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1 Introduction

This paper revisits symmetric 2×2 anti-coordination games by introducing guilt aversion as a key

psychological factor influencing players’ strategic behavior. Unlike traditional models that assume

purely self-interested agents, we account for emotional responses in decision-making. In particular,

guilt aversion captures the disutility players experience when they believe their actions have caused

disappointment or harm to others. This trait has been widely recognized in the literature as a

crucial determinant of strategic choices and equilibrium selection [Battigalli, Dufwenberg, 2007,

2009; Attanasi, Nagel, 2008].

Our approach builds on psychological game theory, an extension of classical game theory intro-

duced by Geanakoplos et al. [1989], which allows utilities to depend not only on players’ actions

but also on their beliefs about others’ beliefs, and on higher-order beliefs. In this framework, the

classical Nash equilibrium is replaced by the psychological Nash equilibrium [Battigalli, Siniscalchi,

1999; Battigalli et al., 2019; Battigalli, Dufwenberg, 2020]. This perspective has proven effective

in capturing a broad range of phenomena involving emotional and motivational drivers such as

trust, reciprocity, and guilt [Rabin, 1993; Guerra, Zizzo, 2004; Dufwenberg, Kirchsteiger, 2019].

Within this framework, we focus on a class of symmetric 2 × 2 games, which we term gen-

eralized Hawk–Dove games. These games share the same equilibrium structure as the classical

Hawk–Dove game: two asymmetric strict pure Nash equilibria and one completely mixed-strategy

equilibrium. We further classify them into two subclasses based on players’ preferences over de-

viations toward symmetric profiles. Type 1 games, which include the classical Hawk–Dove game,

represent situations where players would prefer their opponent’s unilateral deviation toward a spe-

cific symmetric outcome. Type 2 games, in contrast, describe situations where symmetric profiles

are Pareto-dominated by the asymmetric equilibria.

The main goal of this paper is to characterize how guilt aversion modifies the best-reply cor-

respondences and the resulting equilibria in these games. Our analysis shows that the sensitivity

of players to guilt has a significant impact on equilibrium outcomes. In Type 1 games, when guilt

sensitivity exceeds a threshold, the equilibrium structure changes substantially: a new symmetric

equilibrium emerges while the mixed-strategy equilibrium disappears, although the asymmetric

equilibria persist. In Type 2 games, guilt aversion affects only the probabilities of the mixed-

strategy equilibrium, leaving the two asymmetric pure equilibria unchanged.

Overall, our findings illustrate how incorporating psychological motives such as guilt aversion

enriches the analysis of coordination problems, providing insights into how emotional factors in-

fluence equilibrium selection and conflict resolution in strategic interactions.

2 The general game model

The model in its standard form consists in a classical 2× 2 symmetric game: Row player Ann and

Column player Bob have to choose among two possible actions H and L, so that the strategy sets
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are SA = SB = {H, L}. The matrix form is the following:

Bob

Ann
H L

H
a

a

c

b

L
b

c

d

d

The model we consider is characterized by the structure of the set of its Nash equilibria: two pure

asymmetric strict Nash equilibria with asymmetric payoffs. Therefore the model we consider is

characterized by the following conditions:

a < c, d < b, b ̸= c (Generalized Hawk-Dove)

We call this class of games generalized Hawk-Dove games. Denote a generic mixed strategy of Ann

with p ∈ [0, 1], where, as usual (with an abuse of notation), p = prob(H) and 1 − p = prob(L).

Similarly, a generic mixed strategy of Bob is q ∈ [0, 1], where (with an abuse of notation), q =

prob(H) and 1 − q = prob(L). Therefore, (p, q) denotes a generic strategy profile. Note that the

set of mixed strategies reduces respectively to ΣA = [0, 1] and ΣB = [0, 1]. The term πA(p, q) (resp.

πB(p, q)) denotes the standard expected payoff of Ann (resp. Bob) for every (p, q) ∈ ΣA × ΣB,

whose functional forms are given by:

πA(p, q) = p [q ((a+ d)− (c+ b)) + b− d] + (c− d)q + d, (1)

and

πB(p, q) = q [p ((a+ d)− (c+ b)) + b− d] + (c− d)p+ d. (2)

For the sake of simplicity, we denote with sA the generic pure strategy of Ann where sA = 1 means

that Ann plays H and sA = 0 means that Ann plays L. Similarly, we denote with sB the generic

pure strategy of Bob where sB = 1 means that Bob plays H and sB = 0 means that Bob plays L.

Equilibria

Under condition (Generalized Hawk-Dove), the structure of the set of Nash equilibria is always

the same. Denoting with

Ψ(G) =
b− d

(b+ c)− (a+ d)
, (3)
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then the best reply correspondences for Ann and Bob are:

BRA(q) =


1 if 0 ⩽ q < Ψ(G),

[0, 1] if q = Ψ(G),

0 if Ψ(G) < q ⩽ 1,

BRB(p) =


1 if 0 ⩽ p < Ψ(G),

[0, 1] if p = Ψ(G),

0 if Ψ(G) < p ⩽ 1.

(4)

Therefore, the game has three Nash equilibria:

- (p, q) = (1, 0);

- (p, q) = (0, 1);

- (p, q) = (Ψ(G),Ψ(G)) .

Remark 2.1: In the literature, the Hawk-Dove game refers to a particular subclass of

(Generalized Hawk-Dove) given by:

a < c < d < b, (5)

where the conditions

b = 2d and c = 0

are usually added.

Note also that

d < b < a < c

is substantially equivalent to (5) as it corresponds to the case where the pure strategy H plays the

role of pure strategy L and vice versa.

3 Modeling guilt aversion

The mainly considered perspective in the theoretical papers devoted to this issue looks at guilt

aversion as a consequence of letting others down. In particular, we refer to the formal model of

guilt aversion by [Battigalli, Dufwenberg, 2007], [Battigalli, Dufwenberg, 2009], [Attanasi, Nagel,

2008], in which a guilt-averse agent (say Ann) has a disutility if she believes that her opponent (in

our case Bob) is disappointed by her play, as he receives a lower payoff than the one he originally

expected given his beliefs. More precisely, it is said that player j is let down if his actual material

payoff π̂j, received after the play, is lower than the payoff he initially expected to get, Ej[π
e
j ].

Therefore, player j disappointment is given by:

max{0, Ej[π
e
j ]− π̂j}.

Given the strategy profile σ, player i’s beliefs bi and player i’s guilt-sensitivity parameter θi > 0,

the guilt-dependent utility of player i can be constructed as follows:

ui(bi, θi, σ) = π̂i(σ)− θi max{0, Ej[π
e
j (σ), bi]− π̂j(σ)}, (6)
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where max{0, Ej[π
e
j (σ), bi] − π̂j(σ)} represents player i’s expectation of player j disappointment.

In particular, Ej[π
e
j (σ), bi] represents what player i believes is the payoff that player j initially

expects to get and π̂j(σ) is what player j actually gets.

Ann’s guilt

Suppose that Ann is a guilt-averse agent. In order to construct Ann’s guilt-dependent utility

function, denote with q̂ the expectation of Bob’s first-order beliefs about Ann’s strategy choice

p, and with p̃ the expectation of Ann’s second-order beliefs about the first-order belief of Bob

q̂. Let θA be Ann’s sensitivity to guilt. If a pure strategy profile is actually played, say (sA, sB)

with sA, sB ∈ {0, 1}, then Ann believes that Bob’s initially expected payoff is EB[π
e
B(sA, sB), p̃],

which corresponds to Bob choosing sB and Ann randomizing with probabilities p̃ and 1 − p̃.

More precisely,

EB[π
e
B(sA, sB), p̃] = πB(p̃, sB) = p̃πB(1, sB) + (1− p̃)πB(0, sB).

Then, for every pure strategy profile (sA, sB) ∈ {0, 1}×{0, 1}, Ann’s guilt-dependent utility is:

uA(p̃, θA, (sA, sB)) = πA(sA, sB)− θAmax{0, EB[π
e
B(sA, sB), p̃]− πB(sA, sB))}.

Since

πB(p̃, 1) = p̃a+ (1− p̃)b, πB(p̃, 0) = p̃c+ (1− p̃)d,

it follows that:
uA(p̃, θA, (1, 1)) = a− θA max{0, p̃a+ (1− p̃)b− a} = a− θA max{0, (1− p̃)(b− a)},
uA(p̃, θA, (1, 0)) = b− θAmax{0, p̃c+ (1− p̃)d− c} = b− θA max{0, (1− p̃)(d− c)},
uA(p̃, θA, (0, 1)) = c− θAmax{0, p̃a+ (1− p̃)b− b} = c− θAmax{0, p̃(a− b)},
uA(p̃, θA, (0, 0)) = d− θA max{0, p̃c+ (1− p̃)d− d} = d− θA max{0, p̃(c− d)}.

(7)

Bob’s guilt

Suppose now that Bob is guilt-averse. In this case, let p̂ be the expectation of Ann’s first-order

beliefs about Bob’s strategy choice q and q̃ the expectation of Bob’s second-order beliefs about the

first-order belief of Ann p̂. Let θB denote Bob’s sensitivity to guilt.

As in the Ann’s case, if the pure strategy profile (sA, sB) is actually played, Bob believes that

Ann initially expected a payoff EA[π
e
A(sA, sB), q̃] which corresponds to Ann choosing sA and Bob

randomizing with probabilities q̃ and 1− q̃. More precisely:

EA[π
e
A(sA, sB), q̃] = πA(sA, q̃) = q̃πA(sA, 1) + (1− q̃)πA(sA, 0).

Then, for every pure strategy profile (sA, sB) ∈ {0, 1} × {0, 1}, Bob’s guilt-dependent utility is:

uB(q̃, θB, (sA, sB)) = πB(sA, sB)− θB max{0, EA[π
e
1(sA, sB), q̃]− πA(sA, sB))}.
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Since

πA(1, q̃) = aq̃ + b(1− q̃), πA(0, q̃) = cq̃ + d(1− q̃),

we get:
uB(q̃, θB, (1, 1)) = a− θB max{0, q̃a+ (1− q̃)b− a} = a− θB max{0, (1− q̃)(b− a)},
uB(q̃, θB, (1, 0)) = c− θB max{0, q̃a+ (1− q̃)b− b} = c− θB max{0, q̃(a− b)},
uB(q̃, θB, (0, 1)) = b− θB max{0, q̃c+ (1− q̃)d− c} = b− θB max{0, (1− q̃)(d− c)},
uB(q̃, θB, (0, 0)) = d− θB max{0, q̃c+ (1− q̃)d− d} = d− θB max{0, q̃(c− d)}.

(8)

The Psychological Game

From the previous arguments, it follows that in the psychological game with guilt averse players,

Ann’s utility matrix is:

Ann H L

H a− θA max{0, (1− p̃)(b− a)} b− θA max{0, (1− p̃)(d− c)}

L c− θAmax{0, p̃(a− b)} d− θA max{0, p̃(c− d)}

Bob’s utility matrix is:

Bob H L

H a− θB max{0, (1− q̃)(b− a)} c− θB max{0, q̃(a− b)}

L b− θB max{0, (1− q̃)(d− c)} d− θB max{0, q̃(c− d)}

It can be easily observed that the psychological terms in the utility functions depend on whether

a ≷ b, c ≷ d.

First of all, note that condition

a > b (9)
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represents the situation in which Ann (resp. Bob) would prefer the unilateral deviation of Bob

(resp. Ann) from the asymmetric equilibrium (H,L), i.e. (1, 0) (resp. (L,H), i.e (0, 1)), to the

symmetric (non-equilibrium) profile (H,H), that is (1, 1). Similarly,

d > c (10)

represents the situation in which Ann (resp. Bob) would prefer the unilateral deviation of Bob

(resp. Ann) from the asymmetric equilibrium (L,H), that is (0, 1) (resp. (H,L), i.e. (1, 0)), to

the symmetric (non-equilibrium) profile (L,L), that is (0, 0).

Note also that, under conditions (Generalized Hawk-Dove), inequalities (9) and (10) cannot hold

simultaneously since they would imply

b < a < c < d < b,

which is impossible.

Finally, observe that

a = b, c = d

cannot hold simultaneously for the same reasons, since we would get

c > a = b > d = c,

which is impossible.

Therefore, we can identify three different types of the Hawk-Dove game that give rise to three

different kind of psychological games:

Conditions Cases

Hawk-Dove Game (Generalized Hawk-Dove): a < c, d < b, b ̸= c

Type 1 (Generalized Hawk-Dove) (+) a < b, c < d a < c < d < b

Type 2 (Generalized Hawk-Dove) (+) a < b, d < c

d < a ⩽ b < c

d < a < c < b

a < d ⩽ c < b

a < d < b < c

a = d < c < b

a = d < b < c

Type 3 (Generalized Hawk-Dove) (+) b < a, d < c d < b < a < c

Type 1: As explained above, this family of games corresponds to the situation in which both players

would prefer the unilateral deviation of their opponent, from the pure strategy equilibrium

towards the symmetric profile (L,L) (where the identity of the deviant depends on which of

the two equilibria is played). Note also that in Type 1 games, the other symmetric profile

(H,H) is Pareto dominated by the two pure Nash equilibria. Finally, as explained in Section

2, this case includes the classical Hawk-Dove game.
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Type 2: The nature of this family of games is substantially different from Type 1. In fact, in Type

2 games, players would never prefer a deviation of their opponents from a Nash equilibrium

to a symmetric profile. Equivalently, both the symmetric profiles are Pareto dominated by

the two Nash equilibria.

Type 3: This family of games is equivalent to Type 1 games. The unique difference is that the pure

strategy H plays the role of the strategy L (for both players) and vice versa. Consequently,

both players would prefer the unilateral deviation of their opponent, from the pure strategy

equilibrium towards the symmetric profile (H,H) so that the other symmetric profile (L,L)

is Pareto dominated by the two pure Nash equilibria.

4 Psychological Games and Equilibria

In order to include psychological aspects in the Hawk-Dove game, we take into account the model

for static psychological games introduced in [Geanakoplos et al., 1989].

In the general model, we consider a finite set of players I = {1, . . . n} and, for each player

i ∈ I, we denote with Ai = {a1i , . . . , a
k(i)
i } the finite set of pure strategies of player i. Following

the standard notation, A = A1 × · · · × An =
∏

i∈I Ai represents the set of strategy profiles and

A−i = A1 × · · · × Ai−1 × Ai+1 × · · · × An =
∏

j ̸=iAj represents the set of i’s opponents strategy

profiles. The set Σi denotes the set of mixed strategies of player i and Σ =
∏

i∈I Σi, Σ−i =
∏

j ̸=i Σj

denote respectively the set of mixed strategies profiles and the set of i’s opponents mixed strategies

with the classical notation that (σi, σ−i) with σi ∈ Σi and σ−i ∈ Σ−i to indicate the mixed strategies

profile σ ∈ Σ.

We denote with bi = (b1i , b
2
i , · · · , bki , · · · ) a generic (infinite) hierarchy of beliefs of player i that,

roughly speaking, represents what player i believes the others will play, what player i thinks the

others believe their opponents will play, and so on. We will restrict our attention to the subset of

collectively coherent hierarchies of beliefs Bi, which is the set of hierarchies of beliefs of player i

in which he is sure (i.e. with probability equal to 1) that it is common knowledge that beliefs are

coherent. We relegate to Appendix A an exhaustive and precise description of (collective coherent)

hierarchy of beliefs.

A standard psychological game is described by GGPS = {A1, · · · , An, u1, · · · , un} where, for

every i ∈ I, the utility functions ui have the form ui : Bi × Σ → R ([Geanakoplos et al., 1989]).

Equilibrium notion

The notion of psychological Nash equilibrium introduced in [Geanakoplos et al., 1989] is based on

the idea that the entire hierarchy of beliefs must be correct in equilibrium. More precisely, each

player is equipped with a function βi : Σ → Bi which selects, for every σ ∈ Σ, the hierarchy of

beliefs βi(σ) = (b1i , b
2
i , · · · , bki , · · · ) in which player i believes (with probability 1) that his opponents
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follow the mixed strategy profile σ−i, that each opponent j ̸= i believes that his opponents follow

σ−j, that each opponent j ̸= i believes that his opponents believe that the others follow the mixed

strategy profile σ and so on. Then, a psychological Nash equilibrium is defined as a pair (b∗, σ∗)

where b∗ = (b∗1, · · · , b∗n) with b∗i ∈ Bi and σ
∗ ∈ Σ such that, for every player i:

i) b∗i = βi(σ
∗);

ii) ui(b
∗
i , σ

∗) ⩾ ui(b
∗
i , (σi, σ

∗
−i)) for every σi ∈ Σi.

We can also say that (β(σ∗), σ∗) is a psychological Nash equilibrium of the game GGPS.

Summary utility functions and best replies

In Geanakoplos et al. [1989], a characterization for psychological Nash equilibria has been given.

The summary utility functions are defined as follows:

wGPS
i (σ, τ) = ui(βi(σ), τ), ∀(σ, τ) ∈ Σ× Σ. (11)

Then (β(σ∗), σ∗) is a psychological Nash equilibrium if and only if, for every i ∈ I,

wGPS
i ((σ∗

i , σ
∗
−i), (σ

∗
i , σ

∗
−i)) ⩾ wGPS

i ((σ∗
i , σ

∗
−i), (yi, σ

∗
−i)), ∀yi ∈ Σi, (12)

or equivalently σ∗
i ∈ BRGPS

i (σ∗
−i) with

BRGPS
i (σ∗

−i) =
{
σi ∈ Σi |wGPS

i ((σi, σ
∗
−i), (σi, σ

∗
−i)) ⩾ wGPS

i ((σi, σ
∗
−i), (yi, σ

∗
−i)), ∀yi ∈ Σi

}
. (13)

5 Equilibria under Guilt Aversion

In this section, we characterize the psychological equilibria of the Hawk-Dove game in presence of

guilt aversion. Building on the utilities for pure strategies described in Section 3 and illustrated in

(7) and (8), the expected utilities are constructed in the classical way. Ann’s expected utility from

playing the mixed strategy y, assuming Bob plays the mixed strategy q and holding a second-order

belief p̃, is given by:

uA(p̃, θA, y, q) = yq uA(p̃, θA, 1, 1) + y(1− q)uA(p̃, θA, 1, 0)+

(1− y)q uA(p̃, θA, 0, 1) + (1− y)(1− q)uA(p̃, θA, 0, 0). (14)

Similarly, Bob’s expected utility from playing the mixed strategy y, assuming Ann plays the mixed

strategy p and holding a second-order belief q̃, is:

uB(q̃, θB, p, y) = py uB(q̃, θB, 1, 1) + p(1− y)uB(q̃, θB, 1, 0)+

(1− p)y uB(q̃, θB, 0, 1) + (1− p)(1− y)uB(q̃, θB, 0, 0). (15)
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Recall that p ∈ BRGPS
A (q) if and only if p maximizes uA, given that Bob plays q and that p̃ is

correct (i.e., p̃ = p). More precisely, p ∈ BRGPS
A (q) if and only if

uA(p, θA, (p, q)) = wGPS
A ((p, q), (p, q)) ⩾ wGPS

A ((p, q), (y, q)) = uA(p, θA, (p, y)) ∀y ∈ [0, 1].

Consequently, computing BRGPS
A (q) requires maximizing uA(p̃, θA, (y, q)) with respect to y, under

the condition that p̃ must be consistent with the maximizer.

Similarly, q ∈ BRGPS
B (p) if and only if q maximizes uB, given that Ann plays p and that q̃ = q.

More precisely, q ∈ BRGPS
B (p) if and only if

uB(q, θB, (p, q)) = wGPS
B ((p, q), (p, q)) ⩾ wGPS

B ((p, q), (p, y)) = uB(q, θB, (p, y)) ∀y ∈ [0, 1].

From the previous section, it follows that a psychological Nash equilibrium in this setting is

any pair (p∗, q∗) such that {
p∗ ∈ BRGPS

A (q∗)

q∗ ∈ BRGPS
B (p∗).

In particular, we will focus only on Type 1 and Type 2 games. As clearly shown in Section

2, Type 3 is essentially equivalent to Type 1 when strategy L plays the role of strategy H, and

viceversa. This symmetry is clearly reflected in the characterization of the psychological Nash

equilibria. However, the computations differ slightly2.

Main results

In the next subsections, we characterize the best-reply correspondences and the resulting equilibria

for both Type 1 and Type 2 games in the model with guilt. The results presented below show that

the scenario is rather diversified.

Regarding Type 1 games, we observe that the shape of the best-reply correspondences depends

on whether the sensitivity parameters θA and θB exceed the threshold ratio b−d
d−c

, which measures

Ann’s losses (respectively gains) with respect to Bob’s gains (respectively losses). Whenever the

sensitivity parameters do not exceed this ratio, the set of equilibria is only weakly affected by

guilt aversion: the two pure-strategy equilibria persist, and there exists a unique equilibrium in

completely mixed strategies that depends explicitly on the sensitivity parameters and converges

to the mixed equilibrium of the standard game as the sensitivity to guilt converges to zero.

In contrast, when θA and θB are larger than this ratio, the scenario changes significantly: a

new pure strategy equilibrium emerges, corresponding to (L,L), i.e., the symmetric strategy profile

that is not Pareto dominated by the two Nash equilibria. The two asymmetric equilibria of the

material game are not destroyed by guilt aversion in this case either. Finally, there are no longer

equilibria in completely mixed strategies; instead, two new equilibria emerge in which one player

chooses L while the other randomizes.

2They are available upon request.
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In Type 2 games, players’ guilt aversion affects only the completely mixed-strategy equilibrium

(due to the perturbation of probabilities), while the two pure asymmetric equilibria survive. No

other equilibria emerge.

5.1 Type 1: a < b, c < d

In this case, the strategic form game is the following:

Type 1 a < b, c < d

Bob

Ann
H L

H
a− θB(1− q̃)(b− a)

a− θA(1− p̃)(b− a)

c

b− θA(1− p̃)(d− c)

L
b− θB(1− q̃)(d− c)

c

d

d

During the next calculations, it will be useful the notation:
(a+ d)− (b+ c) = γ < 0,

b− d = δ > 0,

d− c = λ,

b− a = µ.

(16)

Ann’s best reply correspondence

In this case, Ann’s expected utility from playing the mixed strategy y, expecting Bob playing the

mixed strategy q and having second order belief p̃ is

uA(p̃, θA, y, q) =

y
[
q
((

1 + (1− p̃)θA
)(
(a+ d)− (b+ c)

))
+ (b− d)− (1− p̃)θA(d− c)

]
+ cq + d(1− q). (17)

Now, we can prove the subsequent proposition:
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Proposition 5.1: Let G be an Hawk-Dove game (a < c, d < b). Assume that a < b, c < d and

denote with:

η1(θA) =
d− b+ θA(d− c)(

1 + θA
)(
(a+ d)− (b+ c)

) , (18)

P1(q, θA) = 1− b− d+ q[(a+ d)− (b+ c)]

θA(d− c− q[(a+ d)− (b+ c)])
. (19)

Then, Ann’s best reply correspondence is given by the following:

i) If θA ⩽ b−d
d−c

, then:

BRGPS
A (q) =



1 if 0 ⩽ q < η1(θA),

{0, 1} if q = η1(θA),

{0, 1, P1(q, θA)} if η1(θA) < q < Ψ(G),

{0, 1} if q = Ψ(G),

0 if Ψ(G) < q ⩽ 1,

(20)

where

- η1 :
]
0, b−d

d−c

]
→ R is strictly decreasing with

lim
θA→0+

η1(θA) = Ψ(G) and η1

(
b− d

d− c

)
= 0;

- P1(·, θA) : [η1(θA),Ψ(G)] → R is strictly increasing for every θA and

P1 (η1(θA), θA) = 0 and P1 (Ψ(G), θA) = 1. (21)

ii) If θA >
b−d
d−c

, then:

BRGPS
A (q) =


{0, 1, P1(q, θA)} if 0 ⩽ q < Ψ(G),

{0, 1} if q = Ψ(G),

{0} if Ψ(G) < q ⩽ 1,

(22)

where the function P1(·, θA) : [0,Ψ(G)] → R is strictly increasing for every θA and

P1 (0, θA) = 1− b− d

θA(d− c)
and P1 (Ψ(G), θA) = 1. (23)
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Proof. Consider the expected utility function uA(p̃, θA, y, q) as defined in (17). Then

(1) If

q
((

1 + (1− p̃)θA
)(
(a+ d)− (b+ c)

))
+ (b− d)− (1− p̃)θA(d− c) > 0, (24)

then uA(p̃, θA, (·, q)) is strictly increasing, therefore it is maximized only by y = 1. The

consistency condition with the maximum for correct beliefs implies that p̃ = 1; it follows

that (24) becomes:

q
(
(a+ d)− (b+ c)

)
+ (b− d) > 0. (25)

Since (a+ d)− (b+ c) < 0 and d− b < 0, (25) is equivalent to

q <
d− b

(a+ d)− (b+ c)
= Ψ(G) < 1.

Hence, for q ∈ [0,Ψ(G)[,

wGPS
A ((1, q), (1, q)) ⩾ wGPS

A ((1, q), (y, q)) ∀y ∈ [0, 1],

and 1 ∈ BRGPS
A (q).

There are no other maximizers in this case.

(2) If

q
((

1 + (1− p̃)θA
)(
(a+ d)− (b+ c)

))
+ (b− d)− (1− p̃)θA(d− c) < 0, (26)

then uA(p̃, θA, (·, q)) is strictly decreasing and it is maximized only by y = 0. In this case,

the consistency condition with the maximum for correct beliefs implies that p̃ = 0; it follows

that (26) becomes:

q
((

1 + θA
)(
(a+ d)− (b+ c)

)
+ (b− d)− θA(d− c) < 0 (27)

or, equivalently, bearing in mind that (a+ d)− (b+ c) < 0,

q >
d− b+ θA(d− c)(

1 + θA
)(
(a+ d)− (b+ c)

) = η1(θA). (28)

Now we have to find the values of q ∈ [0, 1] that satisfy (28). For this purpose firstly observe

that:

lim
θA→0+

η1(θA) =
d− b

(a+ d)− (b+ c)
= Ψ(G),

and

lim
θA→+∞

η1(θA) =
d− c

(a+ d)− (b+ c)
< 0 < Ψ(G).

13



Using the notation in (16), we have that:

η1(θA) =
−δ + λθA
γ(1 + θA)

,
∂η1(θA)

∂θA
=

λ+ δ

γ(1 + θA)2
< 0 ∀θA > 0,

since λ+ δ = d− c+ b− d = b− c > 0 and γ < 0. So η1(θA) is strictly decreasing and there

exists a unique point θ′A > 0 such that η1(θ
′
A) = 0, that corresponds to

θ′A =
δ

λ
=
b− d

d− c
. (29)

Therefore, we get that for θA ⩽ θ′A, η1(θA) ⩾ 0 and (28) is satisfied for all q ∈]η1(θA), 1]. If

θA > θ′A, η1(θA) < 0 and (28) is satisfied for all q ∈ [0, 1].

This finally implies that

i) If θA ⩽ b−d
d−c

, then, for all q ∈ ]η1(θA), 1],

wGPS
A ((0, q), (0, q)) ⩾ wGPS

A ((0, q), (y, q)) ∀y ∈ [0, 1],

and 0 ∈ BRGPS
A (q).

ii) If θA >
b−d
d−c

, then, for all q ∈ [0, 1],

wGPS
A ((0, q), (0, q)) ⩾ wGPS

A ((0, q), (y, q)) ∀y ∈ [0, 1],

and 0 ∈ BRGPS
A (q).

There are no other maximizers in this case.

(3) If

q
((

1 + (1− p̃)θA
)(
(a+ d)− (b+ c)

))
+ (b− d)− (1− p̃)θA(d− c) = 0, (30)

then uA(p̃, θA, (y, q)) is constant with respect to y, therefore every y ∈ [0, 1] maximizes

uA(p̃, θA, (·, q)). Solving for p̃ in (30) we get:

p̃ = 1− b− d+ q[(a+ d)− (b+ c)]

θA(d− c− q[(a+ d)− (b+ c)])
:= P1(q, θA).

So, in this case, p = P1(q, θA) is the unique Ann’s best reply, provided that P1(q, θA) ∈ [0, 1].

Now, from (16), P1(q, θA) can be rewritten as

P1(q, θA) = 1− δ + qγ

θA(λ− qγ)
.

Then:
∂P1(q, θA)

∂q
= − γ(λ+ δ)

θA(λ− qγ)2
> 0 ∀θA > 0,

14



as γ < 0 and λ+ δ = b− c > 0.

So P1(·, θA) is strictly increasing for every θA > 0. Now,

P1(q, θA) = 1 ⇐⇒ q = − δ

γ
=

d− b

(a+ d)− (b+ c)
= Ψ(G) < 1.

Moreover,

P1(0, θA) = 1− δ

λθA
> 0 ⇐⇒ θA >

δ

λ
=
b− d

d− c
.

So, if θA >
b−d
d−c

, then

P1(q, θA) ∈ [0, 1] ∀q ∈ [0,Ψ(G)]

and

P1(0, θA) = 1− b− d

θA(d− c)
> 0. (31)

If θA ⩽ b−d
d−c

, there exists a unique point q(θA) such that:

P1(q(θA), θA) = 1− b− d+ q(θA)[(a+ d)− (b+ c)]

θA(d− c− q(θA)[(a+ d)− (b+ c)])
= 0.

It can be easily computed that

q(θA) =
θA(d− c) + (d− b)

(1 + θA)[(a+ d)− (b+ c)]
= η1(θA)

and that η1(θA) ⩾ 0 for every θA ⩽ b−d
d−c

. Hence, in this case

P1(q, θA) ∈ [0, 1] ∀q ∈ [η1(θA),Ψ(G)] .

Summarizing:

i) If θA ⩽ b−d
d−c

, then, for all q ∈ [η1(θA),Ψ(G)],

wGPS
A ((P1(q, θA), q), (P1(q, θA), q)) ⩾ wGPS

A ((P1(q, θA), q), (y, q)) ∀y ∈ [0, 1],

and P1(q, θA) ∈ BRGPS
A (q). Moreover

P1(η1(θA), θA) = 0, P1(Ψ(G), θA) = 1.

ii) If θA >
b−d
d−c

, then for all q ∈ [0,Ψ(G)],

wGPS
A ((P1(q, θA), q), (P1(q, θA), q)) ⩾ wGPS

A ((P1(q, θA), q), (y, q)) ∀y ∈ [0, 1],

and P1(q, θA) ∈ BRGPS
A (q). Moreover

P1(0, θA) = 1− b− d

θA(d− c)
> 0, P1(Ψ(G), θA) = 1.
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Bob’s best reply correspondence

Bob’s expected utility from playing the mixed strategy y, expecting Ann playing the mixed strategy

p and having second order belief q̃ is

uB(q̃, θA, p, y) =

y
[
p
((

1 + (1− q̃)θB
)(
(a+ d)− (b+ c)

))
+ (b− d)− (1− q̃)θB(d− c)

]
+ cp+ d(1− p). (32)

It follows that Bob’s expected utility is substantially the same of Ann’s one when we replace q

with p, p̃ with q̃ and θA with θB. Using the same arguments we can easily deduce Bob’s best reply

correspondence. For the sake of completeness we report a complete characterization of the Bob’s

best reply correspondence in the proposition below.

Proposition 5.2: Let G be an Hawk-Dove game (a < c, d < b). Assume that a < b, c < d and

denote with:

Q1(p, θB) = 1− b− d+ p[(a+ d)− (b+ c)]

θB(d− c− p[(a+ d)− (b+ c)])
. (33)

Let η1 be defined as in Proposition 5.1. Then, Bob’s best reply correspondence is given by the

following:

i) If θB ⩽ b−d
d−c

, then:

BRGPS
B (p) =



1 if 0 ⩽ p < η1(θB),

{0, 1} if p = η1(θB),

{0, 1, Q1(p, θB)} if η1(θB) < p < Ψ(G),

{0, 1} if p = Ψ(G),

0 if Ψ(G) < p ⩽ 1,

(34)

where

- η1 :
]
0, b−d

d−c

]
→ R is strictly decreasing with

lim
θB→0+

η1(θB) = Ψ(G) and η1

(
b− d

d− c

)
= 0;

- Q1(·, θB) : [η1(θB),Ψ(G)] → R is strictly increasing and

Q1 (η1(θB), θB) = 0 and Q1 (Ψ(G), θB) = 1. (35)

ii) If θB > b−d
d−c

, then:

BRGPS
B (p) =


{0, 1, Q1(p, θB)} if 0 ⩽ p < Ψ(G),

{0, 1} if p = Ψ(G),

{0} if Ψ(G) < p ⩽ 1,

(36)
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where Q1(·, θB) : [0,Ψ(G)] → R is strictly increasing and

Q1 (0, θB) = 1− b− d

θB(d− c)
and Q1 (Ψ(G), θB) = 1. (37)

Equilibrium analysis

Making use of the best reply correspondences computed in the previous subsection, in this section

we analyze the set of psychological Nash equilibria in the different cases. Firstly, we will provide

a characterization of equilibria in mixed strategies that will be useful.

Characterization of equilibria in mixed strategies

From the structure of the best reply correspondences, we get that a completely mixed strategy

profile (p∗, q∗) is an equilibrium if and only if it is a solution of the following system:
p = P1(q, θA) = 1− δ + qγ

θA(λ− qγ)
, (i)

q = Q1(p, θB) = 1− δ + pγ

θB(λ− pγ)
. (ii)

(38)

From equation (ii), we obtain

p =
λθB(1− q)− δ

γ(1 + θB(1− q))
:= I1(q, θB).

Let D1 : E → R be the function defined by:

D1(q) = P1(q, θA)− I1(q, θB),

where E is the intersection of the domain of P1(q, θA) with the image set through Q1(p, θA) of its

domain.

It follows that a completely mixed strategy profile (p∗, q∗) is equilibrium if and only if q∗ is a

zero for D1, that is, D1(q
∗) = 0. We have:

∂P1(q, θA)

∂q
= − γ(λ+ δ)

θA(λ− qγ)2
;

∂I1(q, θA)

∂q
= − θB(λ+ δ)

γ(1 + θB(1− q))2
;

So,

∂2P1(q, θA)

∂q2
= − 2γ2(λ+ δ)

θA(λ− qγ)3
< 0 and

∂2I1(q, θA)

∂q2
= − 2θ2B(λ+ δ)

γ(1 + θB(1− q))3
> 0 ∀q ∈ [0, 1]

being θA, θB, λ, δ > 0, γ < 0, q ∈ [0, 1]. So D1 is twice differentiable with

∂2D1(q, θA)

∂q2
=
∂2P1(q, θA)

∂q2
− ∂2I1(q, θA)

∂q2
< 0 ∀q ∈ [0, 1]
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implying that D1 is strictly concave.

Threshold parameters

The previous propositions show that the structure of the best reply correspondences depends

on

θA, θB ≷
b− d

d− c
.

Note that:

- b− d represents the absolute value of the loss incurred by Ann (resp. Bob) when she (resp. he)

unilaterally deviates from the pure Nash equilibrium to the Pareto undominated symmetric profile

(L,L).

- d − c represents the absolute value of the gain obtained by Bob (resp. Ann) when Ann (resp.

Bob) unilaterally deviates from the pure Nash equilibrium to the Pareto undominated symmetric

profile (L,L).

Therefore, from Ann’s point of view, the ratio b−d
d−c

captures her losses (resp. gains) relative to

Bob’s gains (resp. losses) when Ann chooses H (resp. L) as the best response to Bob’s choice of

L. The same reasoning applies symmetrically to Bob.

Equilibria in case 0 < θA, θB ⩽
b− d

d− c

0 1

1

θA = θB =
b− d

d− c

θA > 0; θB = 0

η1(θA) Ψ(G)

θA 0+
(
b−d
d−c

)−

Ψ(G)

η1(θB)

p

q

BRGPS
A (q)

BRGPS
B (p)

Q1(p, θB)

P1(q, θA)

Figure 1: Case 0 < θA, θB ⩽
b− d

d− c
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In Figure 1, the best reply correspondences are illustrated. It is clear that the two pure strategy

equilibria (1, 0) = (H,L) and (0, 1) = (L,H) persist under guilt aversion. It is also evident that

there are no other equilibria in which one of the strategies is pure. When θA, θB < b−d
d−c

, there exists

a unique equilibrium in completely mixed strategies. This follows from the fact that the function

D1 has a unique zero in the interval ]η1(θA),Ψ(G)[. This conclusion is based on the following

arguments:

1) D1(η1(θA)) < 0 (since P1(η1(θA), θA) = 0 and I1(η1(θA), θB) > 0), and D1(Ψ(G)) > 0 (since

P1(Ψ(G), θA) = 1 and I1(Ψ(G), θB) < 1); by the continuity of D1, this implies the existence of at

least one zero in ]η1(θA),Ψ(G)[.

2) D1 cannot have more than one zero in this interval, otherwise it would have a local minimum

between them, contradicting the fact that D1 is twice differentiable and its second derivative is

always negative, as shown above.

The figure demonstrates the effect of guilt aversion on the completely mixed strategy equilib-

rium: both components are lower than Ψ(G), implying that both players assign a higher probability

to the pure strategy L. As θA, θB approach b−d
d−c

, the equilibrium converges to (0, 0), which cor-

responds to (L,L). In fact, when θA, θB = b−d
d−c

, it holds that η1(θA) = η1(θB) = 0, so D1 has a

unique zero at q = 0, making (L,L) a new pure strategy equilibrium, with no other mixed strategy

equilibria.

As a final remark, guilt aversion affects only the opponent’s equilibrium strategy. This is clearly

seen in the case where one player, say Bob, is not affected by guilt aversion (θB = 0), while Ann

is (θA > 0). In this scenario, the equilibrium is identified in Figure 1 as the intersection between

the graph of P1(q, θA) (in blue) and the horizontal dotted line (in red) at level Ψ(G). In this

equilibrium, Ann’s strategy is exactly p∗ = Ψ(G), while Bob’s equilibrium strategy is q∗ < Ψ(G).

It follows that Bob has to play L with a larger probability to compensate Ann’s disutility from guilt.

Equilibria in case θA, θB >
b− d

d− c

The scenario is now illustrated in Figure 2. First, observe that a completely mixed strat-

egy equilibrium may occur if and only if the function D1 admits a zero in the open interval

]Q1(0, θB),Ψ(g)[. However, this condition cannot be satisfied because:

1) D1 attains a positive value at the extreme points of the interval; in fact, D1(Q1(0, θB)) > 0

(since P1(Q1(0, θB), θA) > 0 and I1(Q1(0, θB), θB) = 0) and D1(Q1(0, θB)) > 0 also holds as

P1(Q1(0, θB), θA) = 1 and I1(Q1(0, θB), θB) < 1. Since D1 attains a positive value at the extreme

points of the interval, then D1 cannot have a unique zero in the interval.

2) If D1 had more than one zero, it would require the existence of a local minimum. However, this

is impossible (as previously explained), because the second derivative is strictly negative.

So, there are five equilibria in which at least one player chooses a pure strategy. In fact, in

addition to the three pure strategy equilibria from the previous case ((H,L), (L,H), and (L,L)),

two new equilibria appear: (p, q) = (0, Q1(0, θB)) (resp. (p, q) = (P1(0, θA), 0)), in which Ann
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Ψ(G)0 1

1

P1(0, θA)

Q1(0, θB)

Ψ(G)

θA

(
b−d
d−c

)+

+∞

p

q

BRGPS
A (q)

BRGPS
B (p)

Q1(p, θB)

P1(q, θA)

Figure 2: Case θA, θB >
b− d

d− c

(resp. Bob) plays L and Bob (resp. Ann) randomizes with probability Q1(0, θB) (resp. P1(0, θA)).

Note also that Q1(0, θB) (resp. P1(0, θA)) tends to 1 as θB (resp. θA) diverges to infinity.

Equilibria in case 0 < θB ⩽
b− d

d− c
< θA

This scenario corresponds to the asymmetric situation in which one player (Bob in this case) has

a low sensitivity to guilt aversion, i.e. θB ⩽
b− d

d− c
while Ann has high sensitivity, i.e.

b− d

d− c
< θA.

We first observe that, in general, P1(0, θA) can be greater, smaller or equal to η1(θB) as the

following example shows.

Example 5.3: Consider the Type 1 game a = 1, c = 2, d = 3, b = 4 so that

θB < 1 =
b− d

d− c
< θA.

We get:

P1(0, θA) = 1− 1

θA
and η1(θB) = − θB − 1

2(1 + θB)

So, P1(0, 2) = 1/2 < η1(1/6) = 5/14 < P1(0, 5) = 4/5.

Therefore, we can have both the situations described in Figures (3a) and (3b). Observe first

that (H,H) and (L,L) are equilibria in both cases. In case P1(0, θA) < η1(θB), following the

same steps of the case in Figure 1, we get that D1 has a unique zero in ]0, ψ(G)[ which gives the
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unique equilibrium in completely mixed strategies. In case P1(0, θA) > η1(θB), following the same

steps of the case in Figure 2, we observe that D1 does not have zeros, so there are no equilibria in

completely mixed strategies, but there is an equilibrium in which Bob plays L and Ann randomizes

with probability P1(0, θA). When P1(0, θA) = η1(θB), this latter equilibrium persist providing a

zero for D1, as, in this case, we have D1(0) = 0. Finally, note that the case θB = 0 affects

only the case P1(0, θA) < η1(θB); in this case we have a completely mixed strategy equilibrium

(p, q) = (Ψ(G), q) with q < Ψ(G))

0 1

1

P1(0, θA)

Ψ(G)

Ψ(G)

η1(θB)

p

q

BRGPS
A (q)

BRGPS
B (p)

Q1(p, θB)

P1(q, θA) θA > 0; θB = 0

(a) Subcase P1(0, θA) < η1(θB)

0 1

1

P1(0, θA)

Ψ(G)

Ψ(G)

η1(θB)

p

q

BRGPS
A (q)

BRGPS
B (p)

Q1(p, θB)

P1(q, θA)

(b) Subcase P1(0, θA) > η1(θB)

Figure 3: Case 0 < θB ⩽
b− d

d− c
< θA

5.2 Type 2: a < b; d < c

In this case, the strategic form game is the following:
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Type 2: a < b, d < c

Bob

Ann
H L

H
a− θB(1− q̃)(b− a)

a− θA(1− p̃)(b− a)

c

b

L
b

c

d− θB q̃(c− d)

d− θAp̃(c− d)

Ann’s best reply correspondence

Ann’s expected utility, from playing the mixed strategy y, expecting Bob playing the mixed strat-

egy q and having second order belief p̃, in this case is

uA(p̃, θA, y, q) =

y
[
q
(
(a+ d)− (b+ c) + θA(a− b) + θAp̃

(
b+ d− a− c

))
+ b− d+ p̃θA

(
c− d

)]
+

(1− q)
(
d− θAp̃(c− d)

)
+ cq (39)

Proposition 5.4: Let G be an Hawk-Dove game (a < c, d < b). Assume that a < b, d < c and

denote with

η2(θA) =
d− b+ θA

(
d− c

)
(a+ d)− (b+ c) + θA

(
d− c

) , (40)

(41)

η3(θA) =
d− b

(a+ d)− (b+ c) + θA(a− b)
, (42)

(43)

P2(q, θA) = −q[(a+ d)− (b+ c) + θA(a− b)] + (b− d)

θA

(
q(b+ d− a− c) + c− d

) . (44)

Then, for every θA > 0, Ann’s best reply correspondence is given by the following:
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BRGPS
A (q) =



1 if 0 ⩽ q < η3(θA),

{0, 1} if q = η3(θA),

{0, 1, P2(q, θA)} if η3(θA) < q < η2(θA),

{0, 1} if q = η2(θA),

0 if η2(θA) < q ⩽ 1,

(45)

where

- η2 :]0,+∞[→ R is strictly increasing and

lim
θA→0+

η2(θA) = Ψ(G); lim
θA→+∞

η2(θA) = 1.

- η3 :]0,+∞[→ R is strictly decreasing and

lim
θA→0+

η3(θA) = Ψ(G); lim
θA→+∞

η3(θA) = 0.

- P2(·, θA) : [η3(θA), η2(θA)] → R is strictly increasing and

P2 (η3(θA), θA) = 0 and P2 (η2(θA), θA) = 1. (46)

Proof. First note that from (16) we get:

λ < 0, µ > 0.

Consider the utility defined in (39). Then:

(1) If

q
(
(a+ d)− (b+ c) + θA(a− b) + θAp̃

(
b+ d− a− c

))
+ b− d+ p̃θA

(
c− d

)
> 0, (47)

then uA(p̃, θA, (·, q)) is strictly increasing, therefore it is maximized only by y = 1. The

consistency condition with the maximum for correct beliefs implies that p̃ = 1; it follows

that (47) becomes:

q
(
(a+ d)− (b+ c) + θA

(
d− c

))
+ b− d+ θA

(
c− d

)
> 0 (48)

Since (a+ d)− (b+ c) < 0, d− c < 0 and d− b < 0, (48) is equivalent to

q <
d− b+ θA

(
d− c

)
(a+ d)− (b+ c) + θA

(
d− c

) = η2(θA).
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It can be easily checked that

η2(θA) ∈]0, 1[ ∀θA > 0.

Moreover

lim
θA→0+

η2(θA) = Ψ(G); lim
θA→+∞

η2(θA) = 1.

Since η2(θA) can be rewritten as

η2(θA) =
−δ + θAλ

γ + θAλ
,

we get
∂η2(θA)

∂θA
=

λ(γ + δ)

(γ + θAλ)2
> 0 ⇐⇒ λ(γ + δ) = (d− c)(a− c) < 0,

where the latter inequality is satisfied because d − c < 0, and (a − c) < 0. It follows that

η2(θA) is strictly increasing in ]0,+∞[. Hence, for q ∈ [0, η2(θA)[,

wGPS
A ((1, q), (1, q)) ⩾ wGPS

A ((1, q), (y, q)) ∀y ∈ [0, 1],

and 1 ∈ BRGPS
A (q).

There are no other maximizers in this case.

(2) If

q
(
(a+ d)− (b+ c) + θA(a− b) + θAp̃

(
b+ d− a− c

))
+ b− d+ p̃θA

(
c− d

)
< 0, (49)

then uA(p̃, θA, (·, q)) is strictly decreasing and attains a maximum point only in y = 0. The

consistency condition with the maximum for correct beliefs implies that p̃ = 0. Then, (49)

becomes:

q
(
(a+ d)− (b+ c) + θA(a− b)

)
+ b− d < 0.

Since (a+ d)− (b+ c) + θA(a− b) < 0 for all θA > 0 and d− b < 0, it can be easily checked

that (49) is equivalent to

q >
d− b

(a+ d)− (b+ c) + θA(a− b)
= η3(θA)

with

η3(θA) ∈]0, 1[ ∀θA ∈]0,+∞[, lim
θA→0+

η3(θA) = Ψ(G), lim
θA→+∞

η3(θA) = 0.

Finally, it immediately follows that η3(θA) is strictly decreasing in ]0,+∞[. Therefore, for

q ∈ ]η3(θA), 1],

wGPS
A ((0, q), (0, q)) ⩾ wGPS

A ((0, q), (y, q)) ∀y ∈ [0, 1],

and 0 ∈ BRGPS
A (q).
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(3) If

q
(
(a+ d)− (b+ c) + θA(a− b) + θAp̃

(
b+ d− a− c

))
+ b− d+ p̃θA

(
c− d

)
= 0, (50)

then uA(p̃, θA, (y, q) is constant with respect to y, therefore every y ∈ [0, 1] maximizes

uA(p̃, θA, (·, q)). Solving for p̃ in (50) we get:

p̃ = −q[(a+ d)− (b+ c) + θA(a− b)] + (b− d)

θA

(
q(b+ d− a− c) + c− d

) := P2(q, θA).

Now:

P2(q, θA) = 0 ⇐⇒ q[(a+ d)− (b+ c) + θA(a− b)] + (b− d) = 0 ⇐⇒

q =
d− b

(a+ d)− (b+ c) + θA(a− b)
= η3(θA),

and

P2(q, θA) = 1 ⇐⇒ q[(a+d)−(b+c)+θA(a−b)]+(b−d)+θA
(
q(b+d−a−c)+c−d

)
= 0 ⇐⇒

q =
d− b+ θA(d− c)

(a+ d)− (b+ c) + θA(d− c)
= η2(θA).

Moreover, using notation in (16), P2(q, θA) can be rewritten as:

P2(q, θA) = − q(γ − µθA) + δ

θA

(
q(µ+ λ)− λ

) .
We have that:

∂P2(q, θA)

∂q
= − 1

θA

∂

∂q

 q(γ − µθA) + δ(
q(µ+ λ)− λ

)
 = − 1

θA

−γλ+ θAµλ− δ(µ+ λ))(
q(µ+ λ)− λ

)2


From the assumptions we know that δ > 0, µ > 0, λ, γ < 0, therefore it follows that µλ < 0

and
∂P2(q, θA)

∂q
> 0 ⇐⇒ θA >

γλ+ δ(µ+ λ)

µλ
.

Now observe that δµ > 0 and γ + δ = a− c < 0. It follows that λ(γ + δ) > 0 and

γλ+ δ(µ+ λ)

µλ
=
λ(γ + δ) + δµ

µλ
< 0;

so, P2(·, θA) is strictly increasing in the interval [η3(θA), η2(θA)] for every θA > 0.
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Bob’s best reply correspondence

As already noticed in the previous Type 1 section, Bob’s expected utility is substantially the same

of Ann’s one when we replace q with p, p̃ with q̃ and θA with θB, so we can easily deduce Bob’s

best reply correspondence. For the sake of completeness, we report it in the proposition below.

Proposition 5.5: Let G be an Hawk-Dove game (a < c, d < b). Assume that a < b, d < c and

let η2 and η3 defined as in Proposition 5.4. Let

Q2(p, θB) = −p[(a+ d)− (b+ c) + θB(a− b)] + (b− d)

θB

(
p(b+ d− a− c) + c− d

) (51)

Then, for every θB > 0, Bob’s best reply correspondence is given by the following:

BRGPS
B (p) =



1 if 0 ⩽ p < η3(θB)

{0, 1} if p = η3(θB)

{0, 1, Q2(p, θB)} if η3(θB) < p < η2(θB)

{0, 1} if p = η2(θB),

0 if η2(θB) < p ⩽ 1,

(52)

where

- η2 :]0,+∞[→ R is strictly increasing and

lim
θB→0+

η2(θB) = Ψ(G); lim
θB→+∞

η2(θB) = 1.

- η3 :]0,+∞[→ R is strictly decreasing and

lim
θB→0+

η3(θB) = Ψ(G); lim
θB→+∞

η3(θB) = 0.

- Q2(·, θB) : [η3(θB), η2(θB)] → R is strictly increasing and

Q2 (η3(θB), θB) = 0 and Q2 (η2(θB), θB) = 1. (53)

Equilibrium analysis

In this section, following the steps provided for Type 1 games, we give a characterization of the

equilibria in completely mixed strategies in Type 2 games. Then, we analyze the equilibria of the

game. In particular, we will show that, regardless of the sensitivity parameters θA, θB, the two

pure strategy equilibria of the game (H,L) and (L,H) survive to guilt aversion. Moreover, one
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equilibrium in completely mixed strategies, which depends on θA, θB, always exists.

Characterization of equilibria in mixed strategies

From the structure of the best reply correspondences, we get that a completely mixed strategy

profile (p∗, q∗) is an equilibrium if and only if it is a solution of the following system:
p = P2(q, θA) = − q(γ − µθA) + δ

θA

(
q(µ+ λ)− λ

) , (i)

q = Q2(p, θB) = − p(γ − µθB) + δ

θB

(
p(µ+ λ)− λ

) . (ii)
(54)

From equation (ii), we obtain

p =
qλθB − δ

γ − µθB + qθB(µ+ λ)
:= I2(q, θB).

Let D2 : [η3(θA), η2(θA)] → R be the function defined by:

D2(q) = P2(q, θA)− I2(q, θB),

It follows that a completely mixed strategy profile (p∗, q∗) is equilibrium if and only if q∗ is a

zero for D2, that is, D2(q
∗) = 0.

Lemma 5.6: For every θA, θB > 0, there exists a unique point q∗ ∈]η3(θA), η2(θA)[ such that

D2(q
∗) = 0. Moreover:

µ+ λ > 0 =⇒ ∂2P2(q,θA)
∂q2

< 0, ∂2I2(q,θA)
∂q2

> 0, ∂2D2(q,)
∂q2

< 0 ∀q ∈]η3(θA), η2(θA)[,
µ+ λ < 0 =⇒ ∂2P2(q,θA)

∂q2
> 0, ∂2I2(q,θA)

∂q2
< 0, ∂2D2(q)

∂q2
> 0 ∀q ∈]η3(θA), η2(θA)[,

µ+ λ = 0 =⇒ ∂2P2(q,θA)
∂q2

= ∂2I2(q,θA)
∂q2

= ∂2D2(q)
∂q2

= 0 ∀q ∈]η3(θA), η2(θA)[.
(55)

Proof. It can be immediately checked that D2 is twice differentiable with:

∂P2(q, θA)

∂q
=
λ(γ − θAµ) + δ(µ+ λ)

θA

(
q(µ+ λ)− λ

)2 ,
∂I2(q, θA)

∂q
=
θB(δµ+ (γ + δ)λ− µλθB)

(γ − µθB + qθB(µ+ λ))2
,

and
∂2P2(q, θA)

∂q2
=

2(µ+ λ) (λθAµ− λ(γ + δ)− δµ))

θA

(
qµ+ (q − 1)λ

)3 , (56)

∂2I2(q, θA)

∂q2
=

2(µ+ λ)θ2B(λµθB − λ(γ + δ)− µδ)

(γ + qθBλ+ (q − 1)µθB)3
. (57)
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Now, the denominator in (56) is positive for every q as qµ ⩾ 0 and (q − 1)λ ⩾ 0 and they cannot

be equal to 0 simultaneously. Moreover,

λµθA − λ(γ + δ)− µδ < 0 (58)

as δ, µ > 0, λ, γ < 0 and γ + δ = a− c < 0, so that µλ < 0, δµ > 0 and λ(γ + δ) > 0. Therefore

∂2P2(q, θA)

∂q2
≷ 0 ⇐⇒ µ+ λ ≶ 0.

Similarly, the denominator in (57) is negative for every q as γ < 0, qλ ⩽ 0 and (q−1)µ ⩽ 0. Then,

from (58), it follows that
∂2I2(q, θA)

∂q2
≷ 0 ⇐⇒ µ+ λ ≷ 0.

Hence, (55) follows. Moreover

P2(η3(θA), θA) = 0; I2(η3(θA), θA) > 0 =⇒ D2(η3(θA)) < 0

and

P2(η2(θA), θA) = 1; I2(η3(θA), θA) < 1 =⇒ D2(η2(θA)) > 0;

Consequently, there exists at least a zero for D2 in ]η3(θA), η2(θA)[. If there exists more than

one zero, the function D2 should have at least a local maximum point and a local minimum point,

but this is not possible whatever the value of µ + λ is, as the second order derivative of D2 has

constant sign.

Equilibria

From the structure of the best reply correspondences (see Figures 4 and 5), we immediately

see that the two pure strategy equilibria of the game (H,L) and (L,H) persist in case of guilt

aversion regardless of the sensitivity parameters θA, θB. The previous Lemma 5.6 shows that there

exists a unique equilibrium in completely mixed strategies that is the solution of system (54) and

therefore depends on θA, θB. The sign of the term λ + µ affects only the concavity/convexity of

the function D2 and the asymptotic behavior of the completely mixed strategy equilibrium.

Note that, by the definition in (16),

λ+ µ > 0 ⇐⇒ b+ d > a+ c,

where b+d is the sum of Bob’s payoffs when Ann plays L, and a+ c is the sum of his payoffs when

she plays H. Thus, the condition λ+µ > 0 indicates that Bob is better off, on average, when Ann

plays L rather than H.

Another interpretation can be provided: since

λ+ µ > 0 ⇐⇒ b− a > c− d,
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η3(θA) η2(θA)

θA+∞ 0+ θA +∞

η2(θB)

η3(θB)

p

q

BRGPS
A (q)

BRGPS
B (p)

1

10 Ψ(G)

Ψ(G)

1

θA > 0; θB = 0

Figure 4: Type 2: Subcase µ+ λ > 0.

η3(θA) η2(θA)

θA+∞ 0+ θA +∞

η2(θB)

η3(θB)

p

q

BRGPS
A (q)

BRGPS
B (p)

1

10 Ψ(G)

Ψ(G)

1

θA > 0; θB = 0

Figure 5: Type 2: Subcase µ+ λ < 0.

the condition λ+µ > 0 also means that Ann prefers Bob’s deviation from the symmetric strategy

profile (H,H) towards the asymmetric equilibrium (H,L) rather than his deviation from the

symmetric profile (L,L) towards the asymmetric equilibrium (L,H).

Finally, consider the case in which only Ann is affected by guilt aversion, i.e., θA > 0 and
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θB = 0. We immediately observe that, as for Type 1 games, only Bob’s mixed equilibrium strategy

is perturbed. When λ + µ > 0 (Figure 4), in equilibrium Bob plays H with a lower probability

compared to the case without guilt. Conversely, when λ + µ < 0 (Figure 5), Bob plays H with a

higher probability.

Remark 5.7: Some insight into the asymptotic behavior of the equilibria in completely mixed

strategies can be given. To this aim, denote with H = λ+ µ. Solving the system (54) we get that

the second component q∗(θA, θB) of the completely mixed strategy equilibrium is one (and only

one) of the two solutions

q1(θA, θB) =
−b−

√
∆

2a
, q2(θA, θB) =

−b+
√
∆

2a

where

−b = γ2 − µγ(θA + θB)− δH(θA − θB) + (µ− λ)HθAθB,

a = H (−θBγ + (µ− λ)θAθB)

and

∆ =
(
−γ2 + µγ(θA + θB) + δH(θA − θB) + (λ− µ)HθAθB

)2−
4H (−θBγ + (µ− λ)θAθB) δ (−γ − λθA + µθB) .

In order to understand the asymptotic behavior of the equilibrium points, we focus on the case

θA = θB = θ. We get

lim
θ→+∞

q1(θ) = lim
θ→+∞

(µ2 − λ2)θ2 − |λ2 − µ2|θ2

2(µ2 − λ2)θ2
, lim

θ→+∞
q2(θ) = lim

θ→+∞

(µ2 − λ2)θ2 + |λ2 − µ2|θ2

2(µ2 − λ2)θ2

where the previous limits can attain the values 0 or 1 depending on the sign of λ + µ. As the

equilibrium component q∗(θ) is equal to q1(θ) or q2(θ), we get that a converging subsequence,

denoted (with an abuse of notation) with {q∗(θn)}n∈N converges to 0 or 1 depending on the data

of the game. Therefore, the corresponding sequence of equilibria {(p∗(θn), q∗(θn))}n∈N converges

respectively to (L,L) or to (H,H).

6 Conclusions

Our analysis shows the extent to which guilt aversion influences the equilibrium structure of

generalized Hawk–Dove games. In Type 1 games, guilt aversion can drive the system toward the

Pareto-undominated symmetric profile, especially when sensitivity parameters exceed a specific

threshold, thereby providing a mechanism for conflict resolution. In Type 2 games, guilt aversion

only modifies the mixed strategy equilibrium. These findings highlight the role of guilt aversion in
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shaping strategic interactions, offering insights into how psychological and behavioral factors can

resolve or exacerbate conflicts in coordination problems.

Finally, this paper represents the first contribution to a broader project aimed at characterizing

equilibria under guilt aversion across all classes of symmetric 2× 2 games, which will be the focus

of future research.

7 Appendix A: Beliefs Structure

The hierarchical structure of beliefs is constructed below.

Denote with ∆(X) the set of probability measures on a given set X, then

B1
i := ∆(Σ−i) is the set of first order beliefs of player i,

B2
i := ∆(Σ−i ×B1

−i) is the set of second order beliefs of player i,
...

Bk
i (Σ−i ×B1

−i × · · · ×Bk−1
−i ) is the set of k-th order beliefs of player i,

and so on, where

Bk
−i :=

∏
j ̸=i

Bk
j is the set of k-th order beliefs of i’s opponents,

for every player i and for every k ∈ N.
Therefore, k-th order beliefs of player i is represented by a probability measure over others’

mixed strategies and other’s beliefs up to the (k− 1)-th order. In the end, the set of hierarchies of

beliefs of player i is

Bi =
∞∏
k=1

Bk
i ,

whose elements are infinite hierarchies of beliefs bi = (b1i , b
2
i , · · · , bki , · · · ). Hence, player i’s beliefs

represent (via probability measures) what player i believes the others will play, what player i thinks

the others believe their opponents will play, and so on. Since, for every k ∈ N, Bk
i is compact

and can be metrized as a separable metric space, the set Bi is, in turn, metrizable and separable.

Moreover, it results to be compact under the topology induced by this metric (see [De Marco et al.,

2022] for further details).

We will restrict our attention to the subset of collectively coherent beliefs Bi ⊂ Bi, which is

the set of beliefs of player i in which he is sure (i.e. with probability equal to 1) that it is common

knowledge that beliefs are coherent. Specifically, a belief bi ∈ Bi is said to be coherent if, for every

k ∈ N, the following holds:

marg(bk+1
i ,Σ−i ×B1

−i,× · · · ×Bk−1
−i ) = bki . (59)
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The set Bi is compact as well (the detailed construction of the set of collectively coherent beliefs

can be found in [Geanakoplos et al., 1989] and the proof of its compactness in [De Marco et al.,

2022].
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