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Abstract 
We consider a version of Pandora’s box problem in which the distributions of the various 
alternatives’ utilities are ranked by first-order stochastic dominance and possibly correlated. 
Under independence, Weitzman’s optimal search rule prescribes inspecting the dominant 
alternative first. We show that, with correlation, this sampling order remains optimal if there are 
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optimal: we provide sufficient conditions for this to happen. 
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1 Introduction

In Pandora’s box problem (Weitzman, 1979), an agent must decide in which order to
inspect a certain number of alternatives (or boxes) with unknown utilities and when to
stop the search. Inspecting an alternative reveals its utility to the agent but is costly. This
framework has many applications, such as searching for a product, a job, a school, or an
employee (see, e.g., Armstrong, 2017; Chade, Eeckhout, and Smith, 2017; Beyhaghi and Cai,
2024). When the alternatives’ utilities are stochastically independent, a simple reservation
utility strategy, known as “Weitzman’s rule”, characterizes the optimal sampling sequence
and stopping rule. Without independence, however, a general closed-form solution for the
optimal search strategy is unknown. In response, recent work characterizes approximate
solutions to the problem (see, e.g., Chawla, Gergatsouli, Teng, Tzamos, and Zhang, 2020).1

In this paper, we study a version of Pandora’s box problem in which the utilities of
two alternatives are correlated, and their marginal distributions are ranked by first-order
stochastic dominance. Stochastic dominance is a strong ranking assumption that suggests
a natural guess: inspecting the dominant alternative first may be optimal. Indeed, this
is what Weitzman’s rule would prescribe with independent utilities across alternatives.
We show that this guess generally fails under correlation. The central insight is that
correlation introduces a trade-off between starting the search from the alternative that is
more likely to have a high utility and doing so from the one providing more information
on the value of continuing the search.

Specifically, we make two contributions. First, we show that if each alternative takes
only two possible utility levels, inspecting the dominant alternative first remains optimal
(Proposition 1). Since all binary utility distributions can be ranked by first-order stochastic
dominance, this result implies that the sampling sequence prescribed by Weitzman’s rule
remains optimal with two alternatives and binary utilities, independently of their corre-
lation. Second, we show that, despite the strong assumption of the dominance ranking,
Weitzman’s rule fails if each alternative has three possible utility levels (Proposition 2),
and we provide sufficient conditions on utility distributions under which inspecting the
dominated alternative first is optimal.

In addition to its theoretical interest, the first-order stochastic dominance ordering is
of independent interest because it naturally arises even from ex-ante identical alternatives
under social learning (see, e.g., Mueller-Frank and Pai, 2016; Lomys, 2024). Given the
theoretical difficulty in characterizing optimal sequential search under correlated utilities,
existing work focuses on specific distributional assumptions. For instance, Ke and Lin
(2020) and Bao, Li, and Yu (2023) characterize the optimal policy when utilities have a

1Chawla et al. (2020) and follow-up work focus on the loss minimization version of the problem, in
which alternatives have a non-negative price, and the agent wants to minimize the selected price plus
total cost. For exact optimization, which is our focus, utility maximization and loss minimization are
equivalent problems (Beyhaghi and Cai, 2024).
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common and an idiosyncratic component. Neither paper focuses on stochastic dominance.

2 Model

An agent must select an alternative in X := {1, 2}. Let ux denote the utility of alternative
x ∈ X to the agent. For some U ⊆ R+, the utility vector (u1, u2) is drawn from a joint
distribution F with support U2. For our results, assuming |U | ∈ {2, 3} suffices. The agent
wants to take the alternative with the highest realized utility; she knows F and can learn
the realized value ux via costly sequential search with recall, as follows:

• The agent decides which alternative x to inspect first.

• After learning ux, the agent decides whether to inspect the remaining alternative,
denoted ¬x, or to discontinue the search.2

• Each inspection costs c ∈ R+. The agent’s utility is ux − c if she searches once, and
max{ux, u¬x} − 2c if she searches twice.

Let Fx denote the marginal distribution of alternative x. Let f (resp., fx) denote the
probability mass function of F (resp., Fx). Hence, f(i, j) is the probability that alternative
1 has utility i and alternative 2 has utility j, and fx(i) is the probability that alternative
x has utility i. We write F1 ≿ F2 to indicate that F1 first-order stochastically dominates
F2: F1(u) ≤ F2(u) for all u ∈ U , with strict inequality for some u.

Hereafter, following Armstrong (2017), we assume E[ux] > c for all x ∈ X, ensuring
that the agent searches at least once.

Weitzman’s Rule. The reservation value of alternative x is the unique rx ∈ R+ satisfying
c = E[max{0, ux − rx}]. If u1 and u2 are independent, Weitzman (1979)’s optimal search
strategy is: “Inspect alternatives in descending order of reservation value; discontinue
the search when finding an alternative whose utility exceeds the reservation value of any
uninspected alternative.” Weitzman’s rule implies the following result, whose proof is in
Appendix A.1.

Lemma 1. Suppose u1 and u2 are independent and F1 ≿ F2. Then, either the agent is
indifferent between alternatives or inspecting alternative 1 first is optimal.

3 Two Utility Levels

Suppose |U | = 2. We show that inspecting the stochastically dominant alternative first
is optimal, independently of the correlation between u1 and u2. When |U | = 2, either
F1 ≿ F2 or F2 ≿ F1. Hence, our result implies that the sampling sequence prescribed by

2The behavior when the agent is indifferent on searching again is irrelevant to our results.
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Weitzman’s rule remains optimal with two alternatives and binary utilities, independently
of their correlation.

Proposition 1. Suppose U := {ℓ, h}, with 0 ≤ ℓ < h, and F1 ≿ F2. Then, inspecting
alternative 1 first is optimal.

Proof. We proceed in steps.

Step 1. Let ∆ := h − ℓ. With two utilities,

F1 ≿ F2 ⇐⇒ P(u1 = h) > P(u2 = h). (1)

Step 2. Suppose the agent inspects alternative x first. If ux = h, the expected gain from
the second search is 0, and the agent discontinues the search. If ux = ℓ, the expected gain
from the second search is

Gx := P(u¬x = h | ux = ℓ)∆, (2)

and the agent inspects alternative ¬x if and only if c ≤ Gx.

Step 3. By step 2, the value of the search problem of an agent with search cost c who
inspects alternative x first is

V (x, c) :=

E[ux] − c if c > Gx

E[ux] − c + [P(u¬x = h | ux = ℓ)∆ − c]P(ux = ℓ) if c ≤ Gx

. (3)

Step 4. When c = 0, the agent is indifferent between which alternative to inspect first:
V (x, 0) = V (¬x, 0) or, equivalently,

E[ux] + P(u¬x = h | ux = ℓ)P(ux = ℓ)∆

= E[u¬x] + P(ux = h | u¬x = ℓ)P(u¬x = ℓ)∆.
(4)

Step 5. Assume c > 0. We distinguish between four exclusive and exhaustive cases. For
each case, we show that V (1, c) − V (2, c) > 0, from which the desired result follows.

• If c > max{G1, G2},

V (1, c) − V (2, c) = E[u1] − E[u2] > 0,

where: the equality holds by definition (3) and the assumption c > max{G1, G2};
the inequality holds by assumption (1).

• If c ≤ min{G1, G2},

V (1, c) − V (2, c) = E[u1] + [P(u2 = h | u1 = ℓ)∆ − c]P(u1 = ℓ)

− E[u2] + [P(u1 = h | u2 = ℓ)∆ − c]P(u2 = ℓ)

= [P(u2 = ℓ) − P(u1 = ℓ)]c

> 0,
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where: the first equality holds by definition (3) and the assumption c ≤ min{G1, G2};
the second equality holds by condition (4); the inequality holds by assumption (1),
which implies P(u2 = ℓ) < P(u1 = ℓ), and the assumption c > 0.

• If G1 < c ≤ G2,

V (1, c) − V (2, c) = E[u1] − E[u2] − [P(u1 = h | u2 = ℓ)∆ − c]P(u2 = ℓ)

> E[u1] − E[u2] − P(u1 = h | u2 = ℓ)P(u2 = ℓ)∆

+ P(u2 = h | u1 = ℓ)P(u2 = ℓ)∆

= [P(u2 = ℓ) − P(u1 = ℓ)]P(u2 = h | u1 = ℓ)∆

> 0,

where: the first equality holds by definition (3) and the assumption G1 < c ≤ G2; the
first inequality holds by the assumption c > G1 and the definition of G1 in (2); the
second equality holds by condition (4); the second inequality holds by assumption
(1), which implies P(u2 = ℓ) > P(u1 = ℓ), and the assumption ∆ > 0.

• If G2 < c ≤ G1,

V (1, c) − V (2, c) = E[u1] + [P(u2 = h | u1 = ℓ)∆ − c]P(u1 = ℓ) − E[u2]

≥ E[u1] + P(u2 = h | u1 = ℓ)P(u1 = ℓ)∆

− E[u2] − P(u2 = h | u1 = ℓ)P(u1 = ℓ)∆

= E[u1] − E[u2]

> 0,

where: the first equality holds by definition (3) and the assumption G2 < c ≤ G1;
the first inequality holds by the assumption c ≤ G1 and the definition of G1 in (2);
the last inequality holds by assumption (1). ■

4 Three Utility Levels

For |U | = 3, we provide sufficient conditions under which F1 ≿ F2, but inspecting
alternative 2 first is optimal; hence, Weitzman’s rule fails.

Proposition 2. Suppose U := {ℓ, m, h}, where 0 ≤ ℓ < m < h, and:
(a) f(m, h) − f(h, m) = f(h, ℓ) − f(ℓ, h) > 0;

(b) f(m, ℓ) = f(ℓ, m) > 0.
Then, F1 ≿ F2. Moreover, for all c > 0, one can choose ℓ, m, h so that inspecting
alternative 2 first is optimal.

With correlation, inspecting an alternative allows the agent to learn its utility and the
conditional distribution of the remaining alternative. Correlation introduces a trade-off
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between starting the search from the alternative that is more likely to have a high utility
and from the one providing more information about the value of continuing the search.
Conditions (a) and (b) capture this informational effect while keeping stochastic dom-
inance in favor of action 1 and ensuring that the agent solves the trade-off by inspecting
alternative 2 first.

For illustrative purposes, we construct an example that satisfies conditions (a) and
(b) with a small departure from independence. Suppose utilities are initially drawn
independently from some F 1 and F 2 satisfying condition (a); further assume f 1(h) = f 2(h).
By stochastic dominance, this implies f 1(ℓ) < f 2(ℓ) and f 1(m) > f 2(m), and so f(m, ℓ) >

f(ℓ, m). Next, for u1 = ℓ and u2 = m, swap utilities across alternatives with some
probability that make (m, ℓ) and (ℓ, m) ex-post equiprobable, thus satisfying condition (b).
This change does not affect the joint probability of any other utility pair, so condition (a)
still holds. The joint distribution F obtained in this way satisfies conditions (a) and (b).

Proof. We outline the main steps of the proof. The omitted details are in Appendix A.2.

Step 1. Assumptions (a) and (b) imply f1(ℓ) < f2(ℓ) and f1(h) = f2(h). In turn, these
conditions imply F1 ≿ F2.

Step 2. Rescaling the utility levels, we can always ensure E[ux] > c. Assume the agent
searches twice only when the first inspected alternative has utility ℓ; in Step 3, we derive
conditions on {ℓ, m, h} for this to hold. Under this assumption, inspecting alternative 2
first is optimal if and only if

h − m > c. (5)

Step 3. The agent searches twice only when the first inspected alternative has utility ℓ if:

f(ℓ, h)(h − ℓ) + f(ℓ, m)(m − ℓ)
f(ℓ, h) + f(ℓ, m) + f(ℓ, ℓ) > c, (6)

f(h, ℓ)(h − ℓ) + f(m, ℓ)(m − ℓ)
f(h, ℓ) + f(m, ℓ) + f(ℓ, ℓ) > c, (7)

f(m, h)
f(m, h) + f(m, ℓ) + f(m, m)(h − m) < c, (8)

f(h, m)
f(h, m) + f(ℓ, m) + f(m, m)(h − m) < c. (9)

Step 4. Since f(m, ℓ) = f(ℓ, m) > 0 by assumption (a), we have

max
{

f(m, h)
f(m, h) + f(m, ℓ) + f(m, m) ,

f(h, m)
f(h, m) + f(ℓ, m) + f(m, m)

}
< 1.

Therefore, for all c > 0, there exists m and h such that

max
{

f(h, m)
f(h, m) + f(ℓ, m) + f(m, m) ,

f(m, h)
f(m, h) + f(m, ℓ) + f(m, m)

}
(h−m) < c < h−m,
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satisfying conditions (5), (8), and (9). Moreover, since f(m, ℓ) = f(ℓ, m) > 0 by assump-
tion (b), conditions (6) and (7) are satisfied by choosing ℓ so that m − ℓ is large enough.

Step 5. Summing up, under assumptions (a) and (b), F1 ≿ F2 and, for all c > 0, there exists
ℓ, m, h with 0 ≤ ℓ < m < h such that inspecting alternative 2 first is optimal, as desired.■

5 Conclusion

Weitzman’s optimal sampling sequence generalizes beyond independence with two alter-
natives and two utility levels but fails with three utility levels, even under the strong
assumption of first-order stochastic dominance. We leave characterizing the most general
setting in which Weitzman’s rule applies under correlation to future research.
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A Supplementary Material

A.1 Proof of Lemma 1

The function ϕx : R → R, defined pointwise as

ϕx(y) := E[max{0, ux − y}],

is strictly decreasing. Note that ϕx(y) → 0 as y → ∞, and ϕx(0) > c by the assumption
E[ux] > c. Hence, by the intermediate value theorem, there exists a unique rx ∈ R+ such
that

ϕx(rx) = c. (10)

Moreover, under the assumption F1 ≿ F2, we have

ϕ1(y) ≤ ϕ2(y) for all y ∈ R. (11)

Conditions (10) and (11), together with the fact that ϕ2 is decreasing, imply r1 ≥ r2. By
Weitzman’s rule, we conclude that inspecting alternative 1 first is optimal. ■

A.2 Details for the Proof of Proposition 2

Step 1. F1 ≿ F2 is equivalent to f1(ℓ) ≤ f2(ℓ) and f1(h) ≥ f2(h), with at least one strict
inequality. In turn,

f1(ℓ) ≤ f2(ℓ) ⇐⇒ ����f(ℓ, ℓ) + f(ℓ, m) + f(ℓ, h) ≤ ����f(ℓ, ℓ) + f(m, ℓ) + f(h, ℓ), (12)

and

f1(h) ≥ f2(h) ⇐⇒ ����f(h, h) + f(h, m) + f(h, ℓ) ≥ ����f(h, h) + f(m, h) + f(ℓ, h). (13)

The assumptions f(h, ℓ) − f(ℓ, h) > 0 and f(m, ℓ) = f(ℓ, m) imply that conditions (12)
hold with a strict inequality. The assumption f(h, m) − f(m, h) = f(ℓ, h) − f(h, ℓ) implies
that conditions (13) hold with equality. Hence, we conclude that F1 ≿ F2.

Step 2. Let V (x, c) be the value of the search problem of an agent with search cost c who
inspects alternative x first. Assuming that the agent inspects the remaining alternative
only when the first inspected alternative has utility ℓ, the values of the search problems
are

V (1, c) =f1(h)h + f1(m)m + f1(ℓ)[f2(h | ℓ)h + f2(m | ℓ)m + f2(ℓ | ℓ)ℓ − c]

=f1(h)h + f1(m)m + f(ℓ, h)h + f(ℓ, m)m + f(ℓ, ℓ)ℓ − f1(ℓ)c,

V (2, c) =f2(h)h + f2(m)m + f2(ℓ)[f1(h | ℓ)h + f1(m | ℓ)m + f1(ℓ | ℓ)ℓ − c]

=f2(h)h + f2(m)m + f(h, ℓ)h + f(m, ℓ)m + f(ℓ, ℓ)ℓ − f2(ℓ)c,
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where fx(i | j) denotes the conditional probability that alternative x has utility i given
that alternative ¬x has utility j.

The agent inspects alternative 2 first if V (2, c) > V (1, c). Using that f1(h) = f2(h) by
Step 1, we have

V (2, c) > V (1, c)

⇐⇒ f2(m)m + f(h, ℓ)h +
((((((((((
f(m, ℓ)m + f(ℓ, ℓ)ℓ − f2(ℓ)c

−
[
f1(m)m + f(ℓ, h)h +

((((((((((
f(ℓ, m)m + f(ℓ, ℓ)ℓ − f1(ℓ)c

]
> 0

⇐⇒ [f(h, ℓ) − f(ℓ, h)]h + [f2(m) − f1(m)]m − [f2(ℓ) − f1(ℓ)]c > 0,

(14)

where we use that f(m, ℓ) = f(ℓ, m) by assumption (b). To further simplify the expression,
note that assumption (b) also implies

f2(ℓ) − f1(ℓ) = ����f(ℓ, ℓ) +����f(m, ℓ) + f(h, ℓ) − [����f(ℓ, ℓ) +����f(ℓ, m) + f(ℓ, h)]

= f(h, ℓ) − f(ℓ, h).
(15)

Moreover, we know that f1(h) = f2(h) from Step 1, which implies

f2(ℓ) − f1(ℓ) = 1 − f2(m) −���f2(h) − [1 − f1(m) −���f1(h)]

= −[f2(m) − f1(m)].
(16)

In turn, equations (15) and (16) imply

f2(m) − f1(m) = −[f(h, ℓ) − f(ℓ, h)]. (17)

Using equivalence (14) and equations (15) and (17), we obtain

V (2, c) > V (1, c) ⇐⇒ [f(h, ℓ) − f(ℓ, h)](h − m − c) > 0 ⇐⇒ h − m > c,

where the last equivalence holds because f(h, ℓ) − f(ℓ, h) > 0 by assumption (a). Thus,
condition (5) in the main text follows.

Step 3. Search behavior.
• After inspecting an alternative with utility h first, the expected gain from the second

search is 0 and the agent discontinues the search for all c > 0, independently of the
identity of the alternative and the values of the other parameters.

• Suppose the agent inspects alternative 1 first. When u1 = ℓ, the agent inspects the
remaining alternative if E[max{u2 − ℓ, 0} | u1 = ℓ] > c or, equivalently,

f(ℓ, h)(h − ℓ) + f(ℓ, m)(m − ℓ)
f(ℓ, h) + f(ℓ, m) + f(ℓ, ℓ) > c.

The previous inequality corresponds to condition (6) in the main text.

Suppose the agent inspects alternative 2 first. When u2 = ℓ, the agent inspects the
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remaining alternative if E[max{u1 − ℓ, 0} | u2 = ℓ] > c or, equivalently,

f(h, ℓ)(h − ℓ) + f(m, ℓ)(m − ℓ)
f(h, ℓ) + f(m, ℓ) + f(ℓ, ℓ) > c.

The previous inequality corresponds to condition (7) in the main text.

• Suppose the agent inspects alternative 1 first. When u1 = m, the agent discontinues
the search if E[max{u2 − m, 0} | u1 = m] < c or, equivalently,

f(m, h)
f(m, h) + f(m, ℓ) + f(m, m)(h − m) < c.

The previous inequality corresponds to condition (8) in the main text.

Suppose the agent inspects alternative 2 first. When u2 = m, the agent discontinues
the search if E[max{u1 − m, 0} | u2 = m] < c or, equivalently,

f(h, m)
f(h, m) + f(ℓ, m) + f(m, m)(h − m) < c.

The previous inequality corresponds to condition (9) in the main text.

Steps 4 and 5. These steps are in the main text. ■
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