile t at periods when the state is θs. Since sig-
nal profiles tn are drawn from π(· | θs,n;λ0), the ratio in (27) is the empirical frequency of∑Nl

n=1 1{θs}(θs,n) conditionally independent draws from π(· | θs;λ0). Moreover, since almost
all paths of the process for payoff states (θs,n)

∞
n=1 have a limiting empirical distribution ψs

with full support on Θs, we have liml→∞
∑Nl

n=1 1{θs}(θs,n) = ∞ almost surely. Thus, by the
strong law of large numbers,

lim
l→∞

∑Nl

n=1 1{t}(tn)1{θs}(θs,n)∑Nl

n=1 1{θs}(θs,n)
= π(t | θs;λ0) a.s. (28)

Moreover, again since almost all paths of the process for payoff states (θs,n)
∞
n=1 have a limiting

empirical distribution ψs with full support on Θs

lim
l→∞

∑Nl

n=1 1{θs}(θs,n)

Nl

= ψs(θs;λ0) a.s. (29)

From equations (26), (28), and (29), we have∑
a,θu

ν(a, t, θs, θu) = π(t | θs;λ0)ψs(θs;λ0) a.s. (30)

We conclude from equation (30) that ν is almost surely consistent for G∗(λ0).

Coarse obedience. Pick any i ∈ I and ti ∈ Ti. For all a′i ∈ Ai, let

VN(i, ti, a
′
i) :=

1

N

N∑
n=1

ui
(
(a′i, a−i,n), θs,n, θu,n;λ0

)
1{ti}(ti,n)

be the payoff of agent i with signal ti for not having always played action a′i up to period
N . Note that

VN(i, ti, a
′
i)− UN(i, ti)

=
1

N

N∑
n=1

[
ui
(
(a′i, a−i,n), θs,n, θu,n;λ0

)
− ui

(
(ai,n, a−i,n), θs,n, θu,n;λ0

)]
1{ti}(ti,n) (31)

=
∑

a,t−i,θs,θu

[
ui
(
(a′i, a−i), θs, θu;λ0

)
− ui(a, θs, θu;λ0

)]
ZN
(
a, (ti, t−i), θs, θu).
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Since (an, tn, θs,n, θu,n)
∞
n=1 has ANR, for all a′i ∈ Ai, we have

lim sup
N→∞

[
VN(i, ti, a

′
i)− UN(i, ti)

]
≤ 0 a.s. (32)

Then, by equation (31) and inequality (32), for all a′i ∈ Ai, we have

lim sup
N→∞

∑
a,t−i,θs,θu

[
ui
(
(a′i, a−i), θs, θu;λ0

)
− ui(a, θs, θu;λ0)

]
ZN
(
a, (ti, t−i), θs, θu

)
≤ 0 a.s. (33)

Moreover, on the subsequence (ZNl
)∞l=1, for all a′i ∈ Ai, we have

lim
l→∞

∑
a,t−i,θs,θu

[
ui
(
(a′i, a−i), θs, θu;λ0

)
− ui(a, θs, θu;λ0)

]
ZNl

(
a, (ti, t−i), θs, θu

)
=

∑
a,t−i,θs,θu

[
ui
(
(a′i, a−i), θs, θu;λ0)− ui(a, θs, θu;λ0)

]
ν
(
a, (ti, t−i), θs, θu

)
.

(34)

By inequality (33) and equation (34), for all a′i ∈ Ai, we have∑
a,t−i,θs,θu

[
ui
(
(a′i, a−i), θs, θu;λ0

)
− ui(a, θs, θu;λ0)

]
ν
(
a, (ti, t−i), θs, θu

)
≤ 0 a.s. (35)

We conclude from equation (35) that ν is almost surely coarsely obedient for G∗(λ0). ■

B.4 Econometrics

Given the convergence result in Theorem 5, we can develop an empirical strategy similar
to that in Section 4 in the main text. In particular, using the BCCE restrictions in Defi-
nition 13, we can define analogous versions of the identified set and ε-BCCE estimator in
Definitions 7 and 8 in the main text, and establish the analog to Theorem 2.

Developing an inferential procedure and establishing coverage properties, however, is not
an immediate task. The confidence region we describe in Theorem 3 relies on the assump-
tion that payoff states are i.i.d. across periods. Analogous results could be obtained under
alternative assumptions on the law of the stochastic processes that may govern how payoff
states evolve, as discussed in this appendix. Because making progress here relies on such
additional assumptions, which are best motivated in the context of specific applications, we
leave these extensions to future applications of our method.

C Internal Regrets and Bayes Correlated Equilibria
Another popular regret notion is that of internal regret (see, e.g., Cesa-Bianchi and Lugosi

(2006); Nisan et al. (2007); Roughgarden (2016)), as opposed to external regret in Definition
1. In this appendix, we formalize the notions of asymptotic no internal regret and Bayes
correlated equilibrium. Next, we study convergence to the set of Bayes correlated equilibria
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of the stage game under asymptotic no internal regret. Finally, we discuss the implications
of asymptotic no internal regret on the econometric approach proposed by this paper.

C.1 Internal Regrets and Asymptotic No Internal Regret

Let ai be the last action played by agent i with signal ti before period N . For all pairs of
actions ai, a′i ∈ Ai, let Vi(ai, a′i, ti, N) be the average counterfactual payoff agent i with signal
ti would have obtained had he played a′i every time up to period N he actually played ai:

VN(i, ti, ai, a
′
i) :=

1

N

N∑
n=1

vi,n(ai, a
′
i, ti),

where, for all n ∈ N,

vi,n(ai, a
′
i, ti) :=

 ui
(
(a′i, a−i,n), θn;λ0

)
1{ti}(ti,n) if ai,n = ai

ui
(
(ai,n, a−i,n), θn;λ0

)
1{ti}(ti,n) if ai,n ̸= ai

.

Definition 14 (Internal Regret). For all i ∈ I, ti ∈ Ti, and ai, a
′
i ∈ Ai, the internal regret

of agent i with signal ti for action a′i with respect to action ai before play in period N + 1,
denoted by RN(i, ti, ai, a

′
i), is defined as RN(i, ti, ai, a

′
i) := max {VN(i, ti, ai, a′i)− UN(i, ti), 0}.

RN(i, ti, ai, a
′
i) is a measure of the time-average regret experienced by agent i with signal

ti at period N for not having played, every time that ai was played in the past, the different
action a′i. When each agent has at most two actions, internal regrets coincide with regrets;
otherwise, regrets are a coarser measure of regret than internal regrets.

Definition 15 (Asymptotic No Internal Regret). A sequence (an, tn, θn)
∞
n=1 from G∞ has

asymptotic no internal regret (ANIR) if, for all i ∈ I, ti ∈ Ti, and ai, a′i ∈ Ai, we have

lim sup
N→∞

Ri(ai, a
′
i, ti, N) ≤ 0 almost surely.

Let us refer to agent i with signal ti as “agent (i, ti).” ANIR requires the time average of
the counterfactual increase in past payoffs, had each agent (i, ti) changed each past play of
a given action with its best replacement in hindsight, to vanish in the long run. In contrast,
ANR requires the time average of the counterfactual increase in past payoffs, had each agent
(i, ti) played the best fixed action in hindsight, to vanish in the long run. Clearly, ANIR
implies ANR; the converse is true only if each agent has at most two actions.

C.2 Bayes Correlated Equilibrium

Similarly to BCCE, a Bayes correlated equilibrium of the stage game G(λ) is a probability
distribution over actions, signals, and states satisfying certain restrictions.
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Definition 16 (Bayes Correlated Equilibrium). The probability distribution ν ∈ ∆(A×T×Θ)

is a Bayes Correlated Equilibrium (BCE) of G(λ) if:
1. ν is consistent for G(λ) (see Definition 3).

2. ν is obedient for G(λ); that is, for all i ∈ I, ti ∈ Ti, and ai ∈ Ai, we have∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ;λ

)
−ui

(
(ai, a−i), θ;λ

)]
ν
(
(ai, a−i), (ti, t−i), θ

)
≤ 0 for all a′i ∈ Ai.

We denote by E(λ) the set of BCEs of G(λ) and by Q(λ) the set of BCE predictions of G(λ).

The BCE notion is due to Bergemann and Morris (2013, 2016) and differs from the BCCE
notion in the form of incentive constraint—obedience vs. coarse obedience—we impose on ν.
Suppose a mediator draws an action profile, a signal profile, and a state from distribution ν.
Agents know ν. The mediator informs each agent i about his realized action-signal pair (ai, ti)
from ν (and not only about his realized signal, as in a BCCE). A probability distribution ν

is obedient if each agent i weakly prefers to play ai, given that the other agents, who know
their realized action-signal pair, play according to their part of the realized action profile.

The set E(λ) is convex. Since obedience is more demanding than coarse obedience,
E(λ) ⊆ E(λ) and Q(λ) ⊆ Q(λ), i.e., the set of BCEs (resp., BCE predictions) is a subset of
the set of BCCEs (resp., BCCE predictions). If each agent has at most two actions, coarse
obedience and obedience coincide, and so E(λ) = E(λ) and Q(λ) = Q(λ). If G(λ) is a game
with complete information, BCEs reduce to correlated equilibria (Aumann (1974, 1987)).

C.3 Convergence under Asymptotic No Internal Regret

The following theorem parallels Theorem 1 and shows that a sequence of actions, signals,
and states from G∞ has ANIR if and only if the sequence of empirical distributions of actions,
signals, and states converges almost surely to the set of BCEs of G(λ0).

Theorem 6 (Convergence under ANIR). The sequence (an, tn, θn)
∞
n=1 from G∞ has ANIR if

and only if the sequence of empirical distributions (ZN)∞N=1 converges almost surely to E(λ0).

Proof. [=⇒] Suppose the sequence (an, tn, θn)
∞
n=1 from G∞ has ANIR. Consider any sub-

sequence (ZNl
)∞l=1 of (ZN)∞N=1 that converges to some ν ∈ ∆(A× T ×Θ). We need to show

that ν is almost surely consistent and obedient for G(λ0).

Consistency. The proof of consistency is the same as that for Theorem 1.

Obedience. Pick any i ∈ I and ti ∈ Ti. For all ai, a′i ∈ Ai, note that

VN(i, ti, ai, a
′
i)− UN(i, ti)
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=
1

N

N∑
n=1

[
ui
(
(a′i, a−i,n), θn;λ0

)
− ui

(
(ani , a−i,n), θn;λ0

)]
1{ai}(ai,n)1{ti}(ti,n) (36)

=
∑

a−i,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui

(
(ai, a−i), θ;λ0

)]
ZN
(
(ai, a−i), (ti, t−i), θ

)
.

Since (an, tn, θn)
∞
n=1 has ANIR, for all ai, a′i ∈ Ai, we have

lim sup
N→∞

[
VN(i, ti, ai, a

′
i)− UN(i, ti)

]
≤ 0 a.s. (37)

Then, by equation (36) and inequality (37), for all ai, a′i ∈ Ai, we have

lim sup
N→∞

∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui

(
(ai, a−i), θ;λ0

)]
ZN
(
(ai, a−i), (ti, t−i), θ

)
≤ 0 a.s. (38)

Moreover, on the subsequence (ZNl
)∞l=1, for all ai, a′i ∈ Ai, we have

lim
l→∞

∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui

(
(ai, a−i), θ;λ0

)]
ZNl

(
(ai, a−i), (ti, t−i), θ

)
=

∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui

(
(ai, a−i), θ

)
;λ0
]
ν
(
(ai, a−i), (ti, t−i), θ

)
.

(39)

By inequality (38) and equality (39), for all ai, a′i ∈ Ai, we have∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui

(
(ai, a−i), θ;λ0

)]
ν
(
(ai, a−i), (ti, t−i), θ

)
≤ 0 a.s. (40)

We conclude from equation (40) that ν is almost surely obedient for G(λ0).

[⇐=] Now suppose (ZN)
∞
N=1 converges almost surely to E(λ0). Pick any i ∈ I and ti ∈ Ti.

By obedience, for all ai, a′i ∈ Ai, we have

lim sup
N→∞

∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ;λ0

)
− ui

(
(ai, a−i), θ;λ0

)]
ZN
(
(ai, a−i), (ti, t−i), θ

)
≤ 0 a.s. (41)

By equation (36) and inequality (41), we have lim supN→∞
[
VN(i, ti, ai, a

′
i) − UN(i, ti)

]
≤ 0

a.s. for all ai, a′i ∈ Ai, and so lim supN→∞RN(i, ti, ai, a
′
i) ≤ 0 a.s. The desired result follows.■

C.4 Estimation and Inference under ANIR

With the natural changes, one could implement the econometric method we propose by
assuming that the sequence of actions, signals, and states from G∞ satisfies ANIR (as opposed
to ANR). In this case, the BCE notion would serve the role of BCCE in our main specifica-
tion. Hence, BCEs would provide valid restrictions to estimate the structural parameters of
interest under the ANIR assumption on behavior.
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We developed our main results under ANR for two reasons. First, the two approaches are
virtually equivalent from a conceptual viewpoint. Indeed, although ANIR is a more demand-
ing benchmark metric to evaluate performance than ANR in online learning problems, Blum
and Mansour (2007) show that there is always a “black box reduction” to convert any ANR al-
gorithm into an ANIR algorithm. Thus, whenever agents can satisfy ANR, they can also sat-
isfy ANIR (provided they perform the reduction of the algorithm). Second, assuming ANR
is weaker (hence, more robust) than assuming ANIR. The reason is that ANR is a coarser ob-
jective than ANIR, and it does not require the additional assumption that agents can design
an ANIR algorithm or are indeed converting an ANR algorithm into an ANIR algorithm.

Since E(λ) ⊆ E(λ) and Q(λ) ⊆ Q(λ), one may expect that implementing our econo-
metric procedure under ANIR would yield more informative estimates. Indeed, defining
an identified set using BCE restrictions under the ANIR assumptions would yield tighter
restrictions. Similarly, for a fixed ε > 0, the ε-BCE estimator would result in a smaller
estimated set of parameters than the ε-BCCE estimator.

In practice, however, the picture is different. Indeed, since ANIR is more demanding
than ANR to satisfy, internal regrets converge to 0 more slowly than regrets. Hence, for
given sample size, the ε that would guarantee a desired coverage probability of the ε-BCE
confidence region must be larger than the corresponding ε that would guarantee the same
coverage probability of the ε-BCCE confidence region. As a result, which approach would
yield more informative estimates is unclear and may depend on the specific application. We
leave exploring this comparison to future research.

D Additional Observables in the Data

D.1 Modeling Covariates

In this appendix, we describe how to incorporate exogenous observables into the method
described in the main body of the paper. Suppose that also covariates x ∈ X affect agents’
payoffs. That is, each agent i’s payoff in period n is ui(an, θn, x)—i.e., it is a function of the
action profile an ∈ A played in period n, the payoff state θn ∈ Θ realized in period n, and
the value of covariates x ∈ X realized at the beginning of the game.

Covariates are realizations from the probability measure PX with full support on some
finite set X. We assume that X is finite to simplify the exposition; if X is not finite, one can
similarly extend the model. Moreover, assume that θn is independent of x; this simplifying
assumption is common in much of the literature on empirical games but can be relaxed.

Given a realization of the covariates x, the interaction unfolds as described in Section 2.1.
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We denote the dynamic environment as G∞
x and the corresponding stage game as Gx(λ0).

We modify Assumption 1 as follows.

Assumption 2. For all x ∈ X, consider a dynamic environment G∞
x with stage game Gx(λ0):

1. For some positive integer Nx, the researcher observes an empirical distribution of
actions qNx ∈ ∆(A) from G∞

x .

2. The sequence of actions, signals, and states (an, tn, θn)
∞
n=1 from G∞

x has ANR.

We assume ANR for each realization of the covariates x, so the interaction is independent
across different values of x. Intuitively, this corresponds to empirical environments where
agents minimize regret across distinct markets and do not learn across them. However, some
primitives are constant across markets—e.g., the distribution of marginal cost—while payoffs
are shifted by covariates—e.g. because the demand system varies across markets.

We can now adapt the definitions of the identified set and confidence region. Let the prob-
ability measure P also capture the randomness in the covariates, and let Px be the correspond-
ing conditional probability measure given a realization of the covariates x. Since each stage
game Gx(λ) has a corresponding set of BCCE predictionsQx(λ), we define the identified set as

Λ∗ :=

{
λ ∈ Λ : Px

(
lim

Nx→∞
d(qNx , Qx(λ)) = 0

)
= 1 for all x ∈ X

}
.

For all x ∈ X, let εx := (εx(i, ti))i∈I,ti∈Ti , where εx(i, ti) ≥ 0 for all i ∈ I and ti ∈ Ti.
Moreover, let ε := (εx)x∈X and N := (Nx)x∈X . We define the ε-BCCE confidence region as

Λ̂N(ε) := {λ ∈ Λ : qNx ∈ Qx(ε;λ) for all x ∈ X} .

Clearly, the ε required to establish coverage properties for the confidence region must now
account for the different values of x.

We expect covariates to substantially increase the informativeness of estimates as they
allow leveraging variation across different markets where agents interact.

D.2 Observing Actions Over Time

Suppose the researcher observes the empirical distribution of actions over time (or the
action profile played in every period). In this case, Assumption 1 can be modified as follows.

Assumption 3. Consider a dynamic environment G∞ with stage game G(λ0):
1. For some positive integer N , the researcher observes the empirical distribution of ac-

tions qn ∈ ∆(A) for all n = 1, . . . , N .

2. The sequence of actions, signals, and states (an, tn, θn)
∞
n=1 from G∞ has ANR.
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Under Assumption 3, the researcher can leverage the dynamic nature of the data-generating
process for estimating the structural parameters λ0. Since Assumption 3 differs from As-
sumption 1 about the observables (part 1) but not about agents’ behavior (part 2), Theorem
1 continues to hold: almost surely, for all ε > 0, there exists Nε ∈ N such that qN ∈ Q(λ0; ε)

for all N ≥ Nε. Therefore, for all ε > 0 and λ ∈ Λ∗, where Λ∗ is the identified set in Defini-
tion 7, there exists Nε such that λ ∈ Λ̂N(ε) for all N > Nε. Hence, computing the ε-BCCE
estimator Λ̂N(ε) for all N > Nε would provide helpful restrictions to learn about λ0.

Based on these observations, if the researcher observes the empirical distribution of ac-
tions qn ∈ ∆(A) for all n = 1, . . . , N , she can construct ε-BCCE estimators Λ̂n(ε) for suc-
cessive values of n, and then consider their intersection. Formally, for some positive integer
K ≤ N , she can construct the intersection of ε-BCCE estimators of the identified set Λ∗:

ΛK,N(ε) :=
N⋂

n=K

Λ̂n(ε).

Clearly, for all ε > 0 and K < N , ΛK,N(ε) ⊆ Λ̂N(ε). Moreover, the theoretical convergence
result in Theorem 1 implies that the following statement holds almost surely: for all ε > 0

and λ ∈ Λ∗, there exists Nε such that

λ ∈
∞⋂

n=Nε

Λ̂n(ε).

Thus, the intersection of ε-BCCE estimators, for any ε > 0, will recover in the limit valid
bounds on λ0. On the one hand, taking the intersection of ε-BCCE estimators can result
in smaller bounds on structural parameters while retaining asymptotic almost-sure coverage
properties similar to those of ε-BCCE estimators in Theorem 2. On the other hand, trans-
lating these ideas into a practical procedure raises several challenges. We mention here two.

First, given a sample size N : (i) how should we pick K? (ii) given a value of K, should
we consider the intersection of all estimators for n = K, . . . , N , or “skip” some? Second,
how should we set ε in the construction of ΛK,N(ε)? In the inferential procedure in the main
text, we leverage theoretical convergence results for ANR algorithms to construct confidence
regions with desired coverage properties. Extending this procedure to construct confidence
regions based on the intersection of ε-BCCE estimators ΛK,N(ε) requires much larger sample
sizes (for reasonable coverage properties) and raises conceptual challenges.

Fully addressing these issues is outside the scope of this paper, and we leave further
inquiry into a feasible inferential procedure based on ΛK,N(ε) to future research.
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E Computational Appendix
We discuss the computation of program (P1) in Section 4.4 in the context of our illustra-

tion, where the stage game has independent private values: Θ = T , ui(a, θ;λ) = ui(a, ti;λ),
and π is such that π(t | θ;λ0) = 1 if and only if t = θ (hence, we can omit π from the pro-
gram). However, the computational procedure also applies to the general setting of Sections
2–4. For our illustration, program (P1) becomes

max
b∈R|A|

min
q∈R|A|

+

ν∈R|A||T |
+

b⊺(qN − q) (P2)

subject to

b⊺b− 1 ≤ 0,

q(a)−
∑
t

ν(a, t) = 0 for all a ∈ A,∑
a

ν(a, t)− ψ(t;λ) = 0 for all t ∈ T,∑
a,t

ν(a, t)− 1 = 0,∑
a,t−i

[
ui(a

′
i, a−i, ti;λ)− ui(a, ti;λ)

]
ν(a, ti, t−i)− ε ≤ 0 for all i ∈ I, a′i ∈ Ai, ti ∈ Ti.

The first, second, third, and fifth constraints correspond to the constraints in program (P1)
in the context of our illustration. The fourth constraint is implied by the third constraint and
the fact that ψ(·;λ) is a probability distribution; we add it explicitly to help computation.

Vectorization. Since the objective and all constraints in program (P2) are linear, we write
them in matrix form. We represent the probability distributionψ(·;λ) as a |A|×1 vector with
elements ψ(aj;λ) for 1 ≤ j ≤ |A|; analogously, we represent the probability distributions
q and qN as |A| × 1 vectors. We represent a probability distribution ν ∈ ∆(A × T ) as an
|A| × |T | matrix with entries ν(aj, tk) for 1 ≤ j ≤ |A| and 1 ≤ k ≤ |T |. Let v := vec(ν) be
the vectorization of the matrix representation of ν; the linear transformation vec(ν) stacks
the columns of the matrix representation of ν on top on one other to obtain the dv×1 vector
v, where dv := |A||T |. Moreover, we define z1 := qN − q, z2 := v, and the dz × 1 vector

z :=

 z1

z2

 ,
where dz := |A|(1 + |T |). We denote by 0d the d× 1 vector whose components are all zeros.
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We write the equality constraints in program (P2) in matrix form as

Meqz = y,

where: (i) Meq is the appropriately defined deq × dz matrix of coefficients, with deq :=

|A|+ |T |+ 1; (ii) y is the deq × 1 vector defined as

y :=


qN

ψ(·;λ)

1

 .
We write the inequality constraints in program (P2) in matrix form as

Mineqz ≤ ε,

where: (i) Mineq is the appropriately defined dineq × dz matrix of coefficients, with dineq :=∑
i(|Ai||Ti|); (ii) ε is the dineq × 1 vector whose components are all equal to ε. Finally, since

Q(λ; ε) is a subset of the (|A| − 1)-dimensional simplex,

max
b∈B|A|

min
q∈Q(λ;ε)

b⊺(qN − q) = max
b̃∈B|A|−1

min
q∈Q(λ;ε)

 b̃

0

⊺

(qN − q),

where B|A|−1 is the closed unit ball centered at 0|A|−1 ∈ R|A|−1.
Therefore, we can now rewrite program (P2) in the following equivalent form:

max
b̃∈R|A|−1

min
z1∈R|A|

z2∈Rdv
+

 b̃

0dv+1

⊺

z (P3)

subject to

b̃⊺b̃ ≤ 1,

Meqz = y,

Mineqz ≤ ε.

Duality. We replace the inner linear constrained minimization problem in program (P3) by
its dual to obtain the following linear constrained maximization problem:

max
b̃∈R|A|−1

ℓeq∈Rdeq

ℓineq∈R
dineq
+

−

 y

ε

⊺  ℓeq

ℓineq

 (P4)
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subject to

b̃⊺b̃ ≤ 1,

[M⊺]1:|A|

 ℓeq

ℓineq

 = −

 b̃

0

 ,
[M⊺](|A|+1):dz

 ℓeq

ℓineq

 ≥ 0dv ,

where

M :=

 Meq

Mineq

 .
The dual variables associated to the constraints in program (P3) are the deq × 1 vector ℓeq

and the dineq × 1 vector ℓineq. [M⊺]r:s is the matrix consisting of rows r, r+1, . . . , s of matrix
M⊺. Let dM := deq+dineq be the number of rows of M . By strong duality, programs (P4) and
(P3) have the same value. Program (P4) can be efficiently computed using standard solvers.

E.1 Computational Details for Section 3.3

The neighborhoods of the set of BCCE predictions Q(λ0) we represent in Figures 2 and 3
in Section 3.3 corresponds to the sets of ε-BCCE predictions Q(ε;λ0) in Definition 9 obtained
by appropriately specifying the definition to capture the parametrization of our illustration.
When setting ε := (ε(i, ti;λ0))i∈I,ti∈Ti , where ε(i, ti;λ0) ≥ 0 for all i ∈ I and ti ∈ Ti, we
introduce dependence of ε(i, ti;λ0) on the game’s maximum deviation payoffs and set of
actions, similar to what we do in Theorem 3. In particular, for all i ∈ I and ti ∈ Ti, we set

ε(i, ti;λ0) := ε̃ψ(ti;λ0)
[
K(i, ti;λ0)

√
ln |Ai|

√
ψ(ti;λ0)

]
,

where K(i, ti;λ0) is defined as in Section 4.3, and ε̃ ∈ {0.025, 0.05, 0.1} depending on the
figure or panel. The value of ε(i, ti;λ0) above differs from the one in Theorem 3 only because
of the presence of the scaling factor ε̃, and for the extra ψ(ti;λ0) term that replaces the
dependence from the sample size N , the confidence level α, and

[∑
i∈I |Ti|

]
.

To compute the corresponding sets of ε-BCCE predictions, we discretize the unit ball
B|A| in a grid of 100 values. For each b in the discretized ball, we compute q(b) as the
argmax of the following program:

max
q∈R|A|

+

ν∈R|A||T |
+

b⊺q (P5)
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subject to

q(a)−
∑
t

ν(a, t) = 0 for all a ∈ A,∑
a

ν(a, t)− ψ(t;λ0) = 0 for all t ∈ T,∑
a,t

ν(a, t)− 1 = 0,∑
a,t−i

[
ui(a

′
i, a−i, ti;λ0)− ui(a, ti;λ0)

]
ν(a, ti, t−i)− ε(i, ti;λ0) ≤ 0 for all i ∈ I, a′i ∈ Ai, ti ∈ Ti.

Program (P5) is linear and shares the BCCE constraints with program (P2). We solve it
using KNITRO in AMPL. To draw Figures 2 and 3, we plot the convex hull of all q(b) using
Matlab’s MPT Toolbox (Kvasnica, Grieder, and Baotić (2004)).

E.2 Computational Details for Simulations

For our simulations in Section 4.5, we adapt program (P4) by specifying the matrices
Meq an Mineq to reflect the parametrization adopted for the set of types, utility function,
and ψ. This results in a program with 901 variables and 101 equality constraints. We solve
the program in the Matlab-based modeling system CVX (see Grant and Boyd (2008, 2014))
using the solver SDPT3. The evaluation of program (P4) for any candidate parameter value
λ takes about 0.4 seconds with a 3.2GHz processor.

We construct the sets Λ̂N(εα,N) for our simulations by evaluating program (P4) on a grid
of 10,000 parameter values. We report the projections of these sets for µ and σ in Figures
4 and 5, panel (b). To enhance the graphical representation of Λ̂N(εα,N) in the figures, we
construct a larger grid of 500,000 parameters and classify them as in or out of Λ̂N(εα,N)

by training a Support Vector Machine (SVM) on the 10,000 grid points where we evaluated
program (P4). While this procedure produces figures with smoother boundaries, it does not
alter the overall shape of the identified set in any way.

E.3 Computational Details for the Application

To compute the estimates in Section 5.4, we follow similar steps as those outlined above
for our simulations. Specializing matrices Meq and Mineq yields a program with 111 variables
and 36 equality constraints. Solving this version of program (P4) for any λi takes about
0.3 seconds with a 3.2GHz processor. To prevent numerical problems due to dividing by
near-zero numbers, we implement Φ(i, ζi) =

∑
ρi∈A:Φ(i,ρi,ζi)>0.1K(i,ζi)

K(i,ζi)
Φ(i,ρi,ζi)

.
As for our simulations, we construct the sets Λ̂i,N(εα,N) by evaluating the application-
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specific formulation of program (P4) on a grid of 10,000 parameter values. The projections of
these sets for µi and σi are reported in Figure 7. We then construct a larger grid of 500,000
parameters and classify them by training SVM on the original 10,000 grid points.

F Empirical Application: Further Details
We provide supporting information and details for the empirical application in Section 5.

F.1 Dateset Construction and Description

We construct our Swappa data by focusing on iPhone models only and dropping all
iPhone generations older than iPhone 8: these correspond to a small part of the data, since
iPhone 8 devices are already outdated at the beginning of our sample period. We then drop
some observations that correspond to price mistakes or are otherwise unrealistic. We drop
all listings with a price greater than 120% of the new price for the corresponding device
model on the Apple Store, prices greater than 200% of the Decluttr reference price, or prices
below 50% of the Decluttr reference price for the device model. We also drop all prices that
differ by more than $250 than the Decluttr reference price. Finally, we dropped all devices
that were on sale for more than 100 days.

Table 3: Descriptive Statistics at the Device-Day Level.

Mean SD P25 P75 Min Max
Full sample (4,980 sellers, 259,102 obs.)
Listing prices ($) 495.87 246.95 289.00 685.00 75.00 1,499.00
Reference prices ($) 523.37 250.90 319.99 709.99 109.99 1,329.99
Days before sold 9.61 13.37 2.00 12.00 0.00 99.00

Top 15 sellers (83,801 obs.)
Listing prices ($) 471.85 234.27 276.00 650.00 80.00 1,333.00
Reference prices ($) 510.48 242.02 309.99 709.99 119.99 1,329.99
Days before sold 9.90 12.98 2.00 12.00 0.00 94.00

Most popular device gens. (56,965 obs.)
Listing prices ($) 390.04 110.12 299.00 461.00 176.00 772.00
Reference prices ($) 408.93 101.29 339.99 459.99 259.99 729.99
Days before sold 7.41 11.19 1.00 9.00 0.00 99.00

We report descriptive statistics for our main variables at the device-day level. “Days before sold”
is the number of days between an item’s creation date and its sold date. Top sellers are those who
sold the most devices during the sample period and actively listed devices every day. The three
most popular device generations are iPhone 13, iPhone 12, and iPhone 11. Source: Swappa data
collected by the authors.

These steps yield the device-day level database described in Table 3. The full dataset
includes 259,102 observations we scraped from Swappa (listing prices and sales indicators)
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and matched with reference price data scraped from Decluttr. Across our sample, we observe
substantial variation in both listing and reference prices; mean listing and reference prices
are both around $500, with a standard deviation of about $250. The variation in listing
prices stems both from the fact that we consider a range of different device models on sale
and from heterogeneity in sellers’ pricing behavior. On average, a device gets sold on Swappa
about 10 days after being listed. We further explore both of these channels below. When
restricting our data to the top-15 largest sellers (by sales), the statistics for listing prices and
time to sale are broadly similar. When we look at the most popular device models on the
platform, which are not the latest iPhone generations available during our sample period,
these tend to be cheaper and sell faster.

In Table 4, we report descriptive statistics at the seller level. We observe 4,980 sellers
in the data, although only about 417 (on average) have an active listing each day on the
platform. Active sellers have (on average) 42 listings per day, make 4,571 daily pricing de-
cisions over the sample period, and have sales for around $2,000. These averages, however,
hide substantial asymmetry: the largest sellers are responsible for a large share of listings
and sales. On average, the top-15 sellers have 84 devices on sale per day, make more than
10,000 daily pricing decisions over the sample periods, and have average revenues that exceed
$100,000. Average revenues are more than three times as high if we look at the top-2 sellers.

Table 4: Descriptive Statistics at the Seller Level.

Mean SD P25 P75 Min Max
Full sample (4,980 sellers, 259,102 obs.)
# of sellers (per day) 417 194 230 605 182 813
# of devices (per seller-day) 42 58 3 55 1 395
# of device-days (per seller) 4,571 5,658 181 7,187 1 18,750
Revenues from devices sold ($) 1,931 12,080 412 902 78 326,677

Top-15 sellers (83,801 obs.)
# of devices (per seller-day) 82 66 33 114 1 331
# of device-days (per seller) 9,896 5,896 4,833 14,725 1,286 18,294
Revenues from devices sold ($) 95,770 88,684 44,170 122,090 23,171 306,677

Top-2 sellers (33,019 obs.)
# of devices (per seller-day) 126 55 80 162 17 265
# of device-days (per seller) 16,702 1,774 14,725 18,294 14,725 18,294
Revenues from devices sold ($) 297,479 13,008 288,281 306,677 288,281 306,677

We report descriptive statistics at the seller level Source: Swappa data collected by the authors.

F.2 Large Sellers on Swappa

In Table 5, we report information on the largest sellers on Swappa. All of the top-15 sell-
ers on the platform sell a considerable number of devices over our sample period (with either
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more than around 250 listings or more than around 100 devices sold). However, the top-2 sell-
ers on the platform stand out in terms of the range of models and volume of devices they offer.

Table 5: Large Sellers on Swappa.

Seller Company Name Device-Day Obs. # Listings # Sold # Models

Top-2 sellers
AMS Traders Inc. 18, 294 1, 512 620 23
GadgetPickup 14, 725 1, 695 683 23

Other top-15 sellers
SaveGadget 8, 025 658 243 20
Certified Cell, Inc 7, 697 904 237 18
UPGRADE SOLUTION INC 7, 173 903 427 3
NYCPhonebuyer LLC 6, 037 743 336 23
Buyback Surgeon 4, 833 286 113 21
Brandon K. 4, 381 323 133 18
TD’S Cell Shop 2, 301 316 164 15
Cybertron Electronics LLC 2, 198 234 108 7
GreenStream 1, 981 202 92 17
Gilly’s Smart Phones 1, 875 388 190 12
cell4pets 1, 597 228 124 19
Tech Plug Electronics 1, 398 248 89 22
Sellworld 1, 286 255 100 16

We report top-15 seller names and statistics. Source: Swappa data scraped by the authors.

F.3 Daily Price Decision

We model sellers on Swappa as making daily pricing decisions; thus, we collect data with
a daily frequency. This modeling decision reflects our understanding of the institutional
context. To assess this assumption, we look at the frequency of price changes in the data,
with an important caveat: our ANR assumption does not imply that sellers must change the
price they charge every period, and thus allows for substantial inertia in pricing.

We considered a range of possible assumptions on the frequency of decision-making,
ranging from intra-daily (e.g., every six or twelve hours) to daily, bi-weekly, or weekly. Al-
though we experimented with higher-frequency data collection, we found few intra-day price
changes, thus suggesting that sub-daily decision-making is not plausible. Analysis of daily
data shows that 26% of price changes modify a price set the previous day, while 54% alter
a price set within the last three days.18 In Figure 8, we illustrate the complete distribu-
tion of price-changing frequencies. While not all prices change daily on Swappa, the daily
price-setting model captures market dynamics more accurately than bi-weekly or weekly
alternatives, which would obscure significant price variation in the data.

18These figures refer to the top-15 sellers on the platform; the values for the top-2 sellers are similar.
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Figure 8: Price Changing Frequency (Top-15 Sellers).
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We represent the distribution of the frequency of price changes for the top-15 sellers on Swappa. For each
price change pi,n ̸= pi,n−1 (not considering the first pricing decision when a new device appears on the
platform), we keep track of how long pi,n−1 was unchanged. We then count the frequency of each time
interval and plot it in the pie chart. Source: Swappa data collected by the authors.

F.4 Reference Pricing, Discretization, and Sale Probabilities

To ensure tractability of the model and leverage our data, we subtract for each device-day
pair n = (j, d) reference prices χm(j),d from Swappa prices pi,n to obtain residuals ρi,n. These
residuals capture sellers’ decisions on how to price their devices relative to the reference price
in the broader market for used iPhone devices. Corresponding to this intuition, we show be-
low that the data on residual prices contain useful variation to understand sellers’ incentives.

First, to give insights on how Swappa listing prices and Decluttr reference prices co-vary
over time, we plot in Figure 9 the paths of average prices for the most popular device gener-
ation in our data, iPhone 11. In line with the descriptive statistics in Appendix F.1, Swappa
average listing prices are below reference prices, and track them closely. Reference prices cap-
ture seasonal trends (e.g., spikes around the holidays) that are also reflected in the Swappa
prices. However, there is variation in average residual prices for this device generation, re-
flecting Swappa-specific supply and competitive conditions, e.g., sellers’ strategies and costs.
While we focus on one device in the plot, paths for other devices are qualitatively similar.
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Figure 9: Swappa Listing Prices and Decluttr Reference Prices – iPhone 11.
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The figure represents average Swappa listing prices (in red) and Decluttr reference prices (in blue) for iPhone
11 devices over our sample period. Source: Swappa and Decluttr data collected by the authors.

Pricing residuals ρi,n thus exhibit significant variation across time, devices, and sellers.
We plot in Figure 10 the overall distribution of ρi,n and the distributions for the three device
generations that are most common in our data. All distributions are centered below 0, re-
flecting lower average prices on Swappa than on Decluttr. Despite some differences in shape,
all distributions seem to follow a Normal pattern, with large deviations in either direction less
common than small deviations. We take this as further evidence that reference prices, which
reflect broader market conditions, anchor sellers’ pricing decisions on Swappa meaningfully.

Because we capture discrete pricing decisions in our model, we discretize ρi,n into five bins.
To construct the bins, we first compute pricing residuals for all sellers (including non top-15
sellers) on the platform across the whole sample. From their distribution, we construct five
quantiles and, therefore, five discrete “bins” corresponding to discrete levels of ρi,n. Although
we use the data to construct the discretized set of actions, at this stage, we use observations
from the entire set of sellers, while the estimation in Section 5.4 only focuses on the top-2
sellers. Figure 11 shows the variation in discretized ρi,n for the top-2 sellers in the data. Even
after discretization, the variation in pricing residuals across time and sellers is preserved.

A relevant primitive for our empirical model is a device’s sale probability, s(ρi,n, ρ̄−i,n).
Such a probability is a function of the seller’s price residual ρi,n and of the competitors’
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Figure 10: Distribution of Pricing Residuals.
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average price residual ρ̄−i,n. Because both ρi,n and ρ̄−i,n are discretized, this function takes on
|A|2 = 25 values; we estimate it from the data as the empirical sale probability for a device-
day. We compute these probabilities using data from all sellers in our data. Underlying
this approach there is an assumption that, by differencing out reference prices, we have
appropriately controlled for all relevant device characteristics. Because of the fine level at
which we match reference prices to devices, keeping track of device model, memory, and
condition, we believe this assumption is appropriate in our context.

Figure 12 represents the estimated sale probabilities s(ρi,n, ρ̄−i,n) for each combination of
ρi,n and ρ̄−i,n. The sale probabilities range between 0.5 percent and 10 percent. In line with
economic intuition, the probability of selling a device decreases with the own (discretized)
price residual ρi,n and increases with competitors’ average price residual ρ̄−i,n. This supports
the view that we are appropriately controlling for unobserved heterogeneity.

F.5 Gazelle Data

In our markup quantification exercise in Section 5.5, we use data from Gazelle, a central-
ized buyback and resale platform that directly purchases devices from consumers, refurbishes
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Figure 11: Distribution of 5 Bin over Time (Top-15 Sellers).
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We represent the distribution of the time-average of ρi,n, discretized into five bins, at three points in time
in our sample. The two panels represent sellers 1 and 2, the largest in our data.

them, and resells them.19 Gazelle’s website is similar to Decluttr, where we collect our refer-
ence price data. However, Decluttr stopped buying used devices during our sample period,
thus prompting us to collect data from Gazelle.20

We scrape the website for 39 days, collecting prices at which the platform sells (“ask”)
and buys (“bid”) devices of a given model (including storage capacity and condition). We
average these prices across all daily observations in our sample and report descriptive statis-
tics for the Gazelle data in Table 7. Across the entire dataset, we see average ask prices of
about $500, with significant variation across models and conditions. These values are close
to what we observe for our Swappa and Decluttr databases in Appendix F.1. The average
bid-ask spread on Gazelle is $197, and markups are between $108 and $167. While variation
across iPhone generations and storage is the most significant driver of heterogeneity, condi-
tion plays an important part. Devices in excellent condition command a premium and have
higher average bid-ask spreads than devices in fair condition (around $217 versus $189).

Finally, we discuss our choice of estimating the costs that Gazelle incurs to market the
devices it purchases at 10-30% of the bid price. Estimating the entity of these costs is chal-

19See https://buy.gazelle.com/.
20Since then, Decluttr has changed its strategy again to selling devices on eBay and Amazon but restarted

accepting trade-ins. Gazelle continues to operate through its website.
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Figure 12: Sale Probability.
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lenging. Because Gazelle is not a public company, financial data are not readily available.
We use a source21 that quantifies industry estimates for different components of marginal
cost. For an average device (e.g., for the average bid price of about $300), a seller incurs
costs for processing, testing, and quality assurance of $15-65; warranty and customer support
adds $5-20 to the cost. Shipping (including the possibility of returns) adds about $5. We do
not add here refurbishment and repair costs (labor and parts), which are more substantial
($25-100 per device), as Gazelle grades the device it receives according to the same scale of
the device it sells, and so does not meaningfully refurbish the devices it resells. Overall, this
exercise measures additional costs at around 10-30% of the bid price.

F.6 Empirical Model: Proofs and Technical Details

F.6.1 Proof of Proposition 1

Preliminaries: Regret and Asymptotic No Regret. We establish the formal notation
by providing definitions of factual payoffs, counterfactual payoffs, regret, and asymptotic no

21See this link; accessed on September 2024.
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Table 7: Bid and Ask Prices, Markups from Gazelle.

Mean SD P25 P75 Min Max
Full Dataset (237 observations)
Sell/“Ask” price ($) 491.54 268.71 254.77 694.33 109.39 1,316.76
Buy/“Bid” price ($) 294.71 170.17 143.56 428.26 54.05 779.46
Bid-ask spread ($) 196.83 100.09 113.31 269.87 55.34 537.29
Markups ($) [108.41, 167.35]
Excellent (79 observations)
Sell/“Ask” price ($) 517.77 281.50 270.63 747.97 135.28 1,316.76
Buy/“Bid” price ($) 309.15 176.23 151.62 457.66 59.41 779.46
Bid-ask spread ($) 208.61 107.07 118.87 291.96 72.23 537.29
Markups ($) [115.87, 177.70]
Good (79 observations)
Sell/“Ask” Price ($) 491.76 267.05 257.66 695.31 119.36 1,260.28
Buy/“Bid” price ($) 294.17 169.93 143.24 428.26 57.77 758.29
Bid-ask spread ($) 197.59 98.55 115.67 277.05 61.41 501.99
Markups ($) [109.34, 168.17]
Fair (79 observations)
Sell/“Ask” price ($) 465.09 257.87 237.11 663.85 109.39 1,212.36
Buy/“Bid” Price ($) 280.81 165.16 132.29 410.62 54.05 741.67
Bid-ask spread ($) 184.27 93.98 104.20 254.97 55.34 470.69
Markups ($) [100.03, 156.19]

We report prices and markups on Gazelle. Each observation (i.e., device) is defined by a combination
of model (e.g., iPhone 15 Pro), storage capacity (e.g., 128GB), and condition (i.e., “Fair,” “Good,”
or “Excellent”). Sell/“ask” price refers to the prices at which the platform sells to customers, while
buy/“bid” price refers to the prices at which the platform buys from individuals. The bid-ask spread
is the amount by which the ask exceeds the bid price. Markups are obtained by subtracting from
Gazelle sell ask prices the bid prices times a cost multiplier. We consider multipliers of 1.1 and 1.3
to give a conservative interval. Source: Gazelle data collected by the authors.

regret in the context of our empirical model. Consider seller i. For all ζi ∈ T , the average
factual payoff that seller i with marginal cost ζi has obtained up to period N is

UN(i, ζi) :=
1

N

N∑
n=1

s(ρi,n, ρ−i,n)(ρi,n − ζi,n)1{ζi}(ζi,n).

Moreover, the average counterfactual payoff that seller i with marginal cost ζi would have
obtained had he always set price ρ′i up to period N is

VN(i, ζi, ρ
′
i) :=

1

N

N∑
n=1

[
s(ρ′i, ρ−i,n)(ρ

′
i − ζi,n)

]
1{ζi}(ζi,n).

Let VN(i, ζi) := maxρ′i∈A VN(i, ζi, ρ
′
i). The regret of seller i with marginal cost ζi for not hav-

ing always set the best fixed price in hindsight up to period N is RN(i, ζi) := max{VN(i, ζi)−
UN(i, ζi), 0}. The sequence of prices, marginal costs, and states (ρi,n, ζi,n, ρ−i,n)

∞
n=1

from G∞
i
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has ANR if, for all ζi ∈ T , we have lim supN→∞RN(i, ζi) ≤ 0 almost surely.

Proof of Proposition 1. Consider any subsequence (Zi,Nl
)∞l=1 of (Zi,N)∞N=1 that converges

to some νi ∈ ∆(A×T ×Θ), where νi = ν̃i×ψ for some ν̃i ∈ ∆(A×T ). We need to show that
ν̃i is almost surely consistent and coarsely obedient for Gi(λi,0) according to Definition 11.

Consistency. Pick any ζi ∈ T . Note that∑
ρi

ν̃i(ρi, ζi) =
∑
ρi,ρ−i

ν̃i(ρi, ζi)ψ(ρ−i)

=
∑
ρi,ρ−i

νi(ρi, ζi, ρ−i)

=
∑
ρi,ρ−i

lim
l→∞

Zi,Nl
(ρi, ζi, ρ−i)

= lim
l→∞

∑Nl

n=1 1{ζi}(ζi,n)

Nl

.

(42)

Since marginal costs are i.i.d. draws from ψi(·;λi,0), by the strong law of large numbers,

lim
l→∞

∑Nl

n=1 1{ζi}(ζi,n)

Nl

= ψi(ζi;λi,0) a.s. (43)

From equations (42) and (43), we have∑
ρi

ν̃i(ρi, ζi)νi(ρi, ζi, ρ−i) = ψi(ζi;λi,0) a.s. (44)

We conclude from equation (44) that ν̃i is almost surely consistent for Gi(λi,0).

Coarse obedience. Pick any ζi ∈ T . Note that

VN(i, ζi, ρ
′
i)− UN(i, ζi)

=
1

N

N∑
n=1

[
s(ρ′i, ρ−i,n)(ρ

′
i − ζi,n)− s(ρi,n, ρ−i,n)(ρi,n − ζi,n)

]
1{ζi}(ζi,n)

=
∑
ρi,ρ−i

[
s(ρ′i, ρ−i)(ρ

′
i − ζi)− s(ρi, ρ−i)(ρi − ζi)

]
Zi,N(ρi, ζi, ρ−i).

(45)

Since (ρi,n, ζi,n, ρ−i,n)
∞
n=1

has ANR, for all ρ′i ∈ A, we have

lim sup
N→∞

[
VN(i, ζi, ρ

′
i)− UN(i, ζi)

]
≤ 0 a.s. (46)

Then, by equation (45) and inequality (46), for all ρ′i ∈ A, we have

lim sup
N→∞

∑
ρi,ρ−i

[
s(ρ′i, ρ−i)(ρ

′
i − ζi)− s(ρi, ρ−i)(ρi − ζi)

]
Zi,N(ρi, ζi, ρ−i) ≤ 0 a.s. (47)
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Moreover, on the subsequence (Zi,Nl
)∞l=1, for all ρ′i ∈ A, we have

lim
l→∞

∑
ρi,ρ−i

[
s(ρ′i, ρ−i)(ρ

′
i − ζi)− s(ρi, ρ−i)(ρi − ζi)

]
Zi,Nl

(ρi, ζi, ρ−i)

=
∑
ρi,ρ−i

[
s(ρ′i, ρ−i)(ρ

′
i − ζi)− s(ρi, ρ−i)(ρi − ζi)

]
νi(ρi, ζi, ρ−i) (48)

=
∑
ρi

[∑
ρ−i

[
si(ρ

′
i, ρ−i)(ρ

′
i − ζi)− si(ρi, ρ−i)(ρi − ζi)

]
ψ(ρ−i)

]
ν̃i(ρi, ζi).

By inequality (47) and equation (48), for all ρ′i ∈ A, we have∑
ρi

[∑
ρ−i

[
si(ρ

′
i, ρ−i)(ρ

′
i − ζi)− si(ρi, ρ−i)(ρi − ζi)

]
ψ(ρ−i)

]
ν̃i(ρi, ζi) ≤ 0 a.s. (49)

We conclude from equation (49) that ν̃i is almost surely coarsely obedient for Gi(λi,0). ■

F.6.2 Proof of Proposition 2

For all λi ∈ Λ and ε := (ε(i, ζi))ζi∈T , where ε(i, ζi) ≥ 0 for all ζi ∈ T , we have

λi ∈ Λ̂i,N(ε) ⇐⇒ qi,N ∈ Qi(ε;λi) ⇐⇒ RN(i, ζi) ≤ ε(i, ζi) for all ζi ∈ T. (50)

Pick any λ ∈ Λ∗. Under the assumptions of the proposition, for all ζi ∈ T , we have (see,
e.g., Section 1.2 in Faure et al. (2015)),

E[RN(i, ζi)] ≤
Φ(i, ζi)

N
. (51)

By inequality (51) and Markov’s inequality, for all ε > 0, we have

P(RN(i, ζi) ≤ ε) ≥ 1− Φ(i, ζi)

εN
. (52)

By inequality (52), for all α ∈ (0, 1),

P(RN(i, ζi) ≤ ε(i, ζi)) ≥ 1− α ⇐⇒ ε(i, ζi) =
Φ(i, ζi)

αN
. (53)

For the choice of ε(i, ζi) on the right-hand side of equivalence (53), we have

P
(
RN(i, ζi) ≤ ε(i, ζi) for all ζi ∈ T

)
= Πζi∈TP

(
RN(i, ζi) ≤ ε(i, ζi)

)
≥ (1− α)|T |, (54)

where: the equality holds because, under the assumptions of the proposition, the regrets
RN(i, ζi) are independent across ζi; the inequality follows from condition (53).

Therefore, for all α ∈ (0, 1), we have

P
(
λi ∈ Λ̂i,N(ε)

)
≥ 1− α ⇐⇒ P

(
RN(i, ζi) ≤ ε(i, ζi) for all ζi ∈ T

)
≥ 1− α
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⇐= (1− α)|T | = 1− α

⇐⇒ α = 1− (1− α)
1

|T |

⇐⇒ ε(i, ζi) =
Φ(i, ζi)[

1− (1− α)
1

|T |

]
N
,

where: the first equivalence follows from the equivalences in (50); the implication follows
from the chain of equalities and inequalities (54); the second equivalence follows from the
choice of ε(i, ζi) on the right-hand side of equivalence (53). The desired result follows. ■

F.7 Alternative Assumptions on the Empirical Model

In this section, we consider an alternative empirical model in which we relax the assump-
tions that ρ−i,n are i.i.d., that ζi,n and ρ−i,n are independent, and of full feedback. Next, we
present estimation results under such alternative assumptions.

F.7.1 Alternative Empirical Model

We present the empirical model and illustrate formal results and technical details by
considering a typical seller i.

Regret and Asymptotic No Regret. The definitions of factual payoffs, counterfactual
payoffs, regret, and asymptotic no regret are identical to those under the main specification
of the empirical model in Section 5.2 (see Appendix F.6 for formal the definitions).

Bayes Coarse Correlated Equilibrium. A BCCE of the empirical stage game Gi(λi) is
defined as follows.

Definition 17. The probability distribution νi ∈ ∆(A× T ×Θ) is a Bayes coarse correlated
equilibrium of the empirical stage game Gi(λi) if:

1. νi is consistent for G(λi); that is, for all ζi ∈ T , we have
∑

ρi,ρ−i
νi(ρi, ζi, ρ−i) =

ψi(ζi;λi,0).

2. νi is coarsely obedient for G(λi); that is, for all ζi ∈ T , we have∑
ρi,ρ−i

[
si(ρ

′
i, ρ−i)(ρ

′
i − ζi)− si(ρi, ρ−i)(ρi − ζi)

]
νi(ρi, ζi, ρ−i) ≤ 0 for all ρ′i ∈ A.

We denote by Ei(λi) the set of BCCEs of Gi(λi).

ANR Pricing and Convergence. The following proposition is the equivalent of (one of
the two implications in) Theorem 1 in the context of our alternative empirical model.
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Proposition 3. Suppose the sequence of prices, marginal costs, and states (ρi,n, ζi,n, ρ−i,n)
∞
n=1

from G∞
i has ANR. Then, the sequence of empirical distributions of prices, marginal costs,

and states (Zi,N)
∞
N=1 converges almost surely to Ei(λi,0).

Proof. Consider any subsequence (Zi,Nl
)∞l=1 of (Zi,N)∞N=1 that converges to some νi ∈ ∆(A×

T×Θ). We need to show that νi is almost surely consistent and coarsely obedient for Gi(λi,0)
according to Definition 17.

Consistency. Pick any ζi ∈ T . Note that∑
ρi,ρ−i

νi(ρi, ζi, ρ−i) =
∑
ρi,ρ−i

lim
l→∞

Zi,Nl
(ρi, ζi, ρ−i) = lim

l→∞

∑Nl

n=1 1{ζi}(ζi,n)

Nl

.

That νi is almost surely consistent for Gi(λi,0) follows from the same argument as that in the
proof of consistency in Proposition 1 (see Appendix F.6).

Coarse obedience. Pick any ζi ∈ T . By the same steps as those in the proof of coarse
obedience in Proposition 1 (see Appendix F.6), for all ρ′i ∈ A, we have

lim sup
N→∞

∑
ρi,ρ−i

[
s(ρ′i, ρ−i)(ρ

′
i − ζi)− s(ρi, ρ−i)(ρi − ζi)

]
Zi,N(ρi, ζi, ρ−i) ≤ 0 a.s. (55)

Moreover, on the subsequence (Zi,Nl
)∞l=1, for all ρ′i ∈ A, we have

lim
l→∞

∑
ρi,ρ−i

[
s(ρ′i, ρ−i)(ρ

′
i − ζi)− s(ρi, ρ−i)(ρi − ζi)

]
Zi,Nl

(ρi, ζi, ρ−i)

=
∑
ρi,ρ−i

[
s(ρ′i, ρ−i)(ρ

′
i − ζi)− s(ρi, ρ−i)(ρi − ζi)

]
νi(ρi, ζi, ρ−i).

(56)

By inequality (55) and equation (56), for all ρ′i ∈ A, we have∑
ρi,ρ−i

[
s(ρ′i, ρ−i)(ρ

′
i − ζi)− s(ρi, ρ−i)(ρi − ζi)

]
νi(ρi, ζi, ρ−i) ≤ 0 a.s. (57)

We conclude from equation (57) that νi is almost surely coarsely obedient for Gi(λi,0). ■

Estimation, Confidence Region, and Coverage. The following proposition, which is
the equivalent of Theorem 3 in the context of our alternative empirical model, characterizes
a uniformly valid confidence region for all λi ∈ Λ∗

i .

Proposition 4. In the alternative empirical model, suppose: 1. adversarial bandit environ-
ment; 2. bandit feedback; 3. the algorithm optimizes the convergence rate of the expected
regret to 0 given 1. and 2. Fix α ∈ (0, 1) and N ∈ N. For all ζi ∈ T and λi ∈ Λ, let

εα,N(ζi;λi) :=

[
K(i, ζi)

√
ln |A|

√
ψ(ζi;λi)

]
|T |

α
√
N

.
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Then, Λ̂i,N(εα,N) :=
{
λi ∈ Λ : qi,N ∈ Qi(εα,N(λi);λi)

}
is a uniformly valid confidence region

for all λi ∈ Λ∗; that is,
inf
λ∈Λ∗

P
(
λi ∈ Λ̂i,N(εα,N)

)
≥ 1− α.

Proof. The proof mimics that of Theorem 3 in Appendix A.3 ■

The proposition shows that the different assumptions adopted in this appendix result in
a convergence rate of O

(
1√
N

)
, as opposed to O

(
1
N

)
for the assumptions in our preferred

specification. Therefore, the implied worst-case bounds on regrets are unlikely to yield in-
formative inferences for the sample sizes in our application. To address this, we rely on our
simulation results in Section 4.5, where we found that average empirical regrets are only a
fraction of the theoretical worst-case regret. We compute this ratio r in our simulations, and
apply it to the εα,N(ζi;λi), thus using rεα,N(ζi;λi) to compute our confidence regions.

F.7.2 Estimation Results under the Alternative Empirical Model

In panels (a) and (b) of Figure 13, we represent the confidence regions for the top-2
Swappa sellers in our data under the alternative assumptions presented in this appendix.
For each seller i, the figure plots (in blue) the confidence region Λ̂i,N(εα,N) in the (µi, σi)-
space, the parameters characterizing the seller-specific distribution of marginal costs. We
also represent (in red and green) the projections of the confidence regions for each of the two
parameters. The estimated confidence regions are qualitatively similar to those in Figure 7.

Figure 13: Confidence Regions.

(a) Seller 1 (b) Seller 2

We plot in blue confidence regions in the (µi, σi)-space; we report in red and green projections for µi and
σi. Each panel corresponds to one of the top-2 Swappa sellers. Computational details are in Appendix E.3.

We also compute the distribution of marginal cost residuals and marginal costs corre-
sponding to the confidence regions, similarly to Table 1. The results, reported in Table 8,
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are again similar to those under our preferred specification in the main text.

Table 8: Estimated Distributions of Marginal Cost Residuals and Marginal Costs.

Marginal Cost Residuals ($) Marginal Cost ($)
Mean SD Mean SD

(1) (2) (3) (4)

Seller 1 [−91.3,−65.8] [88.3, 113.3] [504.6, 530.1] [206.4, 226.6]

Seller 2 [−102.8,−72.5] [76.2, 107.7] [424.2, 454.5] [257.3, 278.7]

We report statistics of marginal cost residuals (columns 1-2), and marginal costs (columns 3-4) for the
parameter estimates corresponding to the assumptions in this appendix. Each of the top-2 Swappa sellers
in our data corresponds to a row. Marginal cost residual statistics are obtained as in Table 1.
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